Εισαγωγή στη Μη Παραμετρική Στατιστική
Διδακτικές Σημειώσεις
Απόστολος Δ. Μπατσίδης

ΙΩΑΝΝΙΝΑ 2014
Στην Όλγα
Περιεχόμενα

Εισαγωγή... 5

Πρώτο Κεφάλαιο

1.1 Kolmogorov-Smirnov τεστ .. 7
1.1.1 Ο έλεγχος Kolmogorov για ένα δείγμα ... 7
1.1.2 Ο έλεγχος Smirnov για δύο ανεξάρτητα δείγματα .. 19
1.2 χ² τεστ καλής προσαρμογής ... 22
1.3 Ασκήσεις .. 30

Δεύτερο Κεφάλαιο

Τεστ των ροών .. 35

Τρίτο Κεφάλαιο

3.1 Προσημικός έλεγχος .. 44
3.2 Τεστ του Wilcoxon για ένα δείγμα .. 51
3.3 Τεστ του Wilcoxon για δύο εξαρτημένα δείγματα ... 62

Τέταρτο Κεφάλαιο

4.1 Wilcoxon Sum Rank τεστ .. 66
4.2 Mann-Whitney τεστ .. 77

Πέμπτο Κεφάλαιο

5.1 Kruskal-Wallis τεστ .. 81
5.2 Έλεγχος ισότητας πληθυσμιακών διακυμάνσεων ... 98
5.2.1 Έλεγχος ισότητας δύο πληθυσμιακών διακυμάνσεων 98
5.2.2 Έλεγχος ισότητας περισσότερων από δύο πληθυσμιακών διακυμάνσεων 99

Έκτο Κεφάλαιο

6.1 Συντελεστής συσχέτισης του Pearson .. 103
6.2 Συντελεστής συσχέτισης του Spearman ... 106
6.3 Συντελεστής συσχέτισης του Kendall... 115

Έβδομο Κεφάλαιο

7.1 Τεστ καλής προσαρμογής με το S.P.S.S.. 121
7.1.1 Kolmogorov-Smirnov τεστ για ένα δείγμα με το S.P.S.S......................... 121
7.1.2 Smirnov τεστ για δύο δείγματα.. 123
7.1.3 χ^2 τεστ καλής προσαρμογής με το S.P.S.S ... 124
7.2 Τεστ των ροών με το S.P.S.S... 125
7.3 Προσημικός έλεγχος- Wilcoxon τεστ με το S.P.S.S... 126
7.3.1 Ένα δείγμα... 126
7.3.2 Δύο εξαρτημένα δείγματα... 126
7.4 Wilcoxon-Mann-Whitney με το S.P.S.S.. 130
7.5 Kruskal-Wallis με το S.P.S.S.. 134
7.6 Συντελεστές συσχέτισης με το S.P.S.S.. 135

Παράρτημα ... 137

Βιβλιογραφία .. 153
Εισαγωγή 1ης έκδοσης

Οι παραδοσιακές μεθοδολογίες της Στατιστικής, όταν οι έλεγχοι υποθέσεων, η ανάλυση διακύμανσης κ.α. έχουν θεμελιωθεί υπό την υπόθεση ότι τα διαθέσιμα δεδομένα μπορούν να θεωρηθούν από έναν πληθυσμό με γνωστή κατανομή, με άγνωστες συνηθέστερες πληθυσμιακές παραμέτρους. Δηλαδή υιοθετείται γνώση της συναρτησιακής μορφής της συνάρτησης πιθανότητας ή της συνάρτησης πυκνότητας πιθανότητας. Στο πλαίσιο αυτό, λόγω του Κεντρικού Ορισμού Θεωρήματος και των ιδιοτήτων του, το μοντέλο της κανονικής κατανομής είναι αυτό που κυρίως υιοθετείται. Οι μεθοδολογίες που στηρίζονται στη γνώση της συναρτησιακής μορφής της κατανομής του πληθυσμού αποτελούν τη λεγόμενη Παραμετρική Στατιστική και το πρόβλημα της εκτίμησης ανάγεται σε πρόβλημα εκτίμησης των παραμέτρων του υποτιθέμενου μοντέλου.

Παρότι τις περισσότερες φορές οι υποθέσεις της Παραμετρικής Στατιστικής είναι λογικές, συμβαίνει πολλές φορές να μην ικανοποιούνται. Για παράδειγμα έχουμε αποκλίσεις από την κανονική κατανομή, δεν έχουμε δεδομένα από συνεχή κατανομή, έχουμε μεγάλο πλήθος ακραίων τιμών κ.ο.κ. Για το λόγο αυτό αναπτύχθηκαν εναλλακτικές μεθοδολογίες, που δε στηρίζονται παρά μόνο στην τυχαιότητα των δειγματικών δεδομένων, καθώς η χρήση των παραδοσιακών μεθοδολογιών μπορεί να οδηγήσει σε λανθασμένα συμπεράσματα. Η συλλογή αυτών των εναλλακτικών μεθοδολογιών είναι η λεγόμενη Μη Παραμετρική Στατιστική.

Σκοπός αυτών των σημειώσεων είναι να παρουσιαστούν τα πιο βασικά (και παράλληλα ιστορικά) μη παραμετρικά στατιστικά τεστ. Πιο συγκεκριμένα στο Πρώτο Κεφάλαιο, θα παρουσιαστούν τα στατιστικά τεστ των Kolmogorov (1933) και Smirnov (1935a, b), ορισμένες επεκτάσεις ή τροποποιήσεις αυτών, καθώς και το \(X^2 \) τεστ καλής προσαρμογής. Στο Deúterο Κεφάλαιο παρουσιάζεται σε συντομία, το τεστ των ροών, που αποτελεί έναν τρόπο ελέγχου της τυχαιότητας ή μη ενός δείγματος \(n \) δειγματικών παρατήρησεων. Στο Τρίτο Κεφάλαιο το ενδιαφέρον επικεντρώνεται στον \(\text{έλεγχο: (a) της υπόθεσης ότι η πληθυσμιακή διάμεσος μίας άγνωστης κατανομής είναι ίση με δοθείσα τιμή, όταν είναι διαθέσιμο ένα τυχαίο δείγμα από αυτόν τον πληθυσμό, και (b) της υπόθεσης της ισότητας των παραμέτρων θέσης δύο πληθυσμών, όταν είναι διαθέσιμα δύο εξαρτημένα δείγματα από αυτούς τους πληθυσμούς. Στο Τέταρτο Κεφάλαιο ασχολούμαστε με τον \(\text{έλεγχο της υπόθεσης της ισότητας δύο πληθυσμιακών διαμέσων, όταν λαμβάνουμε δύο το πλήθος ανεξάρτητα μεταξύ τους τυχαία δείγματα από αυτούς. Στο Πέμπτο Κεφάλαιο, οι μεθοδολογίες του προηγουμένου κεφαλαίου επεκτείνονται στην περίπτωση του ελέγχου της υπόθεσης} \)
ότι τρία ή περισσότερα τυχαία δείγματα, ανεξάρτητα μεταξύ τους, προέρχονται από πληθυσμούς με ίδιες πληθυσμιακές διαμέσους. Επιπρόσθετα, αναπτύσσονται μη παραμετρικές μεθοδολογίες για τον έλεγχο της ισότητας δύο ή περισσοτέρων πληθυσμιακών διακυμάνσεων. Στο Έκτο Κεφάλαιο, στόχος μας είναι η παράθεση μεθοδολογιών για τη διερεύνηση της ύπαρξης γραμμικής σχέσης μεταξύ δύο μεταβλητών. Ειδικότερα, το ενδιαφέρον επικεντρώνεται στη μελέτη της γραμμικής εξάρτησης μεταξύ δύο ποσοτικών τυχαίων μεταβλητών, μέσω του συντελεστή συσχέτισης του Pearson. Έπειτα παρουσιάζονται ο συντελεστής συσχέτισης του Spearman και του Kendall, οι οποίοι υιοθετούνται σε περιπτώσεις που ο συντελεστής του Pearson δε ψηφίσει εφαρμογή. Τέλος, οι διδακτικές αυτές σημειώσεις ολοκληρώνονται στο Έβδομο Κεφάλαιο με την υλοποίηση των κυριοτέρων μη παραμετρικών μεθοδολογιών στο ίσως πιο ευρέως χρησιμοποιούμενο στατιστικό πρόγραμμα, το S.P.S.S. (Statistical Package for Social Sciences), και ακολουθεί Παράρτημα με χρήσιμους πίνακες και η Βιβλιογραφία.

Ιωάννινα, 2010
Απόστολος Μπατσίδης

Εισαγωγή 2ης έκδοσης

Στην δεύτερη έκδοση έχει διατηρηθεί ο χαρακτήρας της πρώτης έκδοσης. Στην έκδοση αυτή έχουν διορθωθεί τυπογραφικά λάθη και αστοχίες της πρώτης έκδοσης. Στο σημείο αυτό θα ήθελα να ευχαριστήσω όλους τους φοιτητές του Τμήματος Μαθηματικών που συνέβαλαν στη βελτίωση αυτή υποδεικνύοντας λάθη και αστοχίες της αρχικής έκδοσης. Κάθε παρατήρηση παραμένει ευπρόσδεκτη και επιθυμητή.

Ιωάννινα, Δεκέμβριος 2014
Απόστολος Μπατσίδης
Πρώτο Κεφάλαιο

Τεστ καλής προσαρμογής

Συχνά ο στατιστικός έρχεται αντιμέτωπος με το πρόβλημα αν οι δειγματικές παρατηρήσεις προσαρμόζονται σε κάποιο συγκεκριμένο μοντέλο. Σε αυτήν την κατεύθυνση τα τεστ καλής προσαρμογής (goodness of fit tests) υποδεικνύουν πόσο καλά ένα σύνολο δεδομένων περιγράφεται, προσαρμόζεται από ή σε ένα συγκεκριμένο μοντέλο. Γίνεται άμεσα κατανοητό ότι τα τεστ καλής προσαρμογής μας δίνουν το βαθμό ασυμφωνίας ή το βαθμό εγγύτητα των παρατηρούμενων τιμών (observed values) από τις τιμές που αναμένονται (expected values) αν υιοθετήσουμε το υπό εξέταση μοντέλο. Στο παραπάνω πλαίσιο, έχουν αναπτυχθεί διάφορες στατιστικές μεθοδολογίες, τόσο για τον έλεγχο ότι ένα σύνολο δεδομένων προέρχεται από έναν συγκεκριμένο πληθυσμό π.χ. κανονικό, εκθετικό κ.ο.κ., όσο και αν δύο ή περισσότερα σύνολα δεδομένων μπορούν να θεωρηθούν ότι προέρχονται από τον ίδιο πληθυσμό.

Στο πλαίσιο αυτό στο παρόν κεφάλαιο θα παρουσιαστούν τα στατιστικά τεστ των Kolmogorov (1933) και Smirnov (1939 a,b), ορισμένες επεκτάσεις ή τροποποιήσεις αυτών, καθώς και το X^2 τεστ καλής προσαρμογής.

1.1 Kolmogorov–Smirnov Τεστ

Τα στατιστικά τεστ των Kolmogorov και Smirnov στηρίζονται στην εμπειρική αθροιστική συνάρτηση κατανομής (ε.α.σ.κ). Για το λόγο αυτό στη συνέχεια παραθέτουμε τον ορισμό της, καθώς και κάποιες χρήσιμες ιδιότητες της.

Ορισμός 1.1 Έστω X_1,X_2,\ldots,X_n, ένα τυχαίο δείγμα από έναν πληθυσμό με αθροιστική συνάρτηση κατανομής ($\alpha\cdot\sigma\cdot\kappa$) $F(\cdot)$. Η εμπειρική αθροιστική κατανομή, συμβολίζεται με $F_n(x)$ και ορίζεται ως εξής:

$$F_n(x) = \frac{\text{αριθμός } X_i \leq x}{n}, \quad x \in R,$$

ή ισοδύναμα

$$F_n(x) = \frac{\sum_{i=1}^{n} I_{[-\infty,x]}(X_i)}{n}, \quad x \in R,$$

όπου

7
\[I_c(X_i) = \begin{cases} 1 & X_i \in C \\ 0 & X_i \not\in C \end{cases} \]

Από τον ορισμό της εμπειρικής αθροιστικής συνάρτησης κατανομής γίνεται άμεσα αντιληπτό ότι πρόκειται για μία στατιστική συνάρτηση, ένα στατιστικό καθώς είναι συνάρτηση των δειγματικών τιμών \(X_1, \ldots, X_n \). Στη συνέχεια θα παρουσιαστούν κάποιες χρήσιμες ιδιότητες της εμπειρικής αθροιστικής συνάρτησης κατανομής.

Θεώρημα 1.1 Έστω \(X_1, X_2, \ldots, X_n \), ένα τυχαίο δείγμα από έναν πληθυσμό με συνεχή αθροιστική συνάρτηση κατανομής \(F(x) \), τότε για σταθερό \(x \), η κατανομή του στατιστικού \(nF_n(x) \), όπου \(F_n(x) \) η εμπειρική αθροιστική συνάρτηση κατανομής είναι διωνυμική με παραμέτρους \(n \) και \(F(x) \).

Απόδειξη

Από τον ορισμό της εμπειρικής αθροιστικής συνάρτησης κατανομής εύκολα προκύπτει ότι οι δυνατές της τιμές ανήκουν στο ακόλουθο σύνολο: \(\{0, 1/n, 2/n, \ldots, (n-1)/n, 1\} \). Για σταθερό \(x \), η τιμή της εμπειρικής αθροιστικής συνάρτησης είναι ίση με \(k/n \), \(k = 0, \ldots, n \), αν και μόνο αν \(k \) το πλήθος δειγματικών τιμών είναι μικρότερες ή ίσες του \(x \).

Επομένως ο υπολογισμός της πιθανότητας \(P\left(F_n(x) = \frac{k}{n} \right) \) ανάγεται στην εύρεση της πιθανότητας να έχουμε \(k \) το πλήθος επιτυχιών σε \(n \) δοκιμές ενός διωνυμικού πειράματος, όπου επιτυχία θεωρείται όταν μία δειγματική τιμή \(X \), είναι ίση ή μικρότερη από την σταθεροποιημένη τιμή \(x \), με πιθανότητα επιτυχίας \(p = P(X_i \leq x) = F(x) \). Άρα

\[
P\left(F_n(x) = \frac{k}{n} \right) = \binom{n}{k} \left(F(x) \right)^k (1 - F(x))^{n-k}, k = 0, \ldots, n,
\]

ή ισοδύναμα

\[
P\left(nF_n(x) = k \right) = \binom{n}{k} \left(F(x) \right)^k (1 - F(x))^{n-k}, k = 0, \ldots, n,
\]

που ολοκληρώνει την απόδειξη. \(\blacksquare \)
Θεώρημα 1.2 a) Η εμπειρική αθροιστική συνάρτηση κατανομής $F_n(x)$ είναι συνεπής εκτιμήτρις της αθροιστικής συνάρτησης κατανομής $F(x)$. b) Η εμπειρική αθροιστική συνάρτηση κατανομής $F_n(x)$ ακολουθεί ασυμπτωτικά αμερόληπτη κατανομή με μέση τιμή $F(x)$ και διακύμανση $\{F(x)(1−F(x))\}/n$.

Απόδειξη

α) Για να αποδείξουμε ότι μία εκτιμήτρια στατιστική συνάρτηση, έστω T_n, μίας παραμέτρου θ είναι συνεπής εκτιμητής της παραμέτρου αυτής, δηλαδή ότι

$\lim_{n→∞} P(\theta−\varepsilon < T_n < \theta + \varepsilon) = 1, \ \forall \ \theta$, αρκεί να δείξουμε ότι η T_n είναι αμερόληπτη (ή ασυμπτωτικά αμερόληπτη) εκτιμητρία της παραμέτρου θ, δηλαδή $ET_n = \theta$, $\forall \ \theta$ (ή $ET_n → \theta$, $n → ∞$), και επιπλέον $VarT_n → 0$, καθώς το $n → ∞$.

Επομένως αρχικά θα δείξουμε ότι η εμπειρική αθροιστική συνάρτηση κατανομής είναι αμερόληπτος εκτιμητής της αθροιστικής συνάρτησης. Στο Θεώρημα 1.1 αποδείχθηκε ότι $nF_n(x) \sim Διωνυμική(n,F(x))$. Επομένως άμεσα προκύπτει, από τις ιδιότητες της Διωνυμικής κατανομής και της μέσης τιμής, ότι

$E(nF_n(x)) = nF(x) \iff E(F_n(x)) = F(x)$.

Επιπλέον, έχουμε ότι:

$Var(nF_n(x)) = nF(x)(1−F(x)) \iff Var(F_n(x)) = \frac{F(x)(1−F(x))}{n}$

και επομένως $Var(F_n(x)) → 0$, καθώς το $n → ∞$, και η απόδειξη του α) ολοκληρώθηκε.

β) Είναι γνωστό από τον ορισμό της εμπειρικής αθροιστικής συνάρτησης κατανομής ότι:

$F_n(x) = \frac{\sum_{i=1}^{n} I_{(-\infty,x]}(X_i)}{n}, x \in R$.

Επομένως το στατιστικό $F_n(x)$ είναι ο δειγματικός μέσος των τυχαίων μεταβλητών $I_{(-\infty,x]}(X_i)$, η κατανομή των οποίων είναι Bernoulli με πιθανότητα επιτυχίας $F(x)$, μέση τιμή $F(x)$ και διακύμανση $F(x)(1−F(x))$. Εφαρμόζοντας το Κεντρικό Θεώρημα προκύπτει άμεσα ότι:

9
$$F_n(x) = \frac{\sum_{i=1}^{n} I(-\infty, x)](X_i)}{n} \sim N \left(\frac{E \left[\sum_{i=1}^{n} I(-\infty, x)](X_i) \right]}{n}, \frac{Var \left[\sum_{i=1}^{n} I(-\infty, x)](X_i) \right]}{n^2} \right),$$

ή ισοδύναμα:

$$F_n(x) = \frac{\sum_{i=1}^{n} I(-\infty, x)](X_i)}{n} \sim N \left(F(x), \frac{F(x)(1-F(x))}{n} \right).$$

Από τα παραπάνω προκύπτουν ότι αν κάποιος ενδιαφέρεται να εκτιμήσει την αθροιστική συνάρτηση κατανομής \(F(x) \), για κάθε \(x \), τότε θα ήθελε να διαπιστώσει πόσο κοντά είναι η εμπειρική αθροιστική συνάρτηση στην αθροιστική συνάρτηση. Στο επόμενο θεώρημα, η απόδειξη του οποίου παραλείπεται, θεμελιώνεται ότι με πιθανότητα 1 η σύγκλιση της \(F_n(x) \) στην \(F(x) \) είναι ομοιόμορφη στο \(x \) ή διαφορετικά για μεγάλο μέγεθος δείγματος η προσέγγιση της \(F(x) \) από την \(F_n(x) \) είναι αρκετά ακριβής.

Θεώρημα 1.3 (Glivenco-Cantelli)

Αν \(F_n(x) \) είναι η εμπειρική αθροιστική συνάρτηση κατανομής ενός τυχαίου δείγματος \(X_1, \ldots, X_n \), από έναν πληθυσμό με αθροιστική συνάρτηση κατανομής \(F(x) \) τότε

$$\sup_{x} |F_n(x) - F(x)| \overset{a.s.}{\rightarrow} 0,$$

δηλαδή \(P \left(\sup_{x} |F_n(x) - F(x)| \rightarrow 0 \right) = 1. \)

Χρησιμοποιώντας το παραπάνω θεώρημα ο Kolmogorov (1933) πρότεινε μία στατιστική συνάρτηση που συμμετέχει ένα μέτρο της εγγύτητας των \(F_n(x) \) και \(F(x) \). Αργότερα ο Smirnov (1939 a, b) επέκτεινε το στατιστικό αυτό για να συγκρίνει δύο πληθυσμούς στηριζόμενος σε 2 ανεξάρτητα δείγματα ένα από καθένα από αυτούς (βλέπε Conover (1971), σελ. 317). Τα στατιστικά αυτά τεστ αποτελούν αντικείμενο των επόμενων παραγράφων.
1.1.1 Ο έλεγχος Kolmogorov για ένα δείγμα

Έστω ότι \(X_1, X_2, \ldots, X_n \), είναι ένα τυχαίο δείγμα από έναν πληθυσμό με συνεχή άλλα άγνωστη αθροιστική συνάρτηση κατανομής \(F(x) \). Θέλουμε να ελέγξουμε μία από τις εξής τρεις υποθέσεις:

A. Τη μηδενική υπόθεση \(H_0 : F(x) = F_0(x), \ \forall x \in R \), έναντι της εναλλακτικής \(H_1 : F(x) \neq F_0(x), \ \forall x \in R \).
B. Τη μηδενική υπόθεση \(H_0 : F(x) = F_0(x), \ \forall x \in R \), έναντι της εναλλακτικής \(H_1 : F(x) > F_0(x), \ \forall x \in R \).
Γ. Τη μηδενική υπόθεση \(H_0 : F(x) = F_0(x), \ \forall x \in R \), έναντι της εναλλακτικής \(H_{1 L} : F(x) < F_0(x), \ \forall x \in R \),

όπου \(F_0(x) \) είναι μία, γνωστή, ειδική αθροιστική συνάρτηση κατανομής.

Η στατιστική συνάρτηση για τον έλεγχο των παραπάνω υποθέσεων βασίζεται στην εμπειρική αθροιστική συνάρτηση κατανομής, καθώς ως αμερόληπτη εκτιμήτρια της αθροιστικής συνάρτησης κατανομής δε θα πρέπει να αποκλίνει σημαντικά από την τελευταία. Για κάθενα από τα τρία διαφορετικά σύνολα υποθέσεων, η στατιστική συνάρτηση ορίζεται ως εξής:

A. Χρησιμοποιείται η στατιστική συνάρτηση

\[
\sqrt{n}D_n = \sqrt{n} \sup_x |F_n(x) - F_0(x)|, \]

η οποία στην ουσία μετρά πόσο αποκλίνει η \(F_n(x) \) από την \(F_0(x) \) και αναζητά τη μέγιστη κατακόρυφη απόσταση μεταξύ των γραφημάτων των \(F_n(x) \) και \(F(x) \). Επομένως γίνεται εύκολα αντιληπτό ότι απορρίπτεται η μηδενική υπόθεση \(H_0 \) για μεγάλες τιμές της στατιστικής αυτής συνάρτησης.

Καθώς η \(F_n(x) \) είναι, εξ ορισμού της, βηματική συνάρτηση και η \(F_0(x) \) ως αθροιστική συνάρτηση κατανομής είναι μη φθίνουσα, η μέγιστη απόκλιση-ασυμφωνία μεταξύ τους συμβαίνει είτε στις παρατηρούμενες τιμές είτε στα όρια από αριστερά. Επομένως, προκύπτει ότι:

\[
\sqrt{n}D_n = \sqrt{n} \max_i \left\{ \max |F_n(X_i) - F_0(X_i)|, \max |F_n(X_i) - F_0(X_i)| \right\},
\]
Στο ακόλουθο θεώρημα αποδεικνύεται ότι η κατανομή του \(D_n \) υπό τη μηδενική υπόθεση είναι ίδια για όλες τις \(F_0(\cdot) \), αλλά διαφορετική για διαφορετικά μεγέθη δείγματος \(n \).

Θεώρημα 1.4 Αν η αθροιστική συνάρτηση κατανομής \(F_0(x) \) είναι συνεχής τότε η κατανομή του \(D_n = \sup_x |F_n(x) - F_0(x)| \) είναι ανεξάρτητη της \(F_0 \).

Απόδειξη

Ισχύει ότι

\[
P\left(\sup_x |F_n(x) - F_0(x)| \leq d \right) = P\left(\sup_x |F_n\left(F_0^{-1}(y)\right) - y| \leq d \right).
\]

Από τον ορισμό της εμπειρικής αθροιστικής συνάρτησης κατανομής προκύπτει ότι

\[
F_n\left(F_0^{-1}(y)\right) = \frac{\sum_{i=1}^{n} I_{(-\infty,F_0^{-1}(y))}(X_i)}{n} = \frac{\sum_{i=1}^{n} I_{(-\infty,y)}(F_0(X_i))}{n}.
\]

Επομένως

\[
P\left(\sup_x |F_n\left(F_0^{-1}(y)\right) - y| \leq d \right) = P\left(\sup_x \left| \frac{\sum_{i=1}^{n} I_{(-\infty,y)}(F_0(X_i))}{n} - y \right| \leq d \right).
\]

Λαμβάνοντας υπόψη ότι η κατανομή της αθροιστικής συνάρτησης κατανομής είναι ομοιόμορφη στο διάστημα \((0,1)\), καθώς

\[
P\left(F_0(X) \leq t \right) = P\left(X \leq F_0^{-1}(t) \right) = F_0\left(F_0^{-1}(t)\right) = t, \quad t \in (0,1),
\]

και θέτοντας \(U_i = F_0(X_i) \sim U(0,1), \; i = 1,\ldots,n \), έχουμε ότι:

\[
P\left(\sup_x \left| \frac{\sum_{i=1}^{n} I_{(-\infty,y)}(F_0(X_i))}{n} - y \right| \leq d \right) = P\left(\sup_x \left| \frac{\sum_{i=1}^{n} I_{(-\infty,y)}(U_i)}{n} - y \right| \leq d \right)
\]

που δεν εξαρτάται από την \(F_0 \), αλλά εξαρτάται από το μέγεθος του δείγματος \(n \).

Κλειστές μορφές της κατανομής του \(D_n \) υπό την \(H_0 \) και πίνακας της συνάρτησης κατανομής για \(n \leq 100 \) μπορούν να βρεθούν στη βιβλιογραφία (Birnbaum, 1952). Ο Kolmogorov (1933) απέδειξε (η απόδειξη παραλείπεται στο
πλαίσιο αυτών των σημειώσεων) ότι η οριακή κατανομή του $K_n = \sqrt{n}D_n$ υπό τη μηδενική υπόθεση είναι απαλλαγμένη παραμέτρων (distribution-free).

Θεώρημα 1.5 Αν η H_0 είναι αληθής, τότε αποδεικνύεται ότι η ασυμπτωτική κατανομή του K_n είναι $H(x)$, όπου αυτή δίνεται από τη σχέση:

$$H(x) = [1 - 2 \sum_{j=1}^{\infty} (-1)^{j-1} e^{-2j^2x^2}] I_{(0,\infty)}(x).$$

Έτσι το τεστ για τον έλεγχο της υπόθεσης A ορίζεται ως εξής:

Απορρίπτουμε την H_0 αν και μόνο αν $K_n \geq c_\alpha$, όπου c_α τέτοιο ώστε $P(K_n \geq c_\alpha) = \alpha$. Η τιμή του $c_\alpha \sqrt{n}$ δίνεται από πίνακα (Miller (1956)) που παρατίθεται στο Παράρτημα (Πίνακας 1) και ο οποίος μπορεί, όταν θα δούμε παρακάτω, να χρησιμοποιηθεί με κατάλληλη τροποποίηση και για τους μονόπλευρους ελέγχους (έλεγχοι B και Γ).

Παρατήρηση 1.1 Ένας άλλος τρόπος ορισμού του πιο πάνω στατιστικού που έχει παρουσιαστεί στη βιβλιογραφία, με χρήση των διατεταγμένων στατιστικών $X_{(i)}, \ldots, X_{(n)}$, είναι ο ακόλουθος:

$$K_n = \sqrt{n} \max(D^+_n, D^-_n).$$

όπου

$$D^+_n = \sup_x \left(F_n(x) - F_0(x)\right) = \max \left\{ \max_i \left(i/n - F_0(X_{(i)}) \right), 0 \right\},$$

και

$$D^-_n = \sup_x \left(F_0(x) - F_n(x)\right) = \max \left\{ \max_i \left(F_0(X_{(i)}) - (i-1)/n \right), 0 \right\}.$$

Επιπρόσθετα, εύκολα αποδεικνύεται ότι η κατανομή των D^+_n και D^-_n υπό τη μηδενική υπόθεση είναι ίδια. (η απόδειξη αφήνεται ως άσκηση).

Β. Χρησιμοποιείται το στατιστικό

$$\sqrt{n}D^+_n = \sqrt{n} \sup_x \left(F_n(x) - F_0(x)\right) = \sqrt{n} \max \left\{ \max_i \left(i/n - F_0(X_{(i)}) \right), 0 \right\},$$

και η μηδενική υπόθεση απορρίπτεται για μεγάλες τιμές του. Προκύπτει ότι απορρίπτουμε την H_0 αν και μόνο αν

$$\sqrt{n}D^+_n \geq c_{\alpha/2}.$$
όπου \(c_\alpha \) τέτοιο ώστε \(P(K_n \geq c_\alpha) \approx \alpha \).

Γ. Χρησιμοποιείται το στατιστικό
\[
\sqrt{n} D_n^- = \sqrt{n} \sup_x (F_0(x) - F_n(x)) = \sqrt{n} \max \left\{ \max_i \left(F_0(X_i) - (i - 1)/n \right), 0 \right\},
\]
και η μηδενική υπόθεση απορρίπτεται για μεγάλες τιμές του. Προκύπτει ότι απορρίπτουμε την \(H_0 \) αν και μόνο αν
\[
\sqrt{n} D_n^- \geq c_{\alpha/2},
\]
όπου \(c_\alpha \) τέτοιο ώστε \(P(K_n \geq c_\alpha) \approx \alpha \).

Παράδειγμα 1.1
Έστω οι ακόλουθες 5 δειγματικές τιμές: 0.1, 0.3, 0.24, 0.58, 0.68. Να ελέγξετε αν τα δεδομένα προέρχονται από την \(U(0,1) \), με επίπεδο σημαντικότητας 5%.

Λύση
Έχουμε ένα τυχαίο δείγμα μεγέθους 5 και θέλουμε να ελέγξουμε την υπόθεση
\[
H_0 : F(x) = F_0(x), \ \forall x \in R
\]
έναντι της εναλλακτικής
\[
H_1 : F(x) \neq F_0(x), \ \text{για κάποιο } x \in R,
\]
όπου \(F_0(x) \) η αθροιστική συνάρτηση κατανομής της \(U(0,1) \). Επομένως
\[
F_0(x) = \begin{cases}
0 & x < 0 \\
0 & x \leq x < 1 \\
1 & \text{αλλού}
\end{cases}
\]
Θέλοντας να υπολογίσουμε το στατιστικό
\[
\sqrt{n} D_n = \sqrt{n} \max \left\{ \max_i \left| F_n(X_i) - F_0(X_i) \right|, \max_i \left| F_n(X_i -) - F_0(X_i) \right| \right\}
\]
arχικά διατάσσουμε τις παρατηρήσεις σε αύξουσα τάξη μεγέθους και υπολογίζουμε τις ποσότητες \(F_n(X_i) \), \(F_n(X_i -) \) και \(F_0(X_i) \). Είναι:

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>0.1</th>
<th>0.24</th>
<th>0.3</th>
<th>0.58</th>
<th>0.68</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_n(X_i))</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>(F_n(X_i -))</td>
<td>0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>(F_0(X_i))</td>
<td>0.1</td>
<td>0.24</td>
<td>0.3</td>
<td>0.58</td>
<td>0.68</td>
</tr>
<tr>
<td>(</td>
<td>F_n(X_i) - F_0(X_i)</td>
<td>)</td>
<td>0.1</td>
<td>0.16</td>
<td>0.3</td>
</tr>
<tr>
<td>(</td>
<td>F_n(X_i -) - F_0(X_i)</td>
<td>)</td>
<td>0.1</td>
<td>0.04</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Επομένως, καθώς ο Πίνακας 1 του Παραρτήματος μας δίνει τιμές του \(c_\alpha / \sqrt{n}\) συγκρίνουμε την τιμή του \(D_n = 0.32\) με την τιμή του πίνακα για \(\alpha = 0.05\) που είναι ίση με 0.563. Επομένως δεν απορρίπτεται η μηδενική υπόθεση, ώστε τα δεδομένα μπορούν να θεωρηθούν ότι προέρχονται από έναν πληθυσμό που περιγράφεται από την \(U(0,1)\).

Παρατηρήσεις 1.2

1. Το Kolmogorov-Smirnov τεστ καλής προσαρμογής υποθέτει ότι η μηδενική υπόθεση είναι πλήρως ορισμένη, δηλαδή ελέγχουμε μία απλή υπόθεση. Με άλλα λόγια θεωρεί ότι η \(F_n(x)\) είναι πλήρως ορισμένη χωρίς την «παρουσία» άγνωστων παραμέτρων. Κάποιος ίσως αναρωτηθεί κατά πόσο ένα τέτοιο τεστ μπορεί να επεκταθεί σε περιπτώσεις ελέγχου σύνθετης υπόθεσης. Για τέτοιες υποθέσεις το \(\sup_x |F_n(x) - F_0(x)|\) παύει να είναι στατιστικό, αφού εξαρτάται από άγνωστες παραμέτρους. Ένας προφανής τρόπος να απαλλαγούμε από τις άγνωστες παραμέτρους, τις οποίες συμβολίζουμε με \(\theta\), είναι να αντικαταστήσουμε τις άγνωστες παραμέτρους με τους εκτιμητές τους. Δυστυχώς όμως το στατιστικό που προκύπτει, δηλαδή το:

\[
D_n^* = \sup_x |F_n(x) - F(x, \hat{\theta})|
\]

dεν έχει την κατανομή του \(D_n\) και κλειστή μορφή για αυτό είναι άγνωστη. Όμως, αν η μηδενική υπόθεση είναι αληθής, το στατιστικό \(\sqrt{n}D_n^*\) έχει οριακή κατανομή καθώς το \(n \to \infty\). O Stephens (1974) έδωσε τα ασυμπτωτικά ποσοστιαία σημεία και πίνακες αυτών είναι διαθέσιμοι στη βιβλιογραφία.

2. Ο στατιστικός ελέγχος των Kolmogorov-Smirnov εφαρμόζεται σε κατανομές με συνεχή αθροιστική κατανομή και τείνει να είναι πιο ευαίσθητος στο κέντρο της κατανομής από ότι στις ουρές.

3. Στη βιβλιογραφία έχουν μελετηθεί αρκετές παραλλαγές του ελέγχου Kolmogorov-Smirnov, οι οποίες επιτρέπουν τη χρήση του σε περιπτώσεις όπου οι παράμετροι εκτιμώνται από τα δεδομένα. Στην πραγματικότητα, η στατιστική συνάρτηση παραμένει η ίδια, αλλά χρησιμοποιούνται διαφορετικοί πίνακες ποσοστιαίων σημείων και κρίσιμων τιμών. Οι πίνακες αυτοί δεν είναι οι ίδιοι για όλες τις κατανομές, αλλά εξαρτώνται από τη μηδενική υπόθεση.
Ειδικότερα, μια παραλλαγή του Kolmogorov-Smirnov τεστ για τον έλεγχο της σύνθετης υπόθεσης της κανονικότητας μελετήθηκε από τον Lilliefors (1967). Σύμφωνα με αυτόν, αν θέλουμε να ελέγξουμε αν το τ.δ. Χ₁,Χ₂,...,Χₙ, προέρχεται από την κανονική κατανομή, με άγνωστη μέση τιμή μ και διασπορά σ², υπολογίζουμε αρχικά τις τυποποιημένες τιμές Ζ₁,Ζ₂,...,Ζₙ, του τ.δ. που ορίζονται ως εξής:

\[Z_i = \frac{X_i - \bar{X}}{S'} \]

όπου \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \) και \(S' = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} \).

Τότε η αρχική μηδενική υπόθεση είναι ισοδύναμη με την υπόθεση ότι το τ.δ. Ζ₁,Ζ₂,...,Ζₙ, προέρχεται από την τυποποιημένη κανονική κατανομή. Η κατάλληλη στατιστική συνάρτηση στην περίπτωση αυτή είναι η μέγιστη κατακόρυφη απόκλιση της εμπειρικής συνάρτησης κατανομής \(S^* \) του τυποποιημένου δείγματος από την αθροιστική συνάρτηση κατανομής \(F_0^* \) της τυποποιημένης κανονικής κατανομής. Δηλαδή, η ελεγχοσυνάρτηση του Lilliefors ορίζεται από τη σχέση:

\[T = \sup_{z} | F_0^*(z) - S^*(z) |. \]

Η αναλυτική μορφή της συνάρτησης κατανομής της ελεγχοσυνάρτησης αυτής είναι δύσκολο να προσδιορισθεί. Έτσι, ο Lilliefors μελέτησε και πινακοποίησε την ασυμπτωτική κατανομή της. Προφανώς, και στην περίπτωση αυτού του έλεγχου, οι μεγάλες τιμές της στατιστικής συνάρτησης θα είναι εκείνες που θα συνηγορούν υπέρ της απόρριψης της μηδενικής υπόθεσης, αφού αυτές θα είναι αποτέλεσμα χαμηλού βαθμού εγγύτητα της συνάρτησης κατανομής του τυποποιημένου δείγματος προς τη συνάρτηση κατανομής της τυποποιημένης κανονικής κατανομής. Στο σημείο αυτό αξίζει να αναφερθεί ότι η χρήση ασυμπτωτικών ποσοστιαίων σημείων μπορεί να οδηγήσει σε εσφαλμένα συμπεράσματα και για το λόγο αυτό διάφορες εναλλακτικές τεχνικές είναι διαθέσιμες και εφαρμόζονται με τη βοήθεια των στατιστικών προγραμμάτων (bootstrap κ.α.)

Εκτός από το Kolmogorov-Smirnov (KS) τεστ υπάρχει ένας μεγάλος αριθμός από τεστ καλής προσαρμογής που στηρίζονται στην εμπειρική αθροιστική συνάρτηση κατανομής. Τα σημαντικότερα από αυτά στηρίζονται στα κάτωθι στατιστικά:
Cramer-von Mises (1928)

Το στατιστικό είναι:

\[W^2 = \sum_{i=1}^{n} \left[F_0 \left(X_{(i)} \right) - \left((2i-1)/2n \right) \right]^2 + \frac{1}{12n}, \]

και ποσοστιαία σημεία του δίνονται από τους Anderson and Darling (1952).

Kuiper (1960)

Έχουμε ως ελεγχοσυνάρτηση την:

\[V = D^+ + D^-. \]

Watson (1957)

Με ελεγχοσυνάρτηση την:

\[U^2 = \sum_{i=1}^{n} \left(z_i - \left((2i-1)/2n \right) \right)^2 + \frac{1}{12n} - n(\bar{z} - 1/2)^2. \]

Anderson-Darling (1954)

Το στατιστικό είναι:

\[A^2 = \sum_{i=1}^{n} \left(\frac{2i-1}{n} \left(\log z_i - \log (1 - z_{n+1-i}) \right) \right) - n. \]

Τα τεστ αυτά είχαν αρχικά αναπτυχθεί για την απλή υπόθεση, κι όταν εφαρμόζονται στη σύνθετη υπόθεση εκτιμούμε τα μ, σ από τους Ε.Μ.Π. Τότε οι τιμές των κ.ο.κ. συμβολίζονται με \(\hat{K} \), \(\hat{W}^2 \) κ.ο.κ. Ο Stephens (1974) θεώρησε αυτά τα 5 τεστ και τα προσάρμοσε έτσι ώστε να είναι εφαρμόσιμα για τον έλεγχο της σύνθετης υπόθεσης της κανονικότητας, δίνοντας ασυμπτωτικά ποσοστιαία σημεία αυτών. Παρουσίασε τα αποτελέσματα έτσι ώστε αυτό που χρειάζεται κάποιος να εκπληρώσει τον έλεγχο είναι ο υπολογισμός του στατιστικού τεστ, έναν απλό επιπλέον υπολογισμό του προσδιορισμού της αποτελεσμάτων αποτελεσμάτων.

4. Για τον έλεγχο της μονοδιάστατης κανονικότητας συγκριτικές μελέτες έδειξαν ότι το καλύτερο στατιστικό τεστ είναι αυτό των Shapiro and Wilk (1965), το οποίο εν συντομία και στα πλαίσια ενός προπτυχιακού μαθήματος αναπτύσσεται στη συνέχειά.

Ας είναι \(X \) μία συνεχής τυχαία μεταβλητή και \(X_1, X_2, ..., X_n \), ένα δείγμα τιμών της. Έστω ότι \(X_{(1)}, X_{(2)}, ..., X_{(n)} \), το διατεταγμένο στατιστικό, και ας συμβολίσουμε με \(Z_{(i)} \) το \(i \) διατεταγμένο στατιστικό από ένα δείγμα μεγέθους \(n \) που επιλέχτηκε από
την τυπική κανονική κατανομή και έστω ότι $m' = (m_1, m_2, \ldots, m_n)$ είναι το διάνυσμα των αναμενόμενων τιμών των διατεταγμένων στατιστικών από την τυπική κανονική κατανομή, δηλαδή:

$$E(Z_{(i)}) = m_i, ~i = 1, 2, \ldots, n.$$

Για τον έλεγχο της υπόθεσης:

$$H_0 : \text{το τ.δ. } X_1, X_2, \ldots, X_n \text{ προέρχεται από κανονικό πληθυσμό } N(\mu, \sigma^2) \text{ με } \mu, \sigma^2 \text{ άγνωστα},$$

θα χρησιμοποιήσουμε την ακόλουθη ιδιότητα της κανονικής κατανομής με μέση τιμή μ και τυπική απόκλιση σ:

$$X_{(i)} = \mu + \sigma E Z_{(i)} + \varepsilon_i.$$

Τότε με χρήση των γενικευμένων ελαχίστων τετραγώνων έχουμε ότι οι καλύτεροι γραμμικοί αμερόληπτοι εκτιμητές (b_l, b_u, l, u, e) του μ και σ είναι οι ποσότητες εκείνες, που ελαχιστοποιούν την τετραγωνική μορφή:

$$(Y - \mu 1 - \sigma m)^\prime V^{-1} (Y - \mu 1 - \sigma m),$$

όπου $\mathbf{1} = (1, 1, \ldots, 1)$, \mathbf{V} είναι ο πίνακας συνδιακυμάνσεων των ε_i και $\mathbf{Y} = (X_{(1)}, X_{(2)}, \ldots, X_{(n)})$.

Το Shapiro-Wilk W στατιστικό, που προτάθηκε από τους Shapiro and Wilk (1965), δίνεται από τη σχέση:

$$W = \frac{(a^\prime \mathbf{Y})^2}{(n-1)S^2} = \frac{\sum_{i=1}^{n} \theta_i X_{(i)}}{\sum_{i=1}^{n} (X_i - \bar{X})^2},$$

όπου $a^\prime = mV^{-1}/\|mV^{-1}\|$, με $a^\prime a = 1$.

Μικρές τιμές του W υποδεικνύουν μη κανονική κατανομή, ενώ τιμές κοντά στη μονάδα δεν μας υποδεικνύουν αποκλίσεις από την κανονικότητα. Ποσοσταία σημεία για τη μηδενική κατανομή του W συνοψίζονται στην εργασία των Shapiro and Wilk (1965) για $p = 0.01, 0.02, 0.05, 0.1, 0.5, 0.9, 0.95, 0.98, 0.99$ και για δείγματα μεγέθους $n = 3(1)150$. Τέλος, o Royston (1982) επέκτεινε το W για δείγματα μεγέθους $n \geq 50$ και ανέπτυξε ένα μετασχηματισμό της μηδενικής κατανομής του W για να προσεγγίσει την κανονικότητα για μεγέθη δείγματος n, με $7 \leq n \leq 2000$. Ακόμη πρότεινε μία μέθοδο για τον υπολογισμό του επιπέδου σημαντικότητας για $n < 7$. Με αυτόν τον τρόπο επιτεύχθηκε η ανάπτυξη του W τεστ σε μία μορφή, η
οποία μπορεί εύκολα να προγραμματιστεί σε υπολογιστή, για ένα εύρος δειγμάτων μεγέθους 3 < n ≤ 2000.

1.1.2 Ο έλεγχος Smirnov για δύο ανεξάρτητα δείγματα

Ο Smirnov (1939 a, b) επέκτεινε το στατιστικό τεστ του Kolmogorov (1933) για τη σύγκριση δύο κατανομών στη βάση δύο ανεξάρτητων δειγμάτων από κάθε πληθυσμό.

Αναλυτικότερα, έστω ότι \(X_1, X_2, \ldots, X_n \), ένα τυχαίο δείγμα από έναν πληθυσμό με άγνωστη αθροιστική συνάρτηση κατανομής \(F_X (\cdot) \) και \(Y_1, Y_2, \ldots, Y_m \), ένα τυχαίο δείγμα από έναν πληθυσμό με άγνωστη αθροιστική συνάρτηση κατανομή \(G_Y (\cdot) \).

Έστω επιπρόσθετα \(F_n (\cdot) \) και \(G_m (\cdot) \) οι αντίστοιχες εμπειρικές αθροιστικές συναρτήσεις κατανομής αυτών των πληθυσμών. Θέλουμε να ελέγξουμε μία από τις εξής τρεις υποθέσεις:

A. Τη μηδενική υπόθεση \(H_0 : F_X (x) = G_Y (x) \), για κάθε \(x \in R \).

B. Τη μηδενική υπόθεση \(H_0 : F_X (x) > G_Y (x) \), για κάθε \(x \in R \).

Γ. Τη μηδενική υπόθεση \(H_0 : F_X (x) < G_Y (x) \), για κάθε \(x \in R \).

Με παρόμοιο σκεπτικό με αυτό που αναπτύχθηκε για τον έλεγχο Kolmogorov για ένα δείγμα, γίνεται αντιλήπτομαι ότι η στατιστική συνάρτηση για τον έλεγχο των παραπάνω υποθέσεων θα βασίζεται στις εμπειρικές συναρτήσεις κατανομής αυτών και θα αποτελεί ένα μέτρο της εγγύτητας τους. Ειδικότερα, η στατιστική συνάρτηση για κάθε από τους τρεις διαφορετικούς ελέγχους είναι:

A. Χρησιμοποιείται το στατιστικό

\[
D_{m,n} = \sup_x |F_n (x) - G_m (x)| = \max_i |F_n (Z_i) - G_m (Z_i)|,
\]

όπου \(Z_1, \ldots, Z_{m+n} \) είναι το διατεταγμένο δείγμα που προκύπτει από τη σύνθεση των \(X_1, X_2, \ldots, X_n \), και \(Y_1, Y_2, \ldots, Y_m \). Προφανώς η μηδενική υπόθεση απορρίπτεται για μεγάλες τιμές του \(D_{m,n} \).

B. Χρησιμοποιείται το στατιστικό
\[D_{m,n}^+ = \sup_x \left[F_n(x) - G_m(x) \right], \]

Γ. Χρησιμοποιείται το στατιστικό

\[D_{m,n}^- = \sup_x \left(G_m(x) - F_n(x) \right), \]

Αποδεικνύονται τότε τα ακόλουθα (βλέπε, μεταξύ άλλων, Kvam and Vidakovic (2007)).

Θεώρημα 1.6

α) Όταν \(n = m \) η κατανομή των στατιστικών

\[D_{n,n}^+ = \sup_x \left[F_n(x) - G_m(x) \right] \]

και

\[D_{n,n}^- = \sup_x \left(G_m(x) - F_n(x) \right) \]

υπό τη μηδενική υπόθεση \(H_0 : F_X(x) = G_Y(x), \ \forall x \in R \), δίνεται από τη σχέση

\[
P \left(D_{n,n}^+ > d \right) = P \left(D_{n,n}^- > d \right) = \frac{\left(\frac{2n}{n(d+1)} \right)^2}{\left(\frac{2n}{n} \right)^2},
\]

όπου με \(\left[n(d+1) \right] \) συμβολίζουμε το μεγαλύτερο ακέραιο που είναι μικρότερο από \(n(d+1) \).

β) Όταν \(n \) και \(m \) μεγάλα (\(n,m > 30 \)) τότε ασυμπτωτικά ισχύει ότι

\[
P \left(\sqrt{\frac{mn}{m+n} D_{m,n}} \leq d \right) \approx 1 - 2 \sum_{j=1}^{\infty} e^{-2j^2d^2}.
\]

Χρησιμοποιούντας τα αποτελέσματα του παραπάνω θεωρήματος προκύπτουν τα ακριβή ποσοστιαία σημεία (περίπτωση \(m = n \)) όσο και προσεγγίσεις αυτών για διάφορα μεγέθη δείγματος. Η μηδενική υπόθεση \(H_0 : F_X(x) = G_Y(x), \ \forall x \in R \), απορρίπτεται, σε επίπεδο σημαντικότητας \(a \), αν η τιμή της ελεγχοσυνάρτησης είναι μεγαλύτερη από τις κρίσιμες τιμές του στατιστικού του Smirnov, που παρατίθενται στους Πίνακες 2 και 3 του παραρτήματος.
Παράδειγμα 1.2
Στον πίνακα που ακολουθεί καταγράφονται οι τιμές δύο ανεξάρτητων τυχαίων δειγμάτων, μεγέθους 6 και 9, αντίστοιχα από δύο πληθυσμούς με αθροιστικές συναρτήσεις κατανομής \(F_X(\cdot) \) και \(G_Y(\cdot) \), αντίστοιχα. Να ελέγξετε, με επίπεδο σημαντικότητας 5\%, τη μηδενική υπόθεση \(H_0 : F_X(x) = G_Y(x), \ \forall x \in R \), έναντι της εναλλακτικής \(H_1 : F_X(x) \neq G_Y(x) \), για κάποιο \(x \in R \).

<table>
<thead>
<tr>
<th>(X_i)</th>
<th>5.2</th>
<th>5.4</th>
<th>5.9</th>
<th>6.5</th>
<th>8.2</th>
<th>9.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_i)</td>
<td>7.4</td>
<td>9.8</td>
<td>8.4</td>
<td>9.3</td>
<td>10.1</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Λύση
Από τη θεωρία έχουμε ότι η ελεγχοσυνάρτηση που θα χρησιμοποιηθεί είναι η:

\[
D_{6,9} = \sup_x |F_n(x) - G_m(x)| = \max_{i,j} |F_n(Z_i) - G_m(Z_j)|,
\]

όπου \(Z_1, \ldots, Z_{n+m} \) είναι το διατεταγμένο δείγμα που προκύπτει από τη σύνθεση των \(X_1, X_2, \ldots, X_n \), και \(Y_1, Y_2, \ldots, Y_m \), ενώ με \(F_n(\cdot) \) και \(G_m(\cdot) \) συμβολίζονται οι εμπειρικές αθροιστικές συναρτήσεις κατανομής. Είναι τότε (για διευκόλυνση με έντονη γραφή οι τιμές \(X_i \)):

| \(Z_i \) | \(F_n(Z_i) \) | \(G_m(Z_i) \) | \(|F_n(Z_i) - G_m(Z_i)| \) |
|---|---|---|---|
| 5.2 | 1/6 | 0 | 1/6=9/54 |
| 5.4 | 2/6 | 0 | 2/6=18/54 |
| 5.9 | 3/6 | 0 | 3/6=27/54 |
| 6.4 | 3/6 | 1/9 | 3/6-1/9=21/54 |
| 6.5 | 4/6 | 1/9 | 4/6-1/9=30/54 |
| 6.9 | 4/6 | 2/9 | 4/6-2/9=24/54 |
| 7.2 | 4/6 | 3/9 | 4/6-3/9=18/54 |
| 7.4 | 4/6 | 4/9 | 4/6-4/9=12/54 |
| 7.5 | 4/6 | 5/9 | 4/6-5/9=6/54 |
| 8.2 | 5/6 | 5/9 | 5/6-5/9=15/54 |
| 8.4 | 5/6 | 6/9 | 5/6-6/9=9/54 |
| 9.1 | 1 | 6/9 | 3/9=18/54 |
| 9.3 | 1 | 7/9 | 2/9=12/54 |
| 9.8 | 1 | 8/9 | 1/9=6/54 |
| 10.1 | 1 | 1 | 0 |
Επομένως είναι $D_{0.9} = 30/54 = 0.556$. Από τον Πίνακα 3 του Παραρτήματος έχουμε ότι η κρίσιμη τιμή του διπλευρού ελέγχου σε επίπεδο σημαντικότητας 5% είναι ίση με 2/3. Επομένως δεν μπορεί να απορριφθεί η μηδενική υπόθεση ότι οι αθροιστικές συναρτήσεις των δύο κατανομών συμπίπτουν.

Παρατήρηση 1.3

Στη βιβλιογραφία έχουν προταθεί διάφορες παραλλαγές αυτού του στατιστικού τεστ καθώς και επεκτάσεις του στην περίπτωση k δειγμάτων, $k \geq 3$. Για περισσότερες πληροφορίες παραπέμπουμε στους Kvam and Vidakovic (2007).

1.2 X^2 τεστ καλής προσαρμογής

Έστω ότι X_1, X_2, \ldots, X_n, είναι τυχαίες παρατηρήσεις μίας τυχαίας μεταβλητής με αθροιστική συνάρτηση κατανομής (α.σ.κ.) $F(x)$, η οποία είναι άγνωστη. Θέλουμε να ελέγξουμε την υπόθεση:

$$H_0 : F(x) = F_0(x),$$

όπου $F_0(x)$ είναι μία ειδική α.σ.κ., η οποία μπορεί να είναι είτε συνεχής είτε διακριτή.

Ο αρχαιότερος και περισσότερο γνωστός έλεγχος καλής προσαρμογής είναι ο X^2, ο οποίος προτάθηκε το 1900 από τον Karl Pearson. Για αυτή τη διαδικασία, το διάστημα τιμών της μεταβλητής X, έστω το (α, β), χωρίζεται σε k μη επικαλυπτόμενα υποδιαστήματα, $I_1 = (a, x_1], I_2 = (x_1, x_2], \ldots, I_k = (x_{k-1}, \beta)$. Στην συνέχεια δηλαδή διακριτοποιούμε ή κατηγοριοποιούμε την κατανομή σε k κατηγορίες. Αν με p_i συμβολίσουμε την πιθανότητα μία τυχαία παρατήρηση πάνω στη μεταβλητή X να ανήκει στην κατηγορία i, κάτω από την υπόθεση ότι $F_0(x)$ είναι η συνάρτηση κατανομής της X, τότε:

$$p_0^i = F_0(x_1) - F_0(\alpha), p_0^2 = F_0(x_2) - F_0(x_1), \ldots, p_0^k = F_0(\beta) - F_0(x_{k-1}).$$

Επιπρόσθετα, έστω n_i οι παρατηρούμενες συχνότητες των I_i, $i = 1, \ldots, k$, δηλαδή n_i είναι το πλήθος των δειγματικών τιμών στο διάστημα I_i, με $n_1 + n_2 + \ldots + n_k = n$. Τότε, ο αναμενόμενος αριθμός των παρατηρήσεων που ανήκουν στο διάστημα I_i, υπό την H_0, είναι $e_i = np_0^i, i = 1,2,..k$. Το X^2 τεστ του Pearson
αντιπαραβάλει τον αριθμό των παρατηρήσεων που ανήκουν στο i υποδιάστημα με τον αναμενόμενο αριθμό \(e_i \) αυτών υπό την \(H_0 \) και δίνεται από τη στατιστική συνάρτηση:

\[
\chi^2 = \sum_{i=1}^{k} \frac{(n_i - e_i)^2}{e_i}.
\]

(1.2.1)

Αν το μέγεθος του δείγματος \(n \) είναι μεγάλο και με την προϋπόθεση ότι \(e_i \geq 5 \) (όταν η ανισότητα δεν ικανοποιείται τότε ενσωματώνουμε τις μικρότερες κατηγόριες έτσι ώστε να ισχύει), κάτω από τη μηδενική υπόθεση, έχουμε ότι η κατανομή του πιο πάνω στατιστικού προσεγγίζεται από τη \(\chi^2 \) κατανομή με \(k - 1 \) βαθμούς ελευθερίας. Μεγάλες τιμές της συνάρτησης αυτής αποτελούν ενδείξεις υπέρ της εναλλακτικής υπόθεσης. Επομένως απορρίπτουμε την \(H_0 \) με επίπεδο σημαντικότητας \(\alpha \) αν:

\[
\chi^2 \geq \chi^2_{k-1,1-\alpha},
\]

όπου \(\chi^2_{k-1,1-\alpha} \) είναι το αντίστροφο εκατοστιαίο σημείο της \(\chi^2_{k-1} \) (τιμές των αντίστροφων εκατοστιαίων σημείων παρατίθενται στον Πίνακα 4 του Παραρτήματος) και ορίζεται:

\[
P(\chi^2_{k-1} \geq \chi^2_{k-1,1-\alpha}) = 1-\alpha,
\]

όπου η τυχαία μεταβλητή \(\chi^2_{k-1} \) ακολουθεί την \(\chi^2 \) κατανομή με \(k - 1 \) βαθμούς ελευθερίας. Η παραπάνω μεθοδολογία πρωτοθεμελιώθηκε από τον Fisher (1924) και μία πλήρη απόδειξη του παρατίθεται από τον Cramer (1946).

Η περίπτωση μίας πλήρους ορισμένης υποθετικής κατανομής είναι πολύ σπάνια στις πρακτικές εφαρμογές. Πολύ συχνά αντιμετωπίζουμε περιπτώσεις, όπου η υποθετική κατανομή περιέχει έναν αριθμό άγνωστων παραμέτρων. Στη γενικότερη περίπτωση ενός τέτοιου ελέγχου έχουμε \(s \) (με \(s < k - 1 \)) απροσδιόριστες παραμέτρους \(\theta_1, \theta_2, \ldots, \theta_s \), τις οποίες μπορούμε να συμβολίσουμε συνολικά με το \(\theta \). Όπως πρωτύτερα, χωρίζουμε πάλι το σύνολο τιμών της τυχαίας μεταβλητής σε \(k \) κατηγόριες, όμως τώρα οι πιθανότητες \(p_0 \) δεν είναι άμεσα υπολογίσιμες καθώς είναι συναρτήσεις του \(\theta \). Σε αυτή τη συνήθη περίπτωση θα πρέπει να εκτιμήσουμε τις απροσδιόριστες παραμέτρους, θα πρέπει δηλαδή να εκτιμήσουμε το \(\theta \) με κάποιο διάνυσμα εκτιμητών, \(\hat{\theta} \).

Διαφορετικές μέθοδοι εκτίμησης των παραμέτρων αυτών, αντανακλούν στις ιδιότητες της δειγματικής κατανομής του \(\chi^2 \). Τώρα για τον έλεγχο της σύνθετης υπόθεσης θα χρησιμοποιήσουμε το στατιστικό:
\[
X^2 = \sum_{i=1}^{k} \frac{(n_i - np'_i(\delta))^2}{e_i} \tag{1.2.2}
\]

το οποίο προκύπτει από την (1.2.1) αντικαθιστώντας τις άγνωστες ποσότητες με τους εκτιμητές τους. Είναι φυσικό να προσπαθήσουμε να ορίσουμε τις καλύτερες τιμές των παραμέτρων έτσι ώστε το \(X^2\) της σχέσης (1.2.2) να γίνεται όσο το δυνατό μικρότερο. Αυτή είναι η γνωστή στη στατιστική βιβλιογραφία ως minimum chi-square method of estimation (μέθοδος εκτίμησης του ελάχιστου \(X^2\)). Τότε έχουμε να επιλύσουμε τις εξισώσεις:

\[
-\frac{1}{2} \frac{\partial X^2}{\partial \theta_i} = 0, \text{ όπου } i = 1,2,\ldots,s. \tag{1.2.3}
\]

Η οριακή κατανομή του \(X^2\) για αυτή τη μέθοδο εκτίμησης αναπτύχθηκε από τους Neyman and E. S. Pearson (1928). Ακόμα και σε απλές περιπτώσεις το σύστημα (1.2.3) είναι συνήθως πολύ δύσκολο να επιλυθεί, έτσι η εύρεση των εκτιμητών είναι δύσκολη. Το παραπάνω στατιστικό, αν το μέγεθος του δείγματος \(n\) είναι μεγάλο και η μηδενική υπόθεση είναι αληθής, ασυμπτωτικά κατανέμεται ως \(X^2_{k-1-s}\), δηλαδή ακολουθεί μία \(X^2\) κατανομή με \(k-1-s\) βαθμούς ελευθερίας, όπου ως σύνολο εκτιμητών των απροσδιόριστων παραμέτρων έχουμε επιλέξει τους εκτιμητές των \(\theta_1, \theta_2, \ldots, \theta_s\) που αποκτούνται ως συναρτήσεις των στατιστικών \(n_i\), \(i = 1,2,\ldots,s\). Έτσι, απορρίπτουμε τη μηδενική υπόθεση αν και μόνο αν το παραπάνω στατιστικό είναι τέτοιο ώστε:

\[
X^2 \geq X^2_{k-1-s,1-\alpha}.
\]

Παρατηρήσεις 1.4

1. Στο παραπάνω στατιστικό τα \(\theta_i\), \(i = 1,2,\ldots,s\), εκτιμήθηκαν χρησιμοποιώντας τα \(n_i\) αντί των \(X_1,\ldots,X_n\), όπου τα στατιστικά \(n_i\) δίνουν τον αριθμό των παρατηρήσεων που ανήκουν στο \(i\) υποδιάστημα, αφού στην πράξη μπορεί τα \(X_i\) να μην καταγράφονται. Στην περίπτωση όμως που οι παρατηρήσεις είναι διαθέσιμες, τότε κάποιος μπορεί να εκτιμήσει τα \(\theta_i\), \(i = 1,2,\ldots,s\), παρατηρήσεις \(X_1, X_2, \ldots, X_n\). Όταν τέτοιο εκτιμές χρησιμοποιούνται, η οριακή κατανομή του \(X^2\) στη σχέση (1.2.2) παύει να είναι \(X^2\) με \(k-1-s\) βαθμούς ελευθερίας. Όπως έδειξαν οι Chernoff and Lehmann (1954), οι οποίοι θεώρησαν τα
άκρα των διαστημάτων γνωστά, όταν s παράμετροι εκτιμώνται από το δείγμα τότε η οριακή κατανομή του X^2 της σχέσης (1.2.2) φράσσεται μεταξύ μίας X^2 με $k - 1 - s$ βαθμούς ελευθερίας και μίας X^2 με $k - 1$ βαθμούς ελευθερίας.

Για μεγάλες τιμές του k υπάρχει μικρή διαφορά μεταξύ των $X^2_{k-1,s,1-a}$ και X^2_{k-1-s} κατανομής για έλεγχους μπορεί να οδηγήσει σε σοβαρά σφάλματα.

Παράδειγμα 1.5 (X^2 τεστ προσαρμογής Πολυωνυμικής κατανομής)

Σύμφωνα με μία θεωρία υπάρχουν 4 ποικιλίες ενός φυτού ενός φυτού με αναλογίες $p_1 = 9/16$, $p_2 = 3/16$, $p_3 = 3/16$ και $p_4 = 1/16$. Σε ένα τυχαίο δείγμα 278 φυτών βρέθηκε ότι στις 4 ποικιλίες ανήκουν αντίστοιχα 157, 54, 51 και 16 φυτά. Να ελεγχθεί στατιστικά η θεωρία σχετικά με τις ποικιλίες σε επίπεδο σημαντικότητας $a = 5\%$.

Λύση

Στην ουσία έχουμε ένα τυχαίο πείραμα από $n = 278$, ανεξάρτητες δοκιμές στο οποίο μπορούμε να έχουμε $k = 4$ δυνατά αποτελέσματα, έξανα μεταξύ τους E_i, $i = 1, ..., 4$. Έστω $p_i = P(E_i)$, $p_2 = P(E_2)$, $p_3 = P(E_3)$ και $p_4 = P(E_4)$ οι αντίστοιχες πιθανότητες πραγματοποίησης καθενός. Επιπλέον, έστω ότι στις n επαναλήψεις το E_i, $i = 1, ..., 4$, συμβαίνει n_i ακριβώς φορές με $n_1 + ... + n_4 = n$. Τότε:

$$ (n_1, n_2, n_3, n_4) \sim M(n, p_1, p_2, p_3, p_4) $$

και

$$ P(n_1, n_2, n_3, n_4) = \frac{n!}{n_1! n_2! n_3! n_4!} p_1^{n_1} p_2^{n_2} p_3^{n_3} p_4^{n_4}, $$

όπου $\sum_{i=1}^{4} n_i = 1$ και $\sum_{i=1}^{4} n_i = n$. 25
Θέλουμε να ελέγξουμε την υπόθεση:

\[H_0: \quad p_1 = 9/16, \ p_2 = 3/16, \ p_3 = 3/16, \ p_4 = 1/16, \]

έναντι της εναλλακτικής

\[H_1: \quad \text{τουλάχιστο μια αναλογία διαφέρει από τη δοθείσα αναλογία στην } H_0. \]

Ο έλεγχος γίνεται με το στατιστικό

\[X^2 = \sum_{i=1}^{4} \frac{(n_i - e_i)^2}{e_i}, \]

όπου \(e_i \) ο αναμενόμενος αριθμός εμφανίσεων του \(E_i \), \(i = 1, ..., 4 \), όταν ισχύει η μηδενική υπόθεση.

Υπό τη μηδενική υπόθεση ισχύει ότι:

\[(n_1, n_2, n_3, n_4) \sim M(n, p_1, p_2, p_3, p_4) \]

και (βλέπε π.χ. Κούτρας (2004))

\[n_i \sim B(n, p_i), \quad i = 1, ..., 4. \]

Επομένως είναι \(e_i = np_i, \quad i = 1, ..., 4 \), δηλαδή \(e_1 = 278 \frac{9}{16} = 156,375 \), \(e_2 = 278 \frac{3}{16} = 52,125 \), \(e_3 = 278 \frac{3}{16} = 52,125 \) και \(e_4 = 278 \frac{1}{16} = 17,375 \).

Αρα καθώς το μέγεθος του δείγματος \(n \) είναι μεγάλο και \(e_i \geq 5, \quad i = 1, ..., 4 \), δηλαδή καθώς πληρούνται οι προϋποθέσεις του \(\chi^2 \) στατιστικού τεστ, προβαίνουμε στον υπολογισμό του. Είναι

\[X^2 = \sum_{i=1}^{4} \frac{(n_i - e_i)^2}{e_i} = \frac{(157 - 156,375)^2}{156,375} + \frac{(54 - 52,125)^2}{52,125} + \frac{(51 - 52,125)^2}{52,125} + \frac{(16 - 17,375)^2}{17,375} \]

άρα

\[X^2 = \frac{0,625^2}{156,375} + \frac{1,875^2}{52,125} + \frac{1,125^2}{52,125} + \frac{1,375^2}{17,375} = \frac{0,390625}{156,375} + \frac{3,515625}{52,125} + \frac{1,265625}{52,125} + \frac{1,890625}{17,375} \]

δηλαδή

\[X^2 = 0,0025 + 0,0674 + 0,0242 + 0,1088 = 0,2029. \]

Απορρίπτουμε την \(H_0 \) αν:

\[X^2 \geq \chi^2_{k-1,1-\alpha} = \chi^2_{3,1-0.05} = 7.81, \]

όπου \(\chi^2_{3,1-0.05} \) είναι το αντίστροφο εκατοστιαίο σημείο της \(\chi^2 \) και ορίζεται:

\[P(X^2 \geq \chi^2_{3,1-0.05}) = 1-0.05. \]
Επομένως, καθώς 0,2029<7.81, δεν απορρίπτεται η μηδενική υπόθεση και επαληθεύεται η θεωρία της ύπαρξης τεσσάρων ποικιλιών με αναλογίες \(p_1 = \frac{9}{16}, \)
\(p_2 = \frac{3}{16}, \)
\(p_3 = \frac{3}{16} \) και \(p_4 = \frac{1}{16} \), αντίστοιχα.

Παράδειγμα 1.6 (\(X^2 \) τεστ προσαρμογής Poisson κατανομής με άγνωστη παράμετρο)

Έστω \(X \) η τυχαία μεταβλητή που παριστάνει τον αριθμό των αφίξεων σε ένα κεντρικό φαρμακείο της πόλης των Ιωαννίνων κατά τη διάρκεια ενός μισάωρου. Επιλέγεται τυχαία ένα δείγμα 365 τέτοιων χρονικών περιόδων κατά τη διάρκεια των οποίων έχουμε 730 αφίξεις συνολικά. Ο αριθμός των αφίξεων και οι αντίστοιχες συχνότητες κατά τη διάρκεια αυτών των 365 χρονικών περιόδων δίνονται στον πίνακα που ακολουθεί:

<table>
<thead>
<tr>
<th>Αριθμός Αφίξεων</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 ή περισσότερες</th>
</tr>
</thead>
<tbody>
<tr>
<td>Συχνότητα</td>
<td>41</td>
<td>75</td>
<td>120</td>
<td>110</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Να ελεγχθεί με επίπεδο σημαντικότητας 5% η υπόθεση ότι η τυχαία μεταβλητή ακολουθεί Poisson κατανομή.

Λύση

Θέλουμε να ελέγξουμε αν η τυχαία μεταβλητή \(X \) που παριστάνει τον αριθμό των αφίξεων στο φαρμακείο σε ένα μισάωρο ακολουθεί Poisson κατανομή με συνάρτηση πιθανότητας:

\[P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0,1,2,... \]

όπου η άγνωστη παράμετρος \(\lambda \) είναι ο ρυθμός των αφίξεων των πελατών σε χρονικό διάστημα ενός μισάωρου. Επομένως έχουμε μία απροσδιόριστη παράμετρο. Επιπλέον από τα δεδομένα της εκφώνησης προκύπτει ότι το σύνολο των τιμών της τυχαίας μεταβλητής χωρίζεται σε 6 κατηγορίες, ξένες μεταξύ τους. Έστω \(E_1 \) το ενδεχόμενο να μην αφιχθούν πελάτες, \(E_2 \) το ενδεχόμενο να αφιχθεί 1 πελάτης κ.ο.κ. έστω \(E_6 \) το ενδεχόμενο να αφιχθούν 5 ή περισσότεροι πελάτες. Η εύρεση των πιθανοτήτων \(P(E_i), \ i = 1,...,6, \) δεν είναι άμεσα υπολογίζιμη διότι είναι συνάρτηση του \(\lambda \). Ένας τρόπος να ξεπεράσουμε το πρόβλημα αυτό αποτελεί η αντικατάσταση του \(\lambda \) με έναν εκτιμητή του \(\hat{\lambda} \), έστω τον Εκτιμητή Μέγιστης Πιθανοφάνειας (Ε.Μ.Π.)
Αν \(X_1, \ldots, X_n \) ένα τυχαίο δείγμα από ένα πληθυσμό με σ.π. ή σ.π.π. \(f(x/\theta) \), όπου \(\theta \) η άγνωστη παράμετρος ή οι άγνωστοι παράμετροι, ο Ε.Μ.Π. της παραμέτρου \(\theta \) είναι η ποσότητα έναποιης που μεγιστοποιεί ως προς τις τιμές των άγνωστων παραμέτρων η συνάρτηση πιθανοφάνειας \(L \) που δίνεται από τη σχέση \(L = \prod_{i=1}^{n} f(x_i / \theta) \).

Για την ειδική περίπτωση του παραδείγματός μας είναι:

\[
L = \prod_{i=1}^{n} f(x_i / \lambda) = \prod_{i=1}^{n} e^{-\lambda \lambda x_i} = e^{-\lambda \lambda \sum_{i=1}^{n} x_i / \lambda x_i} \prod_{i=1}^{n} x_i!,
\]

και προκύπτει ότι \(\hat{\lambda} = \frac{\sum_{i=1}^{n} X_i}{n} \).

Επομένως, για το παράδειγμά μας είναι:

\[
\hat{\lambda} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{0*41 + 1*75 + 2*120 + 3*110 + 4*40 + 5*9}{365} = \frac{730}{365} = 2.
\]

Θα χρησιμοποιήσουμε το στατιστικό

\[
X^2 = \sum_{i=1}^{6} \frac{(n_i - np_i(\hat{\lambda}))^2}{e_i},
\]

με κρίσιμη περιοχή \(X^2 \geq X^2_{k-1-s,1-\alpha} = X^2_{4,1-0.05} = 11.07 \), όπου

\[
\begin{align*}
p_1 &= P(X = 0) = 0.1353, & p_2 &= P(X = 1) = 0.2707, \\
p_3 &= P(X = 2) = 0.2707, & p_4 &= P(X = 3) = 0.1804, \\
p_5 &= P(X = 4) = 0.0902, & p_6 &= P(X \geq 5) = 1 - (0.1353 + 0.2707 + 0.2707 + 0.1804 + 0.0902) = 0.0526,
\end{align*}
\]

όπου για την εύρεση των παραπάνω τιμών χρησιμοποιήθηκαν οι πίνακες της Poisson κατανομής (βλέπε, μεταξύ άλλων, Ζωγράφος (2005)).

Είναι τότε: \(e_1 = 365*0.1353 = 49.3845, \quad e_2 = 365*0.2707 = 98.8055, \quad e_3 = 365*0.2707 = 98.8055, \quad e_4 = 365*0.1804 = 65.846, \quad e_5 = 365*0.0902 = 32.923 \)
και \(e_6 = 365*0.0526 = 19.199 \).
Άρα καθώς το μέγεθος του δείγματος \(n \) είναι μεγάλο και \(e_i \geq 5 \), \(i = 1, \ldots, 6 \), δηλαδή πληρούνται οι προϋποθέσεις του \(X^2 \) στατιστικού τεστ, προβαίνουμε στον υπολογισμό του Επομένως είναι:

\[
X^2 = \frac{(41 - 49.3845)^2}{49.3845} + \frac{(75 - 98.8055)^2}{98.8055} + \frac{(120 - 98.8055)^2}{98.8055} + \frac{(110 - 65.846)^2}{65.846} + \frac{(10 - 32.923)^2}{32.923} + \frac{(5 - 19.199)^2}{19.199}
\]

\[
= 1.4235 + 5.7355 + 4.5464 + 29.6081 + 15.9603 + 10.5011 = 67.7749
\]

και η μηδενική υπόθεση απορρίπτεται, καθώς 67,7749>11,07. Αυτό σημαίνει ότι η τυχαία μεταβλητή που παριστάνει τον αριθμό των αφίξεων στο φαρμακείο σε ένα μισάωρο δεν περιγράφεται από την κατανομή Poisson.
1.3 Ασκήσεις

Ασκήση 1.1
Κατά το παρελθόν είχε γίνει γνωστό ότι το 75% των Ελλήνων πάει διακοπές 10 μέρες, 15% των Ελλήνων περισσότερο από 10 μέρες, 5% από 5-9 μέρες, 4% από 1-4 μέρες και 1% δεν πάει διακοπές. Ωμως τα τελευταία χρόνια λόγω των οικονομικών δυσκολιών ίσως αυτό να μην ισχύει. Σε επίπεδο σημαντικότητας 5% να ελέγξετε την παραπάνω υπόθεση, αν σε ένα τυχαίο δείγμα 200 ατόμων, 165 πήγαν διακοπές 10 μέρες, 25 περισσότερες από 10, 6 από 5-9 μέρες και 3 από 1-4 μέρες και 1 δεν πήγε διακοπές.

Λύση
Στην ουσία έχουμε ένα τυχαίο πείραμα από \(n = 200 \), ανεξάρτητες δοκιμές στο οποίο μπορούμε να έχουμε \(k = 5 \) δυνατά αποτελέσματα, \(E_i, \; i = 1,...,5 \), ξένα μεταξύ τους. Έστω \(p_i = P(E_i) \), \(p_2 = P(E_2) \), \(p_3 = P(E_3) \), \(p_4 = P(E_4) \) και \(p_5 = P(E_5) \) οι αντίστοιχες πιθανότητες πραγματοποίησης καθενός. Επιπλέον, έστω ότι στις \(n \) επαναλήψεις το \(i \), \(i = 1,...,5 \), συμβαίνει \(n_i \) ακριβώς φορές με \(n_1 + ... + n_5 = n \). Τότε:
\[
(n_1, n_2, n_3, n_4, n_5) \sim M(n, p_1, p_2, p_3, p_4, p_5)
\]
και
\[
P(n_1, n_2, n_3, n_4, n_5) = \frac{n!}{n_1! n_2! n_3! n_4! n_5!} p_1^{n_1} p_2^{n_2} p_3^{n_3} p_4^{n_4} p_5^{n_5}.
\]
Θέλουμε να ελέγξουμε την υπόθεση:
\[
H_0: \; p_1 = 0.75, \; p_2 = 0.15, \; p_3 = 0.05, \; p_4 = 0.04, \; p_5 = 0.01,
\]
έναντι της εναλλακτικής
\[
H_1: \; τουλάχιστο μια αναλογία διαφέρει από τη δοθείσα αναλογία στην H_0.
\]
Ο έλεγχος γίνεται με το στατιστικό
\[
\chi^2 = \sum_{i=1}^{5} \frac{(n_i - \theta_i)^2}{\theta_i},
\]
όπου \(\theta_i \) ο αναμενόμενος αριθμός εμφανίσεων του \(E_i \), \(i = 1,...,5 \), όταν ισχύει η μηδενική υπόθεση. Υπο τη μηδενική υπόθεση ισχύει ότι:
\[
(n_1, n_2, n_3, n_4, n_5) \sim M(n, p_1, p_2, p_3, p_4, p_5) \] και \(n_i \sim B(n, p_i) \), \(i = 1,...,5 \).
Επομένως είναι $e_i = np_i, \ i = 1,\ldots,5,$ δηλαδή $e_1 = 200 \times 0.75 = 150,$
$e_2 = 200 \times 0.15 = 30, \ e_3 = 200 \times 0.05 = 10, \ e_4 = 200 \times 0.04 = 8$ και
$e_5 = 200 \times 0.01 = 2 < 5.$

Καθώς δεν πληρούνται οι προϋποθέσεις εφαρμογής του X^2 τεστ προσαρμογής, αφού δεν είναι $e_i \geq 5, \ i = 1,\ldots,5,$ θα προχωρήσουμε σε συγχώνευση δύο γειτονικών κατηγοριών και συγκεκριμένα των δύο τελευταίων. Στην ουσία δηλαδή θα σχοληθούμε με τον έλεγχο της υπόθεσης:

$H_0: \ p_1 = 0.75, \ p_2 = 0.15, \ p_3 = 0.05, \ p_4 = 0.05$, και

έναντι της εναλλακτικής

$H_1: \ τουλάχιστο μια αναλογία διαφέρει από τη δοθείσα αναλογία στην H_0$.

Ο έλεγχος γίνεται με το στατιστικό

$$X^2 = \sum_{i=1}^{4} \frac{(n'_i - e_i)^2}{e_i},$$

όπου e_i ο αναμενόμενος αριθμός εμφανίσεων του $E_i, \ i = 1,\ldots,4,$ όταν ισχύει η μηδενική υπόθεση, οπότε τώρα E_4 είναι το ενδεχόμενο κάποιος να πηγάνει διακοπές από 0-4 μέρες. Υπό τη μηδενική υπόθεση ισχύει ότι:

$$\left(n'_1, n'_2, n'_3, n'_4\right) \sim M\left(n, p_1, p_2, p_3, p_4\right) \text{και} \ n'_i \sim B\left(n, p_i\right), \ i = 1,\ldots,4.$$

Επομένως είναι $e_i = np_i, \ i = 1,\ldots,4,$ δηλαδή $e_1 = 200 \times 0.75 = 150,$
$e_2 = 200 \times 0.15 = 30, \ e_3 = 200 \times 0.05 = 10$ και $e_4 = 200 \times 0.05 = 10.$

Άρα και το μέγεθος του δείγματος n είναι μεγάλο και $e_i \geq 5, \ i = 1,\ldots,4,$ και επομένως συνεχίζουμε με τον υπολογισμό της τιμής του X^2. Είναι

$$X^2 = \sum_{i=1}^{4} \frac{(n'_i - e_i)^2}{e_i} = \frac{(165 - 150)^2}{150} + \frac{(30 - 25)^2}{30} + \frac{(6 - 10)^2}{10} + \frac{(4 - 10)^2}{10}$$

άρα

$$X^2 = 1.5 + 0.83 + 1.6 + 3.6 = 7.53.$$

Απορρίπτουμε την $H_0\ \text{αν:}$

$$X^2 \geq X^2_{k-1,1-α} = X^2_{3,1-0.05} = 7.81,$$

όπου $X^2_{3,1-0.05}$ είναι το αντίστροφο εκατοστιαίο σημείο της X^2_3 και ορίζεται:

$$P(X^2_3 \geq X^2_{3,1-0.05}) = 1-0.05,$$

και προκύπτει από τον Πίνακα 4 ότι είναι $X^2_{3,1-0.05} = 7.81.$
Επομένως δεν απορρίπτεται η μηδενική υπόθεση, δηλαδή οι πιθανότητες πραγματοποίησης κάθε ενδεχομένου δε διαφέρουν στατιστικά σημαντικά από αυτές που δίνονται στην H_0.

Ασκηση 1.2

Εκλέγεται ένα τυχαίο δείγμα τιμών της τ.μ X με τα παρακάτω αποτελέσματα:

<table>
<thead>
<tr>
<th>Διάστημα</th>
<th>(0,1/4]</th>
<th>(1/4,1/2]</th>
<th>(1/2,3/4]</th>
<th>(3/4,1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Συχνότητα</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Να ελέγξετε, με επίπεδο σημαντικότητας 5%, αν προέρχεται από την $f(x) = 2(1-x), x \in [0,1]$.

Λύση

Θέλουμε να ελέγξουμε αν η τυχαία μεταβλητή X ακολουθεί κατανομή με συνάρτηση πιθανότητας πιθανότητας:

$$f(x) = 2(1-x), x \in [0,1].$$

Επιπλέον το σύνολο των τιμών της τυχαίας μεταβλητής χωρίζεται σε 4 κατηγορίες, ξένες μεταξύ τους. Έστω E_1 το ενδεχόμενο να ανήκουν στο διάστημα (0,1/4], E_2 το ενδεχόμενο να ανήκουν στο διάστημα (1/4,1/2], E_3 το ενδεχόμενο να ανήκουν στο διάστημα (1/2,3/4] και E_4 να ανήκουν στο διάστημα (3/4,1]. Ακολουθεί η εύρεση των πιθανοτήτων $P(E_i)$, $i = 1, \ldots, 4$,

$$p_1 = P(E_1) = P(0 < X < 1/4) = \int_{0}^{1/4} 2 - 2x \, dx = 7/16,$$

$$p_2 = P(E_2) = P(1/4 < X < 1/2) = \int_{1/4}^{1/2} 2 - 2x \, dx = 5/16,$$

$$p_3 = P(E_3) = P(1/2 < X < 3/4) = \int_{1/2}^{3/4} 2 - 2x \, dx = 3/16,$$

και

$$p_4 = P(E_4) = P(3/4 < X < 1) = \int_{3/4}^{1} 2 - 2x \, dx = 1/16.$$

Ο έλεγχος της μηδενικής υπόθεσης γίνεται με το στατιστικό
\[X^2 = \sum_{i=1}^{4} \frac{(n_i - e_i)^2}{e_i} , \]

όπου \(e_i \) ο αναμενόμενος αριθμός εμφανίσεων του \(E_i \), \(i = 1, \ldots, 4 \), όταν ισχύει η μηδενική υπόθεση. Είναι \(n_1 = 30 \), \(n_2 = 30 \), \(n_3 = 10 \) και \(n_4 = 10 \), ενώ
\[e_1 = np_1 = 80 \times \frac{7}{16} = 35 \], \[e_2 = np_2 = 80 \times \frac{5}{16} = 25 \], \[e_3 = np_3 = 80 \times \frac{3}{16} = 15 \] και
\[e_4 = np_4 = 80 \times \frac{1}{16} = 5 \] , αντίστοιχα.

Επομένως,
\[X^2 = \frac{(30 - 35)^2}{35} + \frac{(30 - 25)^2}{25} + \frac{(10 - 15)^2}{15} + \frac{(10 - 5)^2}{5} = 8,381 . \]

Η μηδενική υπόθεση απορρίπτεται αν \(X^2 \geq X^2_{k-1,1-\alpha} = X^2_{3,0.95} = 7,81 \). Επομένως η μηδενική υπόθεση απορρίπτεται, όπως η δοθείσα κατανομή.

Άσκηση 1.3

Να βρεθεί η κατανομή του στατιστικού του Smirnov που χρησιμοποιείται για τον δίπλευρο έλεγχο όταν είναι διαθέσιμες δύο παρατηρήσεις από κάθε πληθυσμό.

Λύση

Θέλουμε να βρούμε την κατανομή του στατιστικού:
\[D_{n,n} = \sup_x |F_n(x) - G_n(x)| , \]

όταν \(n = 2 \). Επομένως έχουμε δύο παρατηρήσεις, έστω τις \(X_1, X_2 \), από τον πρώτο πληθυσμό με αθροιστική συνάρτηση κατανομής \(F \) και τις \(Y_1, Y_2 \), από τον δεύτερο πληθυσμό με αθροιστική συνάρτηση κατανομής \(G \). Επομένως συνολικά έχουμε 4 παρατηρήσεις και καθώς αυτό που μας ενδιαφέρει είναι η διάταξή τους, μη λαμβάνοντας υπόψη τη διάταξη εντός των δειγμάτων, έχουμε ότι υπάρχουν συνολικά \(\binom{4}{2} = 6 \) διατάξεις. Οι 6 αυτές πιθανές διατάξεις, μαζί με τις αντίστοιχες τιμές των εμπειρικών αθροιστικών συναρτήσεων παρατίθενται:
Οπότε προκύπτει ότι για κάθε περίπτωση οι τιμές του \(\sup_{n} (F_{n}(x) - G_{n}(x)) \) είναι: 1, \(\frac{1}{2} \), \(\frac{1}{2} \), \(\frac{1}{2} \), \(\frac{1}{2} \), 1 αντίστοιχα, με \(\frac{2}{2} = \frac{6}{6} = \frac{1}{3} \) και \(\frac{1}{2} = \frac{4}{6} = \frac{2}{3} \).

Ασκήση 1.4

Να βρεθεί η ακριβής κατανομή του Kolmogorov στατιστικού για το δίπλευρο έλεγχο όταν \(n = 1 \), υπό τη μηδενική υπόθεση.

Λύση

Το στατιστικό του Kolmogorov για το δίπλευρο έλεγχο όταν \(n = 1 \) δίνεται από τη σχέση:

\[
D_{1} = |1 - F_{0}(x)| = 1 - F_{0}(x), \quad \text{με τιμές μεταξύ μηδέν και ένα.}
\]

Είναι τότε:

\[
P(D_{1} \leq t) = P(1 - F_{0}(x) \leq t) = P(F_{0}(x) \geq 1 - t) = P(X \geq F_{0}^{-1}(1 - t)),
\]

οπότε

\[
P(D_{1} \leq t) = 1 - P(X \leq F_{0}^{-1}(1 - t)) = 1 - F_{0}(F_{0}^{-1}(1 - t)) = 1 - (1 - t) = t,
\]

δηλαδή ακολουθή ομοιόμορφη κατανομή στο (0,1).
Δεύτερο Κεφάλαιο

Τεστ των ροών

Στις περισσότερες από τις στατιστικές μεθοδολογίες, τόσο της Παραμετρικής όσο και της Μη Παραμετρικής Στατιστικής, υποθέτουμε ότι το δείγμα μας είναι τυχαίο, δηλαδή ότι οι \(n \) το πλήθος δειγματικές παρατηρήσεις \(X_1, \ldots, X_n \), είναι ανεξάρτητες τυχαίες μεταβλητές, ισόνομες ή όχι, δηλαδή με κοινή ή όχι συνάρτηση πιθανότητας ή συνάρτηση πυκνότητας πιθανότητας, ανάλογα. Υπάρχουν όμως περιπτώσεις που έχουμε λόγους να αμφιβάλλουμε για την τυχαιότητα των \(n \) δειγματικών παρατηρήσεων. Ενδεικτικά αναφέρουμε ότι μία τέτοια περίπτωση συναντάμε για παράδειγμα όταν οι παρατηρήσεις είναι χρονολογικές π.χ. αν πρόκειται για το ύψος της βροχής σε μία περιοχή σε \(n \) διαφορετικές χρονικές περιόδους.

Ένας τρόπος ελέγχου της τυχαιότητας ή μη ενός δείγματος \(n \) δειγματικών παρατηρήσεων είναι το λεγόμενο τεστ των ροών (Wald and Wolfowitz Α40, runs test). Πρόκειται για ένα μη παραμετρικό έλεγχο καθώς δεν γίνεται καμία υπόθεση για τη μορφή του πληθυσμού από τον οποίο προέρχεται το υπό εξέταση δείγμα.

Έστω \(X_1, \ldots, X_n \), οι \(n \) το πλήθος διαθέσιμες παρατηρήσεις, διατεταγμένες σε χρονολογική σειρά συνήθως. Επιπλέον υποθέτουμε ότι τα δεδομένα μπορούν να διαχωριστούν σε δύο ομάδες, σε δύο τύπους, έστω την ομάδα Α και την ομάδα Β. Για παράδειγμα, αν θέλουμε να ελέγξουμε την τυχαιότητα των υπολοίπων ενός μοντέλου γραμμικής παλινδρόμησης, τα υπόλοιπα χωρίζονται σε αυτά που λαμβάνουν θετικές τιμές και σε αυτά με αρνητικές τιμές. Στις υπόλοιπες των περιπτώσεων, αν δεν καθορίζεται κάποιο κριτήριο από τη φύση του προβλήματος, χρησιμοποιείται η διάμεσος, ως σημείο διαχωρισμού των παρατηρήσεων σε δύο ομάδες.

Παρατήρηση 2.1

Στην περίπτωση που κάποιο υπόλοιπο είναι ίσο με μηδέν ή η δειγματική τιμή είναι ίση με τη διάμεσο ή με την τιμή του κριτηρίου που έχει καθοριστεί, για τον διαχωρισμό των παρατηρήσεων σε δύο ομάδες, τότε αυτές αποκλείονται από την περαιτέρω ανάλυση και η ανάλυση συνεχίζεται λαμβάνοντας υπόψη την τροποποίηση στο μέγεθος του δείγματος. Σε όσα ακολουθούν συμβολίζεται με \(n \) το μέγεθος του τροποποιημένου δείγματος και με \(X_1, \ldots, X_n \) οι τελικά διαθέσιμες παρατηρήσεις.
Έστω ότι στο δείγμα των \(n \) δειγματικών παρατηρήσεων, \(X_1, \ldots, X_n \), \(n_i \) από αυτές ανήκουν στην ομάδα Α και οι υπόλοιπες παρατηρήσεις που ανήκουν στην ομάδα Β αντικαθίστανται με το σύμβολο +, ενώ οι \(n_2 = n - n_1 \) το πλήθος τιμών των υπόλοιπων παρατηρήσεων που ανήκουν στην ομάδα Α αντικαθίσταται με το σύμβολο -. Επομένως, κάθε δειγματική παρατήρηση αντικαθίσταται από το σύμβολο + ή το σύμβολο −, τα οποία σύμβολα χαρακτηρίζουν κατά αυτόν τον τρόπο σε ποια ομάδα από τις δύο ανήκει η δειγματική παρατήρηση. Για να αποφασίσουμε για την τυχαιότητα ή όχι των \(n \) παρατηρήσεων, θεωρούμε το στατιστικό \(R \) που ορίζεται ως ο αριθμός των ακολουθιών ομοίων συμβόλων στην ακολουθία των \(n \) το πλήθος συμβόλων + και -. Δηλαδή, αρχικά αυτό που μας ενδιαφέρει είναι η εύρεση του πλήθους των ακολουθιών ομοίων συμβόλων.

Έτσι για παράδειγμα στην περίπτωση της ακόλουθης ακολουθίας:

\[
++-++-++++
\]
eίναι \(n = 12 \), \(n_1 = 7 \), \(n_2 = 5 \) και \(R = 5 \).

Αν ήταν \(R = 2 \) αυτό θα σήμαινε ότι είτε αρχικά όλες οι παρατηρήσεις θα ανήκουν στην ομάδα Α και έπειτα στην ομάδα Β ή ετσι αντίστροφα. Επομένως μέχρι κάποιο σημείο, κάποια χρονική στιγμή, κάθε παρατήρηση της μιας ομάδας ακολουθείται από παρατήρηση που ανήκει στην ίδια ομάδα. Αν ήταν \(R = 12 \) θα σήμαινε ότι μια δειγματική παρατήρηση της μιας ομάδας διαδέχεται παρατήρηση της άλλης. Προφανώς σε αυτές τις δύο περιπτώσεις θα έχουμε αποκλίσεις από την τυχαιότητα. Επομένως είναι προφανές ότι μια δευτερεύουσα παρατήρηση που ανήκει στην ίδια ομάδα διαδέχεται παρατήρηση που ανήκει στην άλλη και αντίστροφα. Αποκλίσεις αυτού έχουν την ευρετήρια της ακολουθίας των ακολουθιών, οι οποίοι είναι κοσμηματικοί και αποκλίσεις είναι τυχαιότητες, έρευνες στην ενδείξη οι δειγματικές παρατηρήσεις διαιρούν την τυχαιότητα. Αποκλίσεις αυτού έχουν την ευρετήρια της ακολουθίας των ακολουθιών, οι οποίοι είναι κοσμηματικοί και αποκλίσεις είναι τυχαιότητες, έρευνες στην ενδείξη οι δειγματικές παρατηρήσεις διαιρούν την τυχαιότητα.

Από τα παραπάνω γίνεται αντιληπτό ότι η ποιοτική \(R \) μπορεί να χρησιμοποιηθεί για το ζητούμενο έλεγχο. Για το λόγο αυτό απαιτείται η εύρεση της κατανομής του \(R \) υπό τη μηδενική υπόθεση.
δυνατές θέσεις τέτοιας τοποθέτησης είναι ο συνολικός αριθμός αυτών των τρόπων \(\binom{n-1}{r-1} \).

Μετά και την παράθεση του προηγούμενου αποτελέσματος στην επόμενη πρόταση προσδιορίζεται η κατανομή του \(R \) υπό τη μηδενική υπόθεση.

Πρόταση 2.1

Αν \(R \) είναι ο αριθμός των ακολουθιών ομοίων συμβόλων στην ακολουθία \(n \) συμβόλων εκ των οποίων \(n_1 \) το πλήθος είναι + και \(n_2 = n - n_1 \) το πλήθος είναι – τότε για \(r = 2,3,...,n \):

\[
 f_r(R = r) = \begin{cases}
 2 \frac{(n_1 - 1)}{r/2 - 1} \frac{(n_2 - 1)}{r/2 - 1} \binom{n}{n_1}, & \text{για } r \text{ ζυγός} \\
 \frac{(n_1 - 1)}{(r-1)/2} \frac{(n_2 - 1)}{(r-3)/2} + \frac{(n_1 - 1)}{(r-2)/2} \frac{(n_2 - 1)}{(r-1)/2} \binom{n}{n_1}, & \text{για } r \text{ μονός}
\end{cases}
\]

Απόδειξη

Αν η μηδενική υπόθεση είναι αληθής, αν επομένως οι \(n \) δειγματικές παρατηρήσεις αποτελούν ένα τυχαίο δείγμα, ο δυνατός αριθμός των διατάξεων των \(n_1 \) συμβόλων + είναι \(\binom{n}{n_1} \). Αν τώρα το πλήθος των ακολουθιών ομοίων συμβόλων είναι ίσο με \(r \), όπου \(r \) ζυγός, δηλαδή \(r = 2,4,..., \), τότε υπό τη μηδενική υπόθεση, θα έχουμε \(r/2 \) ακολουθίες συμβόλων + και \(r/2 \) ακολουθίες συμβόλων -. Αφού έχουμε \(r/2 \) ακολουθίες συμβόλων + και \(r/2 \) ακολουθίες συμβόλων - αυτό σημαίνει ότι τα \(n_1 \) θετικά σύμβολα χωρίζονται σε \(r/2 \) ομάδες. Αυτό επιτυγχάνεται με \(\binom{n_1 - 1}{r/2 - 1} \) τρόπους. Όμοια έχουμε \(\binom{n_2 - 1}{r/2 - 1} \) τρόπους κατασκευής των \(r/2 \) ροών συμβόλων -. Οπότε από τον πολλαπλασιαστικό κανόνα και καθώς μπορεί να έχουμε είτε πρώτα μια ακολουθία συμβόλων + και μετά μια ακολουθία συμβόλων – και αντίστροφα προκύπτει ότι:
\[
f_R(R = r) = \frac{2\binom{n_1 - 1}{r/2 - 1}\binom{n_2 - 1}{r/2 - 1}}{\binom{n}{n_1}}, \quad r \text{ ζυγός.}
\]

Για την περίπτωση που έχουμε \(r \) το πλήθος ακολουθίες όμοιων συμβόλων με \(r \) περιπτώ αριθμό, και υπό τη μηδενική υπόθεση, είτε θα έχουμε \((r-1)/2\) ακολουθίες συμβόλων + και \((r-1)/2+1\) ακολουθίες συμβόλων −, είτε θα έχουμε \((r-1)/2+1\) ακολουθίες συμβόλων + και \((r-1)/2\) ακολουθίες συμβόλων −.

Με παρόμοιο τρόπο όπως πριν προκύπτει ότι:

\[
f_R(R = r) = \frac{\binom{n_1 - 1}{(r-1)/2}\binom{n_2 - 1}{(r-3)/2}}{\binom{n}{n_1}}, \quad r \text{ μονός.}
\]

Από τα παραπάνω προκύπτει ότι απορρίπτεται η μηδενική υπόθεση όταν είτε \(R \leq r_{a/2} \) είτε \(R \geq r_{1-a/2} \), όπου \(r_{a/2} \) είναι ένας αριθμός τέτοιος ώστε:

\[
\sum_{r=2}^{<\infty} P(R = r) = a/2.
\]

Όμως ο υπολογισμός αυτός είναι ιδιαίτερα δύσκολος τις περισσότερες φορές και επιπλέον όπως συμβαίνει σε όλα τα στατιστικά τεστ που στηρίζονται σε διακριτές συναρτήσεις πιθανότητας υπάρχει πεπερασμένο πλήθος επιλογών για το επίπεδο σημαντικότητας \(a \). Για παράδειγμα για την ειδική περίπτωση που \(n_1 = 5 \) και \(n_2 = 4 \), έχοντας ως κρίσιμη περιοχή για το δίπλευρο έλεγχο την \(R \leq 2 \) ή \(R \geq 9 \) προκύπτει ότι \(a = 3/126 \) κι αυτό διότι \(f_R(R = 9) = 1/126 \) και \(f_R(R = 2) = 2/126 \), ενώ έχοντας ως κρίσιμη περιοχή την \(R \leq 3 \) ή \(R \geq 8 \) προκύπτει ότι \(a = 18/126 \), καθώς \(f_R(R = 8) = 8/126 \) και \(f_R(R = 3) = 7/126 \).

Για τους παραπάνω λόγους οδηγούμαστε στην εύρεση ενός προσεγγιστικού στατιστικού τεστ. Καθώς το στατιστικό \(R \) μπορεί να γραφεί ως άθροισμα ανεξάρτητων τυχαίων μεταβλητών, αρκεί να υπολογιστούν οι ποσότητες \(ER \) και \(VarR \).
Πρόταση 2.2

Αν R είναι ο αριθμός των ακολουθιών ομοίων συμβόλων στην ακολουθία n συμβόλων εκ των οποίων n_1 το πλήθος είναι $+$ και $n_2 = n - n_1$ το πλήθος είναι $-$ τότε υπό τη μηδενική υπόθεση:

$$ER = 1 + \frac{2n_1n_2}{n}$$

και

$$VarR = \frac{2n_1n_2(2n_1n_2 - n)}{n^2(n-1)}.$$

Απόδειξη (βλέπε μεταξύ άλλων Gibbons and Chakraborti (2003))

Από τον τρόπο ορισμού του στατιστικού R προκύπτει ότι μπορεί να γραφεί ως το παρακάτω άθροισμα:

$$R = 1 + \sum_{i=2}^{n} I_i,$$

όπου $I_i, i = 2, ..., n$, μία δείκτρια συνάρτηση που λαμβάνει την τιμή 1 αν το i-οστό σύμβολο είναι διαφορετικό από το $(i-1)$-οστό σύμβολο, για $i = 2, ..., n$. Τότε προφανώς κάθε μία τέτοια συνάρτηση είναι μία διακριτή τυχαία μεταβλητή που ακολουθεί Bernoulli κατανομή με παράμετρο $p = \frac{n_1n_2}{n(n-1)}$.

Τότε λαμβάνοντας υπόψη ότι η μέση τιμή της Bernoulli είναι ίση με την παράμετρο p προκύπτει ότι:

$$ER = E\left(1 + \sum_{i=2}^{n} I_i\right) = 1 + \sum_{i=2}^{n} E(I_i) = 1 + \sum_{i=2}^{n} \frac{2n_1n_2}{n(n-1)} = 1 + \frac{2n_1n_2}{n}.$$

Επιπλέον ισχύει ότι:

$$VarR = Var\left(1 + \sum_{i=2}^{n} I_i\right) = Var\left(\sum_{i=2}^{n} I_i\right) = \sum_{i=2}^{n} VarI_i + \sum_{2 \leq i < j \leq n} Cov(I_i, I_j)$$

$$= \sum_{i=2}^{n} VarI_i + \sum_{2 \leq i < j \leq n} \{E(I_iI_j) - E(I_i)E(I_j)\}$$

$$= \sum_{i=2}^{n} VarI_i + \sum_{2 \leq i < j \leq n} E(I_iI_j) - (n-2)(n-1)E(I_i)^2$$

$$= \sum_{i=2}^{n} \{E(I_i^2) - (E(I_i))^2\} + \sum_{2 \leq i < j \leq n} E(I_iI_j) - (n-2)(n-1)E(I_i)^2$$

$$= (n-1)E(I_i^2) - (n-1)(E(I_i))^2 - (n-2)(n-1)(E(I_i))^2 + \sum_{2 \leq i < j \leq n} E(I_iI_j).$$
όπου \(EL_i^2 = \text{Var}I_i - (EI_i)^2 = p(1 - p) - p^2 = p = \frac{2n_n_2}{n(n-1)} \). Επομένως για την έφεψη της διακύμανσης απαιτείται η εφέση των \((n-1)(n-2)\) το πλήθος ροπών τύπου \(E(I_i I_j) \). Για τον υπολογισμό αυτών λαμβάνουμε υπόψη τα ακόλουθα: για τις \(2(n-2) \) το πλήθος περιπτώσεις που είναι τέτοιες ώστε είτε \(i = j - 1 \) είτε \(i = j + 1 \) ισχύει ότι \(E(I_i I_j) = \frac{n_n_2 (n_1 - 1) + n_n_2 (n_2 - 1)}{n(n-1)(n-2)} = \frac{n_n_2}{n(n-1)} \), ενώ για τις υπόλοιπες \((n-1)(n-2) - 2(n-2) = (n-2)(n-3) \) το πλήθος περιπτώσεις ισχύει ότι

\[
E(I_i I_j) = \frac{4n_n_2 (n_1 - 1)(n_2 - 1)}{n(n-1)(n-2)(n-3)}.
\]

Επομένως είναι:

\[
\text{Var}R = \frac{2n_n_2}{n} + \frac{2(n-2)}{n(n-1)} + \frac{4n_n_2 (n_1 - 1)(n_2 - 1)}{n(n-1)} - \left(\frac{2n_n_2}{n}\right)^2 = \frac{2n_n_2 (2n_n_2 - n)}{n^2 (n-1)}\]

Λαμβάνοντας υπόψη την παραπάνω πρόταση προκύπτει μέσω του Κ.Ο.Θ. ότι χρησιμοποιείται το στατιστικό:

\[
Z = \frac{R - ER}{\sqrt{VarR}} \sim N(0,1)
\]

και απορρίπτεται η μηδενική υπόθεση \(H_0 \): οι δειγματικές παρατηρήσεις αποτελούν ένα τυχαίο δείγμα από τον υπό μελέτη πληθυσμό, έναντι της εναλλακτικής

i) \(H_1 \): οι παρατηρήσεις είναι θετικά συσχετισμένες

ii) \(H_1 \): οι παρατηρήσεις είναι αρνητικά συσχετισμένες

iii) \(H_1 \): οι παρατηρήσεις είναι είτε θετικά είτε αρνητικά συσχετισμένες

αν i) \(Z \geq z_a \), ii) \(Z \leq -z_a \), και iii) \(|Z| \geq z_{a/2} \), αντίστοιχα. Υπενθυμίζουμε ότι οι τιμές \(z_a \) και \(z_{a/2} \) υπολογίζονται χρησιμοποιώντας τον Πίνακα 5 του Παραρτήματος.

Για μικρές τιμές του \(n \) συνιστάται η εφαρμογή της διόρθωσης συνεχειάς:

\[
Z =\begin{cases}
R + 0.5 - ER & \text{, αν } R > ER \\
\frac{R - 0.5 - ER}{\sqrt{VarR}} & \text{, αν } R < ER
\end{cases}
\]

40
Παράδειγμα 2.1

Μια ομάδα ποδοσφαίρου της Α’ Εθνικής έχει την επόμενη ακολουθία νικών-ηττών: ΝΗΝΝΗΝΗΗΗΝΗΗΗΗΝΗΗ. Να ελέγξετε, με επίπεδο σημαντικότητας 5%, αν υπάρχει τυχαιότητα στα αποτελέσματά της;

Λύση

Είναι αν με \(n \) συμβολίσουμε το πλήθος των νικών, \(N \), \(n_1 = 14 \), οπότε \(n_2 = 15 \) και \(n = 29 \). Επιπλέον εύκολα υπολογίζουμε ότι \(R = 22 \), με

\[
ER = 1 + \frac{2n_1n_2}{n} = 1 + \frac{2 \times 14 \times 15}{29} = 15,483
\]

και

\[
VarR = \frac{2n_1n_2(2n_1n_2 - n)}{n^2(n-1)} = \frac{2 \times 14 \times 15(2 \times 14 \times 15 - 29)}{29^2(29 - 1)} = 6,97.
\]

Επομένως για το δίπλευρο έλεγχο της υπόθεσης ότι το δείγμα είναι τυχαίο θα χρησιμοποιήσουμε το στατιστικό

\[
Z = \frac{R - ER}{\sqrt{VarR}} \sim N(0,1),
\]

με κρίσιμη περιοχή \(|Z| \geq z_{a/2} = z_{0.025} = 1.96 \).

Η τιμή του στατιστικού υπολογίζεται ως εξής:

\[
Z = \frac{R - ER}{\sqrt{VarR}} = \frac{22 - 15,483}{\sqrt{6,97}} = 2,47
\]

και καθώς 2,47>1.96, συμπεραίνουμε ότι η μηδενική υπόθεση απορρίπτεται με επίπεδο σημαντικότητας 5%. Αυτό σημαίνει ότι τα αποτελέσματα της ομάδας δεν μπορούν να θεωρηθούν ότι είναι τυχαία.

Παράδειγμα 2.2

Για \(n = 5 \), \(n_1 = 3 \) και \(n_2 = 2 \) να βρεθεί η κατανομή του \(R \) χωρίς να γίνει χρήση της Πρότασης 2.1.

Λύση
Ο αριθμός των δυνατών ακολουθιών, όταν \(n = 5 \), \(n_1 = 3 \) και \(n_2 = 2 \), είναι \(\binom{5}{3} = 10 \) και είναι οι ακόλουθες:

+++--, +++-, ++++, ++-+, ++-+, -+++-, -+++-, -+++ με αντίστοιχο αριθμό ροών: 2,4,3,4,5,3,5,3,4,2,4.

Άρα οι δυνάτες τιμές της διακριτής τυχαίας μεταβλητής \(R \), που παριστάνει το πλήθος των ακολουθιών όμοιων συμβόλων, δηλαδή το πλήθος των ροών, είναι 2,3,4 και 5 με πιθανότητες:

\[
P(R = 2) = \frac{2}{10}, \quad P(R = 3) = \frac{3}{10}, \quad P(R = 4) = \frac{4}{10} \quad \text{και} \quad P(R = 5) = \frac{1}{10},
\]

αντίστοιχα.
Τρίτο Κεφάλαιο

Έστω X_1,\ldots,X_n, ένα τυχαίο δείγμα από έναν πληθυσμό με συνεχή αθροιστική συνάρτηση κατανομής F. Ενδιαφερόμαστε να ελέγξουμε την υπόθεση ότι η διάμεσος m της άγνωστης κατανομής είναι ίση με m_0, όπου m_0 είναι γνωστός αριθμός. Επομένως θέλουμε να ελέγξουμε τη μηδενική υπόθεση:

$$H_0 : m = m_0,$$

έναντι μίας εκ των τριών ακόλουθων εναλλακτικών:

i) $H_1 : m > m_0$, ii) $H_1 : m < m_0$ και iii) $H_1 : m \neq m_0$.

Στη βιβλιογραφία για τον παραπάνω έλεγχο έχουν προταθεί το προσημικό τεστ (sign test) και το τεστ του Wilcoxon (Wilcoxon (1945)). Στις επόμενες παραγράφους παρουσιάζονται οι δύο αυτοί τρόποι ελέγχου.

Επιπλέον στην τελευταία παράγραφο αυτού του κεφαλαίου, χρησιμοποιούμε τις μεθοδολογίες που προτάθηκαν για τον παραπάνω έλεγχο, δίνουμε δύο τρόπους ελέγχου στην περίπτωση του ελέγχου της ισότητας των παραμέτρων Θέσης χρησιμοποιώντας εξαρτημένα δείγματα από δύο πληθυσμούς.

Υπενθυμίζουμε ότι εξαρτημένα δείγματα εμφανίζονται συνήθως στις ακόλουθες περιπτώσεις:

α) σε πειράματα, μελέτες των οποίων σκοπός είναι η διερεύνηση της αποτελεσματικότητας μίας θεραπείας. Για το λόγο αυτό οι τιμές μίας ή περισσότερων μεταβλητών καταγράφονται στην ίδια πειραματική μονάδα πριν και μετά την εφαρμογή της μεθόδου.
β) Στην περίπτωση των διδύμων.
γ) Όταν θεωρούμε πειραματικές μονάδες που μοιάζουν σε όλα τα υπόλοιπα χαρακτηριστικά πλην αυτού που θέλουμε να μελετήσουμε (ταυριστά δεδομένα).

Παρατήρηση 3.1

Σε κάθε στατιστικό έλεγχο αποφασίζουμε στη βάση ενός στατιστικού για την αποδοχή ή την απόρριψη μίας υπόθεσης (της μηδενικής υπόθεσης όπως λέγεται και η οποία συμβολίζεται με H_0). Επομένως υπάρχει ο «κίνδυνος» είτε ο στατιστικός να απορρίπτει την προς έλεγχο μηδενική υπόθεση (να αποδέχεται τη λεγόμενη εναλλακτική υπόθεση H_a), ενώ η H_0 είναι αληθής, είτε ο στατιστικός αποδέχεται την H_0, ενώ η H_a είναι αληθής. Στην πρώτη περίπτωση έχουμε το λεγόμενο σφάλμα τύπου Ι, ενώ στη δεύτερη το σφάλμα τύπου ΙΙ. Είναι τότε:
\[a = P(\text{σφάλμα τύπου I}) = P(\text{απορρίπτω} \ H_0 \ / \ H_0 \ \text{αληθής}) \]

και

\[\beta = P(\text{σφάλμα τύπου II}) = P(\text{αποδέχομαι} \ H_0 \ / \ H_α \ \text{αληθής}). \]

Το επιθυμητό θα ήταν να επιτυγχάνεται η ταυτόχρονη ελαχιστοποίηση των \(\alpha\) και \(\beta\). Όμως κάτι τέτοιο είναι αδύνατο. Το πρόβλημα αυτό παρακάμπτεται, προκαθορίζοντας το \(\alpha\) και ελαχιστοποιώντας το \(\beta\) ή ισοδύναμα μεγιστοποιώντας την ισχύ του τεστ \(\gamma = 1 - \beta = P(\text{απορρίπτω} \ H_0 \ / \ H_α \ \text{αληθής})\). Το προκαθορισμένο \(\alpha\) είναι γνωστό και ως επίπεδο σημαντικότητας και συνήθως επιλέγεται να είναι είτε 5% είτε 1%.

Στα στατιστικά πιακέτα η απόφαση για την αποδοχή ή απόρριψη της υπόθεσης δεν γίνεται εξετάζοντας αν η τιμή του στατιστικού ανήκει στην περιοχή απόρριψης (γνωστή και ως κρίσιμη περιοχή), αλλά στη βάση των \(p\)-τιμών (\(p\)-value ή Sig.). \(p\)-τιμή ενός στατιστικού τεστ είναι η μικρότερη τιμή του επιπέδου σημαντικότητας για την οποία απορρίπτεται η μηδενική υπόθεση. Εύκολα προκύπτει τότε ότι απορρίπτουμε την προς έλεγχο μηδενική υπόθεση αν η \(p\)-τιμή είναι μικρότερη από το προκαθορισμένο επίπεδο σημαντικότητας (δηλαδή συνήθως το 0.05).

3.1 Προσημικός έλεγχος

Η μόνη προϋπόθεση εφαρμογής αυτού του στατιστικού ελέγχου είναι τα δεδομένα να είναι τουλάχιστον διατάξιμα (βλέπε μεταξύ άλλων Kvam and Vidakovic (2007)).

Η μέθοδος του προσημικού ελέγχου στηρίζεται στο πρόσημο της διαφοράς των δειγματικών τιμών \(X_1, \ldots, X_n\) από την προς έλεγχο τιμή \(m_0\). Επομένως, αρχικά δημιουργούμε τις διαφορές \(X_i - m_0, \ldots, X_n - m_0\), και θέτουμε + όταν είναι θετικές, δηλαδή όταν \(X_i - m_0 > 0\), ενώ όταν είναι αρνητικές, δηλαδή όταν \(X_i - m_0 < 0\), θέτουμε -.

Παρατήρηση 3.2

Παρότι για συνεχείς κατανομές η περίπτωση \(X_i = m_0\) είναι απίθανη, σε κάθε τέτοια περίπτωση λέμε ότι έχουμε δεσμούς (ties). Σε όσα ακολουθούν υποθέτουμε ότι δεν υπάρχουν δεσμοί. Σε αντίθετη περίπτωση, αν υπάρχουν δεσμοί, οι συγκεκριμένες
πειραματικές μονάδες αποκλείονται από την περαιτέρω ανάλυση, δε λαμβάνονται υπόψη και γίνεται κατάλληλη τροποποίησή του μεγέθους του δείγματος. Σε όσα έπονται n είναι το μέγεθος του τροποποιημένου δείγματος.

Έστω T το πλήθος των θετικών διαφορών $X_i - m_0$, δηλαδή ο αριθμός των προσήμων \pm. Δηλαδή, $T = \sum_{i=1}^{n} I(X_i > m_0)$, όπου $I(\cdot)$ η δείκτια συνάρτηση. Υπό τη μηδενική υπόθεση $H_0 : m = m_0$, δηλαδή υπό την υπόθεση ότι η διάμεσος m είναι ίση με m_0, προκύπτει από τον ορισμό της διαμέσου ότι:

$$P(X > m_0) = P(X < m_0) = 0.5.$$

Επομένως, υπό την $H_0 : m = m_0$, το στατιστικό T περιγράφει τον αριθμό των θετικών προσήμων (επιτυχία= θετικό πρόσημο) σε n το πλήθος πρόσημα (άρα σε n δοκιμές ενός πειράματος τύχης με δύο δυνατά αποτελέσματα) με πιθανότητα εμφάνισης θετικού προσήμου ίση με 0.5. Αρα γίνεται αντιληπτό ότι το στατιστικό T ακολουθεί, υπό τη μηδενική υπόθεση, διωνυσική κατανομή με παραμέτρους n και $p = 0.5$. Δηλαδή

$$T \sim B(n, p = 0.5),$$

και

$$P(T = t / H_0 \text{ αληθής}) = \binom{n}{t} 0.5^n.$$

Επομένως το στατιστικό T είναι μία αντιστρεπτή ποσότητα (καθώς έχει υπό τη μηδενική υπόθεση γνωστή κατανομή ανεξάρτητη της άγνωστης παραμέτρου m) και μπορεί να χρησιμοποιηθεί για τον προς μελέτη έλεγχο. Επιπλέον εύκολα γίνεται αντιληπτό ότι ο έλεγχος της μηδενικής υπόθεσης:

$$H_0 : m = m_0,$$

είναι μίας εκ των τριών ακόλουθων εναλλακτικών:

i) $H_1 : m > m_0$, ii) $H_1 : m < m_0$ και iii) $H_1 : m \neq m_0$.

ανάγεται στον έλεγχο της $H_0 : p = 0.5$, έναντι μίας εκ των τριών ακόλουθων εναλλακτικών $i) H_1 : p > 0.5$, ii) $H_1 : p < 0.5$ και iii) $H_1 : p \neq 0.5$.

Γίνεται αντιληπτό ότι η $H_0 : m = m_0$ απορρίπτεται σε επίπεδο σημαντικότητας a έναντι της εναλλακτικής $H_1 : m > m_0$ για μεγάλες τιμές του T. Ειδικότερα η μηδενική
υπόθεση απορρίπτεται για \(T \geq t_{a_1} \), δηλαδή για ακέραιες τιμές μεγαλύτερες ή ίσες του \(t_{a_1} \), όπου \(t_{a_1} \) προκύπτει από τη σχέση:

\[
P\left(T \geq t_{a_1} / H_0 \right) = P\left(T \geq t_{a_1} / T \sim B(n, 0.5) \right) \leq a,
\]

dηλαδή \(t_{a_1} \) είναι ο μικρότερος ακέραιος για τον οποίο επαληθεύεται η σχέση που ακολουθεί:

\[
\sum_{t=0}^{t_{a_1}} \binom{n}{t} 0.5^n \leq a.
\]

Επιπλέον η \(H_0 : m = m_0 \) απορρίπτεται σε επίπεδο σημαντικότητας \(a \) έναντι της εναλλακτικής \(H_1 : m < m_0 \) για μικρές τιμές του \(T \). Ειδικότερα η μηδενική υπόθεση απορρίπτεται για \(T \leq t_{a_2} \), δηλαδή για ακέραιες τιμές μικρότερες ή ίσες του \(t_{a_2} \), όπου \(t_{a_2} \) προκύπτει από τη σχέση:

\[
P\left(T \leq t_{a_2} / H_0 \right) = P\left(T \leq t_{a_2} / T \sim B(n, 0.5) \right) \leq a,
\]

dηλαδή \(t_{a_2} \) είναι ο μεγαλύτερος ακέραιος τέτοιος ώστε:

\[
\sum_{t=0}^{t_{a_2}} \binom{n}{t} 0.5^n \leq a.
\]

Προκύπτει ότι η \(H_0 : m = m_0 \) απορρίπτεται σε επίπεδο σημαντικότητας \(a \) έναντι της εναλλακτικής \(H_1 : m \neq m_0 \) για μικρές ή μεγάλες τιμές του \(T \). Ειδικότερα η μηδενική υπόθεση απορρίπτεται για \(T \leq t_{a_3} \) ή \(T \geq t_{a_4} \), δηλαδή για ακέραιες τιμές μικρότερες ή ίσες του \(t_{a_3} \) ή για ακέραιες τιμές μεγαλύτερες ή ίσες του \(t_{a_4} \), όπου \(t_{a_3} \) και \(t_{a_4} \) είναι οι ακέραιοι αριθμοί που ικανοποιούν τις σχέσεις:

\[
P\left(T \leq t_{a_3} / H_0 \right) = P\left(T \leq t_{a_3} / T \sim B(n, 0.5) \right) \leq a/2,
\]

και

\[
P\left(T \geq t_{a_4} / H_0 \right) = P\left(T \geq t_{a_4} / T \sim B(n, 0.5) \right) \leq a/2
\]

dηλαδή \(t_{a_3} \) είναι ο μεγαλύτερος ακέραιος τέτοιος ώστε:

\[
\sum_{t=t_{a_3}}^{t_{a_4}} \binom{n}{t} 0.5^n \leq a/2,
\]

ενώ \(t_{a_4} \) είναι ο μικρότερος ακέραιος έτσι ώστε:
Στο Πίνακα 6 του Παράρτηματος δίνονται οι τιμές της αθροιστικής συνάρτησης κατανομής της διωνυμικής κατανομής με πιθανότητα επιτυχίας \(p = 0.5 \) για τον πιο εύκολο υπολογισμό των παραπάνω.

Οι αντίστοιχες \(p \)-τιμές, για καθένα από τους τρεις ελέγχους, αν με \(t \) και \(t' \) συμβολίζουμε την τιμή του στατιστικού \(T \) και την ελάχιστη τιμή των \(T \) και \(n - T \) αντίστοιχα, όταν εφαρμόζονται στο δοθέν δείγμα είναι:

\[
\text{i) } p - \text{τιμή } = P(T \geq t / T \sim B(n,0.5)) = \sum_{i=t}^{n} \binom{n}{i} 0.5^i,
\]
\[
\text{ii) } p - \text{τιμή } = P(T \leq t / T \sim B(n,0.5)) = \sum_{i=0}^{t} \binom{n}{i} 0.5^i
\]
και
\[
\text{iii) } p - \text{τιμή } = 2 \sum_{i=0}^{t} \binom{n}{i} 0.5^i , \text{ αντίστοιχα.}
\]

Πρόταση 3.1

Για μεγάλες τιμές του μεγέθους δείγματος \(n \) το στατιστικό \(T = \sum_{i=1}^{n} I(X_i > m_0) \) που παριστάνει το πλήθος των θετικών διαφορών \(X_i - m_0 \) ακολουθεί, υπό τη μηδενική υπόθεση \(H_0 : m = m_0 \), προσεγγιστικά κανονική κατανομή με μέση τιμή \(ET = np = 0.5n \) και διακύμανση \(VarT = np(1 - p) = 0.5 \ast 0.5 \ast 0.25 = 0.25n \), δηλαδή:

\[
\frac{T - 0.5n}{\sqrt{0.25n}} \sim N(0,1).
\]

Απόδειξη

Όπως έχει ήδη αναφερθεί, υπό τη μηδενική υπόθεση, ισχύει ότι \(\frac{H_0}{T} \sim B(n, p = 0.5) \) και \(P(T = t / H_0 \) αληθής μεταβλητή \(T \) είναι αθροισμα \(n \) ανεξάρτητων τυχαίων μεταβλητών, των \(I(X_i > m_0) \), υπό τη μηδενική υπόθεση ακολουθούν κατανομή Bernoulli με πιθανότητα επιτυχίας \(p = 0.5 \). Από το Κεντρικό Οριακό Θεώρημα γνωρίζουμε ότι για μεγάλο
μέγεθος δείγματος \(n \) (και με την επιπλέον προϋπόθεση ότι \(np \) και \(np(1 - p) \) μεγαλύτερα του 5) το άθροισμα ανεξάρτητων και ισόνομων τυχαίων μεταβλητών προσεγγίζεται από μία κανονική κατανομή. Ειδικότερα,

\[
\frac{T - ET \text{ pros.}}{\sqrt{VarT}} \sim N(0,1),
\]

οπότε υπό τη μηδενική υπόθεση, καθώς \(ET = np = 0.5n \) και \(VarT = np(1 - p) = 0.5 \times 0.5 \times n = 0.25n \), έχουμε ότι:

\[
\frac{T - 0.5n \text{ pros.}}{\sqrt{0.25n}} \sim N(0,1).
\]

Από την παραπάνω πρόταση και χρησιμοποιώντας τη διόρθωση συνεχείας συνεπάγεται ότι χρησιμοποιούμε για τον υπό μελέτη έλεγχο το στατιστικό:

\[
Z = \begin{cases}
\frac{T - 0.5 - 0.5n}{\sqrt{0.25n}}, & \text{αν } T > n/2 \\
\frac{T + 0.5 - 0.5n}{\sqrt{0.25n}}, & \text{αν } T < n/2
\end{cases}
\]

και η μηδενική υπόθεση \(H_0 : m = m_0 \), απορρίπτεται έναντι μίας εκ των τριών ακόλουθων εναλλακτικών:

- i) \(H_1 : m > m_0 \)
- ii) \(H_1 : m < m_0 \)
- iii) \(H_1 : m \neq m_0 \),

αν

i) \(Z \geq z_a \)
ii) \(Z \leq -z_a \) και iii) \(|Z| \geq z_{a/2} \), αντίστοιχα.

Παρατήρηση 3.3

Από τη βιβλιογραφία γνωρίζουμε (βλέπε μεταξύ άλλων Κούτρας (2004)) ότι στην ειδική περίπτωση που το Κεντρικό Οριακό Θεώρημα (Κ.Ο.Θ.) χρησιμοποιείται για την προσέγγιση της κατανομής του αθροίσματος διακριτών τυχαίων μεταβλητών προβαίνουμε στην απαραίτητη διόρθωση συνέχειας (continuity correction). Υπάρχουν δύο κύριοι λόγοι που επιβάλλουν τη διόρθωση συνεχείας. Ο πρώτος είναι ότι μια διακριτή τυχαία μεταβλητή μπορεί να λαμβάνει μόνο συγκεκριμένες τιμές, ενώ από την άλλη μεριά μια συνεχής τυχαία μεταβλητή λαμβάνει οποιαδήποτε τιμή σε ένα διάστημα. Επιπλέον χρησιμοποιούντας την κανονική κατανομή ως προσέγγιση μιας διακριτής κατανομής τότε προκύπτει το ακόλουθο πρόβλημα που είναι πιο ξεκάθαρο μέσω του ακόλουθου παραδείγματος. Έστω η τυχαία μεταβλητή \(X \) που ακολουθεί διωνυσική κατανομή με παραμέτρους \(n = 100 \) και \(p = 0.5 \). Η τυχαία αυτή μεταβλητή
προσεγγίζεται από την κανονική \(N(\mu = 100*0.5, \sigma^2 = 100*0.5*0.5) \), δηλαδή από την \(N(50,25) \). Αν για παράδειγμα μας ζητούσαν να βρούμε την πιθανότητα \(P(X = 3) \) τότε προσεγγιστικά θα είναι μηδέν (γιατί;), ενώ η ακριβής τιμή είναι ίση με \(\frac{100}{3} \cdot 0.5^{100} \).

Η διόρθωση συνεχείας έγκειται στην πρόσθεση ή αφαίρεση, ανάλογα, στην τιμή ή τις τιμές της διακριτής μεταβλητής της τιμής 0.5. Έτσι, αν \(X \) είναι η διακριτή τυχαία μεταβλητή και \(Z \) η τυχαία μεταβλητή που ακολουθεί κανονική κατανομή τέτοια που να προσεγγίζει την κατανομή της \(X \) εφαρμόζοντας το Κ.Ο.Θ., μεταξύ άλλων ισχύουν οι ακόλουθες σχέσεις:

\[
\begin{align*}
\text{α)} & \quad P(X = a) \approx \int_{a-0.5}^{a+0.5} f_z(z)dz , \\
\text{β)} & \quad P(X \geq a) \approx \int_{a-0.5}^{\infty} f_z(z)dz , \\
\text{γ)} & \quad P(X \leq a) \approx \int_{-\infty}^{a+0.5} f_z(z)dz , \\
\text{δ)} & \quad P(X > a) \approx \int_{a+0.5}^{\infty} f_z(z)dz , \\
\text{ε)} & \quad P(X < a) \approx \int_{-\infty}^{a-0.5} f_z(z)dz , \\
\text{ζ)} & \quad P(a \leq X \leq b) \approx \int_{a-0.5}^{b+0.5} f_z(z)dz .
\end{align*}
\]

Παράδειγμα 3.1 (βλέπε Sprent (1989))

Στον πίνακα που ακολουθεί καταγράφεται ο αριθμός των σελίδων 24 τυχαία επιλεγμένων βιβλίων από μία βιβλιοθήκη ενός μαθηματικού τμήματος. Να ελέγξετε κάνοντας τις κατάλληλες υποθέσεις την υπόθεση ότι ο μέσος αριθμός των σελίδων είναι ίσος με 220 σελίδες χρησιμοποιώντας

α) τον ακριβή τρόπο ελέγχου του προσημικού τεστ

β) τον προσεγγιστικό τρόπο ελέγχου με την κατάλληλη διόρθωση συνεχείας.

| 153 | 166 | 181 | 192 | 244 | 248 | 258 | 264 | 296 | 305 | 305 | 312 | 330 | 340 | 356 | 361 | 395 | 427 | 433 | 467 | 544 | 551 | 625 | 783 |

Λύση

Έχουμε ένα τυχαίο δείγμα \(X_1, \ldots, X_{24} \), από έναν πληθυσμό με συνεχή θαρροστική συνάρτηση κατανομής \(F \). Υποθέτοντας ότι τα δεδομένα προέρχονται από συμμετρικό πληθυσμό, τα αποτελέσματα του ελέγχου της υπόθεσης ότι η διάμεσος \(m \) της άγνωστης κατανομής είναι ίση με \(m_0 = 220 \), γενικεύονται για την
πληθυσμιακή μέση τιμή. Επομένως θέλουμε να ελέγξουμε τη μηδενική υπόθεση

\[H_0 : m = 220 \]

έναντι της εναλλακτικής \[H_1 : m \neq 220 \].

Το προσημικό τεστ στηρίζεται στο στατιστικό \[T \] που παριστάνει το πλήθος των θετικών διαφορών \[X_i - 220, i = 1, \ldots, 24 \]. Παρατηρούμε ότι υπάρχουν 4 παρατηρήσεις μικρότερες της τιμής 220 (οι 153, 166, 181, 192) και 20 παρατηρήσεις μεγαλύτερες της τιμής 220 (οι υπόλοιπες).

α) Υπό την \[H_0 : m = 220 \], το στατιστικό \[T \] περιγράφει τον αριθμό των θετικών προσήμων (επιτυχία=θετικό πρόσημο) σε \[n = 24 \] το πλήθος πρόσημα (άρα σε \[n = 24 \] δοκιμές ενός πειράματος τύχης με δύο δυνατά αποτελέσματα) με πιθανότητα επιτυχίας 0.5. Άρα γίνεται αντιληπτό ότι το στατιστικό \[T \] ακολουθεί, υπό τη μηδενική υπόθεση, διωνυμική κατανομή με παραμέτρους \[n = 24 \] και \[p = 0.5 \]. Δηλαδή
\[
T \sim B(n = 24, p = 0.5),
\]
και
\[
P(T = t / H_0 \text{ αληθής}) = \binom{24}{t} 0.5^{24}.
\]
Η μηδενική υπόθεση απορρίπτεται για \[T \leq t_{a_3} \] ή \[T \geq t_{a_4} \], δηλαδή για ακέραιες τιμές μικρότερες ή ίσες του \[t_{a_3} \] ή για ακέραιες τιμές μεγαλύτερες ή ίσες του \[t_{a_4} \], όπου \[t_{a_3} \] και \[t_{a_4} \] είναι οι ακέραιοι αριθμοί που ικανοποιούν τις σχέσεις:
\[
P(T \leq t_{a_3} / H_0 \text{ αληθής}) = P(T \leq t_{a_3} / T \sim B(24, 0.5)) \leq a/2,
\]
και
\[
P(T \geq t_{a_4} / H_0 \text{ αληθής}) = P(T \geq t_{a_4} / T \sim B(24, 0.5)) \leq a/2
\]
δηλαδή \[t_{a_3} \] είναι ο μεγαλύτερος ακέραιος τέτοιος ώστε:
\[
\sum_{t=0}^{t_{a_3}} \binom{24}{t} 0.5^{24} \leq 0.025,
\]
ενώ \[t_{a_4} \] είναι ο μικρότερος ακέραιος τέτοιος ώστε:
\[
\sum_{t=t_{a_4}}^{24} \binom{24}{t} 0.5^{24} \leq 0.025.
\]
Χρησιμοποιώντας τον Πίνακα 6 του Παραρτήματος προκύπτει ότι: \[P(T \leq 6) = 0.011 \leq 0.025 \] και \[P(T \geq 18) = 0.011 \leq 0.025 \], αρα \[t_{a_3} = 6 \] και \[t_{a_4} = 24 - 6 = 18 \]. Επομένως καθώς \[T = 20 > t_{a_4} = 18 \] συμπεραίνουμε ότι σε επίπεδο σημαντικότητας 5% η υπόθεση ότι η πληθυσμιακή διάμεσος δε διαφέρει στατιστικά
σημαντικά από την τιμή 220 απορρίπτεται. Από το γεγονός ότι το πλήθος των θετικών διαφορών είναι πολύ μεγαλύτερο σημαίνει ότι έχουμε μεγαλύτερη τιμή για την πληθυσμιακή διάμεσο.

β) Χρησιμοποιώντας τη διόρθωση συνεχείας συνεπάγεται ότι χρησιμοποιούμε για τον υπό μελέτη έλεγχο το στατιστικό:

\[Z = \frac{T - 0.5 - 0.5n \frac{m_0}{\pi_o}}{\sqrt{0.25n}} \sim N(0,1), \]

καθώς \(T = 20 > n/2 = 12 \) και η μηδενική υπόθεση \(H_0 : m = m_0 \), απορρίπτεται έναντι της \(H_1 : m \neq m_0 \), αν \(|Z| \geq z_{0.025} = 1.96 \). Καθώς

\[Z = \frac{20 - 0.5 - 0.5*24}{\sqrt{0.25*24}} = \frac{7.5}{2.45} = \frac{7.5}{2.45} = 3.06, \]

συμπεραίνουμε ότι η μηδενική υπόθεση απορρίπτεται, δηλαδή υποθέτοντας ότι τα δεδομένα προέρχονται από συμμετρικό πληθυσμό προκύπτει ότι ο μέσος αριθμός των σελίδων των βιβλίων της βιβλιοθήκης του μαθηματικού τμήματος είναι στατιστικά σημαντικά διαφορετικός από 220.

3.2 Τεστ του Wilcoxon για ένα δείγμα

Το τεστ του Wilcoxon στηρίζεται στις τάξεις (ranks) των διαφορών \(D_i = X_i - m_0, \ i = 1,...,n \), όπου έχουμε αποκλείσει από την περαιτέρω ανάλυση τις δειγματικές τιμές της τυχαίας μεταβλητής \(X \) που είναι ίσες με \(m_0 \). Ειδικότερα αν \(D_1,...,D_n \), είναι ένα τυχαίο δείγμα από ένα πληθυσμό με συνεχή θεορετική κατανομή, οι τάξεις αναφέρονται στο πως διατάσσονται οι δειγματικές παρατηρήσεις. Σε όσα ακολουθούν με \(R_1,...,R_n \), συμβολίζονται οι τάξεις των δειγματικών τιμών \(X_1,...,X_n \), δηλαδή

\[R_i = \text{αριθμός των } X_j \text{ με } X_j \leq X_i, \ i = 1,...,n, \]

ή ισοδύναμα

\[R_i = \sum_{j=1,j\neq i}^{n} 1(X_j \leq X_i), \ i = 1,...,n. \]

Επιπλέον υποθέτουμε ότι στο τυχαίο δείγμα \(X_1,...,X_n \), δεν υπάρχουν δεσμοί, δηλαδή \(X_i \neq X_j \), για \(i \neq j \), \(i,j = 1,...,n \), και ότι οι διαφορές \(D_1,...,D_n \), \(i = 1,...,n \), είναι συμμετρικές περί το μηδέν. 51
Πριν προχωρήσουμε στον έλεγχο θα παραθέσουμε κάποιες ιδιότητες των τάξεων χρήσιμες σε όσα έπονται σε αυτό και επόμενα κεφάλαια.

Πρόταση 3.2
Αν \(R_1, \ldots, R_n \), είναι οι τάξεις ενός τυχαίου δείγματος \(X_1, \ldots, X_n \), από μία συνεχή αθροιστική συνάρτηση κατανομής τότε αποδεικνύεται ότι

α) \(R_1, \ldots, R_n \), είναι ένα τυχαίο δείγμα από τη διακριτή ομοιόμορφη κατανομή,

\[E(R_i) = \frac{n+1}{2} \text{ και } Var(R_i) = \frac{n^2 - 1}{12}, \]

β) \(Cov(R_i, R_j) = -\frac{n+1}{12} \), για \(i \neq j, \ i, j = 1, \ldots, n \).

Απόδειξη

α) Από τον τρόπο ορισμού τους και λαμβάνοντας υπόψη ότι δεν υπάρχουν δεσμοί στο δείγμα των \(X_1, \ldots, X_n \), προκύπτει για ότι οι δυνατές τιμές των τάξεων \(R_i \) ανήκουν στο σύνολο \(\{1, 2, \ldots, n\} \) και επιπλέον \(P(R_i = j) = \frac{1}{n}, \ j = 1, \ldots, n \), και η απόδειξη ολοκληρώνεται.

β) Από τον ορισμό της μέσης τιμής και της διακύμανσης μίας διακριτής τυχαίας μεταβλητής προκύπτει ότι:

\[E(R_i) = \sum_{j=1}^{n} jP(R_i = j) = \sum_{j=1}^{n} j \frac{1}{n} = \frac{n(n+1)}{2} \]

και

\[Var(R_i) = E(R_i^2) - \left[E(R_i) \right]^2, \]

όπου

\[E(R_i^2) = \sum_{j=1}^{n} j^2P(R_i = j) = \sum_{j=1}^{n} j^2 \frac{1}{n} = \frac{n(n+1)(2n+1)}{6} \]

Επομένως

\[Var(R_i) = \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2} \right)^2 = \frac{2n^2 + 3n + 1}{6} - \frac{n^2 + 2n + 1}{4} = \frac{n^2 - 1}{12}. \]

γ) Είναι:

\[Cov(R_i, R_j) = \sum_{k=1}^{n} \sum_{s=1}^{n} (k - ER_i)(s - ER_j)P(R_i = k, R_j = s) \]
και λαμβάνοντας υπόψη το α) και ότι

\[P(R_i = k, R_j = s) = P(R_i = k)P(R_j = s / R_i = k) = \frac{1}{n(n-1)}, \]

προκύπτει:

\[\text{Cov}(R_i, R_j) = \sum_{k=1}^{n} \sum_{s=1}^{n} \left(k - \frac{n+1}{2} \right) \left(s - \frac{n+1}{2} \right) \frac{1}{n(n-1)} \]

\[= \sum_{k=1}^{n} \sum_{s=1}^{n} \left(k - \frac{n+1}{2} \right) \left(s - \frac{n+1}{2} \right) \frac{1}{n(n-1)} - \sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right)^2 \frac{1}{n(n-1)} \]

\[= \frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right) \sum_{s=1}^{n} \left(s - \frac{n+1}{2} \right) - \frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right)^2. \]

Ομως

\[\sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right) = \sum_{s=1}^{n} \left(s - \frac{n+1}{2} \right) = \frac{n(n+1)}{2} - \frac{n(n+1)}{2} = 0, \]

οπότε

\[\text{Cov}(R_i, R_j) = -\frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right)^2 \]

\[= -\frac{1}{n(n-1)} \left\{ \sum_{k=1}^{n} k^2 - 2 \frac{n+1}{2} \sum_{k=1}^{n} k + \sum_{k=1}^{n} \frac{(n+1)^2}{2} \right\} \]

\[= -\frac{1}{n(n-1)} \left\{ \frac{n(n+1)(2n+1)}{6} - \frac{(n+1)^2 n}{2} + \frac{(n+1)^2 n}{4} \right\} \]

\[= -\frac{1}{n(n-1)} \left\{ \frac{n(n+1)(2n+1)}{6} - \frac{(n+1)^2 n}{4} \right\} \]

\[= -\frac{1}{n(n-1)} \left\{ \frac{4n^3 + 6n^2 + 2n - 3n^3 - 6n^2 - 3n}{12} \right\} \]

\[= -\frac{1}{n(n-1)} \frac{n^3 - n}{12} = -\frac{n+1}{12}. \]

Έστω \(X_1, \ldots, X_n \), ένα τυχαίο δείγμα από έναν πληθυσμό με συνεχή αθροιστική συνάρτηση κατανομής \(F \). Ενδιαφερόμαστε να ελέγξουμε την υπόθεση ότι η διάμεσος \(m \) της άγνωστης κατανομής είναι ίση με \(m_0 \), όπου \(m_0 \) είναι ένας γνωστός αριθμός. Επομένως θέλουμε να ελέγξουμε τη μηδενική υπόθεση:

\[H_0 : m = m_0, \]
έναντι μίας εκ των τριών ακόλουθων εναλλακτικών:
i) \(H_i : m > m_0 \), ii) \(H_i : m < m_0 \) και iii) \(H_i : m \neq m_0 \).

Αρχικά δημιουργούμε τις διαφορές \(D_i = X_i - m_0 \), \(i = 1, \ldots, n \), απαλείφοντας τις μηδενικές διαφορές, απότε η μέγεθος του δείγματος κατάληκτη. Υποθέτουμε ότι οι διαφορές αυτές είναι συμμετρικές περί το μηδέν. Από την υπόθεση αυτή συνεπάγεται ότι είναι ισοπίθανο να υπάρχουν αρνητικές και θετικές διαφορές. Έπειτα οι απόλυτες τιμές των διαφορών \(|D_1|, \ldots, |D_n|\), διατάσσονται κατά αύξουσα τάξη και υπολογίζονται οι τάξεις τους, έστω \(R(|D_i|), i = 1, \ldots, n \). Στο σημείο αυτό επισημαίνεται ότι αν δύο ή περισσότερες διαφορές είναι ίσες κατά απόλυτο τιμή, τότε η τάξη που παίρνει η καθεμία από αυτές είναι ίση με το μέσο όρο των τάξεων που θα είχαν αν ήταν διαφορετικές μεταξύ τους (midranks). Υπό τη μηδενική υπόθεση, δηλαδή υπό την \(H_0 : m = m_0 \), αναμένεται το άθροισμα των τάξεων που αντιστοιχούν στις θετικές διαφορές, έστω \(T^+ \), να είναι ίσο ή περίπου ίσο με το άθροισμα των τάξεων που αντιστοιχούν στις αρνητικές διαφορές, έστω \(T^- \). Επομένως είναι:

\[
T^+ = \sum_{i=1}^{n} I(D_i > 0)R(|D_i|)
\]

και

\[
T^- = \sum_{i=1}^{n} I(D_i < 0)R(|D_i|)
\]

όπου \(I(\cdot) \) η συνήθης δείκτρια συνάρτηση. Λόγω του ότι έχουν αποκλειστεί οι μηδενικές διαφορές ένοχα προκύπτει ότι:

\[
I(D_i < 0) = 1 - I(D_i > 0).
\]

Επομένως

\[
T^+ = \sum_{i=1}^{n} I(D_i > 0)R(|D_i|),
\]

και

\[
T^- = \sum_{i=1}^{n} (1 - I(D_i > 0))R(|D_i|),
\]

οπότε προκύπτει ότι

\[
T^+ + T^- = \sum_{i=1}^{n} R(|D_i|) = \frac{n(n+1)}{2},
\]

και

\[
T^+ - T^- = 2\sum_{i=1}^{n} I(D_i > 0)R(|D_i|) - \sum_{i=1}^{n} R(|D_i|).
\]

Χρησιμοποιείται για τον έλεγχο της υπό μελέτης μηδενικής υπόθεσης το στατιστικό:
Το αριθμός των υποσυνόλων του συνόλου \{1,2,...,n\} των οποίων τα στοιχεία αθροίζουν στο \(k \).

Χρησιμοποιώντας τα παραπάνω, απορρίπτεται η μηδενική υπόθεση \(H_0 : m = m_0 \) στην περίπτωση μονόπλευρων ελέγχων αν \(T \leq T_{n,a} \) και για τον δίπλευρο έλεγχο αν \(T \leq T_{n,a/2} \), όπου τα σημεία \(T_{n,a} \) και \(T_{n,a/2} \) δίνονται από κατάλληλο πίνακα (βλέπε Πίνακα 7 του Παράρτημα του).

Παράδειγμα 3.2 (βλέπε Sprent (1989))

Στον πίνακα που ακολουθεί καταγράφεται ο αριθμός των σελίδων 12 τυχαία επιλεγμένων βιβλίων από μία βιβλιοθήκη ενός μαθηματικού τμήματος. Να ελέγξετε, κάνοντας τις κατάλληλες υποθέσεις, την υπόθεση ότι η πληθυσμιακή διάμεσος είναι ίση με 220 σελίδες χρησιμοποιώντας το τεστ του Wilcoxon, με επίπεδο σημαντικότητας 5%.

<table>
<thead>
<tr>
<th>Αριθμ. σελίδων</th>
<th>126</th>
<th>142</th>
<th>156</th>
<th>228</th>
<th>245</th>
<th>246</th>
<th>370</th>
<th>419</th>
<th>433</th>
<th>454</th>
<th>478</th>
<th>503</th>
</tr>
</thead>
</table>

Λύση

Έχουμε ένα τυχαίο δείγμα \(X_1,\ldots,X_{12} \), από έναν πληθυσμό με συνεχή αθροιστική συνάρτηση κατανομής \(F \). Ενδιαφερόμαστε να ελέγξουμε την υπόθεση ότι η

\[
T = \min\{T^+, T^-\} = \min\left\{ T^+, \frac{n(n+1)}{2} - T^+ \right\},
\]
διάμεσος \(m \) της άγνωστης κατανομής είναι ίση με \(m_0 = 220 \). Επομένως θέλουμε να ελέγξουμε τη μηδενική υπόθεση \(H_0 : m = 220 \) έναντι της εναλλακτικής \(H_1 : m \neq 220 \).

Αρχικά δημιουργούμε τις διαφορές \(D_i = X_i - m_0, \quad i = 1, \ldots, 12 \), οι οποίες παρατίθενται στον πίνακα που ακολουθεί:

<table>
<thead>
<tr>
<th>(D_i)</th>
<th>-94</th>
<th>-78</th>
<th>-64</th>
<th>8</th>
<th>25</th>
<th>64</th>
<th>78</th>
<th>94</th>
<th>150</th>
<th>199</th>
<th>213</th>
<th>234</th>
<th>258</th>
<th>283</th>
</tr>
</thead>
</table>

και οι απόλυτες τιμές των διαφορών \(|D_1|, \ldots, |D_{12}| \), διατάσσονται κατά αύξουσα τάξη και υπολογίζονται οι τάξεις τους, έστω \(R(|D_i|), \quad i = 1, \ldots, 12 \), όπως φαίνεται στον πίνακα που ακολουθεί, όπου για ευκολία στους περαιτέρω υπολογισμούς έχουμε υπογραμμίσει τις αρνητικές διαφορές:

| \(|D_i| \) | 8 25 26 64 78 94 150 199 213 234 258 383 |
|-----------------|----------------------------------|
| \(R(|D_i|) \) | 1 2 3 4 5 6 7 8 9 10 11 12 |

Το άθροισμα των τάξεων που αντιστοιχούν στις αρνητικές διαφορές είναι \(T^- = 4 + 5 + 6 = 15 \), ενώ το άθροισμα των τάξεων που αντιστοιχούν στις θετικές διαφορές, έστω \(T^+ \), είναι \(T^+ = \frac{n(n+1)}{2} - T^- = \frac{12 \times 13}{2} - 15 = 63 \). Χρησιμοποιείται για τον έλεγχο της υπό μελέτηση μηδενικής υπόθεσης το στατιστικό \(T = \text{min}\{T^+, T^-\} = T^- \), του οποίου η ακριβής κατανομή για μικρές τιμές του \(n \) έχει βρεθεί. Απορρίπτεται η μηδενική υπόθεση \(H_0 : m = 220 \) για τον δίπλευρο έλεγχο αν \(T \leq T_{n,0.025} \), (βλέπε Πίνακα 7 του Παραρτήματος). Επομένως, δεν απορρίπτεται η μηδενική υπόθεση \(H_0 : m = 220 \) έναντι της \(H_1 : m \neq 220 \) σε επίπεδο σημαντικότητας 5%, δηλαδή υποθέτοντας ότι τα δεδομένα προέρχονται από συμμετρικό πληθυσμό προκύπτει ότι ο μέσος αριθμός των σελίδων των βιβλίων της βιβλιοθήκης του μαθηματικού τμήματος δεν είναι στατιστικά σημαντικά διαφορετικός από 220.

Παράδειγμα 3.3 (Conover (1971))

Αν το μέγεθος του δείγματος είναι ίσο με 4, να βρεθεί η ακριβής κατανομή του \(T^+ \), υπό τη μηδενική υπόθεση και υποθέτοντας ότι δεν υπάρχουν δεσμοί (χωρίς χρήση του Θεωρήματος 3.1).
Λύση

1ος τρόπος

Έστω \(X_1, \ldots, X_4\), ένα τυχαίο δείγμα από έναν πληθυσμό με συνεχή αθροιστική συνάρτηση κατανομής \(F\). Δημιουργούμε τις διαφορές \(D_i = X_i - m_0, \ i = 1, \ldots, 4\), οι οποίες είναι μη μηδενικές. Υποθέτουμε ότι οι διαφορές αυτές είναι συμμετρικές περί το μηδέν. Είναι \(T^+\) το άθροισμα των τάξεων που αντιστοιχούν στις θετικές διαφορές. Επομένως είναι

\[T^+ = \sum_{i=1}^{4} I(D_i > 0)R(|D_i|)\]

Έχουμε τότε τις ακόλουθες 16 τοποθετήσεις όταν το \(n = 4\) ως προς το πρόσημο των διαφορών και τον τρόπο διάταξης:

\[---, +-- , --+, +++, --+, ++-, +++, +++, +++, ---, +++, ++- , +++, +++, +++ , --- , +++, ++- , +++, +++, +++ , +++, +++, +++, +++ , --- , +++, ++- , +++, +++, +++ , +++, +++, +++, +++ , +++, +++, +++, +++ , --- , +++, ++- , +++, +++, +++ , +++, +++, +++, +++ , +++, +++, +++, +++\]

οπότε το άθροισμα των τάξεων που αντιστοιχούν σε θετικές διαφορές είναι αντίστοιχα:

\[0,2,3,4,5,6,7,9,1,3,4,5,6,7,8,10\]

και η συνάρτηση πιθανότητας της κατανομής του \(T^+\) υπό τη μηδενική υπόθεση είναι:

\[P(T^+ = t) = \begin{cases} 1/16, & t = 0,1,2,8,9,10 \\ 2/16, & t = 3,4,5,6,7 \end{cases}\]

2ος τρόπος (κάνοντας χρήση του Θεωρήματος 3.1)

Υπάρχουν \(2^n = 2^4 = 16\) διαφορετικά υποσύνολα του συνόλου \(\{1,2,3,4\}\) και αυτά είναι τα ακόλουθα:

\[\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\]

οπότε εύκολα προκύπτει ότι:

\[P(T^+ = t) = \begin{cases} 1/16, & t = 0,1,2,8,9,10 \\ 2/16, & t = 3,4,5,6,7 \end{cases}\]

Όταν το μέγεθος του δείγματος είναι μεγάλο (άλλοι συγγραφείς αναφέρουν ως κριτήριο το \(n \geq 20\) και άλλοι το \(n \geq 30\)) οδηγούμε, υπό τη μηδενική υπόθεση, σε προσέγγιση της κατανομής του \(T = \min\{T^+, T^-\} = \min\left\{T^+, \frac{n(n+1)}{2} - T^+\right\}\) στατιστικού, από την κανονική κατανομή.
Πρόταση 3.3

Υπό τη μηδενική υπόθεση \(H_0 : m = m_0 \) αποδεικνύεται για μεγάλο μέγεθος δείγματος ότι:

\[
W = \frac{T^+ - n(n+1)}{4 \sqrt{n(n+1)(2n+1)}} \text{προσ} \sim N(0,1),
\]

όπου \(T^+ = \sum_{i=1}^{n} I (D_i > 0) R(|D_i|) \), με \(D_i = X_i - m_0 \), \(i = 1,\ldots,n \), και \(R(|D_i|) \), \(i = 1,\ldots,n \), οι τάξεις των απλάιων τιμών των διαφορών, δηλαδή \(T^+ \) είναι το άθροισμα των τάξεων που αντιστοιχούν στις θετικές διαφορές.

Απόδειξη

Λόγω ότι \(T^+ = \sum_{i=1}^{n} I (D_i > 0) R(|D_i|) \), δηλαδή γράφεται ως άθροισμα \(n \) τυχαίων μεταβλητών με χρήση του Κεντρικού Οριακού Θεωρήματος προκύπτει ότι:

\[
T^+ \text{προσ} \sim N(0,1).
\]

Είναι

\[
ET^+ = \sum_{i=1}^{n} E \left(I (D_i > 0) R(|D_i|) \right),
\]

όμως λόγω ότι υπό τη μηδενική υπόθεση η τυχαία μεταβλητή \(I (D_i > 0) \) ακολουθεί Bernoulli κατανομή με \(p = 1/2 \) προκύπτει εύκολα ότι:

\[
E \left(I (D_i > 0) R(|D_i|) \right) = i* \frac{1}{2} + 0* \frac{1}{2} = \frac{i}{2},
\]

και επομένως

\[
ET^+ = \sum_{i=1}^{n} i/2 = \frac{n(n+1)}{4}.
\]

Επιπλέον είναι

\[
Var \left(I (D_i > 0) R(|D_i|) \right) = \left(i^2* \frac{1}{2} + 0^2* \frac{1}{2} \right) - \left(\frac{i}{2} \right)^2 \left(\frac{i}{2} \right)^2 = \frac{i^2}{4},
\]

και επομένως

\[
Var T^+ = \sum_{i=1}^{n} i^2 / 4 = \frac{n(n+1)(2n+1)}{24}.
\]

ι
Χρησιμοποιώντας την παραπάνω πρόταση προκύπτει ότι ελέγχουμε τη μηδενική υπόθεση $H_0: m = m_0$ έναντι μίας εκ των τριών ακόλουθων εναλλακτικών i) $H_1: m > m_0$, ii) $H_1: m < m_0$ και iii) $H_1: m \neq m_0$, χρησιμοποιώντας το στατιστικό W και κρίσιμες περιοχές i) $W \geq z_a$, ii) $W \leq -z_a$ και iii) $|W| \geq z_{a/2}$, αντίστοιχα.

Παρατήρηση 3.4

Τα παραπάνω συμπεράσματα ισχύουν και για το T^-, άρα μπορεί κάποιος να χρησιμοποιήσει και το $T = \min\{T^+, T^-, \}$.

Σε όσα προαναφέρθηκαν είχε υποτεθεί η μη ύπαρξη δεσμών μεταξύ των απώλειων διαφορών. Στη συνέχεια μέσω ενός παραδείγματος καθώς και μίας πρότασης θα παρουσιαστούν οι όποιες διαφοροποιήσεις στην ακριβή και προσεγγιστική κατανομή του στατιστικού T^+ όταν υπάρχουν δεσμοί στις απώλεις διαφορές.

Παράδειγμα 3.4 (βλέπε Hollander and Wolfe (1999))

Αν το μέγεθος του δείγματος είναι ίσο με 4, να βρεθεί η ακριβής κατανομή του T^+, υπό τη μηδενική υπόθεση και υποθέτοντας ότι υπάρχουν 2 δεσμοί στις απώλεις διαφορές.

Λύση

Είναι εύκολα αντιληπτό ότι οι τάξεις των απώλειων διαφορών σε αυτήν την περίπτωση είναι 1.5, 1.5, 3.5, 3.5. Έχουμε τότε, όταν το $n = 4$, τις ακόλουθες 16 το πλήθος περιπτώσεις ως προς το πρόσημο των διαφορών και τον τρόπο διάταξης τους:

$$----, +--+,-+--, --+-+,-++-,-+++, -+++,-+++,-+++,-+++,-+++,$$

οπότε το άθροισμα των τάξεων που αντιστοιχούν σε θετικές διαφορές είναι αντίστοιχα: $0,1.5,3.5,1.5,3.5,1.5,3.5\ldots$ και η συνάρτηση πιθανότητας της κατανομής του T^+ υπό τη μηδενική υπόθεση είναι:
Πρόταση 3.4 Έστω \(X_1, \ldots, X_N \), ένα τυχαίο δείγμα από έναν πληθυσμό με συνεχή αθροιστική συνάρτηση κατανομής \(F \). Ενδιαφερόμαστε να ελέγξουμε την υπόθεση ότι η διάμεσος \(m \) της άγνωστης κατανομής είναι ίση με \(m_0 \), όπου \(m_0 \) είναι ένας γνωστός αριθμός. Αν \(D_i = X_i - m_0 \), \(i = 1, \ldots, n \), είναι οι μη μηδενικές διαφορές και \(d_1, \ldots, d_c \), ο αριθμός των παρατηρήσεων σε καθεμία από τις \(c \) διαφορετικές απόλυτες διαφορές (σε αύξουσα τάξη μεγέθους), με \(d_i \geq 1 \), και \(\sum_{i=1}^{c} d_i = n \) τότε η προσεγγιστική κατανομή του στατιστικού \(T^+ \) που παριστάνει το άθροισμα των τάξεων που αντιστοιχούν στις θετικές διαφορές, υπό τη μηδενική υπόθεση, είναι

\[
T^+ = \frac{1}{4} n (n+1) - \frac{2}{24} \sum_{i=1}^{c} d_i (d_i^2 - 1) - \frac{\sqrt{n(n+1)(2n+1)} \sum_{i=1}^{c} d_i}{48} \sim N(0,1).
\]

Απόδειξη (βλέπε μεταξύ άλλων Lehmann (1975))

Συμβολίζουμε με \(u_1, u_2, \ldots, u_n \), τις διαθέσιμες τάξεις τότε από τον ορισμό αυτών προκύπτει άμεσα ότι:

\[
u_i = \ldots = u_{d_i} = \frac{1 + \ldots + d_i}{d_i} = \frac{d_i + 1}{2},
\]

\[
u_{d_i+1} = \ldots = u_{d_i+d_2} = \frac{(d_i + 1) + \ldots + (d_i + d_2)}{d_2} = d_i + \frac{d_2 + 1}{2},
\]

\[
u_{d_i+d_2+1} = \ldots = u_{d_i+d_2+d_3} = \frac{(d_i + d_2 + 1) + \ldots + (d_i + d_2 + d_3)}{d_3} = d_i + d_2 + \frac{d_3 + 1}{2},
\]

κ.ο.κ.

Επιπλέον, είναι:

\[T^+ = u_i I_i + \ldots + u_n I_n,\]

με \(I_i, i = 1, \ldots, n \), μία δείκτια μεταβλητή που λαμβάνει την τιμή 1 αν η διαφορά είναι θετική και την τιμή 0 όταν είναι αρνητική. Προφανώς αυτή είναι μία Bernoulli διακριτή
τυχαία μεταβλήτη με πιθανότητα επιτυχίας υπό τη μηδενική υπόθεση \(p = 1/2 \), οπότε \(EI_i = 0.5 \) και \(VarI_i = 0.25 \). Είναι τότε:

\[
ET^+ = 0.5 \sum_{i=1}^{n} u_i
\]

και

\[
VarT^+ = 0.25 \sum_{i=1}^{n} u_i^2.
\]

Για την εύρεση του πρώτου αθροίσματος αρκεί να παρατηρήσουμε ότι το άθροισμα των τάξεων που συμμετέχουν σε κάθε δεσμό είναι ίσο με το άθροισμα των τάξεων αν δεν υπήρχαν δεσμοί. Επομένως γίνεται άμεσα αντιληπτό ότι:

\[
ET^+ = 0.5 \sum_{i=1}^{n} u_i = 0.5 \sum_{i=1}^{n} i = 0.5 \cdot \frac{n(n+1)}{2} = \frac{n(n+1)}{4}.
\]

Για τον υπολογισμό της διακύμανσης του \(T^+ \) αρκεί να προσδιοριστεί το άθροισμα \(\sum_{i=1}^{n} u_i^2 \). Για τον υπολογισμό αυτού θα χρησιμοποιηθεί \(c \) φορές η σχέση:

\[
\sum_{i=1}^{k} a_i^2 = \sum_{i=1}^{n} (a_i - \bar{a})^2 + k\bar{a}^2,
\]

η οποία ισχύει για οποιαδήποτε επιλογή των \(a_i \). Έτσι για την ειδική περίπτωση που:

\[
a_1 = 1,..,a_{d_1} = d_1 \text{ οπότε } \bar{a} = u_1 = ... = u_{d_1} \text{ λαμβάνοντας υπόψη ότι:}
\]

\[
\sum_{i=1}^{d_1} a_i^2 = 1^2 + ... + d_1^2,
\]

\[
d_1 \bar{a}^2 = \sum_{i=1}^{d_1} u_i^2
\]

και

\[
\sum_{i=1}^{d_1} (a_i - \bar{a})^2 = \sum_{i=1}^{d_1} a_i^2 - 2d_1 \sum_{i=1}^{d_1} a_i + d_1 \bar{a}^2 = \frac{d_1(d_1+1)(2d_1+1)}{6} - 2 \cdot \frac{d_1+1}{2} \cdot \frac{d_1+1}{2} + d_1 \left(\frac{d_1+1}{2} \right)^2
\]

\[
= \frac{d_1(d_1+1)(2d_1+1)}{6} - \frac{d_1(d_1+1)^2}{4} = \frac{d_1(d_1+1)}{12} \left(2(2d_1+1)-3(d_1+1) \right)
\]

\[
= \frac{d_1(d_1+1)(d_1-1)}{12} = \frac{d_1(d_1^2-1)}{12}
\]

προκύπτει ότι:
\[1^2 + \ldots + d_1^2 = \sum_{i=1}^{d_1} u_i^2 + \frac{d_1(d_1^2 - 1)}{12}. \]

Με παρόμοιο τρόπο για \(a_i = d_i + 1, \ldots, a_{d_2} = d_1 + d_2\) οπότε \(\bar{a} = u_{d_1+1} = \ldots = u_{d_1+d_2}\), προκύπτει ότι:

\[(d_1 + 1)^2 + \ldots + (d_1 + d_2)^2 = \sum_{i=d_1+1}^{d_2} u_i^2 + \frac{d_2(d_2^2 - 1)}{12}. \]

Συνεχίζοντας κατά αυτόν τον τρόπο:

\[1^2 + \ldots + n^2 = \sum_{i=1}^{n} u_i^2 + \sum_{i=1}^{c} d_i(d_i^2 - 1) \]

Αρα:

\[VarT = 0.25 \sum_{i=1}^{n} u_i^2 = 0.25 \left\{ (1^2 + \ldots + n^2) - \sum_{i=1}^{c} d_i(d_i^2 - 1) \right\} \]

\[= \frac{1}{4} \left(\frac{n(n+1)(2n+1)}{6} - \frac{\sum_{i=1}^{c} d_i(d_i^2 - 1)}{12} \right) = \frac{n(n+1)(2n+1)}{24} - \frac{\sum_{i=1}^{c} d_i(d_i^2 - 1)}{48} \]

όποτε η προσέγγιση από την κανονική κατανομή προκύπτει με άμεση εφαρμογή του Κ.Ο.Θ.

Παρατήρηση 3.5
Η Πρόταση 3.3 μπορεί να προκύψει ως ειδική περίπτωση της Πρότασης 3.4 λαμβάνοντας υπόψη ότι στην περίπτωση μη ύπαρξης δεσμών \(d_1 = \ldots = d_c = 1\) για \(c = n\).

3.3 Τεστ του Wilcoxon για δύο εξαρτημένα δείγματα

Έστω ένα τυχαίο δείγμα \(X_1, \ldots, X_n\), μεγέθους \(n\) από έναν πληθυσμό με διάμεσο \(m_X\). Επιπλέον έστω ένα τυχαίο δείγμα \(Y_1, \ldots, Y_n\), μεγέθους \(n\) από έναν πληθυσμό με διάμεσο \(m_Y\). Επιπρόσθετα υποθέτουμε ότι τα δύο δείγματα είναι εξαρτημένα. Ενδιαφερόμαστε για τον έλεγχο, σε επίπεδο σημαντικότητας \(\alpha\), της μηδενικής υπόθεσης \(H_0 : m_d = 0\), ως προς τις εναλλακτικές \(H_a : m_d > 0\), \(H_a : m_d < 0\), \(H_a : m_d \neq 0\), όπου \(m_d\) είναι η διάμεσος του πληθυσμού που περιγράφει τη διαφορά των τιμών της τυχαία μεταβλητής \(Y\) από την \(X\).
Όπως ίσως ήδη έχει γίνει αντιληπτό ο έλεγχος αυτός ανάγεται στους ελέγχους των προηγούμενων παραγράφων θεωρώντας ως τυχαίο δείγμα τις διαφορές \(D_i = X_i - Y_i, \ i = 1,\ldots,n \). Επομένως αποτελεί ειδική περίπτωση του προσημικού ελέγχου και του τεστ του Wilcoxon για \(m_0 = 0 \).

Παρατήρηση 3.6

Τα αποτελέσματα αυτού του ελέγχου γενικεύονται από την πληθυσμιακή διάμεσο στις πληθυσμιακές μέσες τιμές όταν οι δειγματικές τιμές \(D_i, \ i = 1,\ldots,n \), προέρχονται από ένα συμμετρικό πληθυσμό, όταν δηλαδή η δειγματική διάμεσος είναι περίπου ίση με τη δειγματική μέση τιμή.

Παράδειγμα 3.5 (Sprent (1989))

Ένας γιατρός μετρά τη συστολική πίεση 11 ασθενών πριν και μετά τη χορήγηση ενός φαρμάκου. Τα αποτελέσματα φαίνονται στον πίνακα που ακολουθεί:

| Διαφορά: | 7 | 5 | 12 | -3 | -5 | 2 | 14 | 18 | 19 | 21 | -1 |

Υπάρχει στατιστικά σημαντική διαφοροποίηση σε επίπεδο σημαντικότητας 5%;

(Υπόδειξη: χρησιμοποιείστε το στατιστικό τεστ Wilcoxon και την κανονική προσέγγιση αγνοώντας το πλήθος των παρατηρήσεων)

Λύση

Έχουμε ένα τυχαίο δείγμα \(D_1,\ldots,D_{11} \), από έναν πληθυσμό με συνεχή αθροιστική συνάρτηση κατανομής \(F \). Ενδιαφερόμαστε να ελέγξουμε την υπόθεση ότι η διάμεσος \(m \) της άγνωστης κατανομής είναι ίση με \(m_0 = 0 \). Επομένως θέλουμε να ελέγξουμε τη μηδενική υπόθεση:

\[H_0 : m = 0, \]

έναντι της εναλλακτικής \(H_1 : m \neq 0 \).

Οι απόλυτες τιμές των διαφορών \(|D_1|,\ldots,|D_{11}| \), διατάσσονται κατά αύξουσα τάξη και υπολογίζονται οι τάξεις τους, έστω \(R(|D_i|), \ i = 1,\ldots,11 \), όπως φαίνεται στον πίνακα που ακολουθεί, όπου για ευκολία στους περαιτέρω υπολογισμούς έχουμε υπογραμμίσει τις αρνητικές διαφορές και επιπλέον παρατηρήσει ότι υπάρχει ένας δεσμός δύο παρατηρήσεων.
Το άθροισμα των τάξεων που αντιστοιχούν στις αρνητικές διαφορές είναι

\[T^- = 1 + 3 + 4.5 = 8.5 \],

ενώ το άθροισμα των τάξεων που αντιστοιχούν στις θετικές
dιαφορές, έστω \(T^+ \), είναι

\[T^+ = \frac{n(n+1)}{2} - T^- = \frac{11*12}{2} - 8.5 = 57.5 \],

οπότε

\[T = \min\{T^+, T^-\} = T^- \]

Λαμβάνοντας υπόψη την ύπαρξη ενός δεσμού δύο παρατηρήσεων προκύπτει

ότι χρησιμοποιείται για τον έλεγχο της υπό μελέτης μηδενικής υπόθεσης το

στατιστικό:

\[W = \frac{T^+ - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24} - \frac{\sum(d_i^+ - d_i^-)}{48}}} \to N(0,1) \]

και απορρίπτεται η μηδενική υπόθεση \(H_0 : m = 0 \) έναντι της \(H_1 : m \neq 0 \) αν

\[|W| \geq z_{\alpha/2} = z_{0.025} = 1.96 \]

Είναι:

\[W = \frac{57.5 - \frac{11*12}{4}}{\sqrt{\frac{11*12*23}{24} - \frac{(2^3 - 2)}{48}}} = \frac{57.5 - 33}{\sqrt{126.5 - 0.125}} = \frac{24.5}{11.24} = 2.18 \]

και επομένως απορρίπτεται η μηδενική υπόθεση \(H_0 : m = 0 \) σε επίπεδο

σημαντικότητας 5%. Άρα υπάρχει στατιστικά σημαντική διαφοροποίηση στα επίπεδα

της συστολικής πίεσης πριν και μετά τη χορήγηση του φαρμάκου.
Τέταρτο Κεφάλαιο

Έστω ότι έχουμε δύο το πλήθος πληθυσμού, με άγνωστες αθροιστικές συναρτήσεις κατανομής \(F_i \), \(i = 1, 2 \). Επιπλέον λαμβάνουμε δύο το πλήθος, ανεξάρτητα μεταξύ τους, τυχαία δείγματα από καθένα από αυτούς τους δύο πληθυσμούς, μεγέθους \(n_i \), με \(n_1 + n_2 = n \). Έστω οι δειγματικές τιμές \(X_{i1}, \ldots, X_{in_i} \), από τον \(i \) πληθυσμό, \(i = 1, 2 \). Θέλουμε να ελέγξουμε τη μηδενική υπόθεση: \(H_0 : F_1(x) = F_2(x) \), για κάθε \(x \in R \), έναντι της εναλλακτικής υπόθεσης \(H_1 : F_1(x) \neq F_2(x) \), για κάποιο \(x \in R \). Αυτός ο έλεγχος είναι ισοδύναμος με τον έλεγχο της υπόθεσης \(H_0 : P(X_1 < X_2) = 1/2 \), έναντι της εναλλακτικής \(H_1 : P(X_1 < X_2) \neq 1/2 \).

Αν επιπλέον υποθέσουμε ότι τα σχήματα των κατανομών είναι όμοια, ταυτόσημα (identical), δηλαδή ότι \(F_1(t) = F_2(t + \delta) \), για κάθε \(t \) και για κάποιο \(\delta \in R \), τότε ο παραπάνω έλεγχος ανάγεται στον έλεγχο της μηδενικής υπόθεσης \(H_0 : m_{X_1} = m_{X_2} \), δηλαδή της ισότητας των πληθυσμιακών διαμέσων \(m_{X_i} \), \(i = 1, 2 \) έναντι μιας εκ των τριών εναλλακτικών:

1) \(H_1 : m_{X_1} > m_{X_2} \),
2) \(H_1 : m_{X_1} < m_{X_2} \) και
3) \(H_1 : m_{X_1} \neq m_{X_2} \).

Προφανώς όταν είναι αληθής η μηδενική υπόθεση προκύπτει ότι τα δύο δείγματα προέρχονται από έναν, τον ίδιο πληθυσμό.

Έστω \(R(X_{ij}) \) \(i = 1, 2, \ j = 1, \ldots, n_i \), οι τάξεις των διαθέσιμων δειγματικών τιμών των δύο δειγμάτων στο σύνολο των \(n = n_1 + n_2 \) παρατηρήσεων. Θα συμβολίζουμε σε όσα ακολουθούν με \(R_i \) το άθροισμα των τάξεων του \(i \) δείγματος, \(i = 1, 2 \), δηλαδή

\[
R_i = \sum_{j=1}^{n_i} R(X_{ij}), \quad i = 1, 2.
\]

Ειδικότερα, \(R_1 = \sum_{j=1}^{n_1} R(X_{1j}) \), \(R_2 = \sum_{j=1}^{n_2} R(X_{2j}) \) και \(2 \sum_{i=1}^{2} R_i = \frac{n(n + 1)}{2} \).

Αν υποθέσουμε ότι \(H_0 \) είναι αληθής αναμένουμε οι μέσοι όροι των τάξεων σε καθένα από τα 2 δείγματα να είναι περίπου ίσοι μεταξύ τους. Δηλαδή περιμένουμε να ισχύει ότι:

\[
\frac{R_1}{n_1} = \frac{R_2}{n_2}
\]
και λαμβάνοντας υπόψη ότι:

\[\sum_{i=1}^{2} R_i = \frac{n(n+1)}{2}, \]

έχουμε ότι:

\[R_i + \frac{n_z}{n_1} R_i = \frac{n(n+1)}{2}, \]

οπότε

\[\frac{R_i}{n_i (n_1 + n_2)} = \frac{n(n+1)}{2} \Rightarrow \frac{R_i}{n_1} = \frac{R_i}{n_2} = \frac{n+1}{2}. \]

Επομένως, ένας πρακτικός, αλλά όχι στατιστικός, τρόπος για να αποφανθούμε για την αποδοχή ή την απόρριψη της μηδενικής υπόθεσης ότι τα δείγματα προέρχονται από τον ίδιο πληθυσμό είναι να εξετάζουμε αν οι ποσότητες \(\frac{R_i}{n_i} \), \(i = 1,2 \), είναι περίπου ίσες μεταξύ τους και ίσες με \((n+1)/2\).

Στη βιβλιογραφία μεταξύ άλλων έχουν εμφανιστεί δύο ισοδύναμοι έλεγχοι που παρουσιάστηκαν ανεξάρτητα από τον Wilcoxon (1945) και από τους Mann and Whitney (1947). Για το λόγο αυτό ο έλεγχος αυτός έχει καθιερωθεί και ως έλεγχος Wilcoxon-Mann-Whitney.

4.1 Wilcoxon Sum Rank Test

Πριν προχωρήσουμε στα όσα προτάθηκαν από τον Wilcoxon (1945) παραθέτουμε μία πρόταση χρήσιμη για όσα ακολουθούν.

Πρόταση 4.1

Υπό τη μηδενική υπόθεση και υποθέτοντας ότι δεν υπάρχουν δεσμοί μεταξύ των δεδομένων αποδεικνύεται ότι

a) \(E(R_i) = n_i \frac{n+1}{2} \)

\[\beta) Var(R_i) = n_i \frac{(n+1)(n-n_i)}{12}, \]

γ) Για μεγάλα σε μέγεθος δείγματα \(R_i \sim N \left(\frac{n_i(n+1)}{2}, n_i n_z \frac{(n+1)}{12} \right) \)
Απόδειξη

α) Είναι

\[E(R_i) = E\left(\sum_{j=1}^{n_i} R(X_{ij}) \right) = \sum_{j=1}^{n_i} E(R(X_{ij})) = \sum_{j=1}^{n_i} \sum_{j=1}^{n_i} \frac{1}{n} = \sum_{j=1}^{n_i} \frac{1}{n} \left(\frac{n(n+1)}{2} \right) = \frac{n_i(n+1)}{2}. \]

β) Επειδή ισχύει ότι \(\sum_{j=1}^{2} R_j = \frac{n(n+1)}{2} \), καταλαβαίνουμε ότι οι τυχαίες μεταβλητές \(R_1 \) και \(R_2 \) δεν είναι ανεξάρτητες. Ισχύει:

\[\text{Var}(R_i) = \text{Var}\left(\sum_{j=1}^{n_i} R(X_{ij}) \right) = \sum_{j=1}^{n_i} \text{Var}(R(X_{ij})) + \sum_{j=1}^{n_i} \sum_{j=1}^{n_i} \text{Cov}(R(X_{ij}), R(X_{ij})). \]

Είναι όμως

\[\text{Var}(R(X_{ij})) = E(R^2(X_{ij})) - \left[E(R(X_{ij})) \right]^2 = \sum_{m=1}^{n} \frac{1}{n} - \left(\frac{n+1}{2} \right)^2 = \frac{(n+1)(n-1)}{12}. \]

Επιπρόσθετα

\[P\left(R(X_{ij}) = k, R(X_{ij}) = s \right) = P\left(R(X_{ij}) = s \right) P\left(R(X_{ij}) = k \right) = \frac{1}{n} \frac{1}{n-1}, \]

και επομένως

\[\text{Cov}(R(X_{ij}), R(X_{ij})) = \sum_{k=1}^{n} \sum_{s=1}^{n} \left(k - ER(X_{ij}) \right) \left(s - ER(X_{ij}) \right) P\left(R(X_{ij}) = k, R(X_{ij}) = s \right), \]

δηλαδή

\[\text{Cov}(R(X_{ij}), R(X_{ij})) = \sum_{k=1}^{n} \sum_{s=1}^{n} \left(k - \frac{n+1}{2} \right) \left(s - \frac{n+1}{2} \right) \frac{1}{n(n-1)} \]

\[= \sum_{k=1}^{n} \sum_{s=1}^{n} \left(k - \frac{n+1}{2} \right) \left(s - \frac{n+1}{2} \right) \frac{1}{n(n-1)} - \sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right)^2 \frac{1}{n(n-1)} \]

\[= \frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right) \sum_{s=1}^{n} \left(s - \frac{n+1}{2} \right) - \frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right)^2. \]
Όμως
\[
\sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right) = \sum_{s=1}^{n} \left(s - \frac{n+1}{2} \right) = \frac{n(n+1)}{2} - \frac{n(n+1)}{2} = 0,
\]
οπότε
\[
\text{Cov}\left(R\left(X_{ij} \right), R\left(X_{il} \right) \right) = -\frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2} \right)^2
\]
\[
= -\frac{1}{n(n-1)} \left\{ \sum_{k=1}^{n} k^2 - 2 \frac{n+1}{2} \sum_{k=1}^{n} k + \sum_{k=1}^{n} \left(\frac{n+1}{2} \right)^2 \right\}
\]
\[
= -\frac{1}{n(n-1)} \left\{ \frac{n(n+1)(2n+1)}{6} - \frac{(n+1)^2 n}{2} + \frac{(n+1)^2 n}{4} \right\}
\]
\[
= -\frac{1}{n(n-1)} \left\{ \frac{n(n+1)(2n+1)}{6} - \frac{(n+1)^2 n}{4} \right\}
\]
\[
= -\frac{1}{n(n-1)} \left\{ \frac{4n^3 + 6n^2 + 2n - 3n^3 - 6n^2 - 3n}{12} \right\}
\]
\[
= -\frac{1}{n(n-1)} \frac{n^3 - n}{12} = -\frac{n+1}{12}.
\]
Επομένως
\[
\text{Var}\left(R_i \right) = \frac{\sum_{j=1}^{n} \frac{(n+1)(n-1)}{12} + \sum_{j=1}^{n} \sum_{l=1, l \neq j}^{n} \frac{-n+1}{12}}{12}
\]
\[
= \frac{n_i(n+1)(n-1)}{12} - \frac{n_i(n-1)(n+1)}{12}
\]
\[
= \frac{n_i(n+1)(n-n_1)}{12}.
\]
γ) Καθώς \(R_i = \sum_{j=1}^{n} R\left(X_{ij} \right) \), δηλαδή είναι άθροισμα \(n_i \) ισόνομων τυχαίων μεταβλητών, και λόγω ότι \(E\left(R_i \right) = n_i \frac{n+1}{2} \) και \(\text{Var}\left(R_i \right) = n_i n_2 \frac{(n+1)}{12} \), από το Κεντρικό Οριακό Θεώρημα προκύπτει ότι:
\[
R_i \overset{H_0}{\sim} N\left(n_i \frac{n+1}{2}, n_i n_2 \frac{(n+1)}{12} \right).
\]
Το στατιστικό που προτάθηκε από τον Wilcoxon (1945) για τον έλεγχο της μηδενικής υπόθεσης είναι το

\[U_i = R_i - \frac{n_i(n_i + 1)}{2} \]

ή εναλλακτικά το:

\[U_2 = R_2 - \frac{n_2(n_2 + 1)}{2} \]

Παρατηρώντας ότι:

\[U_1 + U_2 = R_1 - \frac{n_1(n_1 + 1)}{2} + R_2 - \frac{n_2(n_2 + 1)}{2} = \frac{n(n + 1)}{2} - \frac{n_1(n_1 + 1)}{2} - \frac{n_2(n_2 + 1)}{2} = n, n_2, \]

έχουμε ότι:

\[U_1 = R_1 - \frac{n_1(n_1 + 1)}{2} \kappa \ U_2 = n_1n_2 - U_1. \]

Επομένως, ένα από τα \(U_i \), \(i = 1, 2 \), υπολογίζεται και χρησιμεύει για τον έλεγχο της μηδενικής υπόθεσης. Στην πράξη χρησιμοποιείται το στατιστικό:

\[U = \min \{ U_i, U_2 \} = \min \{ U_i, n_1n_2 - U_1 \}, \]

και πίνακες είναι διαθέσιμοι τόσο για την περίπτωση που \(n_1 = n_2 \), όσο και για την περίπτωση που \(n_1 \neq n_2 \) (βλέπε Πίνακα θα Παραρτήματος).

Η μηδενική υπόθεση απορρίπτεται για μονόπλευρες εναλλακτικές όταν:

\[P(U \leq u) < a, \] ενώ η κρίσιμη περιοχή του δίπλευρου ελέγχου είναι: \(P(U \leq u) < a/2, \) όπου \(u \) η παρατηρούμενη τιμή του στατιστικού στο δείγμα.

Εναλλακτικά, από το την Πρόταση 4.1 γ):

\[R_1 \sim \frac{\mu_0}{\text{προτ.}} N\left(\frac{n_1(n_1 + 1)}{2}, n_1n_2 \frac{(n + 1)}{12} \right), \]

και χρησιμοποιείται το στατιστικό

\[Z = \frac{R_i - \mu_0}{\sigma_{\text{προτ.}}} \sim N(0,1) \]

με κρίσιμες περιοχές i) \(Z \geq z_a \), ii) \(Z \leq -z_a \), και iii) \(|Z| \geq z_{a/2} \), αντίστοιχα.

69
Παράδειγμα 4.1

Να βρεθεί η ακριβής κατανομή του \(R \) υπό τη μηδενική υπόθεση, όταν \(n_1 = 2 \) και \(n_2 = 3 \), στην περίπτωση που δεν υπάρχουν δεσμοί μεταξύ των δεδομένων.

Λύση

Έστω οι δειγματικές τιμές \(X_{11}, X_{12} \), και \(X_{21}, X_{22}, X_{23} \), από τον πρώτο και δεύτερο πληθυσμό, αντίστοιχα. Επιπλέον έστω \(R(X_{ij}) = 1, 2, \ j = 1,\ldots, n_2 \), με \(n_1 = 2 \) και \(n_2 = 3 \). Οι τάξεις των διαθέσιμων δειγματικών τιμών των 2 δειγμάτων στο σύνολο των \(n = n_1 + n_2 = 5 \) παρατηρήσεων. Είναι \(R \) το άθροισμα των τάξεων του πρώτου δείγματος, δηλαδή είναι: \(R_i = \sum_{j=1}^{n_2} R(X_{ij}) \). Οι δυνατές τιμές της τυχαίας μεταβλητής \(R_i \) καθώς και οι αντίστοιχες τιμές των \(R(X_{11}), R(X_{12}) \) παρατίθενται στον πίνακα που ακολουθεί:

<table>
<thead>
<tr>
<th>((R(X_{11}), R(X_{12})))</th>
<th>(R_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>3</td>
</tr>
<tr>
<td>(1,3),</td>
<td>4</td>
</tr>
<tr>
<td>(1,4), (2,3)</td>
<td>5</td>
</tr>
<tr>
<td>(1,5), (2,4)</td>
<td>6</td>
</tr>
<tr>
<td>(2,5), (4,3)</td>
<td>7</td>
</tr>
<tr>
<td>(3,5)</td>
<td>8</td>
</tr>
<tr>
<td>(4,5)</td>
<td>9</td>
</tr>
</tbody>
</table>

Επομένως οι δυνατές τιμές της τυχαίας μεταβλητής \(R \) είναι οι \{3,4,5,6,7,8,9\} και η τυχαία μεταβλητή έχει την ακόλουθη συνάρτηση πιθανότητας:

\[
P(R = r) = \begin{cases}
\frac{1}{10}, & \text{για } r = 3, 4, 8, 9. \\
\frac{1}{5}, & \text{για } r = 5, 6, 7.
\end{cases}
\]

Παράδειγμα 4.2
Να ελέγξετε αν τα παρακάτω δεδομένα προέρχονται από διαφορετικές κατανομές (δίπλευρος έλεγχος με α=5%):

<table>
<thead>
<tr>
<th>X_{1j}</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{2j}</td>
<td>9</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Λύση

Έχουμε 2 το πλήθος πληθυσμού, με αθροιστικές συναρτήσεις κατανομής F_i, $i = 1, 2$. Επιπλέον λαμβάνουμε 2 το πλήθος, ανεξάρτητα μεταξύ τους τυχαία δείγματα από καθένα από αυτούς τους δύο πληθυσμούς μεγέθους n_i, $i = 1, 2$, με $n_1 = 4$, $n_2 = 3$, και $n_1 + n_2 = n = 7$. Θέλουμε να ελέγξουμε τη μηδενική υπόθεση: $H_0 : F_1(x) = F_2(x)$, για κάθε $x \in R$, έναντι της εναλλακτικής υπόθεσης $H_1 : F_1(x) \neq F_2(x)$, για κάποιο $x \in R$.

Το στατιστικό που προτάθηκε από τον Wilcoxon (1945) για τον έλεγχο της μηδενικής υπόθεσης είναι το $U = \min \{U_1, U_2\} = \min \{U_1, n_1n_2 - U_1\}$, όπου

$U_1 = R_i - \frac{n_i(n_i + 1)}{2}$, με R_i να συμβολίζει το άθροισμα των τάξεων στο σύνολο των διαθέσιμων δειγματικών τιμών του i-οστού δείγματος, $i = 1, 2$. Επομένως, αρχικά αναμειγνύονται τα δύο δείγματα και διατάσσονται κατά αύξουσα τάξη μεγέθους και υπολογίζουμε τις τάξεις $R(X_j)$, $i = 1, 2$, $j = 1, ..., n_i$, των διαθέσιμων δειγματικών τιμών των 2 δειγμάτων στο σύνολο των $n = 7$ παρατηρήσεων.

Επομένως είναι:

<table>
<thead>
<tr>
<th>Παρατήρηση</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τάξη</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

όπου έχουμε υπογραμμίσει για ευκολία στους μετέπειτα υπολογισμούς τις τιμές και τις τάξεις των παρατηρήσεων του δεύτερου δείγματος. Είναι τότε:

$U_2 = R_2 - \frac{n_2(n_2 + 1)}{2} = (3 + 5 + 7) - \frac{3(3 + 1)}{2} = 9$

και

$U_1 = n_1n_2 - U_2 = 3 \times 4 - 9 = 3$.

71
Επομένως χρησιμοποιείται το στατιστικό \(U = \min \{ U_1, U_2 \} \) και η μηδενική υπόθεση απορρίπτεται αν \(P(U \leq u) < a / 2 = 0.025 \), όπου \(u \) η παρατηρούμενη τιμή του στατιστικού στο δείγμα, δηλαδή \(u = 3 \). Από τον Πίνακα 8α του Παραρτήματος προκύπτει ότι, υπό τη μηδενική υπόθεση, \(P(U \leq 3) = 0.2 \). Επομένως καθώς \(0.2 > 0.025 \) δεν απορρίπτεται η μηδενική υπόθεση και συμπεραίνουμε με επίπεδο σημαντικότητας 5% ότι δεν μπορούμε να απορρίψουμε την υπόθεση ότι τα δύο ανεξάρτητα δείγματα προέρχονται από τον ίδιο πληθυσμό.

Παράδειγμα 4.3

Να βρεθεί η ακριβής κατανομή του \(U_2 = R_2 - n_2 \left(\frac{n_2 + 1}{2} \right) \) για \(n_1 = 4 \) και \(n_2 = 2 \), υπό τη μηδενική υπόθεση και υπό την προϋπόθεση ότι δεν υπάρχουν δεσμοί στις δειγματικές τιμές.

Λύση

Το μέγεθος κάθε δείγματος είναι 4 και 2 αντίστοιχα και υπάρχουν \(\binom{6}{2} = 15 \) τρόποι διάταξης των δειγματικών παρατηρήσεων. Οι δύο παρατηρήσεις του δεύτερου δείγματος μπορούν να είναι στις ακόλουθες θέσεις άρα και τάξεις: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6), οπότε οι δυνατές τιμές του \(U_2 = R_2 - n_2 \left(\frac{n_2 + 1}{2} \right) = R_2 - 3 \) είναι αντίστοιχα:

0,1,2,3,4,2,3,4,5,4,5,6,6,7,8. Επομένως, η διακριτή τυχαία μεταβλητή \(U_2 \) έχει συνάρτηση πιθανότητας:

\[
P(U_2 = u) = \begin{cases}
1/15, & \text{για } u = 0,1,7,8 \\
2/15, & \text{για } u = 2,3,5,6 \\
3/15, & \text{για } u = 4
\end{cases}
\]

Το Παράδειγμα 4.1 ουσιαστικά αποτελεί μία ειδική περίπτωση προσδιορισμού της κατανομής του \(R_1 \) που προσδιορίζεται γενικά στην παρακάτω πρόταση (βλέπε μεταξύ άλλων Randles and Wolfe (1979)).

Πρόταση 4.2
Έστω $R(X_j), j=1,...,n_j, i=1,2$, οι τάξεις των διαθέσιμων δειγματικών τιμών των δύο δειγμάτων στο σύνολο των $n = n_1 + n_2$ παρατηρήσεων. Έστω R_i το άθροισμα των τάξεων των παρατηρήσεων του πρώτου δείγματος στο σύνολο αυτών των n τιμών. Υπό την υπόθεση ότι τα δύο δείγματα προέρχονται από τον ίδιο πληθυσμό και δεν υπάρχουν δεσμοί μεταξύ αυτών, η κατανομή του στατιστικού R_i δίνεται από τη σχέση:

$$P(R_i = r) = \binom{n}{n_i} r, \quad r = \frac{n_1(n_1 + 1)}{2}, ..., \frac{n_1(2n_2 + n_1 + 1)}{2},$$

όπου $\binom{n}{n_i}$ συμβολίζει το πλήθος των μη διατεταγμένων υποσυνόλων n_i ακεραίων που επιλέγονται χωρίς επανατοποθέτηση από το σύνολο $\{1,...,n\}$ και έχουν άθροισμα ίσο με r και $\binom{n}{n_i}$ το πλήθος των δυνατών διατάξεων των δειγματικών τιμών.

Παρατήρηση 4.1

Σε όσα έχουν αναφερθεί τόσο για την ακριβή όσο και για την προσεγγιστική κατανομή υπό την μηδενική υπόθεση, π.χ. του R_i, υποθέτουμε την μη ύπαρξη δεσμών μεταξύ των παρατηρήσεων. Στην περίπτωση ύπαρξης δεσμών χρησιμοποιούμε τα midranks, δηλαδή το μέσο όρο των τάξεων που θα είχαν οι παρατηρήσεις αν δεν υπήρχαν οι δεσμοί. Ο τρόπος εύρεσης σε αυτήν την περίπτωση της ακριβούς κατανομής υποδεικνύεται μέσω του Παραδείγματος 4.4 που ακολουθεί, ενώ στην Πρόταση 4.3 αποδεικνύεται ότι το στατιστικό:

$$Z = \frac{R_i - \frac{n_1(n_1 + 1)}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2)}{12} - \frac{n_1n_2\sum(d_i^3 - d_i)}{12n(n-1)}}} \approx N(0,1).$$

Τότε οι κρίσιμες περιοχές για τους υπό μελέτη ελέγχους είναι:

i) $Z \geq z_a$, ii) $Z \leq -z_a$, και iii) $|Z| \geq z_{a/2}$, αντίστοιχα.

Πρόταση 4.3
Έστω $R(X_i) \; i = 1, 2, \ldots, n_i$, οι τάξεις των διαθέσιμων δειγματικών τιμών των δύο δειγμάτων στο σύνολο των $n = n_1 + n_2$ παρατηρήσεων. Επιπρόσθετα υποθέτουμε ότι οι n αυτές δειγματικές παρατηρήσεις λαμβάνουν c το πλήθος διαφορετικές τιμές, έστω d_i από αυτές είναι ίσες με τη μικρότερη τιμή, d_2 με την αμέσως μεγαλύτερη κ.ο.κ. d_c από αυτές ίσες με τη μεγαλύτερη, με $d_i \geq 1$ και $\sum_{i=1}^{c} d_i = n$. Υπό τη μηδενική υπόθεση αποδεικνύεται ότι

α) $E(R_i) = n_i \frac{n + 1}{2}$

β) $Var(R_i) = n_i n_2 \frac{(n + 1)}{12} - n_i n_2 \frac{n_i \sum (d_i^3 - d_i)}{12n(n - 1)}$

γ) Για μεγάλα σε μέγεθος δείγματα

$$\frac{R_i - n_i \frac{(n + 1)}{2}}{\sqrt{n_i n_2 \frac{(n + 1)}{12} - n_i n_2 \frac{n_i \sum (d_i^3 - d_i)}{12n(n - 1)}}} \sim N(0,1).$$

Απόδειξη (βλέπε μεταξύ άλλων Lehmann (1975))

Η απόδειξη θα γίνει χωρίς βλάβη της γενικότητας για το στατιστικό R_i.

Συμβολίζουμε με u_1, u_2, \ldots, u_n, τις διαθέσιμες τάξεις, τότε από τον ορισμό αυτών προκύπτει άμεσα ότι:

$$u_i = \ldots = u_{d_i} = \frac{1 + \ldots + d_i}{d_i} = \frac{d_i + 1}{2},$$

$$u_{d_i+1} = \ldots = u_{d_i+d_2} = \frac{(d_i + 1) + \ldots + (d_i + d_2)}{d_2} = \frac{d_i + d_2 + 1}{2},$$

$$u_{d_i+d_2+1} = \ldots = u_{d_i+d_2+d_3} = \frac{(d_i + d_2 + 1) + \ldots + (d_i + d_2 + d_3)}{d_3} = \frac{d_i + d_2 + d_3 + 1}{2},$$

κ.ο.κ.

Από αυτές τις u_1, u_2, \ldots, u_n, επιλέγονται οι n_i το πλήθος (αριθμός δυνατών επιλογών $\binom{n}{n_i}$) που αντιστοιχούν στις τάξεις του πρώτου δείγματος, έστω οι V_1, \ldots, V_{n_i}. Τότε

$$R_i = V_1 + \ldots + V_{n_i}.$$

α) Είναι τότε:
\[R_i = n_i EV_i = n_i \frac{d_1 u_{d_1} + d_2 u_{d_2} + \ldots + d_{i} u_{d_i}}{n} = n_i \frac{n(n+1)}{2n} = n_i \frac{n+1}{n}, \]

όπου χρησιμοποιήθηκε ότι το άθροισμα των τάξεων που συμμετέχουν σε κάθε δεσμό είναι ίσο με το άθροισμα των τάξεων σε δεν υπήρχαν δεσμοί.

β) Είναι

\[VarR_i = Var\left(V_i + \ldots + V_{n-i}\right) = \sum_{i=1}^{n-i} VarV_i + \sum_{i=1}^{n-i} \sum_{j=1, j \neq i}^{n-i} Cov(V_i, V_j). \]

Όμως

\[VarV_i = \frac{1}{n} \sum_{i=1}^{n} (u_i - \bar{u})^2 = \frac{1}{n} \sum_{i=1}^{n} u_i^2 - \bar{u}^2, \]

όπου \(\bar{u} = \frac{d_1 u_{d_1} + d_2 u_{d_2} + \ldots + d_i u_{d_i}}{n} \). Με παρόμοιο τρόπο όπως στην Πρόταση 3.4 προκύπτει ότι:

\[1^2 + \ldots + n^2 = \sum_{i=1}^{n} u_i^2 + \sum_{i=1}^{n} d_i \left(d_i^2 - 1\right) \cdot \frac{12}{12}. \]

Αρα

\[VarV_i = \frac{1}{n} \frac{n(n+1)(2n+1)}{6} - \frac{1}{n} \sum_{i=1}^{n-i} \sum_{j=1, j \neq i}^{n-i} d_i \left(d_i^2 - 1\right) \cdot \frac{(n+1)^2}{12}. \]

Επομένως λαμβάνοντας επιπλέον υπόψη ότι η συνδιακύμανση \(Cov(V_i, V_j) \) είναι ίδια για κάθε ένα από τα \(n_i(n_i-1) \) το πλήθος ζεύγη των \(i, j, \mu e \ i, j = 1, \ldots, n, \ i \neq j \), έχουμε ότι:

\[VarR_i = \sum_{i=1}^{n-i} VarV_i + \sum_{i=1}^{n-i} \sum_{j=1, j \neq i}^{n-i} Cov(V_i, V_j) = n_i VarV_i + n_i(n_i-1) Cov(V_i, V_j). \]

Εφαρμόζοντας την παραπάνω σχέση για \(n = n_i \) , οπότε τότε το άθροισμα των τάξεων του πρώτου δείγματος είναι σταθερό, έχουμε ότι:

\[0 = n VarV_i + n(n-1) Cov(V_i, V_j), \]

άρα

\[Cov(V_i, V_j) = \frac{VarV_i}{n-1}. \]

Επομένως

\[VarR_i = n_i VarV_i - n_i(n_i-1) VarV_i = n_i \frac{(n-1)}{n-1} VarV_i = \frac{n_i n_2 VarV_i}{n-1}, \]

και έτσι.
\[Var(R_i) = n_1 n_2 \frac{(n+1)}{12} - \frac{n_1 n_2 \sum (d_i^3 - d_i)}{12n(n-1)} \]

γ) Προκύπτει με άμεση εφαρμογή του Κ.Ο.Θ. λαμβάνοντας υπόψη τα α) και β).

Παρατήρηση 4.2

Τα αποτελέσματα της Πρότασης 4.1 μπορούν να προκύψουν από την Πρόταση 4.3 για την ειδική περίπτωση που \(d_1 = \ldots = d_c = 1 \), με \(c = n \).

Παράδειγμα 4.4 (βλέπε Hollander and Wolfe (1999))

Να βρεθεί η ακριβής κατανομή του \(R_i \) υπό τη μηδενική υπόθεση, όταν \(n_1 = 2 \) και \(n_2 = 3 \), στην περίπτωση που υπάρχει ένας δεσμός μεταξύ της 3\(^{\text{η}}\) και 4\(^{\text{η}}\) παρατήρησης.

Λύση

Έστω οι δειγματικές τιμές \(X_{11}, X_{12} \), και \(X_{21}, X_{22}, X_{23} \), από τον πρώτο και δεύτερο πληθυσμό, αντίστοιχα. Επιπλέον έστω \(R(X_{ij}) \) \(i = 1,2 \), \(j = 1,...,n_j \), με \(n_1 = 2 \) και \(n_2 = 3 \), οι τάξεις των διαθέσιμων δειγματικών τιμών των 2 δειγμάτων στο σύνολο των \(n = n_1 + n_2 = 5 \) παρατηρήσεων. Είναι \(R_i \) το άθροισμα των τάξεων του πρώτου δείγματος, δηλαδή είναι: \(R_i = \sum_{j=1}^{n_j} R(X_{ij}) \). Λαμβάνοντας υπόψη ότι υπάρχει ένας δεσμός μεταξύ της 3\(^{\text{η}}\) και 4\(^{\text{η}}\) παρατήρησης και επομένως ότι οι τάξεις είναι \((1,2,3,5,3,5,5)\) προκύπτει ότι οι δυνατές τιμές των τάξεων, \((R(X_{11}), R(X_{12})) \), χωρίς να μας ενδιαφέρει η διάταξη αυτών, και οι αντίστοιχες τιμές της τυχαίας μεταβλητής \(R_i \) είναι:

<table>
<thead>
<tr>
<th>((R(X_{11}), R(X_{12})))</th>
<th>(R_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>3</td>
</tr>
<tr>
<td>(1,3,5)</td>
<td>4.5</td>
</tr>
<tr>
<td>(1,3,5)</td>
<td>4.5</td>
</tr>
<tr>
<td>(1,5)</td>
<td>6</td>
</tr>
<tr>
<td>(2,3,5)</td>
<td>5.5</td>
</tr>
<tr>
<td>(2,3,5)</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Επομένως οι δυνατές τιμές της τυχαίας μεταβλητής \(R_i \) είναι οι \{3,4.5,5.5,6,7,8.5\} και η τυχαία μεταβλητή έχει την ακόλουθη συνάρτηση πιθανότητας:

\[
P(R_i = r) = \begin{cases}
1/10, & για r = 3, 6 \\
2/10, & για r = 4.5, 5.5, 7, 8.5
\end{cases}
\]

και είναι τελειώς διαφορετική από αυτήν του Παραδείγματος 4.1.

4.2 Mann-Whitney τεστ

Το στατιστικό που προτάθηκε από τους Mann and Whitney (1947) είναι το:

\[
MW = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} D_{ij},
\]

όπου \(D_{ij} = I(X_{2j} < X_{1i}) \), με \(I(\cdot) \) τη δείκτρια συνάρτηση, που δίνεται από τη σχέση:

\[
I(X_{2j} < X_{1i}) = \begin{cases}
1, & αν X_{2j} < X_{1i} \\
0, & αλλιώς
\end{cases}
\]

Είναι για σταθεροποιημένο \(i \):

\[
\sum_{j=1}^{n_2} D_{ij} = D_{i1} + D_{i2} + ... + D_{in_2},
\]

είναι δηλαδή ο συνολικός αριθμός των \(X_{2j} \), \(j = 1, ..., n_2 \), που έχουν τιμές μικρότερες του \(X_{1i} \), όπου \(i \) σταθεροποιημένο και ένα από τα \(1, ..., n_1 \). Ο αριθμός αυτός, από τον τρόπο ορισμού του, προκύπτει ότι είναι ίσος με την τάξη της δειγματική τιμής \(X_{1i} \) στο δείγμα των \(n = n_1 + n_2 \) παρατηρήσεων μείον τον αριθμό των \(X \), έστω \(k_i \), που είναι μικρότερα από τη συγκεκριμένη παρατήρηση. Επομένως προκύπτει ότι:

\[
MW = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} D_{ij} = \sum_{i=1}^{n_1} \left(R(X_{1i}) - k_i \right) = \sum_{i=1}^{n_1} R(X_{1i}) - \sum_{i=1}^{n_1} k_i = R_i - \frac{n_i(n_i + 1)}{2},
\]

που δεν είναι τίποτε άλλο από το στατιστικό \(U_1 \) που προτάθηκε από τον Wilcoxon.
Παράδειγμα 4.5 (Sprent (1989))

Στον πίνακα που ακολουθεί καταγράφεται ο αριθμός των σελίδων 16 τυχαία επιλεγμένων βιβλίων από μία βιβλιοθήκη ενός μαθηματικού τμήματος και 12 επιλεγμένων βιβλίων από μία βιβλιοθήκη ενός φιλολογικού τμήματος. Να ελέγξετε κάνοντας τις κατάλληλες υποθέσεις την υπόθεση ότι ο μέσος αριθμός των σελίδων των βιβλίων ενός φιλολογικού και μαθηματικού τμήματος δεν διαφέρουν στατιστικά σημαντικά, με επίπεδο σημαντικότητας 5%.

<table>
<thead>
<tr>
<th>Βιβλία Μαθηματικής Βιβλιοθήκης</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 39 60 78 82 112 125 170 192 224 263 275 276 286 369 756</td>
</tr>
<tr>
<td>Βιβλία Βιβλιοθήκης Φιλολογικού</td>
</tr>
<tr>
<td>126 142 156 228 245 246 370 419 433 454 478 503</td>
</tr>
</tbody>
</table>

Λύση

Έχουμε 2 το πλήθος πληθυσμούς, με αθροιστικές συναρτήσεις κατανομής F_i, $i = 1, 2$. Επιπλέον λαμβάνουμε 2 το πλήθος, ανεξάρτητα μεταξύ τους τυχαία δείγματα από καθένα από αυτούς τους δύο πληθυσμούς μεγέθους n_i, με $n_1 = 16$, $n_2 = 12$ και $n = n_1 + n_2 = 28$. Αν επιπλέον υποθέσουμε ότι τα σχήματα των κατανομών είναι όμοια (identical) και οι πληθυσμοί είναι συμμετρικοί, τότε τα αποτελέσματα του έλεγχου της μηδενικής υπόθεσης $H_0 : m_{X_1} = m_{X_2}$, δηλαδή της ισότητας των πληθυσμιακών διαμέσων m_{X_i}, $i = 1, 2$, έναντι μιας εκ των τριών εναλλακτικών:

i) $H_1 : m_{X_1} > m_{X_2}$, ii) $H_1 : m_{X_1} < m_{X_2}$ και iii) $H_1 : m_{X_1} \neq m_{X_2}$, γενικεύεται για τις πληθυσμιακές μέσες τιμές.

Θα χρησιμοποιήσουμε το στατιστικό που προτάθηκε από τους Mann and Whitney (1947). Αρχικά τα δεδομένα αναμειγνύονται και διατάσσονται κατά αύξουσα τάξη μεγέθους, υπολογίζονται οι τάξεις αυτών, όπως φαίνονται στον πίνακα που ακολουθεί. Στον πίνακα αυτό για διευκόλυνση οι δειγματικές τιμές του 2ου δείγματος και οι αντίστοιχες τάξεις τους επισημαίνονται με υπογράμμιση:

<table>
<thead>
<tr>
<th>Παρατήρηση</th>
<th>29</th>
<th>39</th>
<th>60</th>
<th>78</th>
<th>82</th>
<th>112</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τάξη</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Παρατήρηση</th>
<th>126</th>
<th>142</th>
<th>156</th>
<th>170</th>
<th>192</th>
<th>224</th>
<th>228</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τάξη</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
Το στατιστικό που προτάθηκε από τον Wilcoxon (1945) και τους Mann and Whitney (1947) για τον έλεγχο της μηδενικής υπόθεσης είναι το

\[U = \min\{U_1, U_2\} = \min\{U_1, n_1n_2 - U_1\}, \]

όπου \(U_1 = R_1 - \frac{n_1(n_1+1)}{2} \) και \(U_2 = n_1n_2 - U_1 \), με \(R_i \) να είναι το άθροισμα των τάξεων του \(i \)-οστού δείγματος, \(i = 1, 2 \), στο σύνολο των διαθέσιμων δειγματικών τιμών. Είναι:

\[R_1 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 11 + 12 + 13 + 17 + 18 + 19 + 20 + 21 + 28 = 187, \]

οπότε

\[U_1 = R_1 - \frac{n_1(n_1+1)}{2} = 187 - \frac{16*17}{2} = 51 \]

και

\[U_2 = n_1n_2 - U_1 = 16*12 - 51 = 141. \]

Από τον Πίνακα 8β του Παραρτήματος έχουμε ότι, για τη συγκεκριμένη περίπτωση, η κρίσιμη τιμή του ελέγχου είναι 53 και καθώς η τιμή του στατιστικού \(U = \min\{U_1, U_2\} \) είναι μικρότερη από την κρίσιμη τιμή, απορρίπτεται η μηδενική υπόθεση.

Εναλλακτικά μπορούσε να χρησιμοποιηθεί το προσεγγιστικό στατιστικό (κάνοντας και διόρθωση συνεχείας)

\[Z = \frac{187 + 0.5 - \frac{16*17}{2}}{\sqrt{16*12*28/12}} = \frac{51.5}{\sqrt{448}} = \frac{51.5}{21.17} = 2.43 \]

με κρίσιμη περιοχή \(|Z| \geq z_{0.025} = 1.96 \). Επομένως και πάλι η μηδενική υπόθεση απορρίπτεται. Αυτό σημαίνει ότι υπάρχει στατιστικά σημαντική διαφορά στις διαμέσους των δύο πληθυσμών, ως προς τον αριθμό των σελίδων.
Πέμπτο Κεφάλαιο

Στο κεφάλαιο αυτό παρουσιάζεται μία επέκταση του Wilcoxon-Mann-Whitney τεστ, για τον ελέγχο της υπόθεσης ότι τρία ή περισσότερα τυχαία δείγματα προέρχονται από τον ίδιο πληθυσμό, έναντι της εναλλακτικής υπόθεσης ότι τουλάχιστον δύο από τα δείγματα προέρχονται από πληθυσμούς που διαφέρουν ως προς τις διαμέσους. Από το τελευταίο γίνεται αντιληπτό ότι το στατιστικό αυτό τεστ προϋποθέτει στην ουσία ισότητα των πληθυσμιακών διακυμάνσεων. Για το λόγο αυτό στο τέλος του κεφαλαίου παραθέτουμε έναν μη παραμετρικό τρόπο ελέγχου της υπόθεσης της ισότητας των πληθυσμιακών διακυμάνσεων.

5.1 Kruskal-Wallis τεστ

Το στατιστικό τεστ των Kruskal and Wallis (1952) αποτελεί μία λογική επέκταση του Wilcoxon-Mann-Whitney τεστ. Είναι ένας μη παραμετρικός τρόπος ελέγχου της υπόθεσης ότι τρία ή περισσότερα τυχαία δείγματα προέρχονται από τον ίδιο πληθυσμό, έναντι της εναλλακτικής υπόθεσης ότι τουλάχιστον δύο από τα δείγματα προέρχονται από πληθυσμούς που διαφέρουν ως προς τις διαμέσους. Από τη μορφή της εναλλακτικής υπόθεσης γίνεται αμέσως αντιληπτό ότι το στατιστικό τεστ των Kruskal-Wallis προϋποθέτει στην ουσία ισότητα των πληθυσμιακών διακυμάνσεων. Επιπλέον υποθέτουμε ότι τα δεδομένα είναι τουλάχιστον διατάξιμα.

Έστω οι δειγματικές τιμές X_{i1}, \ldots, X_{in}, από τον i-οστό πληθυσμό $i = 1, \ldots, k$, $k \geq 3$. Θέλουμε να ελέγξουμε τη μηδενική υπόθεση: $H_0 : F_1(x) = \ldots = F_k(x)$, για κάθε $x \in R$, όπου $k \geq 3$, έναντι της εναλλακτικής υπόθεσης $H_1 : \text{τιμώς}$ i, j με $i \neq j$, $i, j = 1, \ldots, k$, $k \geq 3$, τέτοιο ώστε $m_i \neq m_j$, όπου m_i η διάμεσος του i πληθυσμού, $i = 1, \ldots, k$.

Υπό τη μηδενική υπόθεση προκύπτει ότι τα k δείγματα προέρχονται από έναν πληθυσμό. Έστω $R(X_{ij}) = 1, \ldots, k$, $j = 1, \ldots, n_i$, $k \geq 3$, οι τάξεις των διαθέσιμων δειγματικών τιμών των k δειγμάτων στο σύνολο των n παρατηρήσεων. Θα
συμβολίζουμε σε όσα ακολουθούν με \(R_i \) το άθροισμα των τάξεων του \(i \)-οστού
dείγματος, \(i = 1, \ldots, k, \ k \geq 3 \), δηλαδή \(R = \sum_{i=1}^{n} R(X_i), \ i = 1, \ldots, k, \ k \geq 3 \).

Εύκολα προκύπτει ότι \(\sum_{i=1}^{k} R_i = \frac{n(n+1)}{2} \).

Αν υποθέσουμε ότι η \(H_0 \) είναι αληθής αναμένουμε οι μέσοι όροι των τάξεων σε καθένα από τα \(i \) δείγματα, \(i = 1, \ldots, k, \ k \geq 3 \), να είναι περίπου ίσοι μεταξύ τους. Δηλαδή περιμένουμε να ισχύει ότι:

\[
\frac{R_1}{n_1} = \frac{R_2}{n_2} = \ldots = \frac{R_k}{n_k}, \ k \geq 3.
\]

Λαμβάνοντας υπόψη ότι στην περίπτωση μη ύπαρξης δεσμών:

\[
\sum_{i=1}^{k} R_i = \frac{n(n+1)}{2},
\]

έχουμε ότι:

\[
R_i + \frac{n_2}{n_1} R_i + \ldots + \frac{n_k}{n_1} R_i = \frac{n(n+1)}{2},
\]

οπότε:

\[
\frac{R_i}{n_1} (n_1 + n_2 + \ldots + n_k) = \frac{n(n+1)}{2} \Rightarrow \frac{R_1}{n_1} = \frac{R_2}{n_2} = \ldots = \frac{R_k}{n_k} = \frac{n+1}{2}.
\]

Επομένως, ένας πρακτικός, αλλά όχι στατιστικός, τρόπος για να αποφανθούμε για την αποδοχή ή απόρριψη της μηδενικής υπόθεσης ότι τα τυχαία δείγματα προέρχονται από τον ίδιο πληθυσμό είναι να εξετάζουμε αν οι ποσότητες \(\frac{R_i}{n_i} \), \(i = 1, \ldots, k, \ k \geq 3 \), είναι περίπου ίσες μεταξύ τους και ίσες με \((n+1)/2 \) ή εναλλακτικά αν η ποσότητα:

\[
\sum_{i=1}^{k} \left(\frac{R_i}{n_i} - \frac{n+1}{2} \right)^2,
\]

eίναι κοντά στο μηδέν. Γίνεται αντιληπτό ότι μεγάλες τιμές της παραπάνω ποσότητας θα υποδεικνύουν απόκλιση από την υπόθεση ότι τα \(k \) το πλήθος τυχαία δείγματα προέρχονται από τον ίδιο πληθυσμό.

Στηριζόμενοι σε μία τέτοια ιδέα οι Kruskal and Wallis (1952) πρότειναν στην περίπτωση μη ύπαρξης δεσμών το στατιστικό:
\[
KW = \frac{12}{n(n + 1)} \sum_{i=1}^{k} \frac{1}{n_i} \left(R_i - \frac{n_i(n + 1)}{2} \right)^2.
\]

Στην πρόταση που ακολουθεί δίνονται δύο ισοδύναμες μορφές του στατιστικού:

Πρόταση 5.1

Αποδεικνύεται ότι στην περίπτωση μη ύπαρξης δεσμών:

\[\alpha) \quad KW = \frac{12}{n(n + 1)} \sum_{i=1}^{k} n_i \left(R_i - \frac{n_i(n + 1)}{2} \right)^2 \text{ και} \]

\[\beta) \quad KW = \frac{12}{n(n + 1)} \sum_{i=1}^{k} R_i^2 - 3(n + 1).\]

Απόδειξη

α) Από τη σχέση

\[
KW = \frac{12}{n(n + 1)} \sum_{i=1}^{k} n_i \left(R_i - \frac{n_i(n + 1)}{2} \right)^2,
\]

«βάζοντας» τον όρο \(n_i\) εντός της παρένθεσης που υψώνεται στο τετράγωνο προκύπτει εύκολα η ισοδύναμη έκφραση:

\[
KW = \frac{12}{n(n + 1)} \sum_{i=1}^{k} n_i \left(R_i^2 - \frac{n_i(n + 1)^2}{n_i 2} \right) = \frac{12}{n(n + 1)} \sum_{i=1}^{k} n_i \left(R_i^2 - \frac{(n + 1)^2}{2} \right).
\]

β) Είναι:

\[
KW = \frac{12}{n(n + 1)} \sum_{i=1}^{k} \frac{1}{n_i} \left(R_i - \frac{n_i(n + 1)}{2} \right)^2
\]

\[
= \frac{12}{n(n + 1)} \left\{ \sum_{i=1}^{k} \frac{1}{n_i} \left(R_i^2 - \frac{n_i(n + 1)^2}{2} \right) \right\}
\]

οπότε

\[
KW = \frac{12}{n(n + 1)} \left\{ \sum_{i=1}^{k} R_i^2 - \frac{(n + 1)^2}{2} \cdot n + \frac{(n + 1)^2}{4} \right\}
\]

\[
= \frac{12}{n(n + 1)} \left\{ \sum_{i=1}^{k} R_i^2 - \frac{(n + 1)^2}{4} \cdot n \right\} = \frac{12}{n(n + 1)} \sum_{i=1}^{k} R_i^2 - 3(n + 1).
\]
όπου χρησιμοποιήσαμε το γεγονός ότι \(\sum_{i=1}^{k} n_i = n \) και επιπλέον ότι στην περίπτωση μη ύπαρξης δεσμών ισχύει η σχέση: \(\sum_{i=1}^{k} R_i = \frac{n(n+1)}{2} \).

Προφανώς, καθώς το στατιστικό των Kruskal and Wallis (1952) δίνεται από τη σχέση:

\[
KW = \frac{12}{n(n+1)} \sum_{i=1}^{k} n_i \left(\frac{R_i - \frac{(n+1)}{2}}{n_i} \right)^2,
\]

προκύπτει ότι λαμβάνει την τιμή μηδέν όταν \(\frac{R_i}{n_i} = \frac{R_2}{n_2} = \frac{R_k}{n_k} = \frac{n+1}{2} \), όταν δηλαδή η μηδενική υπόθεση είναι αληθής. Επομένως απορρίπτουμε τη μηδενική υπόθεση \(H_0 \) για μεγάλες τιμές του στατιστικού \(KW \). Δηλαδή απορρίπτουμε τη μηδενική υπόθεση \(H_0 \) αν:

\[
KW \geq c,
\]

όπου \(c \) είναι ένας αριθμός τέτοιος ώστε:

\[
P(KW \geq c / H_0 \text{ αληθής}) = \alpha.
\]

Η εύρεση της κατανομής του \(KW \) υπό τη μηδενική κατανομή είναι πολύ δύσκολη και έχει επιπεδευχθεί από τους Kruskal and Wallis (1952) στην περίπτωση των τριών πληθυσμών \(k = 3 \) και για μικρά σε μέγεθος δείγματα τέτοια ώστε \(n_i \leq 5 \), για \(i = 1, 2, 3 \). Πίνακες για αυτές τις περιπτώσεις είναι διαθέσιμοι στη βιβλιογραφία (βλέπε μεταξύ άλλων Παπαϊωάννου και Λουκάς (2002)).

Για το λόγο αυτό οι ερευνητές οδηγήθηκαν στην εύρεση ενός προσεγγιστικού στατιστικού τεστ, στην περίπτωση που \(n_i \geq 10 \). Λαμβάνοντας υπόψη ότι \(R_i \) είναι το άθροισμα \(n_i \) το πλήθος (όχι ανεξάρτητων) τυχαίων μεταβλητών, καθώς είναι το άθροισμα των \(i \) δείγματος, \(i = 1, \ldots, k \), \(k \geq 3 \), δηλαδή

\[
R_i = \sum_{j=1}^{n_i} R(X_{ij}), \quad i = 1, \ldots, k, \quad k \geq 3,
\]

προκύπτει από το Κεντρικό Οριακό Θεώρημα (για ισόνομες τυχαίες μεταβλητές) ότι, υπό τη μηδενική υπόθεση και υποθέτοντας μη ύπαρξη δεσμών στις δειγματικές παρατηρήσεις:
\[\frac{R_i - ER_i}{\sqrt{VarR_i}} \sim N(0,1), \]

και επομένως

\[\sum_{i=1}^{k} \left(\frac{R_i - ER_i}{\sqrt{VarR_i}} \right)^2 = \sum_{i=1}^{k} \left(\frac{R_i - ER_i}{VarR_i} \right)^2 \sim X^2_{k-1}, \]

όπου οι βαθμοί ελευθερίας της \(X^2 \) κατανομής είναι \(k-1 \) και όχι \(k \), όπως θα αναμενόταν, διότι \(k-1 \) το πλήθος τάξεις \(R_i \) ορίζονται μοναδικά, καθώς ισχύει η ισότητα \(\sum_{i=1}^{k} R_i = \frac{n(n+1)}{2} \).

Στην επόμενη πρόταση προσδιορίζονται οι ποσότητες \(E(R_i) \) και \(Var(R_i) \) για τον προσδιορισμό του παραπάνω στατιστικού.

Πρόταση 5.2

Υπό τη μηδενική υπόθεση και υποθέτοντας ότι δεν υπάρχουν δεσμοί αποδεικνύεται ότι: α) \(E(R_i) = n_i \frac{n+1}{2} \) και β) \(Var(R_i) = n_i \frac{(n+1)(n-n_i)}{12} \).

Απόδειξη

α) Είναι

\[E(R_i) = E \left(\sum_{j=1}^{n} R(X_{ij}) \right) = \sum_{j=1}^{n} E \left(R(X_{ij}) \right) = \sum_{j=1}^{n} \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} 1 = \frac{n(n+1)}{2} = n_i \frac{(n+1)}{2}. \]

β) Επειδή ισχύει ότι

\[\sum_{i=1}^{k} R_i = \frac{n(n+1)}{2}, \]

καταλαβαίνουμε ότι οι τυχαίες μεταβλητές \(R_i \), \(i=1,...,k \), \(k \geq 3 \), δεν είναι ανεξάρτητες.

Ισχύει:

\[Var(R_i) = Var \left(\sum_{j=1}^{n} R(X_{ij}) \right) = \sum_{j=1}^{n} Var(R(X_{ij})) + \sum_{j=1}^{n} \sum_{j'=1 \atop j' \neq j}^{n} Cov(R(X_{ij}), R(X_{ij'})) \]

Είναι όμως:
\[
\begin{align*}
\text{Var}(R(X_\theta)) &= E\left(R^2(X_\theta)\right) - \left[E(R(X_\theta))\right]^2 = \sum_{m=1}^{n} m^2 \frac{1}{n} - \left(\frac{n+1}{2}\right)^2 \\
&= \frac{(n+1)(n-1)}{12},
\end{align*}
\]

και επειδή
\[
P\left(R(X_\theta) = s, R(X_\theta) = k\right) = P\left(R(X_\theta) = k\right) P\left(R(X_\theta) = s / R(X_\theta) = k\right) = \frac{1}{n(n-1)},
\]

επομένως
\[
\text{Cov}(R(X_\theta), R(X_\theta)) = \sum_{k=1}^{n} \sum_{s,k,s} \left(k - E(R(X_\theta))\right)\left(s - ER(X_\theta)\right) P\left(R(X_\theta) = s, R(X_\theta) = k\right)
\]

δηλαδή
\[
\begin{align*}
\text{Cov}(R(X_\theta), R(X_\theta)) &= \sum_{k=1}^{n} \sum_{s,k,s} \left(k - \frac{n+1}{2}\right)\left(s - \frac{n+1}{2}\right) \frac{1}{n(n-1)} \\
&= \sum_{k=1}^{n} \sum_{s=1}^{s,k,s} \left(k - \frac{n+1}{2}\right)\left(s - \frac{n+1}{2}\right) \frac{1}{n(n-1)} - \sum_{k=1}^{n} \left(k - \frac{n+1}{2}\right)^2 \frac{1}{n(n-1)} \\
&= \frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2}\right) \sum_{s=1}^{s,k,s} \left(s - \frac{n+1}{2}\right) - \frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2}\right)^2.
\end{align*}
\]

Όμως
\[
\sum_{k=1}^{n} \left(k - \frac{n+1}{2}\right) = \sum_{s=1}^{s,k,s} \left(s - \frac{n+1}{2}\right) = n(\frac{n+1}{2}) - n(\frac{n+1}{2}) = 0,
\]

οπότε:
\[
\begin{align*}
\text{Cov}(R(X_\theta), R(X_\theta)) &= -\frac{1}{n(n-1)} \sum_{k=1}^{n} \left(k - \frac{n+1}{2}\right)^2 \\
&= -\frac{1}{n(n-1)} \left\{\sum_{k=1}^{n} k^2 - 2 \frac{n+1}{2} \sum_{k=1}^{n} k + \sum_{k=1}^{n} \left(\frac{n+1}{2}\right)^2\right\} \\
&= -\frac{1}{n(n-1)} \left\{\frac{n(n+1)(2n+1)}{6} - \frac{(n+1)^2 n}{2} + \frac{(n+1)^2 n}{4}\right\} \\
&= -\frac{1}{n(n-1)} \left\{\frac{n(n+1)(2n+1)}{6} - \frac{(n+1)^2 n}{4}\right\} \\
&= -\frac{1}{n(n-1)} \left\{\frac{4n^3 + 6n^2 + 2n - 3n^3 - 6n^2 - 3n}{12}\right\} \\
&= -\frac{1}{n(n-1)} \left\{\frac{n^3 - n}{12}\right\} = -\frac{n+1}{12}.
\end{align*}
\]

Επομένως
\[
Var(R_i) = \sum_{j=1}^{n_i} \frac{(n+1)(n-1)}{12} + \sum_{j=1}^{n_i} \sum_{l=1, l \neq j}^{n_i} - \frac{n+1}{12} \\
= \frac{n_i(n+1)(n-1)}{12} - \frac{n_i(n_i-1)(n+1)}{12} \\
= \frac{n_i(n+1)(n-n_i)}{12}.
\]

Παρατήρηση 5.1

Τα παραπάνω ουσιαστικά αποδεικνύουν ότι αν \(X \) είναι η t.μ. που παριστάνει το άθροισμα \(n_i \) ακέραιων που εκλέγονται στην τύχη χωρίς επανάθεση από τους \(n \) το πλήθος πρώτων ακέραιων αριθμούς, δηλαδή από το σύνολο \{1,...,n\}, τότε
\[
EX = \frac{n_i(n+1)}{2} \quad και \quad VarX = \frac{n_i(n+1)(n-n_i)}{12}.
\]

Επομένως από την Πρόταση 5.2 προκύπτει ότι:
\[
\sum_{i=1}^{k} \left(\frac{R_i - ER_i}{\sqrt{VarR_i}} \right)^2 = \sum_{i=1}^{k} \left(\frac{R_i - n_i(n+1)/2}{n_i(n+1)(n-n_i)} \right)^2 = \frac{12}{(n+1)} \sum_{i=1}^{k} \left(\frac{R_i - n_i(n+1)/2}{n_i(n-n_i)} \right)^2 \sim X^2_{k-1}.
\]

Επιπλέον οι Kruskal and Wallis (1952) απέδειξαν ότι το στατιστικό
\[
KW = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{1}{n_i} \left(\frac{R_i - n_i(n+1)/2}{2} \right)^2
\]

στην περίπτωση μη ύπαρξης δεσμών ακολουθεί προσεγγιστικά υπό τη μηδενική υπόθεση \(X^2 \) κατανομή με \(k-1 \) βαθμούς ελευθερίας και η μηδενική υπόθεση απορρίπτεται αν \(KW \geq X^2_{k-1,1-a} \), όπου \(X^2_{k-1,1-a} \) είναι το σημείο εκείνο για το οποίο ισχύει ότι \(P \left(X^2_{k-1,1-a} \right) = 1 - a \).

Επιπλέον τόσο οι Kruskal and Wallis (1952) όσο και οι Gabriel and Lachenbruch (1969) απέδειξαν ότι η παραπάνω προσέγγιση είναι ικανοποιητική ακόμα και για μικρά σε μέγεθος δείγματα.
Παρατηρήσεις 5.2

1. Σε περίπτωση ύπαρξης δεσμών δειγμάτων ανάμεσα στις δειγματικές παρατηρήσεις οι Kruskal and Wallis (1952) πρότειναν το στατιστικό:

\[KW^* = \frac{KW}{1 - \sum \left(\frac{d_i^3}{n^3 - n}\right)} \]

όπου \(KW \) είναι το σύνθετο στατιστικό των Kruskal and Wallis (1952) υπολογισμένο χρησιμοποιώντας τα midranks και \(d_i \) είναι το πλήθος των παρατηρήσεων που συμμετέχουν στον \(i \)-οστό δεσμό. Εύκολα αποδεικνύεται ότι στην περίπτωση μη ύπαρξης δεσμών \(KW^* = KW \).

2. Συνήθως η διαπίστωση ότι η μηδενική υπόθεση που μελετήθηκε σε τούτη την παράγραφο απορρίπτεται δεν αποτελεί τον τελικό σκοπό σε μία στατιστική μελέτη. Κι αυτό συμβαίνει γιατί το ενδιαφέρον μας επικεντρώνεται στον εντοπισμό των δειγμάτων που έχουν διαφορετικές διαμέσους και επομένως προέρχονται από διαφορετικούς πληθυσμούς. Κατά ανάλογο τρόπο, όπως στην κλασική παραμετρική στατιστική, για τον παραπάνω λόγο, προβαίνουμε στις αναλύσεις πολλαπλές συγκρίσεις (ή ονομασία αυτή προέκυψε από το γεγονός ότι στην ουσία έχουμε να κάνουμε με \(\binom{k}{2} \) το πλήθος ελέγχους). Σε αυτήν την περίπτωση οι πολλαπλές συγκρίσεις δεν είναι τίποτα άλλο παρά o έλεγχος ότι τα δείγματα από τον \(m \)-οστό και \(l \)-οστό πληθυσμό μπορούμε να θεωρήσουμε ότι προέρχονται από τον ίδιο πληθυσμό έναντι της εναλλακτικής ότι οι πληθυσμιακοί διάμεσοι αυτών διαφέρουν. Για το σκοπό αυτό χρησιμοποιείται το στατιστικό:

\[t = \frac{R_m - R_l}{\sqrt{\frac{S^2 \left(n-1-H^*\right)}{n-k} \left(\frac{1}{n_l} + \frac{1}{n_m}\right)}} \]

όπου

\[H^* = \frac{1}{\frac{S^2}{n-k} \left(\sum_{i=1}^{k} \frac{R_i^2}{n_i} - \frac{n(n+1)^2}{4}\right)} \]

και
Η κρίσιμη περιοχή του ελέγχου είναι \(|t| \geq t_{n-k,1-a/2}\), όπου \(t_{n-k,1-a/2}\) τέτοιο ώστε
\[P(t_{n-k} \leq t_{n-k,1-a/2}) = 1 - a/2 .\]

Άσκηση 5.1

Να προσδιορίσετε, υποθέτοντας ότι δεν υπάρχουν δεσμοί στις δειγματικές παρατηρήσεις, την ακριβή κατανομή του στατιστικού των Kruskal and Wallis (1952), όταν \(n_1 = 2\), \(n_2 = 1\) και \(n_3 = 1\), και να δείξετε ότι \(P(KW \geq 2.7) = 0.5\).

Λύση

Είναι
\[KW = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1) = \frac{12}{4*5} \sum_{i=1}^{3} \frac{R_i^2}{n_i} - 3*5 ,\]

επομένως για την υπό μελέτη περίπτωση θα πρέπει να βρούμε τις δυνατές τιμές του στατιστικού.

Οι παρατηρήσεις που είναι διαθέσιμες είναι 4 το πλήθος και έστω ότι είναι οι \(X_{11}, X_{12}, X_{21}, X_{31}\), όπου ο πρώτος δείκτης αναφέρεται στον πληθυσμό και ο δεύτερος στον αριθμό της παρατήρησης εντός αυτού. Θα πρέπει να υπολογιστούν αρχικά οι δυνατές τιμές των \(R_1, R_2, R_3\), όπου \(R_i = \sum_{j=1}^{n_i} R(X_{ij}), i = 1,2,3\) και \(R(X_{ij}) \) \(i = 1,2,3,\)

\(j = 1,...,n_i\), οι τάξεις των διαθέσιμων δειγματικών τιμών των τριών δειγμάτων στο σύνολό των \(n = 4\) παρατηρήσεων. Οι δυνατές περιπτώσεις τότε είναι 12 το πλήθος (γιατί;?) και είναι οι ακόλουθες:

\((R_1, R_2, R_3) = (3,3,4)\), και τότε \(KW = 2.7\), \((R_1, R_2, R_3) = (3,4,3)\) και τότε \(KW = 2.7\),

\((R_1, R_2, R_3) = (4,2,4)\) και τότε \(KW = 1.8\), \((R_1, R_2, R_3) = (4,4,2)\) και τότε \(KW = 1.8\),

\((R_1, R_2, R_3) = (5,2,3)\) και τότε \(KW = 0.3\), \((R_1, R_2, R_3) = (5,3,2)\) και τότε \(KW = 0.3\),

\((R_1, R_2, R_3) = (5,1,4)\) και τότε \(KW = 2.7\), \((R_1, R_2, R_3) = (5,4,1)\) και τότε \(KW = 2.7\),

\((R_1, R_2, R_3) = (6,1,3)\) και τότε \(KW = 1.8\), \((R_1, R_2, R_3) = (6,3,1)\) και τότε \(KW = 1.8\),
(R_1, R_2, R_3) = (7,1,2) και τότε KW = 2.7, και τέλος (R_1, R_2, R_3) = (7,2,1) και τότε \(KW = 2.7 \).

Επομένως, οι δυνατές τιμές του στατιστικού KW είναι \([0.3, 1.8, 2.7]\) και η συνάρτηση πυκνότητας πιθανότητας είναι:

\[
P(KW = x) = \begin{cases}
1/2 & \text{για } x = 2.7 \\
1/3 & \text{για } x = 1.8 \\
1/6 & \text{για } x = 0.3 \\
0 & \text{αλλού}
\end{cases}
\]

Άρα \(P(KW \geq 2.7) = 0.5 \).

Άσκηση 5.2

Να δείξετε ότι στην περίπτωση των δύο πληθυσμών τα στατιστικά τεστ των Kruskal and Wallis (1952) και Wilcoxon (1945), Mann and Whitney (1947) ταυτίζονται.

Λύση

Έστω ότι έχουμε \(k = 2 \) το πλήθος πληθυσμού και δύο ανεξάρτητα τυχαία δείγματα \(X_1, \ldots, X_n \) από τον \(i \)-οστό πληθυσμό \(i = 1, 2, k \geq 3 \). Θέλουμε να ελέγξουμε τη μη δεσμονομική υπόθεση: \(H_0 : F_1(x) = F_2(x) \), για κάθε \(x \in R \), έναντι της εναλλακτικής υπόθεσης \(H_1 : m_1 \neq m_2 \), όπου \(m_i \), \(i = 1, 2 \), η διάμεσος του \(i \)-οστού πληθυσμού.

Στην ειδική περίπτωση των δύο πληθυσμών το στατιστικό των Kruskal and Wallis (1952) λαμβάνει τη μορφή:

\[
KW = \frac{12}{n(n+1)} \sum_i \frac{1}{n_i} \left(R_i - \frac{n_i(n+1)}{2} \right)^2
\]

και επειδή υποθέτουμε μη ύπαρξη δεσμών στις δειγματικές τιμές είναι

\[
R_1 + R_2 = \frac{n(n+1)}{2} \Leftrightarrow R_2 = \frac{n(n+1)}{2} - R_1.
\]

Επομένως,
\[KW = \frac{12}{n(n+1)} \left[\frac{1}{n_1} \left(R_i - \frac{n_i(n+1)}{2} \right)^2 + \frac{1}{n_2} \left(R_i - \frac{n_2(n+1)}{2} \right)^2 \right] \]

\[= \frac{12}{n(n+1)} \left[\frac{1}{n_1} \left(R_i - \frac{n_i(n+1)}{2} \right)^2 + \frac{1}{n_2} \left(\frac{n(n+1)}{2} - R_i - \frac{n_2(n+1)}{2} \right)^2 \right] \]

\[= \frac{12}{n(n+1)} \left[- \frac{2}{n_1} \left(R_i - \frac{n_i(n+1)}{2} \right) + \frac{n_i(n+1)}{2} - R_i \right] \]

\[= \frac{12}{n(n+1)} \left[\frac{1}{n_1} + \frac{1}{n_2} \right] \left(R_i - \frac{n_i(n+1)}{2} \right)^2 \]

\[= \frac{12}{n(n+1)} \frac{n_1 + n_2}{n_1 n_2} \left(R_i - \frac{n_i(n+1)}{2} \right)^2 = \frac{12}{n_1 n_2 (n+1)} \left(R_i - \frac{n_i(n+1)}{2} \right)^2. \]

Επιπλέον στην περίπτωση μη ύπαρξης δεσμών ακολουθεί προσεγγιστικά υπό τη μηδενική υπόθεση \(X^2 \) κατανομή με \(k - 1 = 2 - 1 = 1 \) βαθμό ελευθερίας, δηλαδή

\[KW = \frac{12}{n_1 n_2 (n+1)} \left(R_i - \frac{n_i(n+1)}{2} \right)^2 \approx X_i^2 \]

και η μηδενική υπόθεση απορρίπτεται αν \(KW \geq X_{1,1-a}^2 \), όπου \(X_{1,1-a}^2 \) είναι το σημείο εκείνο για το οποίο ισχύει ότι \(P \left(X_i^2 \leq X_{1,1-a}^2 \right) = 1 - a \).

Σύμφωνα με το στατιστικό τεστ των Wilcoxon (1945), και Mann and Whitney (1947) η μηδενική υπόθεση απορρίπτεται για πολύ μικρές ή πολύ μεγάλες τιμές του στατιστικού

\[R_i - n(n+1)/2 = \sum_{j=1}^{n_i} R(X_{ij}) - n(n+1)/2. \]

Όμως για μεγάλα μεγέθη δείγματος ισχύει ότι:

\[\frac{R_i - ER_i}{\sqrt{VarR_i}} \sim N(0,1). \]

Λαμβάνοντας υπόψη ότι:

\[E(R_i) = \frac{n_i(n+1)}{2} \]

και

\[Var(R_i) = \frac{n_in_2(n+1)}{12} \]

προκύπτει ότι

91
\[
\alpha_{\text{ασυμπ.}} \sim N(0,1),
\]
οπότε
\[
\left(\frac{R_i - \frac{n_i(n+1)}{2}}{\sqrt{\frac{n_i n_z (n+1)}{12}}} \right)^2 = \frac{12}{n_i n_z (n+1)} \left(\frac{R_i - \frac{n_i(n+1)}{2}}{\sqrt{\frac{n_i n_z (n+1)}{12}}} \right)^2_{\text{ασυμπ.}} \sim X^2_1,
\]
που αποδεικνύει το ζητούμενο.

Ασκηση 5.3 (Kruskal and Wallis (1952))

Σε ένα εργοστάσιο τρεις μηχανές χρησιμοποιούνται για την παραγωγή δοχείων εμφιαλώσεως. Κατά τη διάρκεια μιας εργάσιμης εβδομάδας καταγράφεται ο αριθμός των δοχείων που κατασκευάστηκαν από κάθε μηχανή και τα αποτελέσματα παρατίθενται στον πίνακα που ακολουθεί, με την επιπλέον επισήμανση ότι κάποιες μέρες δεν παρήχθησαν δοχεία από κάποιες μηχανές λόγω ότι είχαν τεθεί εκτός λειτουργίας.

Μηχανή 1	340	345	330	342	338
Μηχανή 2	339	333	344		
Μηχανή 3	347	343	349	355	

Θέλουμε να ελέγξουμε αν υπάρχει στατιστικά σημαντική διαφορά ως προς την παραγωγή δοχείων των τριών μηχανών. Δίνεται ότι \(P(KW \geq 5.6564) = 0.049 \).

Λύση

Έχουμε διαθέσιμα τρία δείγματα, μεγέθους δείγματος \(n_i = 5 \), \(n_2 = 3 \), \(n_3 = 4 \), \(n = n_1 + n_2 + n_3 = 12 \). Αναμειγνύονται οι δειγματικές παρατηρήσεις \(X_j^i \), \(j = 1, \ldots, n_i \), \(i = 1, 2, 3 \), και στη συνέχεια διατάσσονται σε αύξουσα τάξη μεγέθους και υπολογίζονται οι τάξεις \(R(X_j^i) \), \(j = 1, \ldots, n_i \), \(i = 1, 2, 3 \) κάθε δειγματικής τιμής. Για
ευκολία στους μετέπειτα υπολογισμούς δημιουργούμε τον ακόλουθο πίνακα όπου στον εκθέτη σημειώνουμε το δείγμα από το οποίο προέρχεται η παρατήρηση:

<table>
<thead>
<tr>
<th>Τιμή παρατήρησης</th>
<th>330</th>
<th>333</th>
<th>338</th>
<th>339</th>
<th>340</th>
<th>342</th>
<th>343</th>
<th>344</th>
<th>345</th>
<th>347</th>
<th>349</th>
<th>355</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τάξη</td>
<td>1(^{\text{ι}})</td>
<td>2(^{\text{ι}})</td>
<td>3(^{\text{ι}})</td>
<td>4(^{\text{ι}})</td>
<td>5(^{\text{ι}})</td>
<td>6(^{\text{ι}})</td>
<td>7(^{\text{ι}})</td>
<td>8(^{\text{ι}})</td>
<td>9(^{\text{ι}})</td>
<td>10(^{\text{ι}})</td>
<td>11(^{\text{ι}})</td>
<td>12(^{\text{ι}})</td>
</tr>
</tbody>
</table>

Επομένως είναι:

\[R_1 = \sum_{j=1}^{5} R(X_{1j}) = 5 + 9 + 1 + 6 + 3 = 24 , \]
\[R_2 = \sum_{j=1}^{3} R(X_{2j}) = 4 + 2 + 8 = 14 , \]
και
\[R_3 = \sum_{j=1}^{4} R(X_{3j}) = 10 + 7 + 11 + 12 = 40 . \]

Επομένως είναι:

\[
KW = \frac{12}{n(n+1)} \sum_{i=1}^{3} \frac{R_i^2}{n_i} - 3(n+1) = \frac{12}{12(12+1)} \left(\frac{24^2}{5} + \frac{14^2}{3} + \frac{40^2}{4} \right) - 3(12+1) \\
= \frac{1}{13} (576 / 5 + 196 / 3 + 1600 / 4) - 3 \times 13 = \frac{1}{13} (115.2 + 65.333 + 400) - 39 \\
= 580.533 / 13 - 39 = 44.6564 - 39 = 5.6564.
\]

Από τον πίνακα των Kruskal and Wallis (βλέπε και Παπαιωάννου και Λουκάς (2002)) προκύπτει ότι:

\[P(KW \geq 5.6564) = 0.049 . \]

Αν χρησιμοποιηθεί ότι \(KW \sim X^2_{k-1} = X^2_2 \), προκύπτει με χρήση είτε του S.P.S.S. είτε του Microsoft Excel ότι:

\[P(KW \geq 5.6564) = 0.05911 . \]

Επομένως χρησιμοποιώντας την \(X^2_2 \) προσέγγιση οδηγούμε στο συμπέρασμα ότι δεν απορρίπτεται η μηδενική υπόθεση σε επίπεδο σημαντικότητας 5% ότι τα τρία δείγματα προέρχονται από τον ίδιο πληθυσμό.
Άσκηση 5.4

Στον πίνακα που ακολουθεί καταγράφεται το βάρος νεογνών από 4 διαφορετικές χώρες. Σε επίπεδο σημαντικότητα 5% να εξετάσετε αν τα 4 δείγματα προέρχονται από τον ίδιο πληθυσμό με το στατιστικό τεστ των Kruskal-Wallis.

Χώρα Α	2	2,8	3,3	3,2	3,9	3,6	
Χώρα Β	2,8	2	3,5	3,6	3,7	3,8	3,3
Χώρα Γ	2,7	2,1	2,6	2,8	3,7		
Χώρα Δ	2,6	3,3	3,2	2,9	3,8		

Λύση

Έχουμε διαθέσιμα τέσσερα δείγματα, μεγέθους δείγματος \(n_1 = 6, \ n_2 = 7, \ n_3 = 5, \ n_4 = 5, \ n = n_1 + n_2 + n_3 = 23 \). Αναμειγνύονται οι δειγματικές παρατηρήσεις \(X_{ij} \), \(j = 1,...,n_i, \ i = 1,2,3,4 \) και στη συνέχεια διατάσσονται σε αύξουσα τάξη μεγέθους και υπολογίζονται οι τάξεις \(R(X_{ij}), \ j = 1,...,n_i, \ i = 1,2,3,4, \) κάθε δειγματικής τιμής.

Για ευκολία στους μετέπειτα υπολογισμούς δημιουργούμε τον ακόλουθο πίνακα όπου στον εκθέτη σημειώνουμε το δείγμα από το οποίο προέρχεται η παρατήρηση:

<table>
<thead>
<tr>
<th>Τιμή</th>
<th>2</th>
<th>2</th>
<th>2.1</th>
<th>2.6</th>
<th>2.7</th>
<th>2.8</th>
<th>2.8</th>
<th>2.9</th>
<th>3.2</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τάξη</td>
<td>1.5(^t)</td>
<td>1.5(^2)</td>
<td>3(^t)</td>
<td>4.5(^4)</td>
<td>4.5(^4)</td>
<td>6(^t)</td>
<td>8(^t)</td>
<td>8(^3)</td>
<td>10(^t)</td>
<td>11.5(^t)</td>
</tr>
<tr>
<td>Τιμή</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.5</td>
<td>3.6</td>
<td>3.6</td>
<td>3.7</td>
<td>3.7</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Τάξη</td>
<td>14(^t)</td>
<td>14(^2)</td>
<td>14(^4)</td>
<td>16(^3)</td>
<td>17.5(^t)</td>
<td>17.5(^2)</td>
<td>19.5(^t)</td>
<td>19.5(^2)</td>
<td>21.5(^t)</td>
<td>21.5(^4)</td>
</tr>
</tbody>
</table>

Επομένως είναι:

\[
R_1 = \sum_{j=1}^{6} R(X_{1j}) = 1.5 + 8 + 11.5 + 14 + 17.5 + 23 = 75.5, \\
R_2 = \sum_{j=1}^{7} R(X_{2j}) = 1.5 + 8 + 14 + 16 + 19.5 + 17.5 + 21.5 = 98, \\
R_3 = \sum_{j=1}^{5} R(X_{3j}) = 3 + 4.5 + 6 + 8 + 19.5 = 41,
\]

και
\[R_4 = \sum_{j=1}^{5} R(X_{4j}) = 4.5 + 10 + 11.5 + 14 + 21.5 = 61.5. \]

Επιπλέον ο αριθμός των παρατηρήσεων σε κάθε δεσμό είναι: \[d_1 = d_2 = 2, \quad d_3 = 3, \]
\[d_4 = 2, \quad d_5 = 3 \] και \[d_6 = d_7 = d_8 = 2 \] αντίστοιχα.

Επομένως είναι:
\[KW^* = \frac{KW}{1 - \frac{\sum (d_i^3 - d_i)}{n^3 - n}}, \]

όπου
\[KW = \frac{12}{n(n+1)} \sum_{j=1}^{n} R_j^2 - 3(n+1) = \frac{12}{23(23+1)} \left(\frac{75.5^2}{6} + \frac{98^2}{7} + \frac{41^2}{5} + \frac{61.5^2}{5} \right) - 3(23+1) \]
\[= \frac{1}{46} (950,0417 + 1372 + 336,2 + 756,45) - 72 = \frac{1}{46} 3414,6917 - 72 \]
\[= 2,232 \]

και
\[1 - \frac{\sum (d_i^3 - d_i)}{n^3 - n} = 1 - \frac{(6*6 + 2*24)}{23^3 - 23} = 1 - \frac{84}{44677.5} = 0.99812, \]

οπότε
\[KW^* = \frac{KW}{1 - \frac{\sum (d_i^3 - d_i)}{n^3 - n}} = \frac{2.232}{0.99812} = 2.236. \]

Χρησιμοποιώντας την \(X^2 \) προσέγγιση προκύπτει ότι:
\[P(X^2 \geq 2.236) \approx 0.53. \]

Επομένως οδηγούμαστε στο συμπέρασμα ότι σε επίπεδο σημαντικότητας 5% τα τέσσερα δείγματα προέρχονται από τον ίδιο πληθυσμό.

Άσκηση 5.5 (βλέπε Hollander and Wolfe (1999))

Να προσδιορίσετε, υποθέτοντας ότι υπάρχουν δύο δεσμοί στις δειγματικές παρατηρήσεις μεταξύ των δύο πρώτων και δύο τελευταίων σε αύξουσα τάξη μεγεθών παρατηρήσεων, την ακριβή κατανομή του στατιστικού των Kruskal and Wallis (1952), όταν \(n_1 = 2, \quad n_2 = 2 \) και \(n_3 = 1 \).
Λύση

Είναι \(KW = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1) = \frac{12}{5*6} \sum_{i=1}^{3} \frac{R_i^2}{n_i} - 3*6 \), επομένως για την υπό

μελέτη περιπτώση θα πρέπει να βρούμε τις δυνατές τιμές του στατιστικού. Οι

παρατηρήσεις που είναι διαθέσιμες είναι 5 το πλήθος και λόγω της ύπαρξης

dεσμών οι τάξεις είναι (1,5,1,5,3, 4,5, 4,5). Θα πρέπει να υπολογιστούν

αρχικά οι δυνατές τιμές των \(R_1, R_2, R_3 \), όπου \(R_i = \sum_{j=1}^{n} R(X_{ij}) \), \(i = 1,2,3 \) και \(R(X_{ij}) \)
i = 1,2,3, j = 1,...,\(n_i \), οι τάξεις των διαθέσιμων δειγματικών τιμών των τριών

dειγμάτων στο σύνολο των \(n = 5 \) παρατηρήσεων. Οι δυνατές περιπτώσεις

tότε είναι 30 το πλήθος (γιατί;?) και παρατίθενται στον πίνακα που ακολουθεί.

Επομένως προκύπτει ότι οι δυνατές τιμές του στατιστικού \(KW \) είναι
[0,1,35,3,15,3,6,] και η συνάρτηση πυκνότητας πιθανότητας είναι:

\[
P(KW = x) = \begin{cases}
16/30, & \text{για } x = 1.35 \\
8/30, & \text{για } x = 3.15 \\
2/30, & \text{για } x = 3.6 \\
4/30, & \text{για } x = 0.
\end{cases}
\]
<table>
<thead>
<tr>
<th>Τάξεις παρατηρήσεων πρώτου πληθυσμού</th>
<th>Τάξεις παρατηρήσεων δεύτερου πληθυσμού</th>
<th>Τάξεις παρατηρήσεων τρίτου πληθυσμού</th>
<th>Τιμή KW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5,3</td>
<td>4.5,4.5</td>
<td>1.5</td>
<td>3.15</td>
</tr>
<tr>
<td>1.5,3</td>
<td>4.5,4.5</td>
<td>1.5</td>
<td>3.15</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>3.4,5</td>
<td>1.5</td>
<td>1.35</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>3.4,5</td>
<td>1.5</td>
<td>1.35</td>
</tr>
<tr>
<td>3.4,5</td>
<td>1.5,4.5</td>
<td>1.5</td>
<td>1.35</td>
</tr>
<tr>
<td>3.4,5</td>
<td>15.4.5</td>
<td>1.5</td>
<td>1.35</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>3.4,5</td>
<td>1.5</td>
<td>1.35</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>3.4,5</td>
<td>1.5</td>
<td>1.35</td>
</tr>
<tr>
<td>3.4,5</td>
<td>1.5,4.5</td>
<td>1.5</td>
<td>1.35</td>
</tr>
<tr>
<td>4.5,4.5</td>
<td>1.5,3</td>
<td>1.5</td>
<td>3.15</td>
</tr>
<tr>
<td>4.5,4.5</td>
<td>1.5,3</td>
<td>1.5</td>
<td>3.15</td>
</tr>
<tr>
<td>1.5,1.5</td>
<td>4.5,4.5</td>
<td>3</td>
<td>3.6</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>1.5,4.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>1.5,4.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>1.5,4.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.5,4.5</td>
<td>1.5,1.5</td>
<td>3</td>
<td>3.6</td>
</tr>
<tr>
<td>1.5,1.5</td>
<td>3.4,5</td>
<td>4.5</td>
<td>3.15</td>
</tr>
<tr>
<td>1.5,1.5</td>
<td>3.4,5</td>
<td>4.5</td>
<td>3.15</td>
</tr>
<tr>
<td>1.5,3</td>
<td>1.5,4.5</td>
<td>4.5</td>
<td>1.35</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>1.5,3</td>
<td>4.5</td>
<td>1.35</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>1.5,3</td>
<td>4.5</td>
<td>1.35</td>
</tr>
<tr>
<td>1.5,4.5</td>
<td>1.5,3</td>
<td>4.5</td>
<td>1.35</td>
</tr>
<tr>
<td>3.4,5</td>
<td>1.5,1.5</td>
<td>4.5</td>
<td>3.15</td>
</tr>
<tr>
<td>3.4,5</td>
<td>1.5,1.5</td>
<td>4.5</td>
<td>3.15</td>
</tr>
</tbody>
</table>
5.2 Έλεγχος ισότητας πληθυσμιακών διακυμάνσεων

Τα στατιστικά τεστ για τον έλεγχο της ισότητας δύο ή περισσότερων πληθυσμιακών διακυμάνσεων είναι μη ανθεκτικά σε αποκλίσεις από την κανονική κατανομή. Επομένως δεν πρέπει να χρησιμοποιούνται σε περιπτώσεις που οι πληθυσμοί δεν περιγράφονται ικανοποιητικά από την κανονική κατανομή. Σε αυτήν την παράγραφο θα αναπτυχθούν μη παραμετρικές μεθοδολογίες τόσο για τον έλεγχο της ισότητας δύο πληθυσμιακών διακυμάνσεων όσο και για τον έλεγχο της ισότητας περισσότερων των δύο πληθυσμιακών διακυμάνσεων.

5.2.1 Έλεγχος ισότητας δύο πληθυσμιακών διακυμάνσεων

Έστω δύο πληθυσμοί με αθροιστικές συναρτήσεις κατανομής $F_i, \ i = 1, 2, \ $ με πληθυσμιακές διακυμάνσεις σ_i^2 και σ_j^2 αντίστοιχα. Επιπλέον υποθέτουμε ότι είναι διαθέσιμα δύο ανεξάρτητα μεταξύ τους τυχαία δείγματα από αυτούς τους πληθυσμούς, ώστε $X_{11}, \ldots, X_{1n_1}, \text{ και } X_{21}, \ldots, X_{2n_2}, \text{ αντίστοιχα.}$ Θέλουμε να ελέγξουμε τη μηδενική υπόθεση $H_0 : \sigma_1^2 = \sigma_2^2$ έναντι μιας εκ των τριών εναλλακτικών υποθέσεων: i) $H_1 : \sigma_1^2 \neq \sigma_2^2,$ ii) $H_1 : \sigma_1^2 > \sigma_2^2$ και iii) $H_1 : \sigma_1^2 < \sigma_2^2.$

Σε όσα ακολουθούν με $\bar{X}_i, i = 1, 2, \ $ συμβολίζεται ο συνήθης δειγματικός μέσος του i-οστού πληθυσμού, $i = 1, 2, \text{ Δηλαδή}$

$$\bar{X}_i = \frac{\sum_{j=1}^{n_i} X_{ij}}{n_i}.$$

Οι Conover and Iman (1978) πρότειναν αρχικά να δημιουργούμε, να σχηματίζουμε, τις διαφορές $(X_{ij} - \bar{X}_i)^2,$ για $i = 1, 2, \ j = 1,\ldots, n_i.$ Στη συνέχεια οι $n = n_1 + n_2$ το πλήθος διαφορές αυτές αναμειγνύονται και διατάσσονται κατά αύξουσα θάξη. Αν με $\tilde{R}(X_{ij})$ συμβολίσουμε τις τάξεις αυτών πρότειναν να χρησιμοποιήσουμε το στατιστικό:

$$T = \sum_{j=1}^{n_i} \tilde{R}(X_{ij})$$

στην περίπτωση μη ύπαρξης δεσμών και το στατιστικό
στην περίπτωση ύπαρξης δεσμών, όπου το στατιστικό T υπολογίζεται από την ίδια
σχέση με τη μόνη διαφοροποίηση ότι χρησιμοποιείται ο μέσος όρος των τάξεων στην
περίπτωση δειγματικών παρατηρήσεων με δεσμούς,

$$V_R = n^{-1} \sum_{i=1}^{2} \sum_{j=1}^{n} \bar{R}(X_{ij})^2$$

και

$$W_R = \sum_{i=1}^{2} \sum_{j=1}^{n} \bar{R}(X_{ij})^4.$$

Ποσοστιαία σημεία αυτών των στατιστικών για τον έλεγχο της υπόθεσης της
ισότητας των πληθυσμιακών διακυμάνσεων παρατίθενται από τους Conover and
Iman (1978). Επιπλέον, για μεγέθη δείγματος μεγαλύτερα του 10, δηλαδή όταν
$n_i \geq 10, i = 1, 2$, αποδεικνύουν (βλέπε και Kvam and Vidakovic (2007)) ότι υπό τη
μηδενική υπόθεση:

$$Z = \frac{T - n_1(n+1)(2n+1)}{\sqrt{n_1n_2(n+1)(2n+1)(8n+11)}} \sim N(0,1).$$

Επιπλέον υποθέτουμε ότι a η μηδενική υπόθεση $H_0: \sigma_1^2 = \sigma_2^2$
απορρίπτεται έναντι i) της $H_1: \sigma_1^2 \neq \sigma_2^2$, αν $|Z| \geq z_{a/2}$, ii) της $H_1: \sigma_1^2 > \sigma_2^2$, αν $Z \geq z_a$
και iii) της $H_1: \sigma_1^2 < \sigma_2^2$, αν $Z \leq -z_a$.

5.2.2 Έλεγχος ισότητας περισσοτέρων των δύο πληθυσμιακών διακυμάνσεων

Έστω k το πλήθος πληθυσμοί, $k \geq 3$, με αθροιστικές συναρτήσεις κατανομής
$F_i, i = 1, 2, ..., k, k \geq 3$, και με πληθυσμιακές διακυμάνσεις $\sigma_i^2, i = 1, 2, ..., k, k \geq 3$.
Επιπλέον υποθέτουμε ότι είναι διαθέσιμη k το πλήθος ανεξάρτητα μεταξύ τους
tυχαία δείγματα από αυτούς του πληθυσμούς, έστω $X_{i1}, ..., X_{in}, i = 1, 2, ..., k, k \geq 3$.

99
Θέλουμε να ελέγξουμε τη μηδενική υπόθεση $H_0 : \sigma_i^2 = \sigma_j^2 = \ldots = \sigma_k^2, \quad k \geq 3$, έναντι της εναλλακτικής υπόθεσης ότι $H_1 : \sigma_i^2 \neq \sigma_m^2$, όπου $l,m = 1,...,k, \ l \neq m, \ k \geq 3$.

Σε όσα ακολουθούν με $\bar{X}_i, \ i = 1,2,...,k, \ k \geq 3$, συμβολίζεται ο συνήθης δειγματικός μέσος του i-οστού πληθυσμού, $i = 1,2,...,k, \ k \geq 3$. Δηλαδή

$$\sum_{i=1}^{n_i} \frac{X_{ij}}{n_i}, \ i = 1,...,k, \ k \geq 3.$$

Αρχικά σχηματίζουμε τις διαφορές $(X_{ij} - \bar{X}_i)^2$, για $i = 1,2,...,k, \ k \geq 3, \ j = 1,...,n_i$. Στη συνέχεια οι $n = n_1 + n_2 + \ldots + n_k, \ k \geq 3$, το πλήθος διαφορές αυτές αναμειγνύονται και διατάσσονται κατά αύξουσα τάξη. Αν με $\tilde{R}(X_{ij})$ συμβολίσουμε τις τάξεις αυτών χρησιμοποιούμε το στατιστικό:

$$T = \frac{\sum_{i=1}^{k} (T_i^2 / n_i) - n \bar{T}^2}{V_T},$$

όπου

$$T_i = \sum_{j=1}^{n_i} \tilde{R}(X_{ij})^2,$$

$$\bar{T} = n^{-1} \sum_{i=1}^{k} T_i,$$

και

$$V_T = (n-1)^{-1} \left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} \tilde{R}(X_{ij})^4 - n \bar{T}^2 \right).$$

Παρατήρηση 5.3

Στην περίπτωση της μη ύπαρξης δεσμών τότε το παραπάνω στατιστικό απλοποιείται λαμβάνοντας υπόψη ότι:

$$\bar{T} = (n+1)(2n+1)/6,$$

και

$$V_T = n(n+1)(2n+1)(8n+11)/180.$$

Υπό τη μηδενική υπόθεση αποδεικνύεται (βλέπε, μεταξύ άλλων, Conover (1999) και Kvam and Vidakovic (2007)) ότι:
\[
T = \sum_{i=1}^{k} \frac{(T_i^2 / n_i) - n\overline{T}^2}{V_r} \text{ asympt. } \sim X_{k-1}^2.
\]

Επομένως η μηδενική υπόθεση απορρίπτεται σε επίπεδο σημαντικότητας \(a \) όταν:
\[
T \geq X_{k-1,1-a}^2,
\]
όπου \(X_{k-1,1-a}^2 \) τέτοιο ώστε \(P(X_{k-1}^2 \leq X_{k-1,1-a}^2) = 1 - a \).

Σε περίπτωση που η μηδενική υπόθεση απορρίπτεται θέλοντας να εντοπίσουμε σε ποιους πληθυσμούς έχουμε άνισες διακυμάνσεις προχωρούμε σε έλεγχο πολλαπλών συγκρίσεων, δηλαδή στους επιμέρους ελέγχους της \(H_0: \sigma_i^2 = \sigma_m^2 \), όπου \(l, m = 1, \ldots, k, \ k \geq 3 \), με \(l \neq m \), χρησιμοποιώντας το στατιστικό:
\[
t = \frac{T_l - T_m}{n_l^{1/2} n_m^{1/2}} \sqrt{\frac{1}{n_l} + \frac{1}{n_m}} V_r \left(\frac{n-1-T}{n-k} \right)
\]
και κρίσιμη περιοχή την \(|t| \geq t_{n-k,1-a/2} \), όπου \(t_{n-k,1-a/2} \) τέτοιο ώστε:
\[
P(t_{n-k} \leq t_{n-k,1-a/2}) = 1 - a / 2.
\]
Έκτο Κεφάλαιο

Μέτρα Συσχέτισης

6.1 Συντελεστής συσχέτισης του Pearson

Έστω οι συνεχείς τυχαίες μεταβλητές X και Y. Το ενδιαφέρον μας επικεντρώνεται στη διερεύνηση της ύπαρξης ή μη γραμμικής σχέσης μεταξύ αυτών. Για παράδειγμα, ενδιαφέρομαστε για την ύπαρξη ή όχι γραμμικής σχέσης μεταξύ του ύψους και του βάρους ενήλικων ατόμων, των εξόδων και των εσόδων μιας εταιρείας κ.ο.κ. Ένα μέτρο συσχέτισης είναι ο πληθυσμιακός ή θεωρητικός συντελεστής συσχέτισης, ο οποίος συμβολίζεται με ρ ή \(\rho(X,Y) \) και ορίζεται από την ακόλουθη σχέση:

\[
\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}X \cdot \text{Var}Y}},
\]

όπου \(\text{Var}X \) και \(\text{Var}Y \) είναι η πληθυσμιακή διακύμανση (variance) της X και της Y, αντίστοιχα, ενώ \(\text{Cov}(X,Y) \) είναι η συνδιακύμανση (covariance) των X και Y. Η συνδιακύμανση των X και Y δίνεται από τη σχέση:

\[
\text{Cov}(X,Y) = E[(X - EX)(Y - EY)] = E(XY) - EXEY,
\]

και αποτελεί ένα μέτρο της συμπεριπτώτητας των X και Y, μη απαλλαγμένο από τις μονάδες μέτρησης των μεταβλητών.

Σε αντίθεση με τη συνδιακύμανση, ο συντελεστής συσχέτισης \(\rho(X,Y) \) είναι απαλλαγμένος από μονάδες, δηλαδή πρόκειται για έναν καθαρό αριθμό (βλέπε, μεταξύ άλλων, Κούτρας (2004)). Ειδικότερα ο συντελεστής συσχέτισης λαμβάνει τιμές στο διάστημα \([-1,1]\). Αν \(\rho(X,Y) = 0 \), δηλαδή αν \(\text{Cov}(X,Y) = 0 \) τότε οι
μεταβλητές \(X \) και \(Y \) χαρακτηρίζονται ως γραμμικά ασυσχέτιστες. Επιπλέον τιμές του συντελεστής συσχέτισης κοντά στο 1 (αντίστοιχα στο -1) υποδεικνύουν την ύπαρξη γραμμικής θετικής (αντίστοιχα αρνητικής) σχέσης. Αυτό σημαίνει ότι μεγάλες τιμές της μιας μεταβλητής αντιστοιχούν σε μεγάλες (αντίστοιχα σε μικρές) τιμές της άλλης.

Στην πράξη ο θεωρητικός συντελεστής συσχέτισης είναι δύσκολο να υπολογιστεί. Για το λόγο αυτό εκτιμάται από το λεγόμενο (δειγματικό) συντελεστή συσχέτισης του Pearson.

Έστω \((X_1,Y_1),\ldots,(X_n,Y_n) \) ένα τυχαίο δείγμα από \(n \) ζεύγη παρατηρήσεων για τις τυχαίες μεταβλητές \(X, Y \). Ο συντελεστής συσχέτισης του Pearson συμβολίζεται με \(r(X,Y) \) ή \(r \) και δίνεται από τη σχέση:

\[
r(X,Y) = \frac{\sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n}(Y_i - \bar{Y})^2}},
\]

ή ισοδύναμα από τη σχέση:

\[
r(X,Y) = \frac{\sum_{i=1}^{n}X_iY_i - \frac{\sum_{i=1}^{n}X_i\sum_{i=1}^{n}Y_i}{n}}{\sqrt{\sum_{i=1}^{n}X_i^2 - \frac{\left(\sum_{i=1}^{n}X_i\right)^2}{n}} \sqrt{\sum_{i=1}^{n}Y_i^2 - \frac{\left(\sum_{i=1}^{n}Y_i\right)^2}{n}}}.
\]

Παρατηρήσεις 6.1

1. Εύκολα προκύπτει ότι \(r(X,Y) = r(Y,X) \).
2. Ο δειγματικός συντελεστής συσχέτισης λαμβάνει τιμές στο διάστημα \([-1,1]\) με ανάλογη, αντίστοιχη ερμηνεία με αυτήν που δόθηκε για τις τιμές του πληθυσμιακού συντελεστή συσχέτισης.
3. Ορίζεται για ποσοτικές μεταβλητές μόνο και επηρεάζεται από την ύπαρξη ακραίων τιμών στο τυχαίο δείγμα των \(n \) το πλήθος παρατηρήσεων \((X_1,Y_1),\ldots,(X_n,Y_n) \).
4. Τέλος προκύπτει ότι ο συντελεστής συσχέτισης είναι το συνημίτονο της γωνίας Φ μεταξύ των δύο γραμμών παλινδρόμησης \(Y = g_X(X) \) και \(X = g_Y(Y) \).
Θέλοντας να ελέγξουμε αν δύο ποσοτικές τυχαίες μεταβλητές δεν συνδέονται γραμμικά προβαίνουμε στο στατιστικό έλεγχο της μηδενικής υπόθεσης: $H_0: \rho = 0$, δηλαδή της υπόθεσης της μη ύπαρξης γραμμικής συσχέτισης έναντι μίας εκ των τριών εναλλακτικών υποθέσεων:

i) $H_1: \rho > 0$, δηλαδή της ύπαρξης γραμμικής θετικής εξάρτησης

ii) $H_1: \rho < 0$, δηλαδή της ύπαρξης γραμμικής αρνητικής εξάρτησης και

iii) $H_1: \rho \neq 0$, δηλαδή της ύπαρξης είτε γραμμικής θετικής εξάρτησης είτε γραμμικής αρνητικής εξάρτησης.

Με την προϋπόθεση, υπόθεση ότι το διδιάστατο διάνυσμα $(X, Y)'$ ακολουθεί διδιάστατη κανονική κατανομή (δηλαδή υποθέτοντας ότι η από κοινού κατανομή των X, Y είναι διδιάστατη κανονική, γεγονός που σημαίνει ότι τουλάχιστον η καθεμία από αυτές ακολουθεί κανονική κατανομή) το στατιστικό για τον έλεγχο των παραπάνω είναι το:

$$
t = \frac{r \sqrt{n-2} / H_0}{\sqrt{1-r^2}} \sim t_{n-2}.
$$

Οι κρίσιμες περιοχές του ελέγχου με επίπεδο σημαντικότητας a είναι:

i) $t \geq t_{n-2,a}$ ii) $t \leq -t_{n-2,a}$ και iii) $|t| \geq t_{n-2,a/2}$, αντίστοιχα.

Παρατήρησης 6.2

1. Η απόδειξη του πιο πάνω αποτελέσματος γίνεται εύκολα ανακαλώντας αποτελέσματα της Θεωρίας Γραμμικών Μοντέλων και ειδικότερα της απλής γραμμικής παλινδρόμησης. Είναι γνωστό ότι το στατιστικό $T = \frac{R^2}{(1-R^2)/(n-2)}$, όπου R^2 ο συντελεστής προσδιορισμού, ακολουθεί υπό την υπόθεση της μη ύπαρξης γραμμικής σχέσης μεταξύ των δύο τυχαίων μεταβλητών $F_{1,n-2}$. Επιπλέον $R^2 = r^2$ και καθώς $F_{1,n-2} = t^2_{n-2} \propto$ συνδυασμό αυτών το παραπάνω αποτέλεσμα.
2. Στην ειδική περίπτωση του ελέγχου της μηδενικής υπόθεσης $H_0 : \rho = \rho_0$, όπου ρ_0 γνωστός αριθμός τέτοιος ώστε $\rho_0 \in [-1,1]$, με $\rho_0 \neq 0$, έναντι μιας εκ των τριών εναλλακτικών: i) $H_1 : \rho > \rho_0$, ii) $H_1 : \rho < \rho_0$, και iii) $H_1 : \rho \neq \rho_0$, δε χρησιμοποιείται το t στατιστικό της πιο πάνω σχέσης αλλά χρησιμοποιείται το ακόλουθο στατιστικό:

$$Z = \frac{W - EW}{\sqrt{VarW}} \sim \text{N}(0,1),$$

όπου $W = \frac{1}{2} \ln \frac{1+r}{1-r}$ είναι ο γνωστός μετασχηματισμός του Fisher με $EW = \frac{1}{2} \ln \frac{1+\rho_0}{1-\rho_0}$ και $VarW = \frac{1}{n-3}$, και οι κρίσιμες περιοχές είναι: i) $Z \geq z_a$, ii) $Z \leq -z_a$, και iii) $|Z| \geq z_{a/2}$, αντίστοιχα. Η προσέγγιση είναι ικανοποιητική για μέγεθος δείγματος μεγαλύτερο από 50 και μπορεί να χρησιμοποιηθεί και για την κατασκευή διαστήματος εμπιστοσύνης για το θεωρητικό συντελεστή συσχέτισης.

Όπως έχει ήδη αναφερθεί ο συντελεστής συσχέτισης του Pearson προϋποθέτει δύο ποσοτικές μεταβλητές, μη ύπαρξη ακραίων τιμών και επιπλέον για το στατιστικό έλεγχο υποθέσεων υποθέτουμε ότι το τυχαίο διάνυσμα $(X,Y)'$ ακολουθεί διδιάστατη κανονική κατανομή. Για κάθε άλλη περίπτωση κρίνεται αναγκαία η χρήση των μέτρων συσχέτισης των επόμενων παραγράφων.

6.2 Συντελεστής συσχέτισης του Spearman

Έστω $(X_1,Y_1),...,(X_n,Y_n)$, ένα τυχαίο δείγμα από n ζεύγη παρατηρήσεων για τις τυχαίες μεταβλητές X και Y. Επιπλέον, έστω $R_1,...,R_n$, και $S_1,...,S_n$, οι τάξεις των δειγματικών τιμών των X και Y, αντίστοιχα. Επισημαίνουμε ότι σε περίπτωση ύπαρξης δεσμών ακραίων αντιστοιχούμε σε κάθε μία από τις ίσες αυτές τιμές το μέσο όρο των τάξεων που θα είχαν αν δεν ταυτίζονταν. Τότε, ο συντελεστής συσχέτισης του Spearman, ο οποίος θα συμβολίζεται με r_s, ορίζεται-δίνεται από τη σχέση:

$$r_s = \frac{\sum_{i=1}^{n} (R_i - \bar{R})(S_i - \bar{S})}{\sqrt{\sum_{i=1}^{n} (R_i - \bar{R})^2} \sqrt{\sum_{i=1}^{n} (S_i - \bar{S})^2}},$$

106
όπου \(\bar{R} = \frac{\sum R_i}{n} \) και \(\bar{S} = \frac{\sum S_i}{n} \).

Επομένως, ο συντελεστής συσχέτισης του Spearman δεν είναι τίποτε άλλο παρά ο συντελεστής συσχέτισης του Pearson όταν αυτός εφαρμόζεται στις τάξεις \(R_1,...,R_n \), και \(S_1,...,S_n \) αντί για τις παρατηρήσεις \((X_1,Y_1),...,(X_n,Y_n) \). Όπως και ο συντελεστής συσχέτισης του Pearson ο αντίστοιχος του Spearman λαμβάνει τιμές στο διάστημα \([-1,1]\) και ερμηνεύεται κατά τον ίδιο τρόπο.

Στην πρόταση που ακολουθεί δίνονται ισοδύναμες εκφράσεις για το συντελεστή συσχέτισης του Spearman στην περίπτωση της μη ύπαρξης δεσμών.

Πρόταση 6.1

Έστω \(R_1,...,R_n \), και \(S_1,...,S_n \), οι τάξεις των δειγματικών τιμών των \(X \) και \(Y \) αντίστοιχα. Υποθέτοντας ότι δεν υπάρχουν δεσμοί, προκύπτουν οι ακόλουθες ισοδύναμες εκφράσεις για το συντελεστή συσχέτισης του Spearman:

\[
\alpha) \quad r_s = \frac{\sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_i - \frac{n+1}{2} \right)}{\sqrt{n(n^2-1)/12}}, \quad \text{kai}
\]

\[
\beta) \quad r_s = 1 - \frac{6 \sum_{i=1}^{n} (R_i - S_i)^2}{n(n^2-1)}.
\]

Απόδειξη

α) Στην περίπτωση μη ύπαρξης δεσμών ισχύουν οι ακόλουθες σχέσεις:

\[
\bar{R} = \frac{\sum_{i=1}^{n} R_i}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2},
\]

και

\[
\bar{S} = \frac{\sum_{i=1}^{n} S_i}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2},
\]

ενώ
\[
\sum_{i=1}^{n} (R_i - \overline{R})^2 = \sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right)^2 = \sum_{i=1}^{n} R_i^2 - (n+1) \sum_{i=1}^{n} R_i + \left(\frac{n+1}{2} \right)^2 \sum_{i=1}^{n} 1,
\]

dηλαδή
\[
\sum_{i=1}^{n} (R_i - \overline{R})^2 = \sum_{i=1}^{n} i^2 - (n+1) \sum_{i=1}^{n} i + \frac{(n+1)^2}{4} n = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)^2}{2} + \frac{n(n+1)^2}{4}.
\]

% Επομένως
\[
\sum_{i=1}^{n} (R_i - \overline{R})^2 = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)^2}{4} = \frac{n^3 - n}{12} = \frac{n(n^2 - 1)}{12}.
\]

% Με παρόμοιο τρόπο
\[
\sum_{i=1}^{n} (S_i - \overline{S})^2 = \frac{n(n^2 - 1)}{12}.
\]

% Εποτεά λαμβάνοντας υπόψη τον ορισμό του συντελεστή συσχέτισης του Spearman προκύπτει ότι:
\[
R_s = \frac{\sum_{i=1}^{n} (R_i - \overline{R})(S_i - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_i - \overline{R})^2} \sqrt{\sum_{i=1}^{n} (S_i - \overline{S})^2}} = \frac{\sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_i - \frac{n+1}{2} \right)}{\sqrt{n(n^2 - 1)}/12}.
\]

% β) Θέλουμε να δείξουμε ότι στην περίπτωση μη ύπαρξης δεσμών
\[
R_s = 1 - \frac{6 \sum_{i=1}^{n} (R_i - S_i)^2}{n(n^2 - 1)}.
\]

% Επομένως αρκεί να δείξουμε ότι:
\[
\sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_i - \frac{n+1}{2} \right) = 6 \sum_{i=1}^{n} (R_i - S_i)^2 / n(n^2 - 1),
\]

% ή ισοδύναμα ότι
\[
12 \sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_i - \frac{n+1}{2} \right) = n(n^2 - 1) - 6 \sum_{i=1}^{n} (R_i - S_i)^2.
\]

% Ισχύει ότι:
\[
12 \sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_i - \frac{n+1}{2} \right) = 12 \left\{ \sum_{i=1}^{n} R_i S_i - \frac{n+1}{2} \sum_{i=1}^{n} R_i - \frac{n+1}{2} \sum_{i=1}^{n} S_i + \frac{(n+1)^2}{4} \sum_{i=1}^{n} 1 \right\}.
\]
Καθώς δεν υπάρχουν δεσμοί προκύπτει ότι:

\[
12 \sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_j - \frac{n+1}{2} \right) = 12 \left\{ \sum_{i=1}^{n} R_i S_j - \frac{n+1}{2} \sum_{i=1}^{n} i - \frac{n+1}{2} \sum_{j=1}^{n} j + \frac{(n+1)^2}{4} n \right\} \\
= 12 \left\{ \sum_{i=1}^{n} R_i S_j - \frac{n+1}{2} n(n+1) - \frac{n+1}{2} n(n+1) + \frac{(n+1)^2}{4} n \right\} \\
= 12 \left\{ \sum_{i=1}^{n} R_i S_j - \frac{(n+1)^2}{4} n \right\}.
\]

Επιπλέον

\[
n(n^2-1) - 6 \sum_{i=1}^{n} (R_i - S_i)^2 = n(n^2-1) - 6 \left\{ \sum_{i=1}^{n} i^2 - 2 \sum_{i=1}^{n} R_i S_j + \sum_{i=1}^{n} S_i^2 \right\},
\]

οπότε

\[
n(n^2-1) - 6 \sum_{i=1}^{n} (R_i - S_i)^2 = n(n^2-1) - 6 \left\{ \sum_{i=1}^{n} i^2 - 2 \sum_{i=1}^{n} R_i S_j + \sum_{i=1}^{n} S_i^2 \right\} \\
= 12 \sum_{i=1}^{n} R_i S_j + n(n^2-1) - 12 \sum_{i=1}^{n} i^2 \\
= 12 \sum_{i=1}^{n} R_i S_j + n(n^2-1) - 12 \frac{n(n+1)(2n+1)}{6} \\
= 12 \sum_{i=1}^{n} R_i S_j + n(n^2-1) - 2n(n+1)(2n+1) \\
= 12 \left\{ \sum_{i=1}^{n} R_i S_j - \frac{(n+1)^2}{4} n \right\},
\]

και η απόδειξη ολοκληρώθηκε.

Όπως και ο συντελεστής συσχέτισης του Pearson έτσι και ο αντίστοιχος του Spearman χρησιμοποιείται ως στατιστικό για τον έλεγχο της μη ύπαρξης συσχέτισης μεταξύ δύο μεταβλητών. Ειδικότερα χρησιμοποιείται για τον έλεγχο της μηδενικής υπόθεσης νη: \(H_0 : \rho = 0 \), δηλαδή της υπόθεσης ότι οι τυχαίες μεταβλητές \(X \) και \(Y \) είναι αμοιβαία ανεξάρτητες (mutually independent), έναντι μιας εκ των τριών εναλλακτικών:

i) \(H_1 : \rho > 0 \), δηλαδή της τάσης μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μεγάλες τιμές της άλλης και αντίστροφα,

ii) \(H_1 : \rho < 0 \), δηλαδή της τάσης μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μικρές τιμές της άλλης και αντίστροφα, και

109
iii) $H_i: \rho \neq 0$, δηλαδή της τάσης είτε μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μεγάλες τιμές της άλλης και αντίστροφα είτε μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μικρές τιμές της άλλης και αντίστροφα.

Για τον έλεγχο των παραπάνω χρησιμοποιείται ο συντελεστής συσχέτισης του Spearman r_s. Στον Πίνακα 10 (βλέπε μεταξύ άλλων και Χατζηνικολάου (2002, σελ. 562) και αναφορές εκεί) δίνονται οι κρίσιμες τιμές για το συντελεστή συσχετίσεως του Spearman, ενώ στη βιβλιογραφία είναι διαθέσιμα και ποσοστιαία σημεία του r_s υπό τη μηδενική υπόθεση. Τότε οι κρίσιμες περιοχές για τον έλεγχο κάθε μίας από τις παραπάνω είναι:

i) Απορρίπτεται η μηδενική υπόθεση για μεγάλες τιμές του r_s, δηλαδή όταν ο συντελεστής συσχέτισης του Spearman ξεπερνά το $1-\alpha$ ποσοστιαίο σημείο του.

ii) Απορρίπτεται η μηδενική υπόθεση για μικρές τιμές του r_s, δηλαδή όταν ο συντελεστής συσχέτισης του Spearman δεν ξεπερνά το α ποσοστιαίο σημείο του.

iii) Απορρίπτεται η μηδενική υπόθεση είτε όταν ο συντελεστής συσχέτισης του Spearman δεν ξεπερνά το $\alpha/2$ ποσοστιαίο σημείο του είτε όταν ο συντελεστής συσχέτισης του Spearman ξεπερνά το $1-\alpha/2$ ποσοστιαίο σημείο του.

Σε περίπτωση που χρησιμοποιούνται οι κρίσιμες τιμές του Πίνακα 10, απορρίπτουμε την μηδενική υπόθεση αν η απόλυτη τιμή του συντελεστή συσχέτισης του Spearman είναι μεγαλύτερη από την αντίστοιχη κρίσιμη τιμή.

Παρατηρήσεις 6.3

1. Εναλλακτικά κάποιος μπορεί να χρησιμοποιήσει το στατιστικό $T = \sum_{i=1}^{n}\left(R_i - S_i\right)^2$, το οποίο στη βιβλιογραφία ονομάζεται στατιστικό των Hotelling and Pabst (1936) και ποσοστιαία του σημείου είναι διαθέσιμα στη βιβλιογραφία (βλέπε Πίνακα 9 Conover (1971)). Όμως λόγω της σχέσης β) της Πρότασης 6.1, προκύπτει ότι μεγάλες τιμές του συντελεστή συσχέτισης του Spearman αντιστοιχούν σε μικρές τιμές του στατιστικού των Hotelling and Pabst (1936) και αντίστροφα. Επομένως, οι κρίσιμες περιοχές για τον έλεγχο κάθε μίας από τις παραπάνω είναι:
i) Απορρίπτεται η μηδενική υπόθεση για μικρές τιμές του T, δηλαδή όταν το στατιστικό των Hotelling and Pabst (1936) δε ξεπερνά το α ποσοστιαίο σημείο του.

ii) Απορρίπτεται η μηδενική υπόθεση για μεγάλες τιμές του T, δηλαδή όταν το στατιστικό των Hotelling and Pabst (1936) ξεπερνά το 1-α ποσοστιαίο σημείο του.

iii) Απορρίπτεται η μηδενική υπόθεση είτε όταν το στατιστικό των Hotelling and Pabst ξεπερνά το 1-α ποσοστιαίο σημείο του είτε όταν το στατιστικό των Hotelling and Pabst δε ξεπερνά το α ποσοστιαίο σημείο του.

2. Στην περίπτωση ύπαρξης δεσμών (ties) μεταξύ των X_i ή των Y_i η κλασική αντιμετώπιση όπως έχει ήδη αναφερθεί είναι ο υπολογισμός, σε κάθε μία από τις ίσες αυτές τιμές, του μέσου όρου των τάξεων που θα είχαν αν δεν ταυτίζονταν. Αν $u_1,u_2,...$ και $v_1,v_2,...$ είναι οι τάξεις των δειγματικών τιμών X_i και Y_i, αντίστοιχα, όπου έχουμε δεσμούς, τότε ο συντελεστής συσχέτισης εναλλακτικά υπολογίζεται από τη σχέση:

$$
r = \frac{n(n^2-1)-6\sum(R_i - S_i)^2 - 6(U + V)}{\sqrt{\{n(n^2-1)-U\}\{n(n^2-1)-V\}}}^{1/2},$$

όπου

$$U = \sum(u_i^3 - u_i),$$

και

$$V = \sum(v_i^3 - v_i).$$

Στην πρόταση που ακολουθεί προσδιορίζεται η κατανομή του δειγματικού συντελεστή του Spearman υπό τη μηδενική υπόθεση όταν το το μέγεθος δείγματος n είναι $n \geq 30$, και δεν υπάρχουν δεσμοί μεταξύ των παρατηρήσεων.

Πρόταση 6.2

Υπό την υπόθεση ότι οι τυχαίες μεταβλητές είναι ασυσχέτιστες και με την προϋπόθεση ότι δεν υπάρχουν δεσμοί μεταξύ των παρατηρήσεων αποδεικνύεται ότι

$$Z = r\sqrt{n-1} \sim N(0,1).$$
Απόδειξη

Από την Πρόταση 6.1 a) προκύπτει ότι στην περίπτωση μη ύπαρξης δεσμών

$$r_s = \frac{1}{n(n^2-1)/12} \sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_i - \frac{n+1}{2} \right) = \frac{12 \sum_{i=1}^{n} R_i S_i}{n(n^2-1)} - \frac{3(n+1)}{n-1}.$$

Τότε υπό τη μηδενική υπόθεση ότι οι τυχαίες μεταβλητές είναι ασυσχέτιστες προκύπτει ότι

$$Er_r = \frac{12 \sum_{i=1}^{n} E(R_i S_i)}{n(n^2-1)} - \frac{3(n+1)}{n-1} = \frac{12 \sum_{i=1}^{n} E(R_i) E(S_i)}{n(n^2-1)} - \frac{3(n+1)}{n-1} = \frac{12n E(R_i) E(S_i)}{n(n^2-1)} - \frac{3(n+1)}{n-1}$$

και λαμβάνοντας υπόψη την Πρόταση 3.2 προκύπτει ότι

$$Er_r = \frac{12n}{2} \frac{n+1}{2} - \frac{3(n+1)}{n-1} = 0.$$

Ακόμη:

$$Var(r_s) = \frac{12^2 Var \left(\sum_{i=1}^{n} R_i S_i \right)}{n^2(n^2-1)^2},$$

με

$$Var \left(\sum_{i=1}^{n} R_i S_i \right) = \sum_{i=1}^{n} Var(R_i S_i) + \sum_{i=1}^{n} \sum_{j=1,j\neq i}^{n} Cov(R_i S_i, R_j S_j)$$

$$= n VarR_i VarS_i + n(n-1) Cov(R_i, R_j) Cov(S_i, S_j).$$

Lambdaβάνοντας υπόψη την Πρόταση 3.2 δηλαδή ότι VarR_i = VarS_i = \frac{n^2-1}{12} και Cov(R_i, R_j) = Cov(S_i, S_j) = -\frac{n+1}{12}, ύστερα από λίγες αλγεβρικές πράξεις καταλήγουμε ότι Var(r_s) = \frac{1}{n-1}, και το ζητούμενο αποδεικνύεται με άμεση εφαρμογή του Κ.Ο.Θ.

Το παραπάνω στατιστικό Z χρησιμοποιείται για τον έλεγχο της μηδενικής υπόθεσης H_0: \rho = 0, έναντι μιας εκ των τριών εναλλακτικών:
i) \(H_1 : \rho > 0 \), ii) \(H_1 : \rho < 0 \), και iii) \(H_1 : \rho \neq 0 \), και οι κρίσιμες περιοχές για τον έλεγχο κάθε μίας από τις παραπάνω είναι:

i) Απορρίπτεται η μηδενική υπόθεση όταν \(Z = r \sqrt{n-1} \geq z_a \),

ii) Απορρίπτεται η μηδενική υπόθεση όταν \(Z = r \sqrt{n-1} \leq -z_a \),

iii) Απορρίπτεται η μηδενική υπόθεση όταν \(|Z| = \left| r \sqrt{n-1} \right| \geq z_{a/2} \).

Παράδειγμα 6.2

Έστω ότι έχουμε τις ακόλουθες 7 παρατηρήσεις για τις μεταβλητές \(X \): αριθμό προϊόντων και \(Y \): το αντίστοιχο κόστος αγοράς. Χρησιμοποιώντας τα δεδομένα του πίνακα που ακολουθεί να υπολογιστεί:

a) ο συντελεστής συσχέτισης του Pearson και κάνοντας τις κατάλληλες υποθέσεις να ελέγξετε αν συσχετίζονται οι δύο τυχαίες μεταβλητές, και

β) ο συντελεστής συσχέτισης του Spearman και να ελέγξετε την ίδια υπόθεση.

<table>
<thead>
<tr>
<th>Χ</th>
<th>6</th>
<th>7</th>
<th>4</th>
<th>8</th>
<th>9</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υ</td>
<td>80</td>
<td>83</td>
<td>75</td>
<td>86</td>
<td>95</td>
<td>72</td>
<td>69</td>
</tr>
</tbody>
</table>

Λύση

a) Θέλουμε να υπολογίσουμε το συντελεστή συσχέτισης του Pearson, από τη σχέση:

\[
\rho(X,Y) = \frac{\sum_{i=1}^{n} X_i Y_i - \sum_{i=1}^{n} X_i \sum_{i=1}^{n} Y_i}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}.
\]

Είναι:

\[\sum_{i=1}^{7} X_i = 6 + 7 + 4 + 8 + 9 + 3 + 5 = 42, \quad \bar{X} = 6,\]

\[\sum_{i=1}^{7} Y_i = 80 + 83 + 75 + 86 + 95 + 72 + 69 = 560, \quad \bar{Y} = 80,\]

\[\sum_{i=1}^{7} X_i Y_i = 6*80 + 7*83 + 4*75 + 8*86 + 9*95 + 3*72 + 5*69\]

\[= 480 + 581 + 300 + 688 + 855 + 216 + 345 = 3465\]

\[\sum_{i=1}^{7} (X_i - \bar{X})^2 = 0 + 1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 1^2 = 28\]

και
\[
\sum_{i=1}^{7} (Y_i - \overline{Y})^2 = 0 + 3^2 + 5^2 + 6^2 + 15^2 + 8^2 + 11^2 = 9 + 25 + 36 + 225 + 64 + 121 = 480
\]
οπότε:
\[
r(X,Y) = \frac{3465 - \frac{42 \times 560}{7}}{\sqrt{28 \times 480}} = \frac{105}{115,93} = 0,906.
\]
Άρα ο συντελεστής συσχέτισης του Pearson είναι θετικός (αναμενόμενο από τη φύση των δύο τμ.) και κοντά στη μονάδα. Με την προϋπόθεση, υπόθεση ότι το διδιάστατο διάνυσμα \((X,Y)\) ακολουθεί διδιάστατη κανονική κατανομή (δηλαδή υποθέτοντας ότι η από κοινού κατανομή των \(X\), \(Y\) είναι διδιάστατη κανονική, γεγονός που σημαίνει ότι τουλάχιστον η καθεμία από αυτές ακολουθεί κανονική κατανομή) το στατιστικό για τον έλεγχο της μηδενικής υπόθεσης \(H_0: \rho = 0\), έναντι της \(H_1: \rho \neq 0\) χρησιμοποιούμε το στατιστικό:
\[
t = \frac{r \sqrt{n-2}}{\sqrt{1-r^2}} \sim t_{n-2},
\]
και κρίσιμη περιοχή, με επίπεδο σημαντικότητας \(\alpha\), \(|t| \geq t_{n-2,\alpha/2} = t_{5,0,025} = 2,571\) (βλέπε Πίνακα 9 Παραρτήματος).
Η τιμή του στατιστικού υπολογίζεται ότι είναι:
\[
t = \frac{0,906 \sqrt{7-2}}{\sqrt{1-0,906^2}} = \frac{0,906 \times 2,236}{0,4233} = \frac{2,025816}{0,4233} = 4,786
\]
οπότε καθώς \(4,786 > 2,571\) συμπεραίνουμε ότι απορρίπτεται η μηδενική υπόθεση. Άρα υπάρχει στατιστικά σημαντική γραμμική θετική συσχέτιση μεταξύ του αριθμού των προϊόντων και του κόστους αγοράς.
β) Αν με \(R_i\) και \(S_i\) συμβολίσουμε τις τάξεις των δειγματικών τιμών των τυχαίων μεταβλητών \(X\) και \(Y\) αντίστοιχα τότε είναι:

<table>
<thead>
<tr>
<th>(X_i)</th>
<th>6</th>
<th>7</th>
<th>4</th>
<th>8</th>
<th>9</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_i)</td>
<td>80</td>
<td>83</td>
<td>75</td>
<td>86</td>
<td>95</td>
<td>72</td>
<td>69</td>
</tr>
<tr>
<td>(R_i)</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(S_i)</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>((R_i - S_i)^2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Επομένως ο συντελεστής συσχέτισης του Spearman, καθώς δεν υπάρχουν δεσμοί, είναι:

\[r_s = 1 - \frac{6 \sum (R_i - S_i)^2}{n(n^2 - 1)} = 1 - \frac{6 \cdot (0 + 0 + 1 + 0 + 1 + 4)}{7(7^2 - 1)} = 1 - \frac{36}{336} = 0.893. \]

Χρησιμοποιώντας τον Πίνακα 10 του Παραρτήματος (βλέπε μεταξύ άλλων Χατζηνικολάου (2002, σελ. 562) για το διπλευρό έλεγχο απορρίπτεται η μηδενική υπόθεση όταν ο συντελεστής συσχέτισης του Spearman ξεπερνά κατά απόλυτη τιμή την τιμή 0.786. Επομένως καθώς \(|r_s| > 0.786\), η μηδενική υπόθεση απορρίπτεται. Αυτό σημαίνει ότι υπάρχει στατιστικά σημαντική εξάρτηση μεταξύ των δύο μεταβλητών.

6.3 Συντελεστής συσχέτισης του Kendall

Ο Kendall (1938) πρότεινε ένα εναλλακτικό μέτρο διδιάστατης εξάρτησης στηριζόμενο στις έννοιες των «σύμφωνων ζευγαριών» (concordant pairs) και των «ασύμφωνων ζευγαριών» (discordant pairs), οι ορισμοί των οποίων ακολουθούν.

Ορισμός 6.1
Σύμφωνα ζευγάρια είναι εκείνα για τα οποία οι τιμές των \((X_i, Y_i)\) και \((X_j, Y_j)\), \(i \neq j\), \(i, j = 1, \ldots, n\), έχουν την ίδια διάταξη και για τις δύο μεταβλητές, δηλαδή είτε είναι \(X_i < X_j\) και \(Y_i < Y_j\) είτε \(X_i > X_j\) και \(Y_i > Y_j\). Εναλλακτικά μπορούμε να πούμε ότι το πρόσημο της διαφοράς \(X_i - X_j\) είναι σύμφωνο με το πρόσημο της διαφοράς \(Y_i - Y_j\).

Ορισμός 6.2
Ασύμφωνα ζευγάρια είναι εκείνα για τα οποία οι τιμές των \((X_i, Y_i)\) και \((X_j, Y_j)\), \(i \neq j\), \(i, j = 1, \ldots, n\), δεν έχουν την ίδια διάταξη και για τις δύο μεταβλητές δηλαδή είτε είναι \(X_i < X_j\) και \(Y_i > Y_j\) είτε \(X_i > X_j\) και \(Y_i < Y_j\). Εναλλακτικά μπορούμε να πούμε ότι το πρόσημο της διαφοράς \(X_i - X_j\) δεν είναι σύμφωνο με το πρόσημο της διαφοράς \(Y_i - Y_j\).
Ορισμός 6.3
Ισοβαθμισμένα ζεύγαρια είναι εκείνα για τα οποία οι τιμές των \((X_i, Y_i)\) και \((X_j, Y_j)\), \(i \neq j\), \(i, j = 1,\ldots,n\), είναι τέτοιες ώστε ή \(X_i = X_j \) ή \(Y_i = Y_j\) ή \(X_i = X_j \) και \(Y_i = Y_j\). Εναλλακτικά μπορούμε να πούμε ότι ή \(X_i - X_j = 0\) ή \(Y_i - Y_j = 0\) ή και τα δύο.

Έστω \((X_1, Y_1),\ldots,(X_n, Y_n)\) ένα τυχαίο δείγμα από \(n\) ζεύγη παρατηρήσεων για τις τυχαίες μεταβλητές \(X\) και \(Y\). Επιπλέον, έστω \(n_c, n_d\) και \(n_0\) ο αριθμός των σύμφωνων, ασύμφωνων και ισοβαθμισμένων ζευγαριών, αντίστοιχα. Τότε καθώς ο δυνατός αριθμός των ζευγαριών είναι \(\binom{n}{2} = \frac{n(n-1)}{2}\) προκύπτει ότι:

\[
n_c + n_d + n_0 = n(n-1)/2.
\]

Ο Kendall (1938) πρότεινε το στατιστικό:

\[
\tau = \frac{n_c - n_d}{n(n-1)/2}.
\]

Παρατηρήσεις 6.4

1. Τα παραπάνω στατιστικά δεν είναι παρά το ανάλογο δειγματικό ενός συντελεστή που ορίστηκε από τον Kendall ως η διαφορά των πιθανοτήτων συμφωνίας και ασυμφωνίας, \(p_c\) και \(p_d\), αντίστοιχα, των \((X_i, Y_i)\) και \((X_j, Y_j)\), όπου:

\[
p_c = P\left[(X_i - X_j)(Y_i - Y_j) > 0 \right]
\]

και

\[
p_d = P\left[(X_i - X_j)(Y_i - Y_j) < 0 \right].
\]

Εύκολα μπορεί να διαπιστώσει κανείς ότι αν \(X\) και \(Y\) είναι ανεξάρτητες συνεχείς τυχαίες μεταβλητές τότε \(p_c - p_d = 0\), ενώ το αντίστροφο δεν ισχύει πάντοτε. Παρόλα αυτά αποδεικνύεται ότι ο συντελεστής αυτός είναι ίσος με το μηδέν αν και μόνο αν οι τυχαίες μεταβλητές είναι ασυσχέτιστες.

2. Στην περίπτωση που όλα τα δυνατά ζευγάρια είναι σύμφωνα προκύπτει ότι \(\tau = 1\), ενώ όταν όλα τα δυνατά ζευγάρια είναι ασύμφωνα προκύπτει ότι \(\tau = -1\). Τέλος στην περίπτωση της ύπαρξης δεσμών χρησιμοποιείται το στατιστικό:
3. Για τον εύκολο υπολογισμό των \(n_c \) και \(n_d \) και επομένως και του στατιστικού \(\tau \) καλό είναι να ακολουθείται η μεθοδολογία που περιγράφεται μεταξύ άλλων από τον Conover (1971, p. 250). Αρχικά τα καταστατικά \(X_1, X_2, ..., X_n \) και \(Y_1, Y_2, ..., Y_n \) διατάσσονται κατά αύξουσα τάξη μεγέθους ως προς τη μεταβλητή \(X \), δηλαδή από τη μικρότερη τιμή των \(X_i, i = 1, ..., n \). Τότε την είσοδο των σύμφωνων ζευγαριών κάθε ζεύγους έγκειται στον υπολογισμό του αριθμού των παρατηρήσεων με τιμές στην τυχαία μεταβλητή \(Y \) μεγαλύτερη από τη συγκεκριμένη παρατήρηση, ενώ η τιμή των ασύμφωνων ζευγαριών κάθε ζεύγους έγκειται στον υπολογισμό του αριθμού των παρατηρήσεων με τιμές στην τυχαία μεταβλητή \(Y \) μικρότερη από τη συγκεκριμένη παρατήρηση. Η παραπάνω μέθοδος χρήζει ιδιαίτερης προσοχής στην περίπτωση ύπαρξης ισοβαθμίων (βλέπε Παράδειγμα 6.3).

Όπως και ο συντελεστής συσχέτισης του Spearman και ο συντελεστής του Kendall ή συνάρτηση auto χρησιμοποιείται ως στατιστικό για τον έλεγχο της μη ισοβαθμίας συσχέτισης δύο μεταβλητών. Ειδικότερα χρησιμοποιείται για τον έλεγχο της μηδενικής υπόθεσης \(\rho = 0 \), δηλαδή της υπόθεσης ότι οι τυχαίες μεταβλητές \(X \) και \(Y \) είναι αμοιβαία ανεξάρτητες (mutually independent), έναντι μιας εκ των τριών εναλλακτικών:

i) \(H_1 : \rho > 0 \), δηλαδή της τάσης μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μεγάλες τιμές της άλλης και αντίστροφα

ii) \(H_1 : \rho < 0 \), δηλαδή της τάσης μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μικρές τιμές της άλλης και αντίστροφα

και

iii) \(H_1 : \rho \neq 0 \), δηλαδή της τάσης είτε μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μεγάλες τιμές της άλλης και αντίστροφα είτε μικρές τιμές της μιας μεταβλητής να αντιστοιχούν σε μεγάλες τιμές της άλλης και αντίστροφα.

Για τον έλεγχο των παραπάνω χρησιμοποιείται είτε ο συντελεστής του Kendall είτε για ευκολία το στατιστικό \(T = n_c - n_d \). Στον Πίνακα 11 (πηγή Conover (1971)) δίνονται ποσοσταία σημεία του \(T \) υπό τη μηδενική υπόθεση. Τότε οι κρίσιμες περιοχές για τον έλεγχο κάθε μιας από τις παρατάσεις είναι:
i) Απορρίπτεται η μηδενική υπόθεση όταν το στατιστικό T ξεπερνά το 1-% ποσοστιαίο σημείο του.

ii) Απορρίπτεται η μηδενική υπόθεση όταν το στατιστικό T δε ξεπερνά το $α$-% ποσοστιαίο σημείο του.

iii) Απορρίπτεται η μηδενική υπόθεση είτε όταν το στατιστικό T ξεπερνά το $1/2$-% ποσοστιαίο σημείο του είτε όταν το στατιστικό T δε ξεπερνά το $α/2$ ποσοστιαίο σημείο του.

Για μεγάλο μέγεθος δείγματος αποδεικνύεται ότι:

$$Z = \frac{3\sigma_{\text{emp.}}}{\sqrt{2(2n + 5)}} N(0,1).$$

Παρατήρηση 6.5

Εύλογα μπορεί να αναρωτηθεί κάποιος αν υπάρχουν διαφορές μεταξύ του συντελεστή του Spearman και του Kendall. Ο συντελεστής του Spearman τείνει να λαμβάνει μεγαλύτερες απόλυτες τιμές από τις αντίστοιχες του Kendall. Από την άλλη μεριά, για μέγεθος δείγματος μεγαλύτερο του οκτώ, η κανονική προσέγγιση της κατανομής του συντελεστή του Kendall είναι αρκετά καλή για τον υπολογισμό των ποσοστιαίων σημείων, αλλά όχι τόσο καλή για τον υπολογισμό των ποσοστιαίων σημείων της κατανομής του συντελεστή του Spearman.

Παράδειγμα 6.3 (βλέπε Conover (1971))

Ένα ζευγάρι που πηγαίνει συχνά για μπόουλινγκ καταγράφει στον πίνακα που ακολουθεί το σκορ τους για να δει αν συσχετίζεται. Υπολογίστε το συντελεστή του Kendall και αποφανθείτε με επίπεδο σημαντικότητας 5%.

<table>
<thead>
<tr>
<th>Επιδόσεις Άντρα X_i</th>
<th>147</th>
<th>158</th>
<th>131</th>
<th>142</th>
<th>183</th>
<th>151</th>
<th>196</th>
<th>129</th>
<th>155</th>
<th>158</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επιδόσεις Γυναίκας Y_i</td>
<td>122</td>
<td>128</td>
<td>125</td>
<td>123</td>
<td>115</td>
<td>120</td>
<td>108</td>
<td>143</td>
<td>124</td>
<td>123</td>
</tr>
</tbody>
</table>

Λύση

Αρχικά τα ζεύγη των $n = 10$ παρατηρήσεων $(X_i, Y_i), i = 1,\ldots,10$, διατάσσονται κατά αύξουσα τάξη μεγέθους ως προς τη μεταβλητή X, που περιγράφει τις επιδόσεις του άντρα στο μπόουλινγκ. Τότε η εύρεση των σύμφωνων ζευγαριών κάθε ζεύγους έγκειται στον υπολογισμό του αριθμού των παρατηρήσεων με τιμές στην τυχαία
μεταβλητή \(Y \), που περιγράφει την επίδοση της γυναίκας στο μπόουλινγκ, μεγαλύτερη από τη συγκεκριμένη παρατήρηση, ενώ η εύρεση των ασύμφωνων ζευγαριών κάθε ζεύγους έγκειται στον υπολογισμό του αριθμού των παρατηρήσεων με τιμές στην τυχαία μεταβλητή \(Y \) μικρότερη από τη συγκεκριμένη παρατήρηση.

Για μεγαλύτερη ευκολία μπορούμε να χρησιμοποιήσουμε τον ακόλουθο πίνακα, όπου με κόκκινο χρώμα επισημαίνονται ισόβαθμες παρατηρήσεις που επιφέρουν τροποποιήσεις στον καθορισμό των τιμών των άλλων στηλών.

<table>
<thead>
<tr>
<th>(X_i) σε αύξουσα τάξη μεγέθους</th>
<th>(Y_i) αντίστοιχες τιμές της τ.μ. (Y)</th>
<th>Αριθμός σύμφωνων</th>
<th>Αριθμός ασύμφωνων</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>143</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>131</td>
<td>125</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>142</td>
<td>123</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>147</td>
<td>122</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>151</td>
<td>120</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>155</td>
<td>124</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>158</td>
<td>123</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>158</td>
<td>128</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>183</td>
<td>115</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>196</td>
<td>108</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>(n_c = 10)</td>
<td>(n_d = 33)</td>
</tr>
</tbody>
</table>

Χρησιμοποιείται για τον έλεγχο της μηδενικής υπόθεσης \(H_0 : \rho = 0 \), δηλαδή της υπόθεσης ότι οι τυχαίες μεταβλητές \(X \) και \(Y \) είναι αμοιβαία ανεξάρτητες (mutually independent), έναντι της εναλλακτική \(H_1 : \rho \neq 0 \), δηλαδή της τάσης είτε μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μεγάλες τιμές της άλλης και αντίστροφα είτε μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μικρές τιμές της άλλης και αντίστροφα, το στατιστικό \(T = n_c - n_d = 10 - 33 = -23 \). Απορρίπτεται η μηδενική υπόθεση, είτε όταν το στατιστικό \(T \) ξεπερνά το \(1-\alpha/2 \) ποσοστιαίο σημείο του, δηλαδή όταν \(T > w_{0.975} = 21 \), είτε όταν το στατιστικό \(T \) δε ξεπερνά το \(\alpha/2 \) ποσοστιαίο σημείο του, δηλαδή όταν \(T < w_{0.025} = -w_{0.975} = -21 \). Επομένως καθώς \(-24<-21\), η μηδενική υπόθεση απορρίπτεται. Αυτό σημαίνει ότι υπάρχει στατιστικά σημαντική τάση είτε μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μεγάλες τιμές της άλλης και αντίστροφα, είτε μεγάλες τιμές της μιας μεταβλητής να αντιστοιχούν σε μικρές τιμές της άλλης και αντίστροφα.
Έβδομο Κεφάλαιο

Υλοποίηση μη παραμετρικών μεθόδων στο S.P.S.S. 15.0

Στο κεφάλαιο αυτό μέσω κάποιων απλών εκπαιδευτικών παραδειγμάτων θα υποδείξουμε πως υλοποιούνται στο S.P.S.S. (Statistical Package for Social Sciences), οι κυριότερες μεθοδολογίες της Μη Παραμετρικής Στατιστικής, που παρουσιάστηκαν στα προηγούμενα κεφάλαια.

7.1 Τεστ καλής προσαρμογής με το S.P.S.S.

7.1.1 Kolmogorov τεστ για ένα δείγμα με το S.P.S.S

Από το κύριο μενού επιλέγουμε

1. Analyze→Non Parametric Tests→1 Sample K-S.
2. Στο νέο παράθυρο διαλόγου που προκύπτει

τοποθετούμε στο πλαίσιο Test Variable List την μεταβλητή την οποία θέλουμε να ελέγξουμε αν περιγράφεται ικανοποιητικά από μία από τις ακόλουθες τέσσερις κατανομές: την κανονική (Normal), την ομοιόμορφη (Uniform), την Poisson, την Εκθετική (Exponential).
Αποτελέσματα υλοποίησης παραδείγματος 1.1 σελ. 14

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th>Variate</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Minimum</td>
<td>10</td>
</tr>
<tr>
<td>Uniform</td>
<td>Maximum</td>
<td>68</td>
</tr>
<tr>
<td>Parameters(a,b)</td>
<td>Absolute</td>
<td>255</td>
</tr>
<tr>
<td>Most Extreme</td>
<td>Positive</td>
<td>255</td>
</tr>
<tr>
<td>Differences</td>
<td>Negative</td>
<td>-228</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.0571</td>
</tr>
</tbody>
</table>

α. Test distribution is Uniform.
b. Calculated from data.

Παρατήρηση

Στην ειδική περίπτωση του ελέγχου της κανονικότητας που είναι και ο πιο συνήθης έλεγχος σε μία στατιστική ανάλυση το S.P.S.S υλοποιεί και το στατιστικό test των Shapiro-Wilk μέσω της διαδικασίας Explore, επιλέγοντας από το κύριο μενού:

1. Analyze→Descriptive Statistics→Explore.
2. Στο νέο παράθυρο διαλόγου που προκύπτει τοποθετούμε στο πλαίσιο Dependent List την ποσοτική μεταβλητή που θέλουμε να ελέγξουμε αν οι τιμές της προέρχονται από κανονικό πληθυσμό, ενώ στο Factor List την ποσοτική μεταβλητή, αν υπάρχει, που διαχωρίζει τα δείγματα. Αφού επιβεβαιώσουμε ότι έχουμε επιλέξει στην αριστερή γωνία αυτού του παραθύρου το Display: Both, από το πλαίσιο μενού Plots επιλέγουμε, όπως φαίνεται στο σχήμα που ακολουθεί, το Normality Plots with tests. Η υλοποίηση αυτής της διαδικασίας θα έχει
ως αποτέλεσμα στο παράθυρο διαλόγου των αποτελεσμάτων να παρατίθενται τόσο
γραφικοί όσο και στατιστικοί τρόποι ελέγχου της μονοδιάστατης κανονικότητας. (τεστ
Kolmogorov με τη διόρθωση του Lilliefors, αλλά και τεστ των Shapiro and Wilk (1965)
που είναι ισχυρότερο).

7.1.2 Smirnov τεστ για δύο δείγματα με το S.P.S.S

Από το κύριο μενού επιλέγουμε
1. Analyze→Non Parametric Tests→2 Independent Samples K-S.
2. Στο νέο παράθυρο διαλόγου που προκύπτει στο πλαίσιο Test Variable List
tοποθετούμε τη στήλη-μεταβλητή στην οποία έχουν καταγραφεί όλες οι διαθέσιμες
παρατηρήσεις των δειγμάτων από τους δύο πληθυσμούς, ενώ στο πλαίσιο Grouping
Variable τοποθετούμε τη μεταβλητή που μας διαχωρίζει τα δύο δείγματα, δίνοντας
την τιμή της που αντιστοιχεί σε κάθε δείγμα στο πλαίσιο Define Groups. Τέλος
επιλέγουμε το Kolmogorov-Smirnov Z.
Αποτελέσματα υλοποίησης παραδείγματος 1.2 σελ. 20

Frequencies

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00</td>
<td>6</td>
</tr>
<tr>
<td>2,00</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Test Statistics(a)

<table>
<thead>
<tr>
<th>X</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Extreme</td>
<td>Absolute</td>
</tr>
<tr>
<td>Differences</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>1.054</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.216</td>
</tr>
</tbody>
</table>

(a) Grouping Variable: Y

7.1.3 X^2 τεστ καλής προσαρμογής πολυωνυμικής κατανομής με το S.P.S.S

Από το κύριο μενού επιλέγουμε
1. Analyze→Non Parametric Tests→Chi-Square.
2. Στο νέο παράθυρο διαλόγου που προκύπτει

Έχουμε τις ακόλουθες δυνατότητες:

Get from data: η επιλογή αυτή οδηγεί στην εύρεση των παρατηρούμενων συχνοτήτων n_i και των αναμενόμενων συχνοτήτων e_i χρησιμοποιώντας όλες τις
τιμές της υπό έλεγχο μεταβλητής, η οποία έχει δηλωθεί στο πλαίσιο Test Variable List.

Use specified range: η ανάλυση περιορίζεται στις τιμές εκείνες που είναι μεγαλύτερες (μικρότερες αντίστοιχα) από την τιμή που έχει δηλωθεί στο πλαίσιο Lower (στο πλαίσιο Upper αντίστοιχα) για τη μεταβλητής, η οποία έχει δηλωθεί στο πλαίσιο Test Variable List.

All categories equal: Επιλέγοντάς το, αυτό που ουσιαστικά ελέγχεται είναι αν οι πιθανότητες εμφάνισης κάθε ενδεχομένου είναι ίδιες.

Values: δηλώνουμε στο πλαίσιο αυτό τις αναμενόμενες τιμές που εμείς θέλουμε να καθορίσουμε, π.χ. τις τιμές που θα αναμένουμε αν \(p_1 = 0.75 \) και \(p_2 = 0.25 \).

7.2 Τεστ των ροών με το SPSS

Από το κύριο μενού επιλέγουμε

1. **Analyze**→**Non Parametric Tests**→**Runs**.
2. Στο νέο παράθυρο διαλόγου που προκύπτει
toποθετούμε στο πλαίσιο Test Variable List την μεταβλητή τις τιμές της οποίας θέλουμε να εξετάσουμε ως προς την τυχαιότητα. Όπως είδαμε κάθε δειγματική τιμή αντικαθίσταται από το σύμβολο + όταν ξεπερνά ένα καθορισμένο σημείο (cut point),
ενώ όταν δεν το ξεπερνά αντικαθίσταται από το σύμβολο -. Τα διαθέσιμα καθορισμένα σημεία είναι είτε μέτρα θέσης, όπως η μέση τιμή, η διάμεσος και η επικρατούσα τιμή (mean, median, mode αντίστοιχα), είτε κάποια αριθμητική τιμή που τη δηλώνει ο χρήστης στο πλαίσιο Custom.

Αποτελέσματα υλοποίησης παραδείγματος 2.1 σελ. 39

Runs Test

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Value(a)</td>
<td>,0000</td>
</tr>
<tr>
<td>Total Cases</td>
<td>29</td>
</tr>
<tr>
<td>Number of Runs</td>
<td>22</td>
</tr>
<tr>
<td>Ζ</td>
<td>2,279</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>,023</td>
</tr>
</tbody>
</table>

a User-specified.

7.3 Προσημικός έλεγχος-Wilcoxon τεστ με το SPSS

7.3.1. Ένα δείγμα

Δυστυχώς το λογισμικό του SPSS δεν έχει ενσωματωμένη τη διαδικασία του προσημικού τεστ και του τεστ του Wilcoxon, παρότι έχει δυνατότητες για μη παραμετρικούς ελέγχους για περισσότερα του ενός δείγματος. Ένας τρόπος αντιμετώπισης του παραπάνω προβλήματος είναι η αναγωγή του σε πρόβλημα ελέγχου για τις παραμέτρους θέσης δύο εξαρτημένων δειγμάτων. Ο τρόπος αυτός θα σχολιασθεί σε επόμενη ενότητα. Εναλλακτικά κάποιος μπορεί να αντιμετωπίσει αυτή την έλλειψη δημιουργώντας τον προαναφερθέντα έλεγχο.

7.3.2 Δύο εξαρτημένα δείγματα

Θα δούμε πως υλοποιούνται μέσω ενός εκπαιδευτικού συνόλου δεδομένων.

Παράδειγμα 7.1 (Παπαϊωάννου και Φερεντίνος, 2000, σελ. 263)

Παρακάτω παρατίθενται οι επιδόσεις 15 μαθητών στα Μαθηματικά και στις Καλές Τέχνες. Να ελεγχθεί με επίπεδο σημαντικότητας 5% αν υπάρχει στατιστικά σημαντική διαφορά στις επιδόσεις των μαθητών στα δύο γνωστικά αντικείμενα.

| Μαθηματικά: | 22 37 36 38 42 58 58 60 62 65 66 66 66 67 62 |
| Καλές Τέχνες: | 53 68 42 49 51 65 51 71 55 74 68 64 67 73 65 |
Επίλυση με το S.P.S.S
Πρόκειται για μετρήσεις της επίδοσης σε δύο γνωστικά αντικείμενα και στους ίδιους μαθητές. Επομένως γίνεται εύκολα κατανοητό ότι έχουμε δύο εξαρτημένα δείγματα.

Υλοποίηση
Από το κύριο μενού επιλέγουμε
1. Analyze→Non Parametric Tests→2 Related Samples.
2. Στο νέο παράθυρο διαλόγου που προκύπτει
dιαλέγουμε αρχικά τη μεταβλητή που καταγράφει π.χ. τις επιδόσεις στα Μαθηματικά και η οποία θα χαρακτηρισθεί ως Variable 1. Έπειτα επιλέγουμε εκείνη που καταγράφει τις επιδόσεις στις Τέχνες και η οποία θα μετακινηθεί στο πλαίσιο Variable 2.
Στη συνέχεια μετακινούμε το ζεύγος των μεταβλητών στο πλαίσιο Test Pair(s) List. Στο παράθυρο διαλόγου Two-Related-Sample Tests μας δίνεται η δυνατότητα να διαλέξουμε τον τύπο του μη παραμετρικού ελέγχου που θέλουμε να διενεργηθεί.

Το λογισμικό μας δίνει μεταξύ άλλων τη δυνατότητα για διενέργεια του τεστ του Wilcoxon καθώς και του προσημικού ελέγχου μέσω της επιλογής Sign.

Επομένως επιλέγουμε για παράδειγμα

![Two-Related-Samples Tests](image)

Από την επιλογή Options έχουμε τη δυνατότητα να καθορίσουμε τον τρόπο χειρισμού των ελλιπών τιμών καθώς και να ζητήσουμε τον υπολογισμό περιγραφικών μέτρων και τεταρτημόριων, ενώ στο πλαίσιο Exact αφήνουμε ως έχει την προεπιλογή.

![Two-Related-Samples: Options](image)
Από τα παραπάνω προκύπτουν τα ακόλουθα αποτελέσματα:

Στον πίνακα Ranks δίνονται το πλήθος των αρνητικών και θετικών τάξεων των διαφορών των επιδόσεων στις Τέχνες και στα Μαθηματικά, οι μέσες τιμές των θετικών και αρνητικών τάξεων και το άθροισμά τους. Διαπιστώνουμε ότι

\[T^+ = 106, \quad \text{ενώ} \quad T^- = 14. \]

Αρα \[T = \min\left(T^+, T^-
ight) = 14. \] Επομένως, ο έλεγχος του Wilcoxon θα βασιστεί στις αρνητικές τάξεις (μας επισημαίνεται από το λογισμικό σε μορφή σχολίου στον πίνακα Test Statistics).

Ranks

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επίδοση στις Τέχνες</td>
<td>2(a)</td>
<td>7,00</td>
<td>14,00</td>
</tr>
<tr>
<td>Επίδοση στα Μαθηματικά</td>
<td>13(b)</td>
<td>8,15</td>
<td>106,00</td>
</tr>
<tr>
<td>Αρνητικές τάξεις</td>
<td>0(c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Εστίαση στις Τέχνες = Επίδοση στα Μαθηματικά</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

α) Επίδοση στις Τέχνες < Επίδοση στα Μαθηματικά

b) Επίδοση στις Τέχνες > Επίδοση στα Μαθηματικά

Ε) Επίδοση στις Τέχνες = Επίδοση στα Μαθηματικά

Τέλος στον πίνακα Test Statistics μας δίνεται η τιμή του Z στατιστικού του Wilcoxon και η αντίστοιχη p-τιμή. Από την p-τιμή του στατιστικού τεστ συμπεραίνουμε ότι υπάρχουν στατιστικά σημαντικές διαφορές στην επίδοση στα Μαθηματικά και στις Τέχνες (p-τιμή=0.009<0.05). Η επίδοση στις τέχνες είναι στατιστικά σημαντικά καλύτερη.
Παρατήρηση

Στην παράγραφο 7.1.1 ασχολήθηκαμε με το μη παραμετρικό έλεγχο της υπόθεσης ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή μ_0. Δυστυχώς όπως αναφέραμε το λογισμικό δεν έχει διαθέσιμο το προσημικό τεστ και το τεστ του Wilcoxon. Ένας εναλλακτικός τρόπος αντιμετώπισης αυτού του προβλήματος είναι να χρησιμοποιήσουμε το τεστ του Wilcoxon που μόλις περιγράψαμε. Για το σκοπό αυτό απαιτείται η δημιουργία μίας νέας στήλης τιμών μ_0 με την ονομασία ControlValue που όλες οι διαθέσιμες τιμές της θα είναι ίσες με την τιμή μ_0. Έπειτα υλοποιούμε τη διαδικασία NonParametric Statistics Two Related Samples έχοντας ως μία μεταβλητή την αρχική που θέλουμε να μελετήσουμε και ως δεύτερη αυτή που μόλις δημιουργήθηκε, δηλ. την ControlValue.

7.4 Wilcoxon- Mann-Whitney με το S.P.S.S

Από το κύριο μενού επιλέγουμε
1. Analyze→Non Parametric Tests→2 Independent Samples.
2. Στο νέο παράθυρο διαλόγου που προκύπτει
τοποθετούμε στο πλαίσιο Test Variable List την υπό μελέτη ποσοτική μεταβλητή, ενώ στο πλαίσιο Grouping Variable την ποιοτική μεταβλητή η οποία μας διαχωρίζει τους δύο πληθυσμούς. Ορίζουμε τον τρόπο διαχωρισμού πατώντας στο Define Groups και δηλώνουμε ποιο είναι το πρώτο και ποιο το δεύτερο γκρουπ και δίνουμε OK.

Στο παράθυρο διαλόγου του Two Independent Sample Tests μας δίνεται η δυνατότητα να διαλέξουμε τον τύπο του μη παραμετρικού ελέγχου που θέλουμε να διενεργηθεί. Έτσι μεταξύ άλλων μας δίνεται η δυνατότητα επιλογής του τεστ των Mann-Whitney U, το οποίο χρησιμοποιείται για τον έλεγχο ότι τα δύο ανεξάρτητα δείγματα προέρχονται από πληθυσμούς που δε διαφέρουν ως προς την παράμετρο θέσης.
Από την επιλογή Options έχουμε τη δυνατότητα να καθορίσουμε τον τρόπο χειρισμού των ελλιπών τιμών καθώς και να ζητήσουμε τον υπολογισμό περιγραφικών μέτρων και τεταρτημόριων, ενώ στο πλαίσιο Exact αφήνουμε την προεπιλογή.

Η παραπάνω διαδικασία υλοποιείται χρησιμοποιώντας τα δεδομένα που παρατίθενται στον πίνακα, που ακολουθεί και προέρχονται από το άρθρο του Steele, S. (1997), όπου καταγράφονται το βάρος ενός νεογέννητου σε γραμμάρια και το φύλο του (1=κορίτσι 2=αγόρι).
Τότε προκύπτουν τα ακόλουθα:

Ranks

<table>
<thead>
<tr>
<th>Φύλο</th>
<th>Βάρος νεογέννητου</th>
<th>Κορίτσι</th>
<th>18</th>
<th>20,31</th>
<th>365,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αγόρι</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>24,02</td>
<td>624,50</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Από τον πίνακα Ranks έχουμε ότι είναι διαθέσιμες 18 μετρήσεις του βάρους νεογέννητων κοριτσιών και 26 νεογέννητων αγοριών. Ο μέσος όρος και το άθροισμα των τάξεων παρατίθενται στις στήλες Mean Rank και Sum of Ranks.

Test Statistics(a)

<table>
<thead>
<tr>
<th>Βάρος νεογέννητου</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>194,500</td>
<td>365,500</td>
<td>-.943</td>
<td>.346</td>
</tr>
<tr>
<td>a Grouping Variable: Φύλο</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Στον πίνακα Test Statistics το λογισμικό μας δίνει τόσο την τιμή του στατιστικού των Mann Whitney όσο και την τιμή του στατιστικού του Wilcoxon. Η τιμή του στατιστικού του Wilcoxon ορίζεται να είναι το άθροισμα των τάξεων του μικρότερου σε μέγεθος δείγματος. Στην περίπτωση που τα δύο δείγματα είναι
ισομεγέθη τότε υπολογίζεται το άθροισμα των τάξεων της ομάδας που έχει δηλωθεί ως group 1 στο πλαίσιο Two-Independent-Samples Define Groups. Άρα με βάση τα αποτελέσματα του πίνακα Ranks αναμένουμε την τιμή 365.5 για το στατιστικό του Wilcoxon, αφού το μικρότερο σε μέγεθος δείγμα είναι αυτό των κοριτσιών με Sum of Ranks ίσο με 365.5. Επιπλέον, υπολογίζεται η τιμή του Z στατιστικού των Mann και Whitney καθώς και η αντίστοιχη p-τιμή. Από την p-τιμή του στατιστικού test, που είναι προσεγγιστική καθώς το στατιστικό ακολουθεί προσεγγιστικά την τυπική κανονική κατανομή, συμπεραίνουμε ότι δεν υπάρχουν στατιστικά σημαντικές διαφορές στο μέσο βάρος αγοριών και κοριτσιών, καθώς p-τιμή=0,346>0,05.

7.5 Kruskal-Wallis με το S.P.S.S

Από το κύριο μενού επιλέγουμε
1. Analyze→Non Parametric Tests→k Independent Samples.
2. Στο νέο παράθυρο διαλόγου που προκύπτει
tοποθετούμε στο πλαίσιο Test Variable List την υπό μελέτη ποσοτική μεταβλητή, ενώ στο πλαίσιο Grouping Variable την ποιοτική μεταβλητή η οποία μας διαχωρίζει τους k πληθυσμούς. Ορίζουμε τον τρόπο διαχωρισμού πατώντας στο Define Range και δηλώνουμε ποιο είναι το εύρος τιμών της ποιοτικής μεταβλητής και δίνουμε OK.
Αποτελέσματα υλοποίησης Άσκησης 5.3 σελ. 82

Test Statistics(a,b)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>5,656</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.059</td>
</tr>
</tbody>
</table>

a Kruskal Wallis Test
b Grouping Variable: VAR00002

7.6 Συντελεστές συσχέτισης με το S.P.S.S

Από το κύριο μενού επιλέγουμε
1. Analyze→Correlate→Bivariate.
2. Στο νέο παράθυρο διαλόγου που προκύπτει τοποθετούμε στο πλαίσιο Variables τις μεταβλητές για τις οποίες ανά δύο θέλουμε να υπολογιστεί ο συντελεστής συσχέτισης και επιλέγουμε το συντελεστή του Pearson, Kendall ή Spearman ανάλογα, καθώς και το αν θέλουμε να διενεργηθεί δίπλευρος ή μονόπλευρος έλεγχος της ύπαρξης εξάρτησης ή όχι.
Αποτελέσματα υλοποίησης παραδείγματος 6.2 σελ. 99

Correlations

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Pearson Correlation</td>
<td>1,906(***),005</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>7,7</td>
</tr>
<tr>
<td>y</td>
<td>Pearson Correlation</td>
<td>906(***),005</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>7,7</td>
</tr>
</tbody>
</table>
** Correlation is significant at the 0.01 level (2-tailed).**

Αποτελέσματα υλοποίησης παραδείγματος 6.3 σελ. 104

Correlations

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Spearman's rho</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>Correlation Coefficient</td>
<td>0,893(***),007</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>7,7</td>
</tr>
<tr>
<td>y</td>
<td>Correlation Coefficient</td>
<td>0,893(***),1,000</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.007</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>7,7</td>
</tr>
</tbody>
</table>
** Correlation is significant at the 0.01 level (2-tailed).**

Correlations

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Kendall's tau_b</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>Correlation Coefficient</td>
<td>-.523(*),038</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10,10</td>
</tr>
<tr>
<td>y</td>
<td>Correlation Coefficient</td>
<td>-.523(*),1,000</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.038</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10,10</td>
</tr>
</tbody>
</table>
* Correlation is significant at the 0.05 level (2-tailed).
ΠΑΡΑΡΤΗΜΑ
ΠΙΝΑΚΕΣ

1. Κρίσιμες τιμές του Kolmogorov στατιστικού.

2. Κρίσιμες τιμές του Smirnov στατιστικού για δύο ισομεγέθη δείγματα.

3. Κρίσιμες τιμές του Smirnov στατιστικού για δύο ανισομεγέθη δείγματα.

4. Αντίστροφα ποσοστιαία σημεία της χ^2 κατανομής.
Πηγή: http://www.statsoft.com/textbook/sttable.html#chi

5. Πίνακας τυπικής κανονικής κατανομής.
Πηγή: http://www.statsoft.com/textbook/sttable.html#z

6. Τιμές της αθροιστικής συνάρτησης της $B(n,0.5)$.
Πηγή: Παπαϊωάννου, Τ. και Λουκάς, Σ. (2002)

7. Κρίσιμες τιμές για τον έλεγχο του Wilcoxon Signed Rank Test.
Πηγή: http://www.unity.edu/FacultyPages/woods/CVSignedRank.pdf

8. α. Υπολογισμός πιθανοτήτων της μορφής $P(U \leq u)$ όπου u η παρατηρούμενη τιμή του τεστ των Wilcoxon-Mann-Whitney
Πηγή: Παπαϊωάννου, Τ. και Λουκάς, Σ. (2002)

8. β. Κρίσιμες τιμές του Mann-Whitney U τεστ

9. Αντίστροφα ποσοστιαία σημεία της t_ν κατανομής.
Πηγή: http://www.statsoft.com/textbook/sttable.html#

10. Κρίσιμες τιμές για το συντελεστή συσχέτισης r του Spearman.
Πηγή: http://www.social-science.co.uk/stats.CV.php

11. Ποσοστιαία σημεία του Kendall στατιστικού τεστ
Πηγή: Conover (1971).
Πίνακας 1. Κρίσιμες τιμές του Kolmogorov στατιστικού.

<table>
<thead>
<tr>
<th>Μέγεθος Δείγματος (n)</th>
<th>Επίπεδο σημαντικότητας α για δίπλευρο έλεγχο ή α/2 για μονόπλευρο</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>1</td>
<td>.900</td>
</tr>
<tr>
<td>2</td>
<td>.684</td>
</tr>
<tr>
<td>3</td>
<td>.565</td>
</tr>
<tr>
<td>4</td>
<td>.493</td>
</tr>
<tr>
<td>5</td>
<td>.447</td>
</tr>
<tr>
<td>6</td>
<td>.410</td>
</tr>
<tr>
<td>7</td>
<td>.381</td>
</tr>
<tr>
<td>8</td>
<td>.358</td>
</tr>
<tr>
<td>9</td>
<td>.339</td>
</tr>
<tr>
<td>10</td>
<td>.323</td>
</tr>
<tr>
<td>11</td>
<td>.308</td>
</tr>
<tr>
<td>12</td>
<td>.296</td>
</tr>
<tr>
<td>13</td>
<td>.285</td>
</tr>
<tr>
<td>14</td>
<td>.275</td>
</tr>
<tr>
<td>15</td>
<td>.266</td>
</tr>
<tr>
<td>16</td>
<td>.258</td>
</tr>
<tr>
<td>17</td>
<td>.250</td>
</tr>
<tr>
<td>18</td>
<td>.244</td>
</tr>
<tr>
<td>19</td>
<td>.237</td>
</tr>
<tr>
<td>20</td>
<td>.232</td>
</tr>
<tr>
<td>21</td>
<td>.226</td>
</tr>
<tr>
<td>22</td>
<td>.221</td>
</tr>
<tr>
<td>23</td>
<td>.216</td>
</tr>
<tr>
<td>24</td>
<td>.212</td>
</tr>
<tr>
<td>25</td>
<td>.208</td>
</tr>
<tr>
<td>26</td>
<td>.204</td>
</tr>
<tr>
<td>27</td>
<td>.200</td>
</tr>
<tr>
<td>28</td>
<td>.197</td>
</tr>
<tr>
<td>29</td>
<td>.193</td>
</tr>
<tr>
<td>30</td>
<td>.190</td>
</tr>
<tr>
<td>31</td>
<td>.187</td>
</tr>
<tr>
<td>32</td>
<td>.184</td>
</tr>
<tr>
<td>33</td>
<td>.182</td>
</tr>
<tr>
<td>34</td>
<td>.179</td>
</tr>
<tr>
<td>35</td>
<td>.177</td>
</tr>
<tr>
<td>36</td>
<td>.174</td>
</tr>
<tr>
<td>37</td>
<td>.172</td>
</tr>
<tr>
<td>38</td>
<td>.170</td>
</tr>
<tr>
<td>39</td>
<td>.168</td>
</tr>
<tr>
<td>40</td>
<td>.165</td>
</tr>
<tr>
<td>n> 40</td>
<td>1.07</td>
</tr>
</tbody>
</table>

\[
\frac{1}{\sqrt{n}} \quad \frac{2}{\sqrt{n}} \quad \frac{3}{\sqrt{n}} \quad \frac{4}{\sqrt{n}}
\]
Πίνακας 2. Κρίσιμες τιμές του Smirnov στατιστικού για δύο ισομεγέθη δείγματα

<table>
<thead>
<tr>
<th>Μέγεθος Δείγματος (n)</th>
<th>Επίπεδο σημαντικότητας α για δίπλευρο έλεγχο ή α/2 για μονόπλευρο</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>3</td>
<td>2/3</td>
</tr>
<tr>
<td>4</td>
<td>3/4</td>
</tr>
<tr>
<td>5</td>
<td>3/5</td>
</tr>
<tr>
<td>6</td>
<td>3/6</td>
</tr>
<tr>
<td>7</td>
<td>4/7</td>
</tr>
<tr>
<td>8</td>
<td>4/8</td>
</tr>
<tr>
<td>9</td>
<td>4/9</td>
</tr>
<tr>
<td>10</td>
<td>4/10</td>
</tr>
<tr>
<td>11</td>
<td>5/11</td>
</tr>
<tr>
<td>12</td>
<td>5/12</td>
</tr>
<tr>
<td>13</td>
<td>5/13</td>
</tr>
<tr>
<td>14</td>
<td>5/14</td>
</tr>
<tr>
<td>15</td>
<td>5/15</td>
</tr>
<tr>
<td>16</td>
<td>6/16</td>
</tr>
<tr>
<td>17</td>
<td>6/17</td>
</tr>
<tr>
<td>18</td>
<td>6/18</td>
</tr>
<tr>
<td>19</td>
<td>6/19</td>
</tr>
<tr>
<td>20</td>
<td>6/20</td>
</tr>
<tr>
<td>21</td>
<td>6/21</td>
</tr>
<tr>
<td>22</td>
<td>7/22</td>
</tr>
<tr>
<td>23</td>
<td>7/23</td>
</tr>
<tr>
<td>24</td>
<td>7/24</td>
</tr>
<tr>
<td>26</td>
<td>7/26</td>
</tr>
<tr>
<td>27</td>
<td>7/27</td>
</tr>
<tr>
<td>28</td>
<td>8/28</td>
</tr>
<tr>
<td>29</td>
<td>8/29</td>
</tr>
<tr>
<td>30</td>
<td>8/30</td>
</tr>
<tr>
<td>31</td>
<td>8/31</td>
</tr>
<tr>
<td>32</td>
<td>8/32</td>
</tr>
<tr>
<td>34</td>
<td>8/34</td>
</tr>
<tr>
<td>36</td>
<td>9/36</td>
</tr>
<tr>
<td>38</td>
<td>9/38</td>
</tr>
<tr>
<td>40</td>
<td>9/40</td>
</tr>
<tr>
<td>n> 40</td>
<td>1.52</td>
</tr>
</tbody>
</table>
Πίνακας 3. Κρίσιμες τιμές του Smirnov στατιστικού για δύο ανισομεγέθη δείγματα

<table>
<thead>
<tr>
<th>Μέγεθος Δείγματος (m)</th>
<th>Μέγεθος Δείγματος (n)</th>
<th>Επίπεδο σημαντικότητας α για δίπλευρο έλεγχο ή α/2 για μονόπλευρο</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a=.20</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>17/18</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9/10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5/6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4/5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5/6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5/7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7/9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7/10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5/8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7/12</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7/12</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>17/28</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5/8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5/9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11/20</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7/12</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>9/16</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4/7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>11/20</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5/9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8/15</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1/2</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>23/42</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4/9</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>11/24</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>27/56</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>31/63</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>33/70</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3/7</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3/7</td>
</tr>
</tbody>
</table>
Πίνακας 3. Κρίσιμες τιμές του Smirnov Test για δύο ανισομεγέθη δείγματα
(συνέχεια)

<table>
<thead>
<tr>
<th>Μέγεθος Δείγματος (m)</th>
<th>Μέγεθος Δείγματος (n)</th>
<th>Επίπεδο σημαντικότητας α για δίπλευρο έλεγχο ή α/2 για μονόπλευρο</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a=.20</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>4/9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>19/40</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11/24</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7/16</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>13/32</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7/15</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4/9</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>19/45</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7/18</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>13/36</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>2/5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2/5</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7/20</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>23/60</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3/8</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>13/36</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>11/30</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>27/80</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>7/20</td>
</tr>
</tbody>
</table>

Για μεγαλύτερη μεγέθη

<table>
<thead>
<tr>
<th>Μέγεθος (m+n)</th>
<th>Επίπεδο σημαντικότητας α για δίπλευρο έλεγχο ή α/2 για μονόπλευρο</th>
</tr>
</thead>
<tbody>
<tr>
<td>m+n</td>
<td>1.07\sqrt{\frac{m+n}{mn}}</td>
</tr>
</tbody>
</table>
Πίνακας 4. Αντίστροφα ποσοστιαία σημεία της X^2 κατανομής.

Πηγή: http://www.statsoft.com/textbook/sttable.html#chi

Ο πίνακας δίνει τα σημεία $X^2_{k,a}$ τέτοια ώστε $P\left(X^2_{k,a} \geq X^2_{k,a} \right) = a$

<table>
<thead>
<tr>
<th>B.ε.</th>
<th>.995</th>
<th>.990</th>
<th>.975</th>
<th>.950</th>
<th>.900</th>
<th>.800</th>
<th>.700</th>
<th>.600</th>
<th>.500</th>
<th>.400</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00004</td>
<td>0.00016</td>
<td>0.00098</td>
<td>0.00393</td>
<td>3.84146</td>
<td>5.02389</td>
<td>6.63490</td>
<td>7.87944</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.01003</td>
<td>0.02010</td>
<td>0.05064</td>
<td>0.10259</td>
<td>5.99146</td>
<td>7.37776</td>
<td>9.21034</td>
<td>10.59663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.07172</td>
<td>0.11483</td>
<td>0.21580</td>
<td>0.35185</td>
<td>7.81473</td>
<td>9.34840</td>
<td>11.34487</td>
<td>12.83816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.20699</td>
<td>0.29711</td>
<td>0.48442</td>
<td>0.71072</td>
<td>9.48773</td>
<td>11.14329</td>
<td>13.27670</td>
<td>14.86026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.41174</td>
<td>0.55430</td>
<td>0.83121</td>
<td>1.14548</td>
<td>11.07050</td>
<td>12.83250</td>
<td>15.08627</td>
<td>16.74960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.67573</td>
<td>0.87209</td>
<td>1.23734</td>
<td>1.63538</td>
<td>12.59159</td>
<td>14.44938</td>
<td>16.81189</td>
<td>18.54758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.98926</td>
<td>1.23904</td>
<td>1.68987</td>
<td>2.16735</td>
<td>14.06714</td>
<td>16.01276</td>
<td>18.47531</td>
<td>20.27774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.34441</td>
<td>1.64650</td>
<td>2.17973</td>
<td>2.73264</td>
<td>15.50731</td>
<td>17.53455</td>
<td>20.09024</td>
<td>21.95495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.15586</td>
<td>2.55821</td>
<td>3.24697</td>
<td>3.94030</td>
<td>18.30704</td>
<td>20.48318</td>
<td>23.20925</td>
<td>25.18188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.56503</td>
<td>4.10692</td>
<td>5.00875</td>
<td>5.89186</td>
<td>22.36203</td>
<td>24.73560</td>
<td>27.68825</td>
<td>29.81947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.60092</td>
<td>5.22935</td>
<td>6.26214</td>
<td>7.26094</td>
<td>24.99597</td>
<td>27.48839</td>
<td>30.57791</td>
<td>32.80132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.14221</td>
<td>5.81221</td>
<td>6.90766</td>
<td>7.96165</td>
<td>26.29623</td>
<td>28.84535</td>
<td>31.99993</td>
<td>34.26719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5.69722</td>
<td>6.40776</td>
<td>7.56419</td>
<td>8.67176</td>
<td>27.58711</td>
<td>30.19101</td>
<td>33.40866</td>
<td>35.71847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6.84397</td>
<td>7.63273</td>
<td>8.90652</td>
<td>10.11701</td>
<td>30.14353</td>
<td>32.85233</td>
<td>36.19087</td>
<td>38.58226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7.43384</td>
<td>8.26040</td>
<td>9.59078</td>
<td>10.85081</td>
<td>31.41043</td>
<td>34.16961</td>
<td>37.56623</td>
<td>39.99685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8.03365</td>
<td>8.89720</td>
<td>10.28290</td>
<td>11.59131</td>
<td>32.67057</td>
<td>35.47888</td>
<td>38.93217</td>
<td>41.40106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8.64272</td>
<td>9.54249</td>
<td>10.98232</td>
<td>12.33801</td>
<td>33.92444</td>
<td>36.78071</td>
<td>40.28936</td>
<td>42.79565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9.26042</td>
<td>10.19572</td>
<td>11.68855</td>
<td>13.09051</td>
<td>35.17246</td>
<td>38.07563</td>
<td>41.63840</td>
<td>44.18128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10.51965</td>
<td>11.52398</td>
<td>13.11972</td>
<td>14.61141</td>
<td>37.65248</td>
<td>40.64647</td>
<td>44.31410</td>
<td>46.92789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>11.16024</td>
<td>12.19815</td>
<td>13.84390</td>
<td>15.37916</td>
<td>38.88514</td>
<td>41.92317</td>
<td>45.64168</td>
<td>48.28988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>11.80759</td>
<td>12.87850</td>
<td>14.57338</td>
<td>16.15140</td>
<td>40.11327</td>
<td>43.19451</td>
<td>46.96294</td>
<td>49.64492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>12.46134</td>
<td>13.56471</td>
<td>15.30786</td>
<td>16.92788</td>
<td>41.33714</td>
<td>44.46079</td>
<td>48.27824</td>
<td>50.99338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>13.12115</td>
<td>14.25645</td>
<td>16.04707</td>
<td>17.70837</td>
<td>42.55697</td>
<td>45.72229</td>
<td>49.58788</td>
<td>52.33562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>13.78672</td>
<td>14.95346</td>
<td>16.79077</td>
<td>18.49266</td>
<td>43.77297</td>
<td>46.97924</td>
<td>50.89218</td>
<td>53.67196</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Πίνακας 5. Πίνακας τυπικής κανονικής κατανομής

Πίνακας υπολογισμού των πιθανοτήτων $P(0 \leq Z \leq z)$, όταν $Z \sim N(0,1)$

<table>
<thead>
<tr>
<th>z</th>
<th>.00</th>
<th>.01</th>
<th>.02</th>
<th>.03</th>
<th>.04</th>
<th>.05</th>
<th>.06</th>
<th>.07</th>
<th>.08</th>
<th>.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>.0000</td>
<td>.0040</td>
<td>.0080</td>
<td>.0120</td>
<td>.0160</td>
<td>.0199</td>
<td>.0239</td>
<td>.0279</td>
<td>.0319</td>
<td>.0359</td>
</tr>
<tr>
<td>0.1</td>
<td>.0398</td>
<td>.0438</td>
<td>.0478</td>
<td>.0517</td>
<td>.0557</td>
<td>.0596</td>
<td>.0636</td>
<td>.0675</td>
<td>.0714</td>
<td>.0753</td>
</tr>
<tr>
<td>0.2</td>
<td>.0793</td>
<td>.0832</td>
<td>.0871</td>
<td>.0910</td>
<td>.0948</td>
<td>.0987</td>
<td>.1026</td>
<td>.1064</td>
<td>.1103</td>
<td>.1141</td>
</tr>
<tr>
<td>0.3</td>
<td>.1179</td>
<td>.1217</td>
<td>.1255</td>
<td>.1293</td>
<td>.1331</td>
<td>.1368</td>
<td>.1406</td>
<td>.1443</td>
<td>.1480</td>
<td>.1517</td>
</tr>
<tr>
<td>0.4</td>
<td>.1554</td>
<td>.1591</td>
<td>.1628</td>
<td>.1664</td>
<td>.1700</td>
<td>.1736</td>
<td>.1772</td>
<td>.1808</td>
<td>.1844</td>
<td>.1879</td>
</tr>
<tr>
<td>0.5</td>
<td>.1915</td>
<td>.1950</td>
<td>.1985</td>
<td>.2020</td>
<td>.2054</td>
<td>.2088</td>
<td>.2123</td>
<td>.2157</td>
<td>.2190</td>
<td>.2224</td>
</tr>
<tr>
<td>0.6</td>
<td>.2257</td>
<td>.2291</td>
<td>.2324</td>
<td>.2357</td>
<td>.2389</td>
<td>.2422</td>
<td>.2454</td>
<td>.2486</td>
<td>.2517</td>
<td>.2549</td>
</tr>
<tr>
<td>0.7</td>
<td>.2580</td>
<td>.2611</td>
<td>.2642</td>
<td>.2673</td>
<td>.2704</td>
<td>.2734</td>
<td>.2764</td>
<td>.2794</td>
<td>.2823</td>
<td>.2852</td>
</tr>
<tr>
<td>0.8</td>
<td>.2881</td>
<td>.2910</td>
<td>.2939</td>
<td>.2967</td>
<td>.2995</td>
<td>.3023</td>
<td>.3051</td>
<td>.3078</td>
<td>.3106</td>
<td>.3133</td>
</tr>
<tr>
<td>0.9</td>
<td>.3159</td>
<td>.3186</td>
<td>.3212</td>
<td>.3238</td>
<td>.3264</td>
<td>.3289</td>
<td>.3315</td>
<td>.3340</td>
<td>.3365</td>
<td>.3389</td>
</tr>
<tr>
<td>1.0</td>
<td>.3413</td>
<td>.3438</td>
<td>.3461</td>
<td>.3485</td>
<td>.3508</td>
<td>.3531</td>
<td>.3554</td>
<td>.3577</td>
<td>.3599</td>
<td>.3621</td>
</tr>
<tr>
<td>1.1</td>
<td>.3643</td>
<td>.3665</td>
<td>.3686</td>
<td>.3708</td>
<td>.3729</td>
<td>.3749</td>
<td>.3770</td>
<td>.3790</td>
<td>.3810</td>
<td>.3830</td>
</tr>
<tr>
<td>1.2</td>
<td>.3849</td>
<td>.3869</td>
<td>.3888</td>
<td>.3907</td>
<td>.3925</td>
<td>.3944</td>
<td>.3962</td>
<td>.3980</td>
<td>.3997</td>
<td>.4015</td>
</tr>
<tr>
<td>1.3</td>
<td>.4032</td>
<td>.4049</td>
<td>.4066</td>
<td>.4082</td>
<td>.4099</td>
<td>.4115</td>
<td>.4131</td>
<td>.4147</td>
<td>.4162</td>
<td>.4177</td>
</tr>
<tr>
<td>1.4</td>
<td>.4192</td>
<td>.4207</td>
<td>.4222</td>
<td>.4236</td>
<td>.4251</td>
<td>.4265</td>
<td>.4279</td>
<td>.4292</td>
<td>.4306</td>
<td>.4319</td>
</tr>
<tr>
<td>1.5</td>
<td>.4332</td>
<td>.4345</td>
<td>.4357</td>
<td>.4370</td>
<td>.4382</td>
<td>.4394</td>
<td>.4406</td>
<td>.4418</td>
<td>.4429</td>
<td>.4441</td>
</tr>
<tr>
<td>1.6</td>
<td>.4452</td>
<td>.4463</td>
<td>.4474</td>
<td>.4484</td>
<td>.4495</td>
<td>.4505</td>
<td>.4515</td>
<td>.4525</td>
<td>.4535</td>
<td>.4545</td>
</tr>
<tr>
<td>1.7</td>
<td>.4554</td>
<td>.4564</td>
<td>.4573</td>
<td>.4582</td>
<td>.4591</td>
<td>.4599</td>
<td>.4608</td>
<td>.4616</td>
<td>.4625</td>
<td>.4633</td>
</tr>
<tr>
<td>1.8</td>
<td>.4641</td>
<td>.4649</td>
<td>.4656</td>
<td>.4664</td>
<td>.4671</td>
<td>.4678</td>
<td>.4686</td>
<td>.4693</td>
<td>.4699</td>
<td>.4706</td>
</tr>
<tr>
<td>1.9</td>
<td>.4713</td>
<td>.4719</td>
<td>.4726</td>
<td>.4732</td>
<td>.4738</td>
<td>.4744</td>
<td>.4750</td>
<td>.4756</td>
<td>.4761</td>
<td>.4767</td>
</tr>
<tr>
<td>2.0</td>
<td>.4772</td>
<td>.4778</td>
<td>.4783</td>
<td>.4788</td>
<td>.4793</td>
<td>.4798</td>
<td>.4803</td>
<td>.4808</td>
<td>.4812</td>
<td>.4817</td>
</tr>
<tr>
<td>2.1</td>
<td>.4821</td>
<td>.4826</td>
<td>.4830</td>
<td>.4834</td>
<td>.4838</td>
<td>.4842</td>
<td>.4846</td>
<td>.4850</td>
<td>.4854</td>
<td>.4857</td>
</tr>
<tr>
<td>2.2</td>
<td>.4861</td>
<td>.4864</td>
<td>.4868</td>
<td>.4871</td>
<td>.4875</td>
<td>.4878</td>
<td>.4881</td>
<td>.4884</td>
<td>.4887</td>
<td>.4890</td>
</tr>
<tr>
<td>2.3</td>
<td>.4893</td>
<td>.4896</td>
<td>.4898</td>
<td>.4901</td>
<td>.4904</td>
<td>.4906</td>
<td>.4909</td>
<td>.4911</td>
<td>.4913</td>
<td>.4916</td>
</tr>
<tr>
<td>2.4</td>
<td>.4918</td>
<td>.4920</td>
<td>.4922</td>
<td>.4925</td>
<td>.4927</td>
<td>.4929</td>
<td>.4931</td>
<td>.4932</td>
<td>.4934</td>
<td>.4936</td>
</tr>
<tr>
<td>2.5</td>
<td>.4938</td>
<td>.4940</td>
<td>.4941</td>
<td>.4943</td>
<td>.4945</td>
<td>.4946</td>
<td>.4948</td>
<td>.4949</td>
<td>.4951</td>
<td>.4952</td>
</tr>
<tr>
<td>2.6</td>
<td>.4953</td>
<td>.4955</td>
<td>.4956</td>
<td>.4957</td>
<td>.4959</td>
<td>.4960</td>
<td>.4961</td>
<td>.4962</td>
<td>.4963</td>
<td>.4964</td>
</tr>
<tr>
<td>2.7</td>
<td>.4965</td>
<td>.4966</td>
<td>.4967</td>
<td>.4968</td>
<td>.4969</td>
<td>.4970</td>
<td>.4971</td>
<td>.4972</td>
<td>.4973</td>
<td>.4974</td>
</tr>
<tr>
<td>2.8</td>
<td>.4974</td>
<td>.4975</td>
<td>.4976</td>
<td>.4977</td>
<td>.4978</td>
<td>.4979</td>
<td>.4979</td>
<td>.4979</td>
<td>.4980</td>
<td>.4981</td>
</tr>
<tr>
<td>2.9</td>
<td>.4981</td>
<td>.4982</td>
<td>.4982</td>
<td>.4983</td>
<td>.4984</td>
<td>.4984</td>
<td>.4985</td>
<td>.4985</td>
<td>.4986</td>
<td>.4986</td>
</tr>
<tr>
<td>3.0</td>
<td>.4987</td>
<td>.4987</td>
<td>.4987</td>
<td>.4988</td>
<td>.4988</td>
<td>.4989</td>
<td>.4989</td>
<td>.4989</td>
<td>.4990</td>
<td>.4990</td>
</tr>
</tbody>
</table>
Πίνακας 6. Τιμές της αθροιστικής συνάρτησης της \(B(n,0.5) \).

Πηγή: Παπαιωάννου, Τ. και Λουκάς, Σ. (2002)

Πίνακας υπολογισμού των \(P(X \leq x) \times 1000 \), όταν \(X \sim B(n,0.5) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>031</td>
<td>188</td>
<td>500</td>
<td>812</td>
<td>969</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>016</td>
<td>109</td>
<td>344</td>
<td>656</td>
<td>891</td>
<td>984</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>008</td>
<td>062</td>
<td>227</td>
<td>500</td>
<td>773</td>
<td>938</td>
<td>992</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>004</td>
<td>035</td>
<td>145</td>
<td>363</td>
<td>637</td>
<td>855</td>
<td>965</td>
<td>996</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>002</td>
<td>020</td>
<td>090</td>
<td>254</td>
<td>500</td>
<td>746</td>
<td>910</td>
<td>980</td>
<td>998</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>001</td>
<td>011</td>
<td>055</td>
<td>172</td>
<td>377</td>
<td>623</td>
<td>828</td>
<td>945</td>
<td>969</td>
<td>999</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>006</td>
<td>033</td>
<td>113</td>
<td>247</td>
<td>500</td>
<td>726</td>
<td>887</td>
<td>967</td>
<td>994</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>003</td>
<td>019</td>
<td>073</td>
<td>194</td>
<td>387</td>
<td>613</td>
<td>806</td>
<td>927</td>
<td>981</td>
<td>997</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>002</td>
<td>011</td>
<td>046</td>
<td>133</td>
<td>291</td>
<td>500</td>
<td>709</td>
<td>867</td>
<td>954</td>
<td>989</td>
<td>998</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>001</td>
<td>006</td>
<td>029</td>
<td>090</td>
<td>212</td>
<td>395</td>
<td>605</td>
<td>788</td>
<td>910</td>
<td>971</td>
<td>994</td>
<td>999</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>004</td>
<td>018</td>
<td>059</td>
<td>151</td>
<td>304</td>
<td>500</td>
<td>696</td>
<td>849</td>
<td>947</td>
<td>982</td>
<td>996</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>002</td>
<td>011</td>
<td>038</td>
<td>105</td>
<td>227</td>
<td>402</td>
<td>598</td>
<td>773</td>
<td>895</td>
<td>962</td>
<td>989</td>
<td>998</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>001</td>
<td>006</td>
<td>025</td>
<td>072</td>
<td>166</td>
<td>315</td>
<td>500</td>
<td>685</td>
<td>834</td>
<td>928</td>
<td>975</td>
<td>994</td>
<td>999</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>001</td>
<td>004</td>
<td>015</td>
<td>046</td>
<td>119</td>
<td>240</td>
<td>407</td>
<td>593</td>
<td>760</td>
<td>881</td>
<td>952</td>
<td>985</td>
<td>996</td>
<td>999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>002</td>
<td>010</td>
<td>032</td>
<td>084</td>
<td>180</td>
<td>324</td>
<td>500</td>
<td>676</td>
<td>820</td>
<td>916</td>
<td>968</td>
<td>990</td>
<td>998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>001</td>
<td>006</td>
<td>021</td>
<td>058</td>
<td>132</td>
<td>252</td>
<td>412</td>
<td>588</td>
<td>748</td>
<td>868</td>
<td>942</td>
<td>979</td>
<td>994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>001</td>
<td>004</td>
<td>013</td>
<td>039</td>
<td>095</td>
<td>192</td>
<td>332</td>
<td>500</td>
<td>668</td>
<td>808</td>
<td>905</td>
<td>961</td>
<td>987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>002</td>
<td>008</td>
<td>026</td>
<td>067</td>
<td>143</td>
<td>262</td>
<td>416</td>
<td>584</td>
<td>738</td>
<td>857</td>
<td>933</td>
<td>974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>001</td>
<td>005</td>
<td>017</td>
<td>047</td>
<td>105</td>
<td>202</td>
<td>339</td>
<td>500</td>
<td>661</td>
<td>798</td>
<td>895</td>
<td>953</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>001</td>
<td>003</td>
<td>011</td>
<td>032</td>
<td>076</td>
<td>154</td>
<td>271</td>
<td>419</td>
<td>581</td>
<td>729</td>
<td>846</td>
<td>924</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>002</td>
<td>007</td>
<td>022</td>
<td>054</td>
<td>115</td>
<td>212</td>
<td>345</td>
<td>500</td>
<td>655</td>
<td>788</td>
<td>885</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Σημείωση: Με * έχουμε συμβολίσει τις τιμές που είναι ίσες ή περίπου ίσες με 1000
Πίνακας 7. Κρίσιμες τιμές για τον έλεγχο του Wilcoxon Signed Rank Test

Πηγή. http://www.unity.edu/FacultyPages/woods/CVSignedRank.pdf

<table>
<thead>
<tr>
<th>n</th>
<th>a=0.005 μον. a=0.01 διπ.</th>
<th>a=0.01 μον. a=0.02 διπ.</th>
<th>a=0.025 μον. a=0.05 διπ.</th>
<th>a=0.05 μον. a=0.1 διπ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>18</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>21</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>22</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>23</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>24</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>26</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>27</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>28</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>29</td>
<td>141</td>
<td>141</td>
<td>141</td>
<td>141</td>
</tr>
<tr>
<td>30</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>152</td>
</tr>
</tbody>
</table>
Πίνακας 8.α Υπολογισμός πιθανοτήτων της μορφής $P(U \leq u)$ όπου u η παρατηρούμενη τιμή του τεστ των Wilcoxon-Mann-Whitney

Πηγή: Παπαϊωάννου, Τ. και Λουκάς, Σ. (2002)

<table>
<thead>
<tr>
<th>Umn</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.250</td>
<td>.100</td>
<td>.050</td>
</tr>
<tr>
<td>1</td>
<td>.500</td>
<td>.200</td>
<td>.100</td>
</tr>
<tr>
<td>2</td>
<td>.750</td>
<td>.400</td>
<td>.200</td>
</tr>
<tr>
<td>3</td>
<td>.600</td>
<td>.350</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.650</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umn</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.200</td>
<td>.067</td>
<td>.028</td>
</tr>
<tr>
<td>1</td>
<td>.400</td>
<td>.133</td>
<td>.057</td>
</tr>
<tr>
<td>2</td>
<td>.600</td>
<td>.257</td>
<td>.114</td>
</tr>
<tr>
<td>3</td>
<td>.400</td>
<td>.200</td>
<td>.100</td>
</tr>
<tr>
<td>4</td>
<td>.600</td>
<td>.314</td>
<td>.171</td>
</tr>
<tr>
<td>5</td>
<td>.429</td>
<td>.343</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.571</td>
<td>.343</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.557</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umn</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.167</td>
<td>.047</td>
<td>.018</td>
<td>.008</td>
</tr>
<tr>
<td>1</td>
<td>.333</td>
<td>.095</td>
<td>.036</td>
<td>.016</td>
</tr>
<tr>
<td>2</td>
<td>.500</td>
<td>.190</td>
<td>.071</td>
<td>.032</td>
</tr>
<tr>
<td>3</td>
<td>.667</td>
<td>.286</td>
<td>.125</td>
<td>.056</td>
</tr>
<tr>
<td>4</td>
<td>.429</td>
<td>.196</td>
<td>.095</td>
<td>.048</td>
</tr>
<tr>
<td>5</td>
<td>.571</td>
<td>.286</td>
<td>.143</td>
<td>.075</td>
</tr>
<tr>
<td>6</td>
<td>.393</td>
<td>.206</td>
<td>.111</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.500</td>
<td>.278</td>
<td>.155</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.607</td>
<td>.365</td>
<td>.210</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>.452</td>
<td>.274</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>.548</td>
<td>.345</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>.421</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>.500</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>.579</td>
<td></td>
</tr>
</tbody>
</table>
Πίνακας 8 α. συνέχεια

\[n=6 \]

<table>
<thead>
<tr>
<th>(U_m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.143</td>
<td>0.036</td>
<td>0.012</td>
<td>0.005</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>1</td>
<td>0.286</td>
<td>0.071</td>
<td>0.024</td>
<td>0.010</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>0.428</td>
<td>0.143</td>
<td>0.048</td>
<td>0.019</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>3</td>
<td>0.571</td>
<td>0.214</td>
<td>0.083</td>
<td>0.033</td>
<td>0.015</td>
<td>0.008</td>
</tr>
<tr>
<td>4</td>
<td>0.321</td>
<td>0.131</td>
<td>0.057</td>
<td>0.026</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.429</td>
<td>0.190</td>
<td>0.086</td>
<td>0.041</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.571</td>
<td>0.274</td>
<td>0.129</td>
<td>0.063</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.357</td>
<td>0.176</td>
<td>0.089</td>
<td>0.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.452</td>
<td>0.238</td>
<td>0.123</td>
<td>0.066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.548</td>
<td>0.305</td>
<td>0.165</td>
<td>0.090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.381</td>
<td>0.214</td>
<td>0.120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.457</td>
<td>0.268</td>
<td>0.155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.545</td>
<td>0.331</td>
<td>0.197</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.396</td>
<td>0.242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.465</td>
<td>0.294</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.535</td>
<td>0.350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(u_m)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>0.125</td>
<td>0.028</td>
<td>0.008</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>0.056</td>
<td>0.017</td>
<td>0.006</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>0.111</td>
<td>0.033</td>
<td>0.012</td>
<td>0.005</td>
<td>0.002</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>0.167</td>
<td>0.058</td>
<td>0.021</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>4</td>
<td>0.625</td>
<td>0.250</td>
<td>0.092</td>
<td>0.036</td>
<td>0.015</td>
<td>0.007</td>
</tr>
<tr>
<td>5</td>
<td>0.333</td>
<td>0.133</td>
<td>0.055</td>
<td>0.024</td>
<td>0.011</td>
<td>0.006</td>
</tr>
<tr>
<td>6</td>
<td>0.444</td>
<td>0.192</td>
<td>0.082</td>
<td>0.037</td>
<td>0.017</td>
<td>0.009</td>
</tr>
<tr>
<td>7</td>
<td>0.556</td>
<td>0.258</td>
<td>0.115</td>
<td>0.053</td>
<td>0.026</td>
<td>0.013</td>
</tr>
<tr>
<td>8</td>
<td>0.333</td>
<td>0.158</td>
<td>0.074</td>
<td>0.037</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.417</td>
<td>0.206</td>
<td>0.101</td>
<td>0.051</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.500</td>
<td>0.264</td>
<td>0.134</td>
<td>0.069</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.583</td>
<td>0.324</td>
<td>0.172</td>
<td>0.090</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.394</td>
<td>0.216</td>
<td>0.117</td>
<td>0.064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.464</td>
<td>0.265</td>
<td>0.147</td>
<td>0.082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.538</td>
<td>0.319</td>
<td>0.183</td>
<td>0.104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.378</td>
<td>0.223</td>
<td>0.130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.438</td>
<td>0.267</td>
<td>0.159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.500</td>
<td>0.314</td>
<td>0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.562</td>
<td>0.365</td>
<td>0.228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.418</td>
<td>0.267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.473</td>
<td>0.310</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.527</td>
<td>0.355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>0.402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>0.451</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.549</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Πίνακας 8 β. Κρίσιμες τιμές του Mann-Whitney U test
Πηγή: Billet, P. (2004) 'The Open Door Website: Critical Values for the Mann-Whitney U-Test'
http://www.saburchill.com/IBbiology/stats/003.html

Η τιμή του στατιστικού θα πρέπει να είναι μικρότερη ή ίση από τη τιμή του πίνακα για να έχουμε στατιστικά σημαντική διαφορά

Επίπεδο σημαντικότητας 5% για δίπλευρο έλεγχο ή 0.025 για μονόπλευρο

<table>
<thead>
<tr>
<th>Μέγεθος του μεγαλύτερου δείγματος</th>
<th>Μέγεθος του μικρότερου δείγματος</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30</td>
<td>3 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30</td>
</tr>
</tbody>
</table>
Πίνακας 9. Αντίστροφα ποσοστιαία σημεία της t_n κατανομής.
Πηγή: http://www.statsoft.com/textbook/sttable.html#

Ο πίνακας δίνει τα σημεία $t_{n,a}$ τέτοια ώστε $P(t_p \geq t_{n,a}) = a$

<table>
<thead>
<tr>
<th>n</th>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
<th>0.001</th>
<th>0.0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.078</td>
<td>6.314</td>
<td>12.706</td>
<td>31.821</td>
<td>63.656</td>
<td>318.289</td>
<td>636.578</td>
</tr>
<tr>
<td>2</td>
<td>1.886</td>
<td>2.920</td>
<td>4.303</td>
<td>6.965</td>
<td>9.925</td>
<td>22.328</td>
<td>31.600</td>
</tr>
<tr>
<td>4</td>
<td>1.533</td>
<td>2.132</td>
<td>2.776</td>
<td>3.779</td>
<td>4.604</td>
<td>7.173</td>
<td>10.214</td>
</tr>
<tr>
<td>5</td>
<td>1.476</td>
<td>2.015</td>
<td>2.571</td>
<td>3.365</td>
<td>4.032</td>
<td>5.894</td>
<td>8.610</td>
</tr>
<tr>
<td>6</td>
<td>1.440</td>
<td>1.943</td>
<td>2.447</td>
<td>3.143</td>
<td>3.707</td>
<td>5.041</td>
<td>6.869</td>
</tr>
<tr>
<td>7</td>
<td>1.415</td>
<td>1.895</td>
<td>2.365</td>
<td>2.998</td>
<td>3.499</td>
<td>4.785</td>
<td>5.408</td>
</tr>
<tr>
<td>8</td>
<td>1.397</td>
<td>1.860</td>
<td>2.306</td>
<td>2.886</td>
<td>3.355</td>
<td>4.501</td>
<td>5.041</td>
</tr>
<tr>
<td>9</td>
<td>1.383</td>
<td>1.833</td>
<td>2.262</td>
<td>2.781</td>
<td>3.250</td>
<td>4.297</td>
<td>4.781</td>
</tr>
<tr>
<td>10</td>
<td>1.372</td>
<td>1.812</td>
<td>2.228</td>
<td>2.718</td>
<td>3.169</td>
<td>4.144</td>
<td>4.587</td>
</tr>
<tr>
<td>11</td>
<td>1.363</td>
<td>1.796</td>
<td>2.201</td>
<td>2.674</td>
<td>3.090</td>
<td>4.025</td>
<td>4.437</td>
</tr>
<tr>
<td>12</td>
<td>1.356</td>
<td>1.782</td>
<td>2.179</td>
<td>2.632</td>
<td>2.998</td>
<td>3.930</td>
<td>4.318</td>
</tr>
<tr>
<td>13</td>
<td>1.350</td>
<td>1.771</td>
<td>2.160</td>
<td>2.600</td>
<td>2.921</td>
<td>3.852</td>
<td>4.221</td>
</tr>
<tr>
<td>14</td>
<td>1.345</td>
<td>1.761</td>
<td>2.145</td>
<td>2.566</td>
<td>2.850</td>
<td>3.787</td>
<td>4.140</td>
</tr>
<tr>
<td>15</td>
<td>1.341</td>
<td>1.753</td>
<td>2.131</td>
<td>2.532</td>
<td>2.781</td>
<td>3.733</td>
<td>4.073</td>
</tr>
<tr>
<td>16</td>
<td>1.337</td>
<td>1.746</td>
<td>2.120</td>
<td>2.508</td>
<td>2.721</td>
<td>3.686</td>
<td>4.015</td>
</tr>
<tr>
<td>17</td>
<td>1.333</td>
<td>1.740</td>
<td>2.109</td>
<td>2.485</td>
<td>2.671</td>
<td>3.646</td>
<td>3.965</td>
</tr>
<tr>
<td>18</td>
<td>1.330</td>
<td>1.734</td>
<td>2.101</td>
<td>2.463</td>
<td>2.626</td>
<td>3.610</td>
<td>3.922</td>
</tr>
<tr>
<td>19</td>
<td>1.328</td>
<td>1.729</td>
<td>2.093</td>
<td>2.441</td>
<td>2.583</td>
<td>3.579</td>
<td>3.883</td>
</tr>
<tr>
<td>20</td>
<td>1.325</td>
<td>1.725</td>
<td>2.086</td>
<td>2.421</td>
<td>2.545</td>
<td>3.542</td>
<td>3.850</td>
</tr>
<tr>
<td>21</td>
<td>1.323</td>
<td>1.721</td>
<td>2.080</td>
<td>2.403</td>
<td>2.511</td>
<td>3.517</td>
<td>3.819</td>
</tr>
<tr>
<td>22</td>
<td>1.321</td>
<td>1.717</td>
<td>2.074</td>
<td>2.385</td>
<td>2.481</td>
<td>3.485</td>
<td>3.782</td>
</tr>
<tr>
<td>23</td>
<td>1.319</td>
<td>1.714</td>
<td>2.069</td>
<td>2.369</td>
<td>2.454</td>
<td>3.457</td>
<td>3.756</td>
</tr>
<tr>
<td>24</td>
<td>1.318</td>
<td>1.711</td>
<td>2.064</td>
<td>2.354</td>
<td>2.431</td>
<td>3.432</td>
<td>3.732</td>
</tr>
<tr>
<td>25</td>
<td>1.316</td>
<td>1.708</td>
<td>2.059</td>
<td>2.339</td>
<td>2.411</td>
<td>3.409</td>
<td>3.710</td>
</tr>
<tr>
<td>26</td>
<td>1.315</td>
<td>1.705</td>
<td>2.056</td>
<td>2.326</td>
<td>2.392</td>
<td>3.388</td>
<td>3.690</td>
</tr>
<tr>
<td>27</td>
<td>1.314</td>
<td>1.703</td>
<td>2.052</td>
<td>2.314</td>
<td>2.374</td>
<td>3.369</td>
<td>3.671</td>
</tr>
<tr>
<td>28</td>
<td>1.313</td>
<td>1.701</td>
<td>2.048</td>
<td>2.302</td>
<td>2.358</td>
<td>3.351</td>
<td>3.654</td>
</tr>
<tr>
<td>29</td>
<td>1.311</td>
<td>1.699</td>
<td>2.045</td>
<td>2.291</td>
<td>2.343</td>
<td>3.336</td>
<td>3.639</td>
</tr>
<tr>
<td>30</td>
<td>1.310</td>
<td>1.697</td>
<td>2.042</td>
<td>2.281</td>
<td>2.329</td>
<td>3.323</td>
<td>3.626</td>
</tr>
<tr>
<td>60</td>
<td>1.296</td>
<td>1.671</td>
<td>2.000</td>
<td>2.390</td>
<td>2.660</td>
<td>3.232</td>
<td>3.460</td>
</tr>
<tr>
<td>120</td>
<td>1.289</td>
<td>1.658</td>
<td>1.980</td>
<td>2.358</td>
<td>2.617</td>
<td>3.160</td>
<td>3.373</td>
</tr>
</tbody>
</table>
10. Κρίσιμες τιμές για το συντελεστή συσχέτισης r_s του Spearman.

Για να χρησιμοποιήσετε αυτόν τον πίνακα συγκρίνεται την τιμή του συντελεστή του Spearman με την τιμή του πίνακα, λαμβάνοντας υπόψη πόσες είναι οι διαθέσιμες παρατηρήσεις n και το επίπεδο σημαντικότητας α για μονόπλευρο (δίπλευρο) τεστ ανάλογα.

<table>
<thead>
<tr>
<th>n</th>
<th>$0.05 (0.1)$</th>
<th>$0.025 (0.05)$</th>
<th>$0.01 (0.2)$</th>
<th>$0.005 (0.01)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.900</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.829</td>
<td>0.886</td>
<td>0.943</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.714</td>
<td>0.786</td>
<td>0.893</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.643</td>
<td>0.738</td>
<td>0.833</td>
<td>0.881</td>
</tr>
<tr>
<td>9</td>
<td>0.600</td>
<td>0.683</td>
<td>0.783</td>
<td>0.833</td>
</tr>
<tr>
<td>10</td>
<td>0.564</td>
<td>0.648</td>
<td>0.745</td>
<td>0.794</td>
</tr>
<tr>
<td>11</td>
<td>0.523</td>
<td>0.620</td>
<td>0.736</td>
<td>0.818</td>
</tr>
<tr>
<td>12</td>
<td>0.497</td>
<td>0.591</td>
<td>0.703</td>
<td>0.780</td>
</tr>
<tr>
<td>13</td>
<td>0.475</td>
<td>0.566</td>
<td>0.673</td>
<td>0.745</td>
</tr>
<tr>
<td>14</td>
<td>0.457</td>
<td>0.544</td>
<td>0.646</td>
<td>0.716</td>
</tr>
<tr>
<td>15</td>
<td>0.441</td>
<td>0.524</td>
<td>0.623</td>
<td>0.689</td>
</tr>
<tr>
<td>16</td>
<td>0.425</td>
<td>0.506</td>
<td>0.601</td>
<td>0.666</td>
</tr>
<tr>
<td>17</td>
<td>0.412</td>
<td>0.490</td>
<td>0.582</td>
<td>0.645</td>
</tr>
<tr>
<td>18</td>
<td>0.399</td>
<td>0.475</td>
<td>0.564</td>
<td>0.625</td>
</tr>
<tr>
<td>19</td>
<td>0.388</td>
<td>0.462</td>
<td>0.549</td>
<td>0.608</td>
</tr>
<tr>
<td>20</td>
<td>0.377</td>
<td>0.450</td>
<td>0.534</td>
<td>0.591</td>
</tr>
<tr>
<td>21</td>
<td>0.368</td>
<td>0.432</td>
<td>0.521</td>
<td>0.576</td>
</tr>
<tr>
<td>22</td>
<td>0.359</td>
<td>0.428</td>
<td>0.508</td>
<td>0.562</td>
</tr>
<tr>
<td>23</td>
<td>0.351</td>
<td>0.418</td>
<td>0.496</td>
<td>0.549</td>
</tr>
<tr>
<td>24</td>
<td>0.343</td>
<td>0.409</td>
<td>0.485</td>
<td>0.537</td>
</tr>
<tr>
<td>25</td>
<td>0.336</td>
<td>0.400</td>
<td>0.475</td>
<td>0.526</td>
</tr>
<tr>
<td>26</td>
<td>0.329</td>
<td>0.392</td>
<td>0.465</td>
<td>0.515</td>
</tr>
<tr>
<td>27</td>
<td>0.323</td>
<td>0.384</td>
<td>0.456</td>
<td>0.505</td>
</tr>
<tr>
<td>28</td>
<td>0.317</td>
<td>0.377</td>
<td>0.448</td>
<td>0.496</td>
</tr>
<tr>
<td>29</td>
<td>0.311</td>
<td>0.370</td>
<td>0.440</td>
<td>0.487</td>
</tr>
<tr>
<td>30</td>
<td>0.305</td>
<td>0.364</td>
<td>0.432</td>
<td>0.478</td>
</tr>
</tbody>
</table>
11. Ποσοσταία σημεία του Kendall στατιστικού τεστ
Πηγή: Conover (1971).

<table>
<thead>
<tr>
<th>n</th>
<th>p=0.900</th>
<th>p=0.950</th>
<th>p=0.975</th>
<th>p=0.990</th>
<th>p=0.995</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>19</td>
<td>21</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>24</td>
<td>28</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>26</td>
<td>32</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>31</td>
<td>35</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>27</td>
<td>33</td>
<td>39</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>62</td>
</tr>
<tr>
<td>18</td>
<td>35</td>
<td>43</td>
<td>51</td>
<td>61</td>
<td>67</td>
</tr>
<tr>
<td>19</td>
<td>37</td>
<td>47</td>
<td>55</td>
<td>65</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>42</td>
<td>54</td>
<td>64</td>
<td>76</td>
<td>84</td>
</tr>
<tr>
<td>22</td>
<td>45</td>
<td>59</td>
<td>69</td>
<td>81</td>
<td>89</td>
</tr>
<tr>
<td>23</td>
<td>49</td>
<td>63</td>
<td>73</td>
<td>87</td>
<td>97</td>
</tr>
<tr>
<td>24</td>
<td>52</td>
<td>66</td>
<td>78</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>25</td>
<td>56</td>
<td>70</td>
<td>84</td>
<td>98</td>
<td>108</td>
</tr>
<tr>
<td>26</td>
<td>59</td>
<td>75</td>
<td>89</td>
<td>105</td>
<td>115</td>
</tr>
<tr>
<td>27</td>
<td>61</td>
<td>79</td>
<td>93</td>
<td>111</td>
<td>123</td>
</tr>
<tr>
<td>28</td>
<td>66</td>
<td>84</td>
<td>98</td>
<td>116</td>
<td>128</td>
</tr>
<tr>
<td>29</td>
<td>68</td>
<td>88</td>
<td>104</td>
<td>124</td>
<td>136</td>
</tr>
<tr>
<td>30</td>
<td>73</td>
<td>93</td>
<td>109</td>
<td>129</td>
<td>143</td>
</tr>
</tbody>
</table>

Σημείωση: Στον πίνακα δίνονται οι τιμές w_p του στατιστικού τεστ του Kendall, με την ιδιότητα $w_p = w_{1-p}$.
ΒΙΒΛΙΟΓΡΑΦΙΑ

Εκδόσεις Σταμούλη.

Παπαϊωάννου, Τ. και Λουκάς, Σ. (2002). Εισαγωγή στη Στατιστική. Εκδόσεις Σταμούλη.

Pearson, K. (1900). On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonable supposed to have arisen in random sampling. Phil. Mag. 5th Ser., 50, 157-175.

Smirnov, N.V. (1939 a) On the derivations of the empirical distribution curve. Matematicheskii Sbornik 6, 2-26

Smirnov, N. V. (1939 b) On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bulletin Moscow University2, 3-16.

Ηλεκτρονικές πηγές

http://www.statsoft.com
http://www.saburchill.com/lBbiology/stats/003.html
http://www.unity.edu/FacultyPages/woods/CVSignedRank.pdf