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Abstract

We use torsion pairs in stable categories and cotorsion pairs in modules categories to study, in
general infinitely generated, Cohen—Macaulay modules and (a generalization of) modules of finite
projective or injective dimension over an Artin algebra. We concentrate our investigation to the study
of virtually Gorensteiralgebras which provide a common generalization of Gorenstein algebras and
algebras of finite representation or Cohen—Macaulay type. This class of algebras on the one hand has
rich homological structure and satisfies several representation/torsion theoretic finiteness conditions,
and on the other hand it is closed under various operations, for instance derived equivalences and
stable equivalences of Morita type. In addition virtual Gorensteinness provides a useful tool for the
study of the Gorenstein Symmetry Conjecture and modified versions of the Telescope Conjecture for
module or stable categories.
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1. Introduction

Since the ubiquity fundamental paper of Bass [15] commutative Noetherian Gorenstein
rings and Cohen—Macaulay modules are well established as central notions in commuta-
tive algebra bearing important connections with algebraic geometry. During the last decade
there is an increasing growth of interest in non-commutative algebraic geometry, and, in
this connection, several definitions of Gorensteinness were proposed by various authors in
various settings. In particular in the representation theory of Artin algebras, Auslander—
Reiten [9,11] introduced Gorenstein algebras as the Artin algebras with finite self-injective
dimension from both sides, and they showed that much of the commutative theory carries
over to Artin algebras. Also Happel [33] studied Gorenstein algebras in connection with
Auslander—Reiten theory in derived categories. The class of Gorenstein algebras gains its
importance from the fact that on the one hand it includes algebras with finite global dimen-
sion and self-injective algebras as special cases and on the other hand the finitely generated
Cohen—Macaulay modules over them have rich homological structure and behave very well
with respect to many natural operations and constructions at the level of the module or the
derived category. In addition Gorenstein algebras have intimate connections with tilting
theory and provide positive examples for many of the homological conjectures in the rep-
resentation theory of Artin algebras.

Our aim in this paper is to study, in general infinitely generated, Cohen—Macaulay or
CoCohen—Macaulay modules and modules of virtually finite projective or injective di-
mension over an arbitrary Artin algebr& Using the terminology and notation of [22],
see also [4,9], we denote by GNl,), respectively CoCM ,), the maximal subcategory
of the category ModA of all right A-modules which admits the full subcategdpy,
respectivelyl 4, of projective, respectively injective, modules as an Ext-injective cogener-
ator, respectively Ext-projective generator. We call the modules ifR;l| respectively
CoCM(l 4), Cohen—MacaulayrespectivelyCoCohen—Macaulaymodules Then the full
subcategory3 1<, respectivelyd 1, of modules of virtually finite projectiveespectively
injective dimensionis defined to be the right, respectively left, Ext-orthogonal subcate-



A. Beligiannis / Journal of Algebra 288 (2005) 137-211 139

gory of CM(P,), respectively CoCM 4). Note that Cohen—Macaulay modules provide

a generalization of finitely generated modulestlimension zero [5] and the modules

of virtually finite projective/injective dimension provide a natural generalization of mod-
ules of finite projective/injective dimension. Our main tools for their study are the theory
of approximations of modules and the effective use of cotorsion pairs in the module cate-
gory and torsion pairs in the stable module category combined with recent methods from
compactly generated triangulated categories.

We concentrate our investigation to the study of virtually Gorenstein algebras, intro-
duced in [22], which provide a natural enlargement of the class of Gorenstein algebras
giving at the same time a homological generalization of algebras of finite representation
type and more generally of algebras of finite Cohen—Macaulay type. Recall from [22] that
Ais called virtually Gorenstein ifB 1> = 37. Note thatA is Gorenstein ifP > =17,
whereP 3>, respectivelyl 5°°, is the full subcategory of all modules with finite projective,
respectively injective, dimension. We stress that virtually Gorenstein algebras are defined
by imposing representation theoretic finiteness conditions on Cohen—Macaulay modules
or on modules of virtually finite projective or injective dimension whereas Gorenstein
algebras are defined by imposing homological finiteness conditions on the ring. In this
connection it is a long-standing open problem if one-sided finiteness of the self-injective
dimension of an Artin algebra is sufficient for Gorensteinness. In the literature this prob-
lem is usually referred to as tii&orenstein Symmetry Conjectu(@ScC) for short, see [13,
Conjecture (13)], [22]. As a consequence of our results we give an affirmative answer to
(GSC) for the class of virtually Gorenstein algebras.

Virtually Gorenstein algebras share many properties with genuine Gorenstein algebras.
For instance we show that they are stable under various operations like derived equiv-
alences or stable equivalences of Morita type. In addition virtually Gorenstein algebras
enable us to have homological control on the (stable) module category which is satisfac-
tory from many aspects. This controllability is expressed by the existence of well-behaved
(co)torsion pairs in the (stable) module category which restrict to (co)torsion pairs of fi-
nitely generated modules; in other words the (stable) category of all or finitely generated
modules admits well-behaved “semi-orthogonal decompositions” in the sense of Bondal—
Kapranov [24,25]. Here torsion pair in a stable category is meant in the sense of [22] and by
a cotorsion pair in an abelian category we mean complete hereditary cotorsion pair in the
sense of [57]. As a consequence we show that the finitely generated (Co)Cohen—Macaulay
modules and the finitely generated modules of virtually finite projective or injective dimen-
sion over a virtually Gorenstein algebra form functorially finite subcategories with free
Grothendieck groups and admit Auslander—Reiten sequences. We also show that virtual
Gorensteinness is left-right symmetric and we give a host of characterizations of virtually
Gorenstein algebras, in particular of Gorenstein algebras, in various contexts ranging from
module categories to stable or derived categories, or using (co)torsion theoretic conditions.
We would like to stress that although the class of virtually Gorenstein algebras is very
large since it includes Gorenstein algebras and algebras of finite representation or Cohen—
Macaulay type, we don't know of any example of an Artin algebra that is not virtually
Gorenstein. However we show that all Artin algebras are “locally”, that is, at the finitely
generated level, virtually Gorenstein.
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As with Gorenstein algebras, there is a nice relationship between the module category
and the stable module category for a virtually Gorenstein algebra. This fruitful interplay
is a consequence of the fact that the full subcategory of Cohen—Macaulay modules is de-
finable and locally finitely presented, whereas the induced stable category is a smashing
subcategory [37,42] of the stable module category which is a compactly generated trian-
gulated category with compact generators induced by finitely generated modules. Actually
these facts characterize the class of virtually Gorenstein algebras. In general it is an impor-
tant open problem if a smashing subcategory of the stable module category is generated by
compact objects coming from the stable category. In the context of compactly generated tri-
angulated categories this is precisely the content of the famous Telescope Conjecture [42]
which has its origin in stable homotopy theory of CW-complexes [26,52]. Our results give
some information on the problem in the context of the stable module category of an Artin
algebra. For instance we show that the Telescope Conjecture holds for the stable category
of Cohen—Macaulay modules iff for any cotorsion péit, ) is Mod-A, the subcategory
X is the limit closure of the finitely generated modules it contains providedhat)’
are the projectives anl is closed under coproducts. And this property is invariant under
derived equivalences or stable equivalences of Morita type.

We now give a short description of the organization of the paper which is divided
roughly in four parts. In the first part, consisting of Sections 2-5, we study the structure and
behavior under various operations and constructions of the (co)torsion pairs induced in a
natural way by the Cohen—Macaulay modules. This part sets the necessary material for the
rest of the paper. In the second part, consisting of Sections 6-8, we study finiteness condi-
tions on the Cohen—Macaulay (co)torsion pairs, and in particular we investigate when they
are of (co)finite type in an appropriate sense. This leads us naturally to Section 8 where
we study virtually Gorenstein algebras and derive their main properties. In the third part,
consisting of Sections 9 and 10, we give relative versions of the theory developed previ-
ously by giving methods for constructing (co)torsion pairs arising from Cohen—Macaulay
modules. Then we present applications to the Telescope Conjecture for stable categories.
In the last part of the paper which consists of Section 11 we study Artin algebras with finite
right self-injective dimension in connection with virtual Gorensteinness. In particular we
show tha{GSC) holds for any algebra lying in the derived or stable equivalence class of a
virtually Gorenstein algebra.

Convention. Although many of our results hold for Noetherian and/or left coherent and
right perfect rings (even for suitable abelian categories), for simplicity and concreteness we
work in the context of Artin algebras. Throughout the paper the composition of morphisms
in a given category is meant in the diagrammatic order: the compositign 4f— B with
g:B— Cisdenotedbyfog:A— C.

2. Preliminaries: Artin algebras, torsion and cotorsion pairs
In this section we fix notation and recall some basic concepts and results concerning

pretriangulated categories, torsion and cotorsion pairs which will be useful in the rest of
the paper.
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2.1. Pretriangulated and stable categories

Let C be an additive category.

If 2:C— C, respectivelyX :C — C, is an additive functor, then we can consider the
categoryL7 (C, §2), respectivelyR7T (C, X'), with objects the collection of all diagrams
in C of the form2(C) - A - B — C, respectivelyA — B — C — X (A), with the
obvious morphisms. Aeft, respectivelyright, triangulation of the pair(C, §2), respec-
tively (C, X), is a strict full subcategorny, respectivelyV, of L7 (C, §2), respectively
RT(C, X)), which satisfies all the axioms of a triangulated category exceptsthat-
spectively X, is not necessarily an equivalence. Then the trigles2, A), respectively
(C, X, V), is called aeft, respectivelyright, triangulated category, £2, respectivelyX’,
is theloop, respectivelysuspension, functor and the diagrams i, respectivelyv, are
theleft, respectivelyight, triangles. An additive functorF :C — D between left, respec-
tively right, triangulated categories is callksfit exact, respectivelyight exact, if F sends
left, respectively right, triangles to left, respectively right, triangles and commutes with the
loop, respectively suspension, functors.

Now let C be an additive category equipped with an adjoint gair £2) of additive
endofunctors. If the paifC, £2) admits a left triangulatiom and the pairC, X) admits
a right triangulationVv such that certain compatibility conditions betwedrand V are
satisfied, see [22], then the quintuglg, X, £2, A, V) or simplyC is called apretrian-
gulated category. An important source of examples of pretriangulated categories emerge
from functorially finite subcategories.

Let V be a full subcategory of an abelian categgtyA morphismf:A — Bin A is
called V-epic if the map AV, f): AV, A) — A(V, B) is surjective. The subcategory
is calledcontravariantly finite if there exists &’-epic f4: V4 — A with V4 in V. Then
fa is called aright V-approximation of A. Covariantly finitesubcategories)-monics
andleft V-approximationsare defined dually. A subcategory is callieshctorially finite
provided that it is both contravariantly and covariantly finite; we refer to [6] for details. The
stable category .A/V of A modulo a subcategory has as objects the objects dfand
morphism spaced/V(A, B) := A(A, B)/ Ay (A, B) where Ay, (A, B) is the subgroup of
A(A, B) consisting of all maps factorizing through an object frétnlf A, respectively
f, is an object, respectively morphism, i, then we denote by, respectivelyf, the
object A considered as an object /), respectively the equivalence class faf Then
m:A— A/V, wherer(A) = A andn(f) = f, is an additive functor withr (V) = 0. A
nice situation occurs whew is functorially finite: in this case the stable categety) is in
a natural way a pretriangulated category. The adjoint pair of loop and suspension functors
and the left/right triangles are defined via left and rightipproximations, see [22] for
details.

2.2. Torsion pairs in pretriangulated categories

Pretriangulated categories provide the proper setting for the study of torsion pairs in the
sense of the following definition which generalizes the notion of usual torsion pairs in an
abelian category.
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Definition 2.1 [22]. Let C be a pretriangulated category and et ) be full additive
subcategories af closed under isomorphisms and direct summands. The(fpap) is
called atorsion pair in C, and then’ is called atorsion classand) is called atorsion-
freeclass, if:

() C(X,Y)=0,i.e,C(X,Y)=0,VX € X andVY € ).
(i) (X)) cXand() C).
(iii) For any objectC in C there exist object& ¢ € X andY¢ € ), and triangles:

Q(Yc)g—%xcf—%ciﬂceA and X2 25 vC IS sxey e
If (X,)) is a torsion pair inC, then X+ := {C € C | Homg(X,C) =0} =Y and
LY :={C eC|Home(C,Y) =0} = X. Moreover the assignmeiit — X gives a right
adjoint Ry :C — X of the inclusioniy : X < C and the assignmer@ — Y€ gives a
left adjointL x :C — Y of the inclusioniy,: Y — C, see [22]. The torsion paitX, ))
is calledhereditary, respectivelycoher editary, if the idempotent functoryRy :C — C,
respectivelyiyLy :C — C, is left, respectively right, exact.

2.3. Cotorsion pairs

Let A be an abelian category. For a subcategurgf A we denote by-V := {A ¢
A Ext'(A,V)=0,Vn > 1,VV €V} theleft Ext-orthogonal subcategory ol and by
V1 :={Ae A|Ext'(V,A)=0,Vn > 1,VV €V} theright Ext-orthogonal subcategory
of V. A subcategory/ C V is called arExt-injective cogenerator of V if for any objectV
in V there exists an exact sequence-OV — U — V' — 0 whereV’ liesinV andU lies
in U and is Ext-injective iV, i.e.,U € V*. Ext-projective gener ators are defined dually.
Ext-projective generators and Ext-injective cogenerators emerge naturally from co-
torsion pairs. First recall that for a full subcategadryof A, a right/-approximation
f:Ua — A, respectively left{-approximationg: A — U4, of A is called special if
Extl(U, Ker f4) = 0, respectively Ext(Cokerg?,2/) = 0. Important examples of special
approximations are the minimal ones. Recall that a rfiag — B in A is calledright,
respectivelyleft, minimal, if any endomorphismx: A — A, respectivelyg: B — B, is
invertible provided tha o f = f, respectivelyf o 8 = f. A minimal right, respectively
left, approximation is a right, respectively left, approximation which is right, respectively
left, minimal. Note that minimal approximations are unique up to isomorphism and, by
Wakamatsu’s Lemma [13], for any extension closed full subcatdga.4, any minimal
right, respectively leftl{-approximation is special.

Definition 2.2. A pair (X, )) of full subcategories of4 is called acotorsion pair, and
thenX is called acotor sion class and)’ acotor sion-free class, if:

() ¥t=Yandty=2x.
(i) Any object of 4 admits a special right'-, respectively leffy-, approximation.



A. Beligiannis / Journal of Algebra 288 (2005) 137-211 143

If (X,)) is a cotorsion pair in the abelian categaodty then, by [22],X N} is an
Ext-injective cogenerator ot and an Ext-projective generator df If X N is functo-
rially finite, so the stable categoty/X N is pretriangulated, then the pgit /X N,
Y/XNY)isatorsion pairind/xX N Y.

The class of cotorsion, respectively torsion, pairs in an abelian, respectively pretrian-
gulated, category, respectivelyC, is partially ordered(Xy, V1) < (X2, J») iff X1 C Xo.
With respect tox, the least, respectively greatest, cotorsion paifAs.A), respectively
(A, Z), whereP, respectivelyZ, are the projectives, respectively injectives,&fand the
least, respectively greatest, torsion paifdsC), respectivelyC, 0).

Cotorsion(-free) classes are examples of (co)resolving subcategories. Recall that a full
subcategory ofd is calledresolving provided that it is closed under extensions, kernels of
epics and contains the projectivé&oresolving subcategories are defined dually. Having
a (co)resolving subcategory we can define the notion of (co)resolution dimensiorifof
X is aresolving subcategory of, then theX’-resolution dimension of an objectd in A,
written resdimy A, is defined inductively as follows. lA is in X, then resddimy A = 0.

If + > 1, then reddimy A < 1 if there exists an exact sequence0X; — --- — Xg —
A — O where reglimy X; =0, for 0<i <t. Thenredimy A = if res.dimy A <t and
resdimy A & ¢ — 1. Finally if resdimy A #  for anys > 0, then define redimy A = oo.
The X -resolution dimension of A is defined by reslimy A := supresdimy A | A € A}.
TheY-coresolution dimension of 4, which is denoted by coretim,, A, for a coresolving
subcategoryy of A, is defined dually. We denote b37 ={A e A|resdimy A < oo},
respectively) := {A € A | coresdimy, A < oo}, the full subcategory ofA consisting of
all objects which admit finite exact resolutions by objects frnrespectively finite exact
coresolutions by objects frogi.

2.4. Artin algebras

The basic examples of pretriangulated categories in this paper emerge from Artin al-
gebras. From now on we fix an ArtiR-algebraA over a commutative Artin ringR? with
radical RadR. The radical ofA is denoted by . Let Mod-A be the category of all right
A-modules and let modt be the category of finitely generated righitmodules. We view
left A-modules as rightt°P-modules and we denote by D : Matl— Mod-A°P the usuall
duality which is given by D= Homg (—, [E) whereE := R/ RadR is the injective envelope
of R/RadR.

Since A is left coherent and right perfect, the categ®ry of projective A-modules is
functorially finite and any module admits a minimal left and a minimal right projective
approximation [22]. Hence the stable category Médnodulo projectives is pretriangu-
lated with induced adjoint pair of endofunctdise, $2), wheres2 is the usual loop functor
and Xp(A) is the cokernel of a left projective approximation4f Since the categor 4
of finitely generated projective modules is functorially finite, the stable categoryod
modulo projectives is pretriangulated with induced adjoint pair of endofun¢iogs §2)
which is the restriction of the first one on the full subcategory +od

Dually sinceA is right Noetherian, the categoly of injective A-modules is functori-
ally finite and any module admits a minimal left and a minimal right injective approxima-
tion. Hence the stable categdvod-A modulo injectives is pretriangulated with induced
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adjoint pair of endofunctorsX, £2;) whereX is the usual suspension functor ag(A) is
the kernel of a right injective approximation af Since the category, of finitely gener-
ated injective modules is functorially finite, the stable categoog-A modulo injectives is
pretriangulated with induced adjoint pair of endofunct@xs £27) which is the restriction
of the first one on the full subcateganyod-A.

In the sequel we shall need the following observations.

Remark 2.3. (i) By constructiony A € Mod-A, there exists an exact sequence> P4 —
Tp(A) —> 0, whereg?: A — P4 is a leftP,-approximation ofA. If A £ 2Xp(A) &>
P4 is the canonical factorization gf4, then the map: A — 22 Xp(A) is the reflection
of A in the full subcategory In2 of Mod-A consisting of the syzygy modules. Similar
remarks hold for the functa®, .

(i) By [18], we have Xp = Xp|moda = Tr2 Tr and 27 = 2| |554-4 = DTr2TrD,
where Tr(modA)°° = mod A°P is the Auslander—Bridger transpose duality functor [5].
Recall that for anyl" in mod-A and anyA in Mod-A we have the Auslander—Reiten
formulas [8]:

Ext} (A, DTr(T)) =< DHom, (T, A) and DEX{ (T, A) = Homy (A, DTr(T)).

We denote byNt:Mod-A — Mod-A the Nakayama functor defined by™(A) =
A ®4 D(A) and by N™:Mod-A — Mod-A its right adjoint defined byN~=(A) =
Hom, (D(A), A). Itis not difficult to see that the adjoint paiN™, N™) induces an equiv-
alenceN™:P, = | 4 with quasi-inverseN™:1 4 => P4. Krause observed that this fact
can be used to show that the Auslander—Reiten operators DTr and TrD can be extended
to the big module category. Let and B be arbitrary modules. Let 8> 22(A) —
Py — Pp — A — 0 be the start of a (minimal) projective resolution af and let
0— B— I1°— 11— ¥?(B) — 0 be the start of a (minimal) injective coresolution®f
Following [41] we define the modules™(A) andz~(B) by the exact sequences:

0— t7(A) > NT(P1) > NT(Pg) > NT(4A) = 0,
0— N~(B) >N~ (1% = N~ (I') - t=(B) - 0.

We call z+ andt~ the Auslander—Reiten operators of Mod-A. By [41] the operators

rt andt~ induce an adjoint pair of stable equivalences, r~) : Mod-A => Mod-A,

and coincide with DTr and TrD respectively in case we work with finitely generated mod-
ules.

Remark 2.4. (i) If A is a finite-dimensionak-algebra over a perfect field, then the
Auslander—Reiten operators can be made functorial. That is, there exists an adjoint pair
(F, G) of endofunctors of ModA such thatF sends injectives to projectives afd=
7 :Mod-A — Mod-A, and G sends projectives to injectives a@= r*:Mod-A —
Mod-A, see [10,17].

(ii) Since the Nakayama functors®™ preserve filtered colimits, products and finitely
presented modules, it follows that they preserve pure short exact sequences and pure-
injective modules.
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For aA-moduleA, the projective, respectively injective, dimension4fs denoted by
pdA, respectively idA. We denote byDA =P3°, respectlverPA =P, the full sub-
category of all, respectively finitely generated modules with finite prOJectNe dimension.
Dually I 4 := 13, respectivelyZ, := I;*°, denotes the full subcategory of all, respec-
tively finitely generated, modules with finite injective dimension. Digpr oj ective fini-
tisticdimension FPD(A) of A is defined by FPDA) = sugpdC | C € P;*°} and thdittle
projectivefinitisticdimension fpd(A) of A is defined by fpdA) = suppdC | C € P;*°}.

The big, respectively little, injective finitistic dimension RID), respectively fidA), are
defined dually. The global dimension gfis denoted by gtlim A. Finally if V is a full sub-
category of ModA, then Prod)), respectively AddV), respectively add’), denotes the

full subcategory consisting of all direct summands of products, respectively coproducts,
respectively finite coproducts, of modules fram

An objectT in an additive categorg which admits all small coproducts is calledm-
pact if the representable functéT, —) : C — Ab preserves all small coproducts. The full
subcategory of compact objects®is denoted by". If 2/ € Mod-A, we denote by/fin
the full subcategory:

U™ .= nmod-A.

Note that ift/ is closed under coproducts in Madi; then we havé/ ™ < ¢/. And clearly
we have equalitieéMod-A)P? = mod-A = (Mod-A)f" since A is right Noetherian.

3. Cohen-Macaulay modules and (co)torsion pairs

In this section we fix notation and recall some basic concepts concerning (Co)Cohen—
Macaulay modules. In addition we prove several useful results, mainly of homological
nature, related to (Co)Cohen—Macaulay modules which will be essential in the rest of the
paper and we give the connections with torsion and cotorsion pairs.

From now on and throughout the rest of the paper we fix an Artin algabra

Remark 3.1. It is easy to see that we have the following identifications.

tA="Ps={AeMod-A |L,N"(A) =Tor’ (A, D(A)) =0, Vn > 1},
D(A)* =14 ={A € Mod-A | "N (A) = Ext} (D(A), A) =0, Vn >1}.

Let CM(P,), respectively CoCM ,), be the maximal subcategory of Matl-which
admits the full subcategory of projective, respectively injective, modules as an Ext-injective
cogenerator, respectively Ext-projective generator. Clearly we have:

CM(Py) = {X € Mod-A | there exists an exact sequence
-0 -1
0> X— P05 pLL, p2 .. whereP’ cPy,

Vs >0, and Ke(f") e A, ¥n >0},
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CoCM(l ) = {Z € Mod-A | there exists an exact sequence

-1 0
e I128 L 718,10 5 750, wherel ey,
Vs >0, and Cokefg ™) e D(A)*, ¥n > 0}.
The stable category of Cohen—Macaulay modules modulo projectives is denoted by

CM(P,) and the stable category of CoCohen—Macaulay modules modulo injectives is de-
noted byCoCM(l 4).

Note. Obviously we have: CNPA) Nl 4 =P NI, =P, NCoCM( 4).

Inspired by the work of Auslander—Bridger [5] and following [22] it is now natural to
make the following definition.

Definition 3.2. The modules in CNP,) are calledCohen—M acaulay modules and the
modules in CoCMl 4) are calledCoCohen—M acaulay modules.

We also consider the finitely generated versions of the above definitions. We set

CM(A) = CM(P4)™ = mod-A NCM(P,),
CoCM(D(4)) = CoCM(I »)™ = mod-4 N CoCM(l »),
CM(A) =mod-ANCM(P,), CoCM(D(4)) = mod-A N CoCM(l 4).

By [22], CM(P,), respectively CMA), is a resolving subcategory of Mad; respec-
tively mod-A, with CM(P,), respectively CMA), triangulated. And CoCM ,), respec-
tively CoCM(D(A)), is a coresolving subcategory of Matl- respectively modd, with
CoCM(l 4), respectivelyCoCM(D(A)) triangulated. The following result gives a conve-
nient description of the (Co)Cohen—Macaulay modules which will be useful later.

Lemma3.3.

(1) A moduleA is Cohen—Macaulay iff

() LNt (A)=0,Vn>1,

(B) R*™N~(Nt(A))=0,Vn>1,and

(y) the natural mapA — N~NT(A) is invertible.
(2) A moduleA is CoCohen—Macaulay iff

(@) R"N~(A)=0,Vn >1,

(B) L,NtT(N~(A4)) =0, Vn > 1, and

(y) the natural mapNT™N~(4) — A is invertible.

Proof. We prove only(1) since part(2) is dual. If A is Cohen—Macaulay then the condi-
tions hold by [22]. Conversely, by Remark 3.1, conditian implies thatA € - A. Let 0—
Nt(A) - 19— 11 — ... be an injective coresolution of* (A). Applying N~ and using
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() and(y) we obtain an exact coresolution® A — N~ (1% — N~ (1) — --- of A by
projectives. Denoting by” the kernel ofN~ (1) — N~ (I"*1) for n > 0 and applying to
the exact sequence-8 A — N~ (1% — Al — 0 the functorN*, we get L,Nt(AL) =
0, Vn > 2 and an exact sequence—® LiNt(AY) — Nt(4) — 10 which shows that
LiNT (A1) =0 sinceNt(A) — I° is a monomorphism. Hence,Nt (A1) =0, Vi > 1.
Inductively we see that,INT(A") =0, Vn > 1, Vt > 2. HenceA is Cohen—Macaulay. O

The following result from [22] indicates an interesting interplay between (Co)Cohen—
Macaulay modules, Nakayama functors and the Auslander—Reiten operators which will be
useful later.

Proposition 3.4. The adjoint pair(N™, N7) induces quasi-inverse equivalences
N*:CM(P4) < CoCM(I 4):N~ and NT:CM(A) = CoCM(D(A)):N~
which in turn induce exact quasi-inverse equivalences of triangulated categories

NT:CM(P4) < CoCM(I 4):N~ and N":CM(A) = CoCM(D(A)):N™.

Moreover the Auslander—Reiten operatars and ™~ restrict to quasi-inverse triangle
equivalences

tT:CM(P,4) S CoCM(I4):t~ and 1~ :CM(A) < CoCM(D(A)) T~

such thaty 2Nt = ttigm and 272N~ = t~icocm, Whereicm andicocwm are the inclu-
sion functors.

Our analysis of (Co)Cohen—Macaulay modules is based on the following result
from [22].

Theorem 3.5[22]. If A is an Artin algebra, then we have the following.

() There is a cotorsion pai(CM(P,), B3*) in Mod-A. The full subcategor€M(P )
of Cohen—Macaulay modules is functorially finite resolving and we have

CM(PHNPE* =P, and P53 =Pi*NCM(P,).

(i) There is a cotorsion pair(J;>, CoCM(l4)) in Mod-A. The full subcategory
CoCM(l 4) of CoCohen—Macaulay modules is functorially finite coresolving and we
have

COCM(I ) NI =1, and 15%°=35%NCoCM( »).
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(iii) The subcategorie ;> and 3~ are resolving and coresolving. In particular we
have

<0 <X <0 <00 <X <0
PI®*CPiE 213> and PI>® I & DI3™.

(iv) The pair (%(PA),QZO() is a hereditary torsion pair inMod-A and the pair
(35, CoCM(l »)) is a cohereditary torsion pair ifviod-A.

It is now natural to call the modules I3 1> the module®f virtually finite projective
dimension and the modules i}~ the module®f virtually finite injective dimension.

Remark 3.6. By [22] for any moduleA, there exist exact commutative diagrams and se-
guences:

(ff.—p) )

0 0 0— Wy A "S5 Apld <2574 —0
A i/ fa \L
0—Y4 —=>X4—>A—0 0 0
el e b
O%YA%PA%YA%O Za=— 724
vi/ fA\L g:\L §\L
x4 = x4 0= Wa = 4= Wt —0
by il et |
0 0 0—A—74 = wA —0
(fa. =) D a / /
00— Xy —~—""5APpPy—Y"—0 0 0

where f4: X4 — A, respectivelyf;: W, — A, is a special right CNP 4)-, respectively

J5%-, approximation ofA andg?: A — Y4, respectivelyg? : A — Z4, is a special left
71%-, respectively CoCM 4)-, approximation ofA. Also «: X, — P,, respectively

o: 14— 74 is aleftP,-, respectively right 4-, approximation ofX 4, respectivelyZ.

Remark-Notation 3.7. Clearly CM(Py) = P iff COCM(1 1) = 1 4 iff CM(P) = P5
ifft COCM(l 4) =13 iff P1* = Mod-A iff Mod- A = T5*. This happens if gllim A <
00. Also A is self-injective iff D(A) € CM(P,) iff A € CoCM(l 4); in this case we have:
CM(P,) = Mod-A = CoCM(l 4) andB;* =P, =1, = JT;%. To avoid trivialities we
usually assume throughout the paper thas a non-self-injective algebra of infinite global
dimension.

In what follows we denote by:

() Rem:Mod-A — CM(P,) the right adjoint of the inclusioricy :CM(P,4) —
Mod-A.
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(i) Lcocm: Mod-A — CoCM(l ») the left adjoint of the inclusioicocm: COCM( 1) —
Mod-A.

(i) Lg:Mod-A — P the left adjoint of the inclusiony : 7% — Mod-A.

(iv) Ry:Mod-A — 35 the right adjoint of the inclusioiy : 35 < Mod-A.

The existence of these functors follow from [22] in connection with TheorésvaBd the
discussion in Section 2.2. Note that, by [22], the funcRess, Ry andig are left exact,
the functord_cocm, Lz andiy are right exact and the functaikgy andicocm are exact.

The following result collects some basic properties of (Co)Cohen—Macaulay modules
and modules of virtually finite projective or injective dimension which will be useful in
the sequel. First we recall that a full subcategbrpf Mod-A is calleddefinable if D is
closed under filtered colimits, products and pure submodules. We refer to [43] for detailed
information concerning definable subcategories.

Proposition 3.8.

(i) The full subcategorie€M(P,) and CoCM(l 4) are exact Frobenius and definable
subcategories dfiod-A.
(i) PR andI ;> are exact subcategories bfod-A with enough projectives and injec-
tives.
(i) CM (P,) is closed under cokernels of pure monomorphisms@o@M(l ) is closed
under kernels of pure epimorphisms.
(iv) (a) Any module admits a minimal rigtM(P 4)-, respective \CoCM(l 4)-, approxi-

mation.
(b) Any module admits a minimal lefi;*-, respectiveyCoCM(l 4)*-, approxima-
tion.
(v) YA € Mod-A, VX € CM(P,), YZ € CoCM(l 4), there are isomorphismen > 1,
Vm > 0:

Ext} (X, A) = Hom, (2"(X),A) and Ext}(A,Z)=Homu(A, £"(Z)),
Ext} (Zp1(A), X) = Hom, (4, 2" (X)) and
Exty (Z, 2/""1(A)) = Homa(5™(Z), A).

(vi) VT e modA, VX € CM(P,), VZ € CoCM(l »), there are isomorphism§m > 0:

DHom, (T, 2™ (X)) = Ext" (X, DTr(T)) = DExt} (Z5H(T), X),
DExt; *Y(TrD(T), Z) = DHomy (2™ (2), T) = Exty (2, 2" (D).
Proof. (i) and (ii). Since CMP,) is closed under extensions and admits the projectives as

an Ext-injective cogenerator, it follows directly that CR},) is an exact Frobenius subcat-
egory of Mod-A havingP, as the full subcategory of projective—injective objects. Dually
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CoCM(l ) is an exact Frobenius subcategory of Madhavingl 4 as the full subcate-
gory of projective—injective objects. By Remarldgi) and Lemma 33 it follows directly
that CM(P,) is closed under filtered colimits and products. We show that(EM is
closed under pure-submodules. Since @) is resolving, by [46] it suffices to show
that CM(P,) is closed under the double dual functof.Df X lies in CM(P,), then
there exists an exact sequences0X — P% — P1 — ... where theP' are projective
and Ke(P" — P"t1) e L A, vn > 0. Then 0— D?(X) — D%(P% — D%(P1) - .- is
exact and the B(P') are projective since Dis exact and preserves projectives. Since
A is pure-injective, it is easy to see that is definable and therefore K&?2(P") —
D2(P"t1)) e L A, Vn > 0, see [46]. We infer that £1X) lies in CM(P,) and therefore
CM(P,) is definable. Since the Nakayama functifsinduce quasi-inverse equivalences
between CMP,4) and CoCM] ,), it follows easily that CoCM ,) is definable. Part (ii)
follows directly from the fact thaf3 i andJ are resolving and coresolving.

(iii) and (iv). Let (E):0 — X1 %> X, — A — 0 be a pure short exact sequence in
Mod-A where theX; are Cohen—Macaulay. Let

X5 X, > X > Zp(Xy)

be a triangle in CMP,). Sinceg is a pure monomorphism and any projective is pure-
injective, it follows thatg is P,-monic and therefor¢E) induces a right trianglél; —

X, > A— Xp(X,) in Mod-A. Since_ CMP,) is closed under extensions of right tri-
angles, we infer thatt = X lies in CM(P,), i.e., A is Cohen—Macaulay. The proof for
CoCohen—-Macaulay modules is similar. Part (iv) follows from [59] since by (i) the subcate-
gories CMP,) and CoCM] ») are contravariantly finite and closed under filtered colimits
and extensions.

(v) and (vi). We prove only the assertions for Cohen—Macaulay modules. ket 0O
RX) 5 Pp—> X —> 0 be exact WIthPo projective. Then we have an exact se-
quence Hom (Pg, A) 2 Homy (2(X), A) LN Ext1 (X, A) — 0 and the canonical eplc
w :Hom, (£2(X), A) — Hom, (£2(X), A) admits a factorization Hom(£2(X), A)—>
Extl (X, A) £ Hom, (£2(X), A). Since Ex}, (X, P) =0, for any projective modul, it
foIIows easily that Keto = Im g,.. This implies by diagram chasing thatis monic. Then
w is invertible since it is always epic, and the firstisomorphism follows by dimension shift.
Now let A - PA — Xp(A) — 0 be exact and lef — 22 Xp(A) — P4 be the canon-
ical factorization of the minimal left projective approximation 4f— P4 of A. From
the exact sequence-8 Hom, (Zp(A), X) — Homu (P4, X) — Homy (2 Zp(A), X) —

Extl (Zp(A), X) — 0 it follows that the canonically induced map Ex&p(A), X) —
Hom, (2 Xp(A), X) is invertible. Since any Cohen—Macaulay module is a syzygy mod-
ule, by Remark B we have Exﬁ(z‘p(A),X) = Hom, (2 Xp(A), X) = Hom, (A, X).
Finally Vmm > 1 we have:

Hom, (A, 2™ (X)) = Hom, (Z2(4), X) = Ext} (Z5 T (A), X).

Part (vi) follows from (v) and Auslander—Reiten formulas, cf. Remag 20
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If U is a resolving, respectively coresolving, subcategory of an abelian catdgovg
let /S be the full subcategory afl consisting of all objectsA with resdimy A < n,
respectively coredimy; A <n. In particularPf”, respectivelyl i", is the subcategory of
all modules with projective, respectively injective, dimensiom. By [5, Lemma 3.12],
resdimy; A <n iff 2"(A) e and coreglimy; A < n iff X" (A) elUd.

The following result gives an alternative way to compute self-injective and finitistic
dimensions.

Proposition 3.9.

(i) CM(PA)S" NP5* =PS" andT5% N CoCM(I )" = 15"
(i) LANCM(P,) =CM(P,) andD(A)L N CoCM(l 1) = CoCM( »).
(iii) For any non-zero moduld in CM(P,4) and any non-zero modulB in CoCM(l 4)
we have

resdimem A = sup{n > 0| Ext}y (A, A) # 0},
coresdimcocm B = sup{n > 0| Ext)y (D(A), B) #0}.

(iv) YW € 35%:id W = coresdimcocm W andVY € P71 pdY =resdimem Y.
(v) id A4 = coresdimcocm A andpd D(A) 4 = resdimcy D(A).

(vi) FPD(4) = supiresdimeym C | C € CM(P )}

(Vi) FID(A) = sup{coresdimcocmC | C € COCM( 4)}.

Proof. (i) Clearly P" € CM(P4)S" NP5, If Alies in CM(P4)S" NP5, then, since
P& is resolving, 2" (A) lies in CM(P4) NP1, Hence, by Theorem.B, 2"(A) is

projective and thereforet lies in PS”. It follows that CM(P)<" N B = PS" and

dually 35% N CoCM(I ,)S" =15".

(i) Clearly CM(P,) € +A N CV(FA). By [22, Proposition VI.2.3], for any mod-
ule A we haveA € CV(FA) iff Y4 € P3™. Hence ifA lies in Lan Cm), then
pdY4 < oo. This implies, using dimension shifting on a projective resolutionYef
that Exﬁ(A, Y4) = 0 and therefore the special right GRl)-approximation sequence
0— Y4 —> X4 — A — 0 of A splits. HenceA is Cohen—Macaulay and consequently
CM(PH =14an CM(FA). The second equality is proved similarly.

(iii) Let & = sup,>o{Ext} (A, A) # 0} andd = resdimecm A < oo. Since29(A) lies
in CM(P,) we have EX}{ (A, A) =0,Vn >d + 1. If Ext‘jl(A, A) =0, then pulling-back
the exact sequence-8 29(A) - P41 - 24-1(A) — 0, whereP4~1 s projective,
along the left projective approximatiaf??(A) — P2 of 24(A), we get an exact
sequence 8> P4 5 3p(029(A) @ P41 — 29-1(A) — 0 which splits by our
assumption. Sinc&p(£29(A)) is Cohen—-Macaulay, we infer that sa&~1(A) and there-
fore resdimecm(A) < d — 1, a contradiction. Hence I':’j((A, A) # 0 and thereforé < d.

If § < d, then clearly2® (A) lies in+ A N CM(P,) which is equal to CNP 1) by (ii). This
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implies that regslimcy A < 68, a contradiction. Hencgé= d. The second equality is proved
similarly.

(iv) and (v). Clearly coreslimcocmW < id W and it suffices to show that i <
coresdimcocm W if the latter, says, is finite. If n = 0, thenW € 3;* N CoCM(I 1) =14
and therefore i = 0. If n > 1, then sinceX”(W) € CoCM(l ) and 3~ is core-
solving, we infer thatx” (W) € 3, N CoCM(l 4) = | 4 and therefore id < n. Hence
id W = coresdimcocm W. The second equality is proved similarly. Then part (v) follows
directly from (iv) sinceA € 3% and D(A) € P;~.

(vi) and (vii). Let sugresdimcm C | C € CM(FA)} =d and FPDA) =4§. If d < oo,
thenCM(P,) = CM(P4)<¢ and therefore, using (i),

P5% = CM(P4) NP5 = CM(P) S NP5 =PS?.
Hences < d. On the other hand i§ < oo, so Pf’g =P3>, then letA € CM(P,) and let
0— A— Y4 - X4 - 0 be a special lef§3 1> -approximation sequence df. Clearly
Y4 lies in CM(PA) N P> = P5® =P$’. Since pdr4 < 5, by the first diagram in Re-
mark 36 it follows thatY4 = £2(Y4) liesin Pf‘s_l and this implies that redimcy A < 8.
Henced < §. Part (vi) is proved similarly. O

Note. Since CMP,) is contravariantly finite and CoCW,) is covariantly finite,

it follows by [22, Lemma 1X.3.1] thatvA € Mod-A: resdimcy A = CM-pdA and
coresdimcocm A = CoCM-idA, where CM-pd, respectively CoCM-id, denotes relative
projective, respectively injective, dimension with respect to the relative homological alge-
bra in Mod-A induced by the (Co)Cohen—Macaulay modules.

We close this section with some remarks on Gorenstein algebras. Recall that an Artin
algebra is calledGorenstein if id 4 A < oo and idA 4 < co. EquivalentlyP 5> =75,
or P53 =15 Itis well known that for a Gorenstein algebsiawe have idyA =id A 4.
Recall thatT € Mod-A is called atilting module if:

(o) T has finite projective dimension,
(B) Ext (T, T"Y)=0, for anyn > 1 and index sef, and

(y) A €Add(T).
Dually T € Mod- A is called acotilting module if:

(o) T has finite injective dimension,
(B) Ext}(T!,T)=0, foranyn > 1 and index set, and

(y) D(A) € ProdT).

More generally a subcatego®, respectivel\C, of Mod-A is calledtilting, respectively
cotilting, subcategory if there exists a tilting, respectively cotilting, modulg respec-
tively C, such thatl = T+, respectivel)C = +C, see [3].
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In the sequel we shall need the following characterizations of Gorensteinness, many of
them well known for finitely generated modules, which follow from Theore®’ Bropo-
sition 38 and [4,18,22]. In essence for Gorenstein algebras “all dimensions are finite and
equal”.

Proposition 3.10. The following are equivalent

(i) A is Gorenstein.
(i) coresdimcocm A < oo andresdimey D(A) < oo.
(i) fpd (A°P) < 0o andid A 4 < oo, equivalentiyfpd(A) < co andid 4 A < oco.
(iv) CM(P4) NPZ* =T5% N CoCM(l 4).
(v) resdimcm Mod-A < oo or equivalentlycoresdimcocmMod-A < oo.
(Vi) PR*=P3{>* or equivalentlyc%) = Mod-A.
(vii) T3 =13* or equivalentlyCoCM(l 4) = Mod- A.
(viii) (CM(P,), P3) is a cotorsion pair inMod- A.
(ix) (1%, CoCM(l »)) is a cotorsion pair inMod- A.
(xX) The full subcategorM(P,), respectivefCoCM(l 4), is cotilting, respectively tilt-
ing.
(xi) A is a cotilting module, or equivalentp(A) is a tilting module.

If Ais Gorenstein, the@M(P,) =+ A andCoCM(l 4) = D(A)+, and moreover

= coresdimgocm A = resdimgy D(A) = resdimey Mod-A
= coresdimcocmMod-A < oo.

In view of Propositions 3 and 310, it is now natural to define thartual finitistic
projective, respectivelyinjective, dimension vVFPD(A), respectively vFIDA) of A as
follows:

VFPD(A) :=sup{pdY | ¥ € P} = resdimem P;~,

VFID(A) :=sup{idY | Y € 3%} = coresdimcocm I ;.
Clearly FPOOA) < VFPD(A) and FIXA) < VFID(A). Since VFPDRA) < oo, respectively
VFID(A) < oo, is equivalent to* = P, respectivelyJ;* = 15°°, we have the

following consequence which shows that Gorenstein algebras are characterized by the
finiteness of the virtual finitistic dimensions.

Corollary 3.11. A is Gorenstein ifvFPD(A) < oo iff VFPD(A) < oo.
The following result shows that for modules with finite (Co)Cohen—Macaulay (co)re-

solution dimension we have an explicit description of their (Co)Cohen—Macaulay approx-
imations.
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Proposition 3.12. For a moduleA in Cﬁ(?A) and a moduleB in Co/CT\/IﬁA), we have the
following.

(i) The counit Z¢29(A) — A is the coreflection ofA in CM(P4), where d =
resdimgm A.

(i) The unit B — 2°X%B) is the reflection of B in CoCM( 4), where § =
coresdimcocm B.

Proof. Since 229(A) € CM(P,) and, by Proposition .8(iii), CM(P,) is closed un-
der left projective approximations we infer thaIthd (A) is Cohen—Macaulay. Let
g4 2827(A) — A be the counit of the adjoint paizd, £2¢) in Mod-A and lete: X —
A be a morphism wher# lies in CM(P,). Since the natural mags} : £¢29(X) — X is

invertible, we deduce directly that= (¢4)~1 0 2229 (a) o ¢4. Henceg factors through

52 and clearly this factorization is unique sinp|cmp,) IS an equivalence. Hence

E,@’Qd(é) is evaluation of the coreflection &f in CM(P,). Part (ii) is similar. O

The above result in connection with Propositiori( admits the following conse-
guence, see also [18], which shows in particular that for Gorenstein algebras the functors
Rcwm :Mod-A — CM(P4) andL cocm: Mod-A — CoCM(l 4) preserves products and co-
products. These conditions will play an important role later in the paper in connection with
virtually Gorenstein algebras.

Corollary 3.13. Let A be a Gorenstein algebra witld A = d. Then there exist isomor-
phisms of functors

Rem = 2829:Mod-A — CM(P4) and Lcocm = 27 ¢ :Mod-A — CoCM(l 4).

In particular Rcyv, respectivel\L cocm, preserves coproducts, respectively products.

4. Cohen—Macaulay modules and (co)stabilizations

In this section we discuss structural properties of the (Co)Cohen—Macaulay modules
and (co)torsion pairs in connection with the behavior of the (co)universal triangulated cat-
egories associated to the stable module categories modulo projectives/injectives. These
properties will be useful later in connection with virtually Gorenstein algebras and alge-
bras with finite left or right self-injective dimension.

4.1. Stabilizations

Recall from [18] that to a given left triangulated categdrythere is associated in a
universal way a triangulated categdfy(C) which reflects many important homological
properties ofC. More precisely there exists a left exact functolC — 7 (C) such that for
any left exact functorF :C — 7 to a triangulated category, there exists a unique up
to isomorphism exact functaf*: 7 (C) — 7 such thatF*T = F. The category? (C) is
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called thestabilization of C and the functor is called thestabilization functor. We refer
to [18,40] for details.

Here we need only the following facts. The object¥at’) are pairsC, n), whereC is
an object inC andn € Z. The space of morphism&(C)[(A, n), (B, m)] is identified with
the direct limit:

TO[A ), (B,.m]= lim c[e" @), 2™B)].

The loop functor2: 7(C) — 7 (C) is defined by$2(C, n) = (C,n — 1) and the stabiliza-
tion functorT is defined byT(C) = (C, 0). Finally the extension of the left exact functor
F above is defined by*(C, n) = 2" F(C). Dually any right triangulated category admits
its stabilization which has a dual description and dual properties. In particularsifa
pretriangulated category, théhadmits a stabilizatior; : C — 7;(C) when considered as
a left triangulated category, and a stabilizatiopn C — 7, (C) when considered as a right
triangulated category.

Now the stable module categories Madand Mod-A are both pretriangulated. To
avoid confusion, we shall use the following notations:

e P;:Mod-A — 7;(Mod-A) is theleft projective stabilization functor, i.e., the stabi-
lization functor of the left triangulated category Mot

e P,:Mod-A — 7,(Mod-A) is theright projective stabilization functor, i.e., the sta-
bilization functor of the right triangulated category Mad

e Q,:Mod-A — 7,(Mod-A) is theright injective stabilization functor, i.e., the stabi-
lization functor of the right triangulated categdviod-A.

e Q;:Mod-A — T;(Mod-A) is theleft injective stabilization functor, i.e., the stabi-
lization functor of the left triangulated categdod-A.

Note that modA andmod-A are pretriangulated subcategories of MééndMod-A with
stabilization functors the restrictions of the stabilization functors of Modnd Mod-A
to mod A and mod-A respectively. The inclusions mad < Mod-A and mod-A <>
Mod-A extend to inclusiong, (mod-A) — 7,.(Mod-A) and7,(mod-A) — 7,(Mod-A)
respectively, where =r, [.

In the sequel we shall need the following useful results.

Lemma4.1[18]. LetC be aright, respectively left, triangulated category with suspension,
respectively loop, functaE, respectively2. Then the right, respectively left, stabilization
7,(C), respectivelyZ;(C), of C is trivial if and only if for any objectC in C there exists
n =n¢ > 0such thatX"(C) = 0, respectively2” (C) = 0.

In particular 7;(Mod-A) = 0iff gl.dim A < oo iff 7,(Mod-A) = 0.

As a direct consequence of the above lemma we have:

e KerP; =P3*°/P, and KelP, = {A € Mod-A | idtT A < oo}.
o KerQ; ={A eMod-A | pdr~A < oo} and KerQ, =15%/1 4.
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Lemma4.2[18].

(1) The mapHom, (X, A) — Hom[P,;(X), P;(A] is invertible, VX € LA and VA €
Mod-A. In particular the exact functoP;icy : CM(P4) — 7;(Mod- A) is fully faith-
ful.

(2) The mapHom, (A, Z) — Hom[Q,(A), Q,(Z)] is invertible for any moduleZ e
D(/iand any moduleA. In particular the exact functoQ,icocm: COCM(I 4) —
7,(Mod- A) is fully faithful.

The next remark gives more concrete realizations of the stabilization categories.

Remark 4.3. Let HP(P,), respectiverHb(IA), be the bounded homotopy category of
complexes of projective, respectively injective, modules. AlsoOBtMod-A) be the
bounded derived category of Madl- ThenHP(P4) andHP(l 4) are thick subcategories of
D°(Mod-A) and by a result of Keller—Vossieck [40], see also [18], the canonical functors
DP(Mod-A)/H°(1 1) < Mod-A — DP(Mod-A)/HP(P4) from Mod-A to the correspond-

ing Verdier quotients induce triangle equivalences:

7i(Mod-A) = D’(Mod-4)/H(P4) and 7;(Mod-A) => D°(Mod-A)/HP(1 »).

If HP(P,), respectivelyH®(Z,), is the bounded homotopy category of complexes of fi-
nitely generated projective, respectively injective, modulesiffchod-A) is the bounded
derived category of modt, then the above triangle equivalences restrict to triangle equiv-
alences

7i(mod-A) = DP(mod-A)/H°(P,) and 7;(mod-4) = D°(mod-4)/H"(Z ).

We denote by$£2°°(Mod-A), respectively 2" (Mod-A), the full subcategory of
Mod-A consisting of the projectives and the arbitrary syzygy, respectivtiysyzygy,
modules. The induced stable categories modulo projectives are denofe® tMod- A)
and £2"(Mod-A) respectively. Dually we denote byr*°(Mod-A), respectively
X" (Mod-A), the full subcategory of Modt consisting of the injectives and the arbitrary
cosyzygy, respectivelyth-cosyzygy, modules. The induced stable categories modulo in-
jectives are denoted b >°(Mod-A), respectivelyX” (Mod-A) respectively. Part (i) of
the following result generalizes a result of Happel [33] and part (iv) generalizes a result of
Auslander—Buchweitz [4].

Proposition 4.4. If id A4 = d < oo, then we have the following.

(i) The stabilization functors

Qr:Mod-A — 7;(Mod-A) and P;:Mod-A — 7;(Mod-AP)
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are surjective on object¥ (A, n) € 7,(Mod-A), V(A, n) € T;(Mod-A°P) we have

— oz Ay, if n >0, ~ [Pi(27"(A), ifn<O,
(A’”)={Qr<m), tn<o (A’”)z{m(z"m», 0> 0.

(i) £2°(Mod-A) =CM(P,) € 29(Mod-A) C L A.

(i) X°°(Mod-A°P) = CoCM(l 4op) C X¢(Mod-A°P) € D(A)*L.
(iv) CM(Ppop) =LA andCoCM(l 4) = D(A)L.

(V) £+ A4 =Mod-A andD(A)L = Mod-A°P.

Proof. (i) Let (A,n) be inZ;(Mod-A) and let--- — Py — Pp — A — 0 be a projective
resolution ofA. Applying the stabilization functo®, to the right triangle2(A) — Po —
A — X 2(A) in Mod-A and using that:

(o) any projective module has finite injective dimension by hypothesis, and
(B) Qy kills the modules of finite injective dimension, we have an isomorplgsi) =
Q,(X2(A)) in 7,(Mod-A).

Similarly considering the right triangl@2(A) — Py — 2(A) — ¥ 22(A) in Mod-A we
have an isomorphism, (£2(A)) = Q,(X222(A)) in 7,(Mod-A). Then we have isomor-
phisms

Q-(A) = Q(¥2(A)) = Q. (2(4) = Q,(¥222(4)).
Inductively we obtain isomorphisn@, (A) = Q, (X' 21 (A)), Vt > 0. If n > 0, then
(A,n)=X"(A,0)=2"Q,(A) =Q,(Z"(A)).
If n <0, then

(A,n)=X"(A,0)=2"Q,(A) = X"Q, (X" (A) = Z"X7"Q, (27" (A))

=Q,(27(A4)).

HenceQ, is surjective on objects. The other assertion follows by duality.

(ii), (iii) and (v). For any moduleC we have EXt(£2¢(C), A) = Ext'*(C, A) =0,
Vn > 1. HenceR4(C) € + A. It follows that 2°°(Mod-A) € £2¢(Mod-A) € +A. This
implies that- A = Mod-A and£2°°(Mod-A) € CM(P,) € 2°(Mod-A); hence

2°°(Mod-A) = CM(P,).

Finally the equalities

¥%°(Mod-AP) = CoCM(l g4») and D(A)+ =Mod-A%P

are proved similarly.
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(iv) Clearly CoCM1 4) CD(A):. If AeD(A) T and(1):0— A — Ig— I1 — ---is
an injective coresolution of, then we have an acyclic coresolutiort):0 — N~ (A) —
N~ (lg) - N~ (I1) — --- of N~ (A) by projectives. It follows thaN—(A) is an arbitrary
syzygy module, i.e.N7(A) € 2°°(Mod-A) and thereforeN~(A) is Cohen—Macaulay
by (ii). ThenN*tN~(A) is a CoCohen-Macaulay module. ¥"(A) are the cosyzygies
of A, then since DA)" is coresolving, we have™ (A) € D(A)+, henceN™ (X" (A)) =
IMN~ (I, — I,+1) := K,. Observe that the moduld§, are also arbitrary syzygy mod-
ules, hence they are Cohen—Macaulay. We now show that the natural hhapA) — A
is invertible. ApplyingN™ to the exact sequengét) and using thak, lies in CM(P,),
we infer that LNT(K,) =0, vVt > 1, Vn > 0. Hence the sequence-9 NTN=(4) —
NTN™(Ig) = NTN~(I1) — --- is exact. Since the natural maps$ N~ (1) — I, are in-
vertibleVn > 0, so is the natural magtN—(A) — A. SinceNTN~(A) liesin CoCM( 4),
we infer that so doed. We conclude that A)- € CoCM(l 4). The equality CMP 4op) =
L A% is proved similarly. O

4.2. Costabilizations

Dually to any left, respectively right, triangulated categ6rye can associate in a uni-
versal way a triangulated categoR(C). More precisely there exists a left, respectively
right, exact functoz: R(C) — C such that for any left, respectively right, exact functor
F:R — C from a triangulated categori, there exists an exact functér*: R — R(C),
unique up to isomorphism, such thakf* = F. The categoryR(C) is called thecostabi-
lization of C and the functoz is called thecostabilization functor. By [18] any left or
right triangulated category admits its costabilization which can be realized as an appropri-
ate category of spectra of objects.

By [18] the costabilization of the stable category Mddconsidered as a left trian-
gulated category, which we call tHerojective) costabilization category of A, is the
homotopy categor§iac(P4) of unbounded acyclic complexes of projective modules. The
costabilization functor

Z:Hac(Pa) — Mod-A

which we call(projective) costabilization functor, is given as follows. IfP®* — ... —
P~1— PO Pl ...isanacyclic complex of projectives, then

z(P*)=Im(P7*— PO).

Thenz is left exact in the sense thasends triangles ifiac (P 4) to left triangles in ModA
and satisfieg(P*[—1]) = 2Z(P*),VP* € Hac(P4). In particular Imz C £2°°(Mod-A).
By a basic result of Jargensen [36], the costabilization functor admits a left adjoint

@: Mod-A — Hac(P4)
called the(projective) spectrification functor, which is right exact. That isSp sends

right triangles in_ModA to triangles inHac(P4) and satisfieSp(Zp(A)) = Sp(A)[1],
VA € Mod- A.
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By the universal property of stabilizations there exists a unique up to isomorphism trian-
gulated functosp* : 7, (Mod-A) — Hac(P4) such thaBp*P, = Sp. SettingHac(P4)° :=
HRC(PA), we have the following result which gives a description of the compact objects of
the projective costabilization.

Proposition 4.5 [36]. The spectrification functasp induces a triangle equivalence

Sp° := Sp*|7: (mod-4) : 7 (M0d-A) > HE (P ).

We are interested in the relations between the projective costabilization and Cohen—
Macaulay modules. In this connection the following result will be useful.

Proposition 4.6. The triangulated functoBpicm : CM(P4) — Hac(P4) is fully faithful
and admits the functoRcuZ as a right adjoint. Moreover there exists a torsion pair
(CM(P4), Z7H (P ;™)) in Hac(P) identifyingCM(P ) with Im Spicy andz (P 3) =

{P* € Hac(Pa) | Z(P®) € P77}

Proof. For any moduleX € CM(P,) and any complexP® € Hac(P4) we have isomor-
phisms:

Hom(Spicm(X), P*) = Hom, (icm(X), Z(P*)) =Hom, (X, Rcmz(P?)).

HenceSpicwm is left adjoint toRcmZ. Clearly Spicm, henceRewmZ, is triangulated. By
the construction ofp in [36], it follows that for X in CM(P4), Spicm(X) is the com-

plex obtained by splicing a projective resolution - P~ - P~1 — X — 0 of X and
an exact coresolution & X — P9 — P; — ... of X whereX — P? and the maps
Im(P" — P"+1y— p"+1 are left projective approximationgn > 0. This clearly implies
thatSpicy is fully faithful. Consequently we have a torsion péim Spicm, KerRemZ) in
Hac(P4), where ImSpicw is triangle equivalent to CP 4 ). Finally P* lies in KerRemZ

iff RemZ(P*) = 0iff Z(P*®) liesinP7*. O
Coroallary 4.7. The following are equivalent.
(i) The functorSpicm : CM(P4) — Hac(P4) is a triangle equivalence.
(i) £2°(Mod-A) C +A. ThatisA is right CoGorensteiin the sense of18].
(iii) £2°°(Mod-A) NP> =Py.
If (i) holds, thenA satisfies the Nunke conditioifi A € Mod- A is such that

Ext} (D(A), A) =0, Vn>0,

thenA = 0. In particular A satisfies thégeneralizedl Nakayama conjecturd 3].
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Proof. The equivalence (i (iii) follows from the torsion paiim Spicm, KerRem2) in
Hac(P4). Clearly (ii) implies that

£2°(Mod-A) = CM(P,).

Then the couniBpicmRcmZ — ldy, (p,) is invertible. Hencespicwm is a triangle equiv-
alence. The implication (ix (ii) follows from [18]. If (i) holds, then let 0— A —
19— 11 — ... be an injective coresolution of. Applying N~ we obtain an acyclic
complex of projectives 6> N~(I%) — N~(I1) — --.. Applying Nt we obtain an ex-
act sequence 8> L{NT(K) — NTN~(71% — NTN~(I1) - Nt (K) — 0, wherek :=
CokerN~ (1% — N~ (I1)), which implies that LNT(K) = A. ThenA = 0 sincek lies in
2°%°(Mod-A). O

Combining Proposition 4 (ii), Proposition 45 and Corollary 47, we have the follow-
ing consequence which will be useful in the last section.

Corollary 4.8. If id A4 < 0o, then we have the following.

(i) The costabilization functa : Hac(P4) — Mod-A admits a factorization
Z=icuZey: Hac(Pa) 22 CM(P,) 2 Mod-A

where the exact functd), : Hac(Pa) =, CM(P,) is a triangle equivalence with
quasi-inversespicy : CM(P4) = Hac(P4). In particular Z is fully faithful.

(i) zinduces a triangle equivalen@,, : 12 (P4) = CM(P4)P.

(iii) The spectrification functop: Mod-A — Hac(P4) induces a triangle equivalence

22Sp°: T (mod A) = CM(P )",

Remark 4.9. The above results admit dual versions concerning the injective spectrification
functor and the costabilization of the stable category modulo injectives which is equiva-
lent to the unbounded homotopy categdty.(l 1) of acyclic complexes of injectives. We
state only the following equivalent conditions ensuring that the projective costabilization
is triangle equivalent to the injective costabilization. Details are left to the reader (note that
these conditions hold for Gorenstein algebras).

() The Nakayama functorsi® induce triangle equivalenca®™,N7):Hac(Pa) =
Hac(l 4)-
(i) £2°°(Mod-A) € +A and 2> (Mod-A) € D(A)*L.
(i) £2°°(Mod-A) NP> =P, and X (Mod-A) N T 1= =1 4.
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5. Audlander—Reiten operators and exact sequences of stabilization categories

In this section we study the behavior of the (Co)Cohen—Macaulay (co)torsion pairs
and the Auslander—Reiten operators under stabilizations. More precisely we show that the
torsion pairs CM(P,), ‘lﬁo‘) and(ﬁ , CoCM(l 4)) in the respective stable module cat-
egories can be lifted to torS|on pairs in the triangulated stabilizations. In addition the stable
equivalences* allow us to obtain several identifications which will be useful later.

5.1. Nakayama functors and stabilization categories

Since the adjoint paifN*, N™) of Nakayama functors induces an equivalence between
P4 andl 4, it induces an adjoint paiiN*, N™) of functorsN* : Mod-A < Mod-A:N~.

Lemma5.1. For an exact sequencé —~ B — C — 01in Mod- A, the following are equiv-
alent

(i) A— BisP4-monic,i.e., any mapg — P with P projective, factors throughhA — B.
(i) The sequenc@— NT(A) - Nt (B) - NT(C) — Ois exact.

In particular the Nakayama functot™ : Mod- A — Mod- A is right exact. Moreovev A ¢
Mod-A, VX € CM(P,), there are isomorphism¥pn > 1:

Ext) (A, NT(X)) = Ext} (N~ (2%),X) and Hom,(A,N*(X))=Hom, (N~ (Z*), X).

Proof. The equivalence (ix (ii) is straightforward. Now let(T):A - B - C —
Xp(A) be a right triangle in ModA. Then (T) is induced by a right exact sequence
A% B— C— 0in Mod-A where g is P4-monic. Hence we have a short exact se-
guence 0- Nt(A) — NT(B) — N*(C) — 0 in Mod-A, which induces a right triangle
Nt(A) - N (B) - NT(C) - INt(A) in Mod-A. If B is projective, thenC is iso-
morphic to Xp(A) and thereforeN™(Xp(4)) = XN (4)). Hence the induced functor
N*:Mod-A — Mod-A4 is right exact. Now by Proposition.8 we have isomorphisms,
Vn > 1.

Ext} (A,NT(X)) = Homyu (A, " (NT(X))) = Homy (Lcocm(A). NT(ZE(X)))
m, (N"Lcocm(A), Tp(X)) =Hom, (2"N"Lcocm(A). X)
EXA(Ni(Z )*X)’

forany X € CM(P,) andA € Mod-A. The second isomorphism follows similarlyc

12

12

Let P, :Mod-A — 7,(Mod-A), respectivelyQ, : Mod-A — 7,(Mod-A), be the right
stabilization functor of the right triangulated category MadrespectivelyMod-A. The
following result shows that the right stabilization categofiggMod-A) and 7, (Mod-A)
are triangle equivalent.
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Theorem 5.2. The stable equivalence’ : Mod-A => Mod-A and the stable Nakayama
functorN* : Mod-A — Mod-A are right exact and induce triangle equivalenges N* =
227+ :7,(Mod-A) =5 7, (Mod-A), making the following diagram commutative

t Nt

)

Mod- A Mod-A

Pr l Qr l
=+ N+

7,(Mod-A) —— 7, (Mod-A).

Proof. Let A be in Mod-A and letA — POA — Xp(A) — 0 be a right exact sequence,
whereg4:A — P§ is a right projective approximation of. Let g4 :=copu:A 5
23p(A) 5 Pg‘ be the canonical factorization gf*. By Lemma 51, the sequence &
NT(A) - N (Pg) - NT(Zp(A)) — 0is exact. It follows that the map* () :NT(A) —
NT(£2 Zp(A)) is invertible. Now letP, %> P; £> A — 0 be a projective presentation &f
Then

A
P25 P8 - Zp(A) =0

is a projective presentation afp(A) and by construction ot ™, we haver™(A) =
Ker(Nt (1)) andt T (Zp(A)) = Ker(NT (k o €)). SinceNT (¢) is invertible, we have:

7 (Zp(A)) =KerNT (k) ZImN*(R)

and a short exact sequence-0tT(A) — NT(P2) — t7(Zp(A)) — 0. SinceNt(Py)

is injective, it follows thatXt+(A) = 1T (Xp(A4)). Therefore we have a natural iso-
morphismr+ Zp = ¥t T : Mod-A — Mod-A. Sincer™ commutes with the suspension
functors, by the universal property of the stabilizations (without considering the involved
triangulated structures), it follows that there exists a unique furittarZ, (Mod-A) —

7, (Mod-A) which commutes with the suspension functors and is such@hat; = Q,r .
Sincet™ is an equivalence, it follows thatt is an equivalence. We show that is
triangulated. Since the functott :Mod-A — Mod-A is right exact, by the universal
property of the stabilizations, there exists a unique exact furiétor 7, (Mod-A) —
7,(Mod-A) making the square above commutative. By construcdhis given by
N*t(A,n) = (NT(A),n), andT™ is given byT* (A, n) = (t7(A), n). From the exact se-
quence 0— t+(A) - NT(P) — NT(Pg) — NT(A) — 0 defining the object T (A) up
to injective summands, it follows tha2t+(A) = N*(A) in Mod-A. Then for any object
(A, n) in 7,(Mod-A) we have isomorphisms:

T2FT(A, ) = P2(rT(A), n) = (2% (A), n) = (NT(A), n) =NT(A, n).

Hence we have a natural isomorphism of functar&™ => N*. Since ¥2 and7™ are
equivalences, so I8*. Since the latter is exact, we infer theit is a triangle equivalence
andthensoi§*. O
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For later use we state below without proof the dual versions of the above results.
Proposition 5.3.

(1) f0— A — B — Cis exact inMod- A, then the following are equivalent
(i) B— Cisl4-epic, i.e., any map — C with I injective, factors througtB — C.
(i) The sequenc@— N~ (A) - N~ (B) — N~ (C) — Ois exact.
In particular the Nakayama functax™ :Mod-A — Mod-A4 is left exact. Moreover
VB € Mod-A, VZ € CoCM(l 4), we have isomorphismep > 1:

Ext} (N (2), B) ZExt} (Z,N"(Xp)) and
Hom, (N™(2), B) = Hom,(Z,N* (X3)).

(2) The stable equivalence™ :Mod-A => Mod-A and the left exact Nakayama functor
N~ :Mod-A => Mod-4 induce triangle equivalences

T7,N7:7/(Mod-A) = T;(Mod-4), 2% =N
which commute with the stabilization funct@sandp;.
5.2. Exact sequences of stabilization categories

We have seen that the inclusiafy : CM(P4) < Mod-A admits a right adjoinRcw,
with kernel KeRcm = @jo‘ The following result shows thagy admits a left adjoint

L cm with kernel-:CM(P ).

Lemma 5.4. The inclusionicy :CM(P4) — Mod-A admits a right exact left adjoint
Lcv:Mod-A — CM(P,). MoreoverL oy = N~ LcocyNT andKerL oy = FCM(P,) is
a right triangulated subcategory &lod- A closed under coproducts.

Proof. If A € Mod-4, let 0 — NT(A) — ZN"() — wN"A) _, 0 be a special left
COoCM(l 4)-approximation ofN*(A). ThenN—(ZN" @) is Cohen—Macaulay; ift is pro-
jective, thenzN" ) = N*t(A) @ WN"(D which implies thatzN" () is injective, hence
N=(ZN" (D) is projective. Settind. cm(A) = N~ (ZN" @), it is easy to see that in this way
we obtain a well-defined functdrcym : Mod-A — CM(P4) and by construction we have:
Lcm =N~ LcocmNT. Using Proposition 3t we have, for any modulg and any Cohen-
Macaulay moduleX, the following natural isomorphisms

N*N"LcocmNT (4), NT(X)]
LcocmNt (4), NT(X)]
N*(4), NT(X)]
A,N"NT(X)] =Hom, (4, X)

Hom, [N"LcocuNT (A), X] = Homy

[
[

IIZ

omu

ma

12
I I

12

[
Hom, [A
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which show that_cy is left adjoint to the inclusioricy. Since the stable functors™
andL cocm are right exact and the functw|m(|A) is exact it follows that_cpy is

right exact. Finally that-CM(P,) is a right triangulated category with coproducts is a
consequence of [22]. O

We have seen that the Auslander—Reiten operatbisduce quasi-inverse equivalences
between CMP,) and CoCM(l 4). The following result, which generalizes a result of
Auslander—Reiten [11, Proposition 5.5] from finitely generated modules over a Gorenstein
algebra to arbitrary modules over any Artin algebra, showstkanduce quasi-inverse
equivalences betweerCM(P ) andﬁjlO< and further gives a description of the left Ext-
orthogonal subcategoryCM(P ).

Theorem 5.5.

(1) The Auslander—Reiten operatar$ induce quasi-inverse stable equivalences

o

tHCM(Py) == T 17"
which make the following diagram of right triangulated categories commutative

L
0—— tCM(P,) —— Mod-A L CM(P4) ——0

T+i;¢ r+ix T+l%
L

o _ [l —
0 3% Mod-A — CoCM(l 4) —= 0

(2) The Auslander—Reiten operatar$ induce quasi-inverse stable equivalences

T+ CM(Py) == 3550 T (Mod-A) 7™ -

Proof. (1) LetA be intCM(P,), i.e.,Lcm(A) =0. LetA — P4 — Xp(A) — 0 be ex-
act wheref: A — P4 is the minimal left projective approximation of. If a:A — X

is a map, whereX is Cohen—Macaulay, them factors through a projective module and
thereforea factors throughf. We infer that f is a left CM(P4)-approximation ofA.
Applying Nt to this sequence, we get an exact sequenee R+ (A) — N (P4) —
NT(XZp(A)) — 0, which, by Lemma 3}, is a special left CoCM ,)-approximation of
NT(A). In particulamN™ (Zp(A)) lies inT5> and therefor&l* (A) lies inJ5* sinceJ 5% is
resolving. If P, - Pp — A — 0 is a projective presentation df, then the exact sequence
0— t7(A) = NT(Py) — NT(Py) = NT(A) — 0 shows that *(A) lies inT5*. On the
other hand ifw lies in 35, let t= (W) — X© M) be a left CMP4)-approximation of
t=(W). Thenthe maptt= (W) = W — tT(X* ™) is zero inMod-A sinceW lies in
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35 andtT(xT ™) is CoCohen-Macaulay. It follows that the map(W) — X7 (W)
is zero in ModA. Hencer— (W) lies in -CM(P,) and consequently the stable equiva-
lencet* : Mod-A = Mod-A restricts to an equivalence™ : L1CM(P4) = 35 with
quasi-inverse ~: 3% = LCM(P,).

(2) Let A be in+CM(Py), i.e., Ext (A, X)=0,Vn > 1,VX € CM(P,). In particular
A € + A and therefore JNT(A) =0,Vn > 1. Then clearly Hom (2" (A), CM(P4)) =0,
and therefore2”(4) € *CM(P,), Vn > 1. Then by part1) it follows that 7 (2" (A))
liesinJ5%, Vn > 1. Let

s p2 L p1 4

be a projective resolution ofi. Using thatA € - A, it follows that we have an ex-
act sequence-- - NT(P~2) - Nt(P~1) - NT(4) — 0 such that Kent(f—") =
tT(2"71(A)), Vn > 1. Sinced 5~ is coresolving, this implies that™ (A) lies in 35 N
X% (Mod-A). Therefore the stable equivalencé : Mod-A — Mod-A restricts to a fully
faithful functor

L CM(Py) = T5% N Z°(Mod-A).

Now let B be inJ5* N ¥*°(Mod-A) and let--- — =2 — -1 — B — 0 be an exact
sequence where the™ are injective. Then the sequence - N~ (/72) - N~ (I 1) —
N~ (B) — 0 is a projective resolution ®i(B). Applying NT to this resolution and using
thatNtN— (/) = I, we infer thaN*tN~(B) = B. Hence for any Cohen—Macaulay module
X, Ext’/‘l(N+(B), X) is thenth cohomology of the complex HogfN~ (/*), X). SinceX =
N~N*(X), by the above argument it follows that EXN~(B), X) is thenth cohomology
of the complex Hom (I*, N (X)) which is clearly zero sinc# lies in 35> andN*(X) is
CoCohen—Macaulay. We infer that EXN~(B), X) =0, Vr > 1 and therefor&\™ (B) €
LCM(P,). Now let 0— B — 19— 11— ¥2(B) — 0 be the start of a minimal injective
resolution of B. Then we have an exact sequence>s0N~(B) — N~ (1% — N~ (/1) —
77 (B) — 0. Using that for any Cohen—Macaulay modute we have isomorphisms
Hom, (N~ (I%), X) = Hom,(I',N*T (X)), + = 0,1, we infer easily the isomorphisms:
Extl (z(B), X) = Ext}, (X2(B),NT (X)) and Ex{ (z~(B), X) = Ext} (2(B),N*(X)).
SinceB lies inJ;* andJ;* is coresolving, it follows that’ (B) lies in 3;<. Then the
above isomorphisms show that E:‘)(t*(B), X)=0= Exti(r*(B), X) sinceNT(X) is
CoCohen—Macaulay. Also sinee (B) = £2%(z~(B)) andN~(B) lies in - CM(P,), we
infer thatz—(B) lies in+- CM(P,). Sincert~(B) = B, we infer thatr ™ is surjective on
objects. O

We now show that the exact sequence above behaves well with respect to stabiliza-
tion. First recall that a sequence of triangulated categories and exact funetois &
AL ¢ - 0is calledshort exact if G is the inclusion of a thick subcategory and
F induces an equivalencd/B = C. It is calledlocalization, respectivelycolocaliza-
tion, exact if F admits a right, respectively left, adjoint. Then it is well known that
the right, respectively left, adjoint of is fully faithful and G admits a right, respec-
tively left, adjoint. Consider the right exact reflectiohgy : Mod-A — CM(P4) and
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Lcocm:Mod-A — CoCM(l 4). By the universal property of right stabilizations, there
exist unique exact functors¢,, : 7,(Mod-A) — CM(P,) and L oy :Z-(Mod-A) —
CoCM(l 4) such thatL§),P, = Lcm andL g, Q- = Lcocw. Note that by construction
LEm(A,n) = 27" Lem(A) andLE (A, n) = Z"Lcocm(A).

Proposition 5.6. There exists a commutative diagram of localization short exact sequences

L*
0—— T,(:CM(P,)) —= T,(Mod-A) — > CM(P4) —= 0
?+,N+l~ ?*,mlx 7+,ﬁ+lz
L*

_ CoCM —
0 7,(Mod-A) —— CoCM(l4,) —= 0

7.(33%)

of triangulated categories, where the vertical functors are triangle equivalences.

Proof. By Proposition 34 and Theorem 5 it follows that the vertical arrows in the right
square of the diagram are triangle equivalences. For any objea) in 7,(Mod-A) we
have isomorphisms:

NTLEW(A, 1) =NTR2 " Lem(A) = Z'NTLem(A) = Z"NTN"LeocmN T (4)
= Z"LcocMNt (A) = Lgem(NT (A), 1) = LgomN T (4, n)

which show that there exists a natural isomorphisrt ¥, = LE,ouNT and therefore

the right square in the above diagram commutes. By [22] we know that the lower sequence
is a localization exact sequence of triangulated categories. Hence so is the upper sequence
and the functorg™, N* induce the left vertical equivalences which clearly coincide with

7+, N*t. The right adjoint oL ¢\, respectivelyl ¢\, iS given by the unique exact exten-

sion of the inclusion functaiy,,, respectivelyig oy O

The above results admit dual versions which we include below for later use.
Proposition 5.7.
(1) The inclusionicocm:CoCM(l 1) < Mod-A admits a left exact right adjoint
Rcocm:Mod-A — CoCM(l 4). Moreover Rcocm = NTRemN™ and KerReocm =

CoCM(I 4)*.
(2) The Auslander—Reiten operatars and ™ induce quasi-inverse equivalences

7= :CoCM(I )+ == F=>:t*  and

77 :CoCM(l )+ % PiCN2%°Mod-A):tt
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which make the following diagram of left triangulated categories commutative

_ _ Rcocm
0——CoCM(l ,)t—Mod-A——CoCM(l ,)—0

r‘l* Tlx Ti%
Rewm

0 %Zoc Mod-A———~CM(P4)—0

This diagram extends to a colocalization exact sequence of triangulated categories

*
RCo(:M

7;(Mod-A)——CoCM(l ,)—>0

0———7;(CoCM( o))

T N7 TN | & TN | &

TP

%
RCM

0 7;(Mod-A) CM(P4) 0

Let £ be any one of the categori®s, | 4, CM(P,), CoCM(l »), P, T;*. Then&
is an exact subcategory of Mad-with split idempotents. LeD?(&) be the bounded de-
rived category of [48]. The following result shows that the exact inclustor> Mod-A
extends to a full exact embeddimﬁ(é‘) <> D°(Mod-A) which fits nicely in an exact com-
mutative diagram of triangulated categories. We state it only ferCM(P4), noting that
there are similar exact commutative diagrams on the level of derived categories induced
by the inclusionsB3* < Mod-A <> 3% and CoCMI 4) < Mod-A. We leave to the
reader to state the other versions.

Proposition 5.8. The exact inclusioficy : CM(P4) < Mod-A extends to a fully faith-

ful exact functoDP(icm) : DP(CM(P4)) — DP(Mod-A) with strict image the complexes
X* € DP(Mod-A) such that the canonical morphiséi- : X* — RHomy, (D(A), X* ®ﬁ
D(A)) is invertible. Moreover there exists an exact commutative diagram of triangulated
categories

0——DP(P,)—=DP(CM(P,))——=CM(Py)——0
DP(icm) Piicm

7;(Mod-A)——>0

0———=DP(P,)——=D"(Mod-A)

Ti(P %) =——=T(P%)
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Proof. Since CMP,) is contravariantly finite resolving, it is not difficult to see (com-
pare [28]) thaDP(icw) is fully faithful and clearly its strictimage consists of all complexes

A such thatd = X in D(Mod-A) whereX lies in HP(CM(P,)). Using the characterization

of Cohen—Macaulay modules in Lemma 3t follows easily that a bounded complé®

lies in the strictimage dbP(icwm) iff the canonical mapy. : X* — RHom,(D(A), X* ®HA

D(A)) is invertible, see also [30]. Then exactness and commutativity of the two upper
squares follow from [18,40,56], and exactness and commutativity of the remaining part of
the diagram follows from the localization sequence of Propositi@nirtduced from the
torsion pair(CM(P,), 77@20‘)) in 77,(Mod-A). O

We have seen that the stabilization categafjedlod-A) andZ, (Mod-A), respectively
7;(Mod-A) and7;(Mod-A), are always triangle equivalent. We don’t know if this holds
for the stabilizationg; (Mod-A) andZ, (Mod-A). We close this section with the following
consequences of the exact (co)localization sequences constructed above which, besides
several functorial characterizations of Gorensteinness, shows that in the Gorenstein case
the stabilization categories can be realized in the stable module categories, and the stabi-
lizations7;(Mod-A) and7, (Mod-A) are triangle equivalent.

Corollary 5.9. The following are equivalent.

(i) A is Gorenstein.

(i) The functoRg,, : 7;(Mod-A) — CM(P,) is a triangle equivalence.

(iii) The functor & qp: 7,(Mod-A) — CoCM(l ») is a triangle equivalence.

(iv) The functorL,,:7,(Mod-A) — CM(P,) is a triangle equivalence.

(v) The functorRéoCM:Z(M—cxi-A) — CoCM(l ,) is a triangle equivalence.

(vi) The functoDP(icm) : DP(CM(P4)) — D°(Mod-A) is a triangle equivalence.
(vii) The functoDP(icocm) : DP(COCM(I 1)) — D°(Mod-A) is a triangle equivalence.
(viii) The functoﬁéoCMNJfR"éM :7;(Mod-A) — 7, (Mod-A) is a triangle equivalence.

(ix) The functoﬂéMN—Léoc,\A:?}(l\W-A) — 7T;(Mod-A) is a triangle equivalence.

(x) The exact inclusiorP, — P> extends to a triangle equivalend®®(P,) =

DO (P£).

(xi) The exact inclusiori 4 — 33 extends to a triangle equivalend@®(l 4) =>
DP(3%%).

(xii) YA € Mod-A with Hom, (A, X) =0, VX € CM(P,), 3n > 0 such thatX5(A) is
projective.

(xiii) VB € Mod-A withHom, (Z, B) =0,VZ € CoCM(l 4), 3m > O such that" (B) is
injective.

Proof. By Remark 43, Propositions %, 5.7 and Proposition B and its dual, any one of
the conditions (i), (v), (vi), (viii) and (x) is equivalent to

Ti(B;%) =0,
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and any one of the conditions (iii), (iv), (vii), (ix), and (xi) is equivalent to

By Lemma 41, 77@;0‘) =0 is equivalent to

<X __ p<00
A _PA

and7Z, (35%) = 0 is equivalent to

IEE =15,

These last conditions are equivalent to (i) by Propositid® 3Finally the equivalences (i)
& (xii) and (i) < (xiii) follow from Propositions 56, 5.7 and the fact that the assertions
in (xii) and (xiii) are equivalent reformulations of the conditioRg-CM(P,)) = 0 and
T;(CoCM(l ) 1) = 0 respectively. O

6. Compact generatorsand pure-injective cogener ators

Compact and pure-injective objects play an important role in the investigation of torsion
pairs in triangulated categories in connection with several finiteness conditions, see [22,42]
for details. In this section we study the analogous situation in the stable module category
of an Artin algebra in connection with the (Co)Cohen—Macaulay (co)torsion pairs.

Let A be an additive category. A sét of objects of A is called agenerating set if
C(X,A)=0,VX € X, implies thatA = 0. Now letC be a pretriangulated category which
admits all small coproducts. We say tliais compactly generated if C admits a sef’ of
objects, which without loss of generality we may assume that is closed dhademsisting
of compact generators. It is easy to see that if any monomorphighsjitits, then a set of
compact objectst’ in C which is closed undek is a generating set iff the objects i
collectively reflect isomorphisms.

In the sequel we shall need the following easy and rather well-known result (com-
pare [51]).

Lemma 6.1. Let (F, G):C — D be an adjoint pair of functors between additive cate-
gories. If G preserves coproducts, then preserves compact objects. Assume thas
pretriangulated where the loop funct& preserves coproducts and furthéadmits a set
of compact generators. If any monomorphisrd isplits andF preserves compact objects,
thenG preserves coproducts.

As a direct consequence we have the following.

Corollary 6.2. The reflection functork cy : Mod-A — CM(P ) andLcocm: Mod-A —
CoCM(l 4) preserve compact objects and generators.
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Proof. Since CMP,) and CoCMI ,) are closed under coproducts, the inclusion functors
icm andicocm preserve coproducts. Hence by Lemma heir left adjointsLcy and
L cocm preserve compact objects, and clearly they preserve generators.

To proceed further we need a description of the compact objects of the stable module
categories.

Lemma 6.3. The pretriangulated categorieédod- A andMod-A are compactly generated
and

(Mod-4)® =mod-A and (Mod- A) =mod-A.

Proof. The first assertion follows from [19]. Clearly madl € (Mod-A)P. Let T be a
compact object in ModA. Clearly we may assume th&thas no non-zero projective sum-
mands. Lef’/RadT) =[];.; S; be the top off and lets: T — [ [, Si be the canonical
epimorphism. Consider the following commutative diagram, where the involved maps are
the natural ones:

[ie; Homu(T, S)) — > Homy(T, [ies S0

| |

§
[1;e; Hom, (T, §;) —— Hom, (T, |1, Si

Observe tha& is monic,y andpg are epics and, by hypothesésis invertible. Letf : T —
[1;<; Si be a map which factorizes through a projective module. Let

f=ronTSHALT]S

iel

be the canonical factorization gf. Then A is semisimple as a submodule of the semi-
simple modul€] |;, S; and therefore. is split monic. Th|s |mpI|es easily that the map
factorizes through a projective module, sayas goh:T <> P L, A where is the pro-
jective cover ofA. Sincex is epic andi is essential, it follows thag is epic and therefore

P is a direct summand df. SinceT admits no non-zero projective summands, we infer
that f is zero. Hence the mapis invertible and therefore so s It follows from this that
the canonical map:7T — ]_Le[ S; factors through a finite subcoprodyd; ., S; where

J S Iwith |J]| < oc. Sincee is epic, we inferthaf [ ;. ; S; =] ;¢ Si and thereford = J

is finite. This implies thaf" is finitely generated. Heno@/lod-A)b C mod-A. Using the
Auslander—Reiten equivalence$, we infer directly that

(Mod- A) =mod-A. O

For compactly generated triangulated categories there is defined a theory of purity
which parallels the well-known theory of purity of modules. [Zetbe a compactly gen-
erated triangulated category. A triandlE) : A - B — C — X (A) in 7 is calledpure
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if the sequence 6> 7 (X, A) — 7(X, B) — 7 (X, C) — 0 is exact for any compact ob-
ject X in 7. And an objectE is calledpure-injective if the sequence 6> 7(C, E) —
T(B,E)— T(A, E) — 0is exact for any pure triangl@’) as above. By [35,42] a mod-
ule E in Mod-A, respectively an objedt in 7, is pure-injective, iff for any index sdtthe
summation mag [; E — E factors through the canonical m§p, E — []; E. We refer
to [16,42] for more details concerning purity in triangulated categories.

In the sequel we shall need the following observation which shows that (Co)Cohen—
Macaulay pure-injective objects and modules are closely related.

Lemma 6.4. A Cohen—Macaulay modulg, respectively CoCohen—Macaulay modile
is pure-injective inMod- A iff the objectX, respectivelyZ, is pure-injective inCM(P,),
respectivelyCoCM(l 4).

Proof. If X is pure-injective, then so i¥ since CMP,) is closed under products
and coproducts and the functar:CM(P,) — CM(P,) preserves products and co-
products. IfX is pure-injective in CMP,), then lete:][; X — X be the summation
map andw :[ [, X — []; X the canonical pure-monomorphism. Then there exists a map
a:[]; X — X such thatu o — e:] [, X — X factors through a projective module,
sayastoa—e=[[; X 5> P %, X. SinceP is pure-injective ang. is pure-mono, there
existsamap :[]; X - P suchthajwo p =«, and there = o (¢ + p o A). HenceX is
pure-injective. The case of CoCohen—Macaulay modules is simitar.

If 7 is a triangulated category andis a family of objects of7’, then we denote by
thick()) the thick subcategory generated Bythat is, the smallest full triangulated sub-
category of7 which is closed under direct summands and cont&ing/e shall need the
following result.

Lemma 6.5 (Neeman [49]) Let7 be a triangulated category which admits all small co-
products, and leV be a set of compact generatorsf Thenthick(V) = 7P.

From now on we use the following notation (as befodenotes the radical of):

o fi: X, — visthe minimal right CMP 4)-approximation of of A andY, = Ker(f;).

o fase:Xaye — A/ris the minimal right CMP 4)-approximation ofA /v andY . =
Ker(f4,c). Note that, up to projective summands, = £2(X 4,.) and Zp(X,) =
XA

o g4 A/t — ZA/T is a special CoCM 4)-approximation of A/t and WA/t =
Coker(g4/v).

o 1A/t AJr— XA/T aleft CM(P4)-approximation ofA /t.

We now show that the stable triangulated categoriegM andCoCM(l 4) are mono-
genic, that is, they admit a single compact generator. Moreover we determine pure-injective
cogenerators.
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Theorem 6.6. The categorie€M(P,) andCoCM(l 4) are compactly generated by the sets
{(XT | T emodA} and{Z” | T € mod-A} respectively. Moreover we have the following.

(i) Z4/" is a compact generator of the categ@®pCM(l »), hence
CoCM(l 4)° = thick(Z*/").
(i) XA/" is a compact generator of the categd®Wl(P4), hence

CM(P )P = thick(X4/").

(i) J5% =+N*(X,) and the objecNT(X4/%) is a compact generator AEOCM(l 4).
MoreoverN* (X,) is pure-injective andN*(X,) is a pure-injective cogenerator of
CoCM(l »).

(iv) P> =N"(Z4/*)* and the objecN—(Z*/*) is a compact generator @M(P,).
MoreoverX. is pure-injective and, is a pure-injective cogenerator GfM(P,).

Proof. The first assertion follows from Lemma3and Corollary &. Since the object
Lcocm(A/r) = Z4/" is compact inCoCM(l »), for any CoCohen—Macaulay modut
andn > 0, we have:

Hom, (Z4/", £"(Z)) = Homyu (A/r, £"(Z)) = Ext*(A/r, Z).

If Homa(ZA/", £(Z)) =0, Vn € Z, it follows that Ext (A /r, Z) =0, Vn > 1. By induc-
tion on the length of a finitely generated module, this implies that@xtZ) =0,vn > 1,
VT e mod-A. Then clearlyZ is injective, i.e.,Z = 0. We infer thatZ4/" is a compact
generator ofCoCM(l 4) and thereforef:oCM(IA)b thick(Z4/") by Lemma 65. Hence
(i) holds and part (ii) is dual.

(iii) Let X be in CM(P,) and assume thak € +X.. Then clearlyX lies in +
Applying the functor Hom (X, —) to the exact sequence 8 t > A — A/t —> 0
and using thatX is Cohen-Macaulay, we infer thaf € +(A /). By induction on the
length of a finitely generated module, this implies that"gX, 7) =0, Vn > 1, VT €
mod-A. Then Exf!(X, D(S)) =0, Vn > 1, VS € mod-A°P. Using the duality isomorphism
Ext’, (A, D(B)) = DTor2(A, B), we infer that Tof (X, S) =0, Vn > 1, ¥S € mod-A°P.
This clearly implies thatX is projective. Consequently Ci®,) N -X. = P,. Now let
A be a module in*N*(X,), i.e., Ext,(A,NT(X,)) =0, ¥n > 1. By Lemma 51 we
have Exf (N~ (Z%, X)) =0,Vn > 1, and thereforeN—(Z4) is projective, or equiva-
lently Z4 is injective. It follows thatL cocm(A) = 0 and consequently e Jj“, ie.,
A lies in 35%. HencelN*(X,) € 35 and therefore"NT(X,) = 35 sinceN*(X)
is CoCohen—Macaulay. In particuldN® (X,) N CoCM(l 4) = | 4 and this implies that
the objectN*(X,) is a cogenerator dEoCM(l 4). Finally since, by Proposition.8, we
have F CM(P4) € CM(P,), it follows that X, is pure-injective by [46, Theorem 2.6].
This implies thatx , is pure-injective in CMP4). SinceN™ : CM(P ) — CoCM( ,) is an
equivalence, we infer that™ (X, ) is pure-injective ifCoCM(I 4).

(iv) The proof is similar to the proof of (iii) and is left to the readeio
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Remark 6.7. Pure-injectivity ofN (X ), and therefore ok, andX ,, follows from Brown
representability. Indeed let as befdfebe the injective envelope ak/RadR). Then,

by [22], the Brown—Comenetz du@lz(Z4/%) in CoCM(l 4) of the compact generator
ZA/® is a pure-injective cogenerator @oCM(l 4). Recall that the objeddy(Z4/%) is
uniquely defined up to isomorphism by the following natural isomorphism which is a con-
sequence of Brown representability [50]:

DIWnA(ZA/t, )gm/‘( DE(ZA t)

_) |m(| A |COCM(I A)°

Using Auslander—Reiten’s formula D I%g(tT A) = Homyu (A, DTr(T)) and the easily es-
tablished fact thati~ DTr(T) = 22(T), VT € mod-A andVA € Mod-A, we have isomor-
phisms¥Z € CoCM(l 4):

Ho (LCocm(A/t) ) DHomy (A_/t, Z)
Homa (A /x, £$21(Z)) = DExty (A /x, 21(2))

DFom, (Z4/%, Z) =

)

12

1

1(Z), DTr(A/v)) => Hom, (£21(Z), RoocmDTr(A /1))

12

Z, ¥RcocmDTr(A /b))

12

12

A(Z, ENT (X g(0) = Homs (Z.N* Zp(X ()

HH!%
33333

(
(2
A(Z IN*RemN™ DTr(A/v)) = Homy (Z, ENTRem(2())
(z
(2

12

Z N (X).

So N*(X,) = Dg(Z%/%) and thereforeN*(X,) is a pure-injective cogenerator of
CoCM(l »). ThenX, = N~N*(X,) is pure-injective cogenerator of Q®,), and X, is
pure-injective by Lemma.8.

We have seen in Proposition83that anyA-module admits a minimal right CP4)-
approximation and a minimal lef8 1> -approximation. As a consequence of Theorefn 6
we have the following.

Corollary 6.8. The subcategorg ;> of Mod-A consisting of all modules of virtually fi-

nite injective dimension is closed under filtered colimits, pure submodules and pure factor
modules. Moreover any module admits a minimal riijt -approximation and a minimal

left CoOCM(I 4)-approximation.

Proof. By Theorem 6 we haveJ;* = +N*(X,) and the moduleN*(X,) is pure-
injective. Then the assertions follow from [46, Lemmas 4.1 and 4.2] and [59].

We say that a cotorsion paii, B) is gener ated, respectivelycogenerated, by a class
of modulesV if A =1V, respectivelyB = V1. In this terminology Theorem.6 says
that the cotorsion paifJ 5=, CoCM(l »)) is generated by the CoCohen—Macaulay module
N*(X,) and the cotorsion paiiCM(P,), P5>) is cogenerated by the Cohen—Macaulay
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moduleN~(Z4/%). The following result, which will be useful in the sequel, shows that
the cotorsion pai(CM(P,), B7%) is generated by a pure-injective module of virtually
finite projective dimension. For a subcategofyf Mod-A, we denote by Fili/) the full
subcategory of Mod4 consisting of direct summands of moduléswvhich admit a finite
filtration 0=U,;1 C U, C --- C U1 C Up = U where each quotiertt; /U; 1 lies inU.

Proposition 6.9.

(i) CM(P4) =Y =Filt[Prod X 4 :)]1.
(i) B3> =[Prod X 4/)]- andCM(P,) = thick[Prod X , ,,)].

(iii) Vn >0, there exists a cotorsion paiCM(P )", ‘Bj”) in Mod-A, where
CM(PA)S" = (2" (Yase)) = Filt[Prod X7 ,.)]

is definable andy’; . is the minimal fightCM(P 1) <"-approximation ofA /.
(iv) ¥n>0:CM(PH)S" NPT =P N (P

Proof. (i) and (ii). Since CMP,) is a contravariantly finite resolving definable subcat-
egory of ModA the assertions in (i) are consequences of [46, Theorem 3.1]. Clearly
ProdX 4,.) € CM(P,) since the latter is closed under products. Hedgg™ =
CM(P4)* C[Prod X 4/0)1*. If A lies in [Prod X 4/:)]*, then it follows easily by induc-
tion thatA e (Filt[Prod X 4,:)])* = CM(Pa)L = P5*. Also (i) implies that the stable
category CMP,) is the thick closure of Prad , /).

(iii) If n =0 then the assertion follows from (i). 4> 1 andA lies in CM(P4)S", then
as in Proposition ® we have2” (A) € CM(P,). Then by (i) it follows directly that lies
in L (2"Y /) and therefore CNP4)S" € L(Z"Y 5 /.). Now let A be int(Z"Y,.) and
consider the approximation sequence>04 — Y4 — X4 — 0 from which we obtain
directly that Y4 lies in L(X"Y4 ). This implies that2"(Y4) € +(Y4,:) and there-
fore 2"(Y4) = 2" 1Y) = 2" 1(v,) is Cohen—-Macaulay. Sinc®”~1(Y,) lies
in P7*, it follows that 2"~1(¥,) is projective, i.e., p&4 < n — 1. Then from the ap-
proximation sequence & Y4 - X4 — A — 0 we get that redimgy A < n. Hence
CM(PA)S" = H(Z"Y ), Vi > 0. SinceX"(Ya,,) is pure-injective and CNP4)S" is
closed under products, by [45, Corollary 4.5] we infer tH@aM(P )", ‘pj”) is a co-
torsion pair in ModA, where3" := (CM(P,4)<")+, and CMP,)<" is definable. In
particular CMP )" is closed under filtered colimits and therefore there exists a minimal
right CM(P4)S"-approximation 0— Y . — X% . — A/t — 0. Then CMP,)S" =
FiIt[ProdX’A/t)] by [46, Theorem 3.1].

(iii) Since CM(P4) € CM(P»)S", we havemj” C P1*. Then by Proposition .8(i)
we have

CM(P)S" NPT S CMP S NP =PS".
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Sincer” C CM(P4)S", we infer that CMP 4)S" m%j" c Pj" n (Pf”)i. Conversely
if A liesin Pf” N (Pj”){ thenA € CM(PA)S". Let 0— A — an N Xgn — 0 be
a left ‘Bj"-approximation sequence fer. Then cIearIyXén lies in CM(P4)S" N P

which is equal td3§" by Proposition 3. Therefore the above sequence splits dnes
in CM(P4)<" NB3". We conclude that CNP4) <" NP3 = P\ N (Pg")L. O

We have the following consequence which generalizes [46, Corollary 2.7].
Coroallary 6.10. For an Artin algebraA, the following conditions are equivalent.

(i) FPD(A) < oo.
(iiy CM(P,) is contravariantly finite.

If (i) holds, then we have a cotorsion paﬁm), ‘;3500) in Mod-A Wherecm)

_— 1 —
is definable andp<> := CM(P,) . Moreover we haveCM(P,) N PS> = P> N
(P>t

Proof. If FPD(4) = d < oo, then 39(vi) implies thatCM(P ) = CM(P4)<¢. Hence

CM(PA) is contravariantly finite by Proposition® Conversely if (ii) holds, theﬁ:M(PA)
is closed under coproducts and this clearly implies thatregplimem A | resdimey A <
00} < 0o. Then by Proposition.8(vi) we infer that FPDA) < oo. The last assertion fol-
lows from Proposition ®. O

Remark 6.11. By the above results the least cotorsion pair and the greatest cotorsion pair
in Mod-A are connected via the following chain of cotorsion pairs (the first one follows
from [1]):

(P4, Mod-4) < (F><1 PSHY) << (PSS (PS") ) < -+ < (Mod-4, 1 ),

(Pa.Mod-4) < -~ < (PF". (PF")") < (CM(PA)S". 13"
< (Mod-A,l,), Vn>=0,

<o <1 ;1 <n gpsn
(Pa,Mod-A) 5 (CM(P), B1%) < (CMPHSH, BI7) < -+ < (CMPHS", BT")
< (Mod-A, 1 4)

N

and moreover: CNP )" N B3 = Pgn N (Pg")L Vn > 0. If FPD(A) < oo, then all
these cotorsion pairs are contained in the cotorsion @EM(PA), PS), except possi-
bly of (Mod-A, 1 4). This raises the question of Whﬂm) = P3*, see [14, page 9].
This is equivalent to ask when GM,) = P4, i.e., when the above chains of cotorsion
pairs coincide. Indeed IEM(P,) = P35>, then CM(PHNLA= P35 N+A. Then by
Proposition 3 we have CMP ) = P4. The converse is clear. Certainly GRly) = P4 if
gl.dim A < oo but we don’t know if there are additional algebras. By [22], BM) = P4
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iff the generalized Tate—Vogel Cohomology groUt‘T)\s'ZCM(PA)mZO(), in the sense of [22],

vanish forn > 1. Note that any tilting cotorsion paitt, )), i.e., Y = T for a tilting
moduleT, necessarily satisfigst’, ))) < (Pj", (Pf”)L), forn =pdT, see [57].

Let I', respectively A, be the DG-algebra of graded stable endomorphisms of
XA/", respectively Z4/". Note that I}, = Ext,"(A/r,X4/") for n <0 and I}, =
Hom, (A/r, 2"X4/") for n > 0, and A, = Ext'(A/r, Z4/") for n > 0 and A, =
Homyu (A /r, X" X4A/") for n < 0. We letD(DG Mod-I"), respectivelyD(DG Mod-A), be
the unbounded derived category of the DG-algebraespectivelyA. Since CMP4) and
CoCM(l 4) are Frobenius exact categories such that their stable categories are compactly
generated, by Keller's Morita Theorem for stable categories [38] we deduce the following.

Corollary 6.12. There are triangle equivalences
CM(PA) ~ D(DGMod-I") ~ D(DG Mod-A) ~ CoCM(l 4).

We have seen that K is pure-injective in CMP ), then the modulé is pure-injective.
In contrast to this nice behavior of pure-injective modules and objects, the situation for
compact objects is not so well behaved. That is, whekesscompact in CMP 4) for any
compact & finitely generated) Cohen—Macaulay modilewe don’t know if any compact
objectin CMP,) is induced by a Cohen—Macaulay module which is compact in Mod-
i.e., finitely generated. This leads to the investigation of when the Cohen—Macaulay torsion
pair is of finite type discussed in the next section.

7. (Co)Cohen—Macaulay torsion pairs of (co)finitetype

In this section we study finiteness conditions on the Cohen—Macaulay torsion pairs. It
should be mentioned that torsion pairs of finite type, in the sense of [22], play an important
role in stable homotopy theory and more generally in compactly generated triangulated
categories. For instance they are in bijection with smashing subcategories and are involved
in the Telescope Conjecture and the classification of thick subcategories of compact ob-
jects, see [22,42,44] for details. More precisely we are interested in finding necessary and
sufficient conditions ensuring that the (Co)Cohen—Macaulay torsion pairs are of finite or
cofinite type in the sense of the following definition which generalizes (and is inspired by)
the notion of smashing subcategories of a triangulated category.

Definition 7.1. Let C be a pretriangulated category which admits all small (co)products and
let (X, ) be atorsion pair it€. The torsion paikX', )) is said to be ofinite, respectively
cofinite, type, if the torsion-free clasy’, respectively the torsion class, is closed under

all small coproducts, respectively products.

As in the triangulated case we have the following characterization of torsion pairs of
(co)finite type. The proof is identical to the proof of the triangulated case, see for in-
stance [22].
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Lemma 7.2. Let C be a pretriangulated category which admits all small products and
coproducts, and assume that in the adjoint pa¥, £2), the loop functors2 preserves
coproducts and the suspension functmpreserves products. IfY, )) is a torsion pair

in C, then the following are equivalent

() X, is of finite type, respectively cofinite type.
(i) The coreflection functdR y :C — X preserves coproducts, respectively the reflection
functorLy :C — ) preserves products.

If (X,Y) is of finite type, then the reflection functos, : C — Y and the inclusion functor
iy: X < C, preserve compact objects.

Corollary 7.3. The torsion pair(%(PA),on‘) in Mod- A is of cofinite type, and the
torsion pair(3;*, CoCM(l ,)) in Mod- 4 is of finite type. In particular the reflection func-

tor Lcocm: Mod-A — CoCM(l 4) and the inclusion functary :ﬁjo‘ < Mod-A preserve
compact objects.

Proof. Since the pretriangulated categories MacindMod-A satisfy the assumptions of
Lemma 72 andCoCM(l 4), respectively CMP,), is closed under coproducts Mod-A,
respectively products in Med\, the assertions follow from LemmaZl O

Recall that a full subcategoryy of an abelian category is calldthick [45] if U/ is
closed under extensions, kernels of epimorphisms and cokernels of monomorphisms. For
instanced ;> andP ;™ are thick subcategories of Mad-and (35*)" and (P5*)™" are
thick subcategories of mod-since, by Theorem.8B, they are resolving and coresolving.

Lemma 7.4. Let D be a thick subcategory dflod- A which is closed under products and
coproducts. Thef® is definable iffD is closed under pure subobjectsTifis closed under
pure quotients.

Proof. Clearly if D is definable, therD is closed under pure submodules and pure quo-
tients. If D is closed under pure subobjects gy | i € I} is a filtered system of modules
from D, then the pure extension8 K — [[;.; D; — lim D; — 0 and the fact thaD is
thick show that limD; lies in D and thereforeD is definable. IfD is closed under pure
guotients, by the above argumehtis closed under filtered colimits. Sin@ is thick, D

is closed under pure submodules and so it is definalate.

The following characterizes when the CoCohen—Macaulay torsion pair is of cofinite
type.

Proposition 7.5. The following are equivalent.

(i) The torsion pair(ﬁj“, CoCM(l »)) is of cofinite type.
(i) 3% is closed under products.
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(iii) If {A;};er is set of modules and; — Z; are special left CoCohen—Macaulay ap-
proximations, then so if[;.; Ai = [[;c; Zi. Equivalently-CM(P,) is closed under
products inMod- A.

(iv) J3* is definable.

iel

If (i) holds, thenT5%)P = (35)fin,

Proof. Clearly (i) < (ii), and (ii) < (iii) follows from Lemma 72, Theorem % and the
definition of the reflection functok cocm: Mod-A — CoCM(l ). Obviously (iv) = (ii)
and the implication (ii}= (iv) follows from Corollary 68. The last assertion follows from
Lemma 72 and Corollary 3. O

Corollary 7.6. If the minimal right CM(P »)-approximationX. of the radicalr of A is
finitely generated, then the torsion pair;*, CoCM( )) is of cofinite type.

Proof. If X, is finitely generated, then so i$"(X.). Using Auslander—Reiten’s formula
we have:

Ext (—, N*(X,)) = Homy (—, Z"N*(X,))
= DHom,, (TrD " ™INT(X,), —), Vn>1.

This implies thaO ;~ = LNT(X,) is closed under products.c

Now we turn our attention to the question of when the Cohen—Macaulay torsion pair is
of finite type. We begin with the following useful characterization.

Lemma 7.7. The following are equivalent.

(i) CM(PA)P=CM(A).
(i) CoCM(l 4)? = CoCM(D(A)).
(iii) The torsion pair(m(PA),gj(X) is of finite type.

Proof. The equivalence (i} (ii) follows from the fact that the adjoint paiN*, N™)
induces equivalences between @M) and CoCM(l 4), hence between C\W¥4)P and
CoCM(l »)°, and between C1) and CoCM(D(A)). By Lemmas 61 and 72 we have

(iii) = (i). If (i) holds, then the inclusionci preserves compactness and therefore its right
adjointRcwm preserves coproducts by Lemma 6Hence the torsion paiCM(P ), B1)

is of finite type by Lemma 2. O

Proposition 7.8. The following are equivalent.

(i) (CM(P4), P>) is of finite type.
(i) P> is closed under coproducts.
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(i) If {A;}ic; is set of modules and; — A; are special Cohen—Macaulay approxi-
mations, then so i$[,.; X; — [[;; Ai- EquivalentlyCoCM(l 4)* is closed under
coproducts inviod-A.

(iv) P1= is definable.

iel

Proof. Observe thaf3 ;™ is closed under coproducts in Madliff B~ is closed under
coproducts in ModA iff the torsion pair(CM(P,), q3<°<) is of finite type. Hence (i}
(ii) and by Proposition ¥ and the fact that the first part of (|||) is a reformulatlon of the

to show that (ii)= (iv). By Lemma 74 it suffices to show tha 1> is closed under pure
quotients. Let - A — Y — B — 0 be a pure extension in Mod-with ¥ in B3 and

let X be a finitely generated Cohen—Macaulay module. Since finitely generated modules
are pure-projective, we have the following exact commutative diagram:

00— Homy(X,A) —— Homu(X,Y) —— Homu(X,B) —— 0

DX,A l wx,y l WX,B \L

-+ — Hom, (X, A) —— Hom,(X,Y) —— Hom, (X, B)

where the vertical arrows are the canonical epimorphisms. From the above diagram it
follows that Hom, (X, B) = 0, hence_Hom (X, Rcm(B)) = 0 for any moduleX in
CM(P4) N mod-A = CM(A). Since, by Lemma .7, CM(A) = CM(P4)? generates
CM(P,), we infer thatRcm(B) = 0 and thereforeB lies in P5*. Consequently3 ;=

is closed under pure quotients, i.8;* is definable. O

Corollary 7.9. If the minimal rightCM(P 4 )-approximationX 4 ;. of A/t is finitely gener-
ated, equivalently the minimal I(—i\j‘ijﬁ‘-approximationY/‘/t of A/vis finitely generated,
then the torsion paiKCM(P,), EZ‘X) is of finite type. In this casg > = (XA/t)L and
X 4. Is acompact generator and a pure-injective cogeneratd (P » ).

Proof. Clearly X 4. is finitely generated iff so ig4/*. If this holds, then AddX 4/.) =
ProdX 4,.) and therefore by Proposition®we have

= [PI’OC(XA/t)]J_ = Add(XA/t)J_ = (XA/t)J_-

This implies thatP* is closed under coproducts and therefore, by Propositi8n 7
the torsion pair(w(PA),ﬁjo‘) is of finite type. SinceX,,r is finitely generated,

the objectgA/r is compact in_CMP,). Let X be in CM(P,) and assume that
Hom, (£2"(X 4 ), X) =0, Vn € Z. Since forn > 1, we have

Hom, (2" (X 4 .), X) ZEX" (X a/x, X),
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it follows thatX e 5. ThenX = 0 sinceX is Cohen-Macaulay. We conclude thaf
is a compact generator of QM ,). Finally as in the proof of Theorem®it follows that
X 4, Is @ pure-injective cogenerator generator of GM). O

Let A be an additive category with filtered colimits.f is a full subcategory of4,
then we denote by li#r the full subcategory ofA consisting of all filtered colimits of
objects fromi/. An objectX in A is calledfinitely presented the functorA(X, —): A —
Ab preserves filtered colimits. The full subcategory of finitely presented objectsisf
denoted by fpd. Following [29] we say that an additive categady is locally finitely
presentedf A has filtered colimits, fpd is skeletally small andd = lim fp A. The basic
properties of the categories of the form fimare described in the following well-known
result.

Lemma 7.10 [29,47] Let! be a full subcategory ofnod-A. Thenlim/ is locally fi-
nitely presented and closed under filtered colimitd/iod-A. Moreoverlim ¢/ N mod-A =
add/ = fplim#/ and a moduleA lies in lim ¢/ iff for any finitely presented modulg,
any mapT’ — A factors through a module it¥. Finally lim { is closed under products in
Mod- A iff addi/ is covariantly finite inmod-A.

To proceed further we shall need the following basic result of Krause—Solberg.

Lemma 7.11 [45]. Let F be a resolving, respectively coresolving, subcategomad A.

If F is contravariantly, respectively covariantly, finite, th&nis covariantly, respectively
contravariantly, finite. In particular a thick subcategory which contains the projective and
the injective modules is contravariantly finite iff it is covariantly finite.

Finally we need to recall some results from [22]. First we introduce some terminology.
We call a cotorsion pai¢X’, )) in Mod-A projective, respectivelyinjective, if Y N) =
P4, respectivelyt N) =1 4. For instance the cotorsion p&EM(P ), P1*) is projective
and the cotorsion paifJ;*, CoCM(l 4)) is injective. Following [22] we say that a triple
of full subcategoriegX’, ), Z) in an abelian categoryl is acotorsion triple if (X, ))
and(), Z) are cotorsion pairs. In this case the cotorsion pair))) is projective and the
cotorsion pain), 2) is injective [22]. If A is Frobenius, theX’, V) is projective iff it is
injective iff ) is closed under kernels of epics if is closed under cokernels of monics.

Theorem 7.12 [22].

(1) Let(X,Y) be a cotorsion pair irMod-A or in mod-A. Then the following conditions
are equivalent.
(i) (X,Y)is a projective cotorsion pair.
(i) Y isresolving, in which cas&’ consists of Cohen—Macaulay modules.
(iif) The stable categoryt’/ X N is triangulated.
(2) If Y is a functorially finite resolving and coresolving subcategorymadd A, then
there exists a cotorsion tripléX, ), Z) in modA with X € CM(A) and Z C
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CoCM(D(A)). Moreover the Nakayama functors™ induce quasi-inverse equiva-
lences(Nt,N7): X = Z, and the Auslander—Reiten operatar$ induce triangle
equivalencegrt, t7): X = Z.

Now we can prove the following basic result which gives characterizations of when
the Cohen—Macaulay torsion pair is of finite type in terms of finitely generated modules.
This result will play a crucial role in the study of virtually Gorenstein algebras in the next
section.

Theorem 7.13. For an Artin algebraA the following are equivalent.

(i) The torsion paif(CM(P,), B<%) in Mod- A is of finite type.
(ii) Any finitely generated modt?le admits a special left CoCohen—Macaulay approxima-
tion which is finitely generated.
(i) There exists a cotorsion tripléCM(A), (P5)M = (35%)", CoOCM(D(4))) in
mod-A.
(iv) The full subcategoryjj“)ﬁ” of finitely generated modules of virtually finite injective
dimension is covariantly finite imod-A.

Proof. (i) = (ii). Since the torsion pai(ﬁ ,CoCM(l »)) in Mod-A is of finite type,

by Corollary 62, the reflection functok cocm: Mod-A — CoCM(l 4) _preserves compact
objects. Therefore for any in mod-A the reflectionL cocm(7) of T in CoCM(l ») is
compact inCoCM(l 4). By Lemma 77, this implies that the left CoCohen—Macaulay ap-
proximation ofT is finitely generated. Hence for arfy in mod-A, there exists a special
left CoCohen—Macaulay approximation sequenee @ — Z7 — W7 — 0 in Mod-A,
whereZ”, hence alsav7, is finitely generated. That i lies in COCMD(A)) andW”

lies in (35N,

(i) = (i) = (iv). The assumption in (ii) implies that the coresolving subcat-
egory CoCMD(A)) is covariantly finite in modA and we have a cotorsion pair
((35%)fin, CoCM(D(A)) in mod-A. Then Lemma 71 implies that(35*) " is covari-
antly finite since it is resolving. By Theoreml2 the thick subcategor@j“)ﬁ“ induces a
cotorsion triple(t, (35%)f", COCM(D(4))) in mod-A with & = +[(35%) "], where the
operation “-” is performed in modA. Also by Theorem 712 we haveY € CM(A) and
DTr(X) lies in CoCM(D(A)) for any X in CM(A). ThereforeHom, (W, DTr(X)) =0
YW e (35%)f". Auslander-Reiten formuldlom, (W, DTr(X)) = DExt}, (X, W) and the
fact that (35°)" is coresolving shows thax lies in +[(35*)"] = X. We infer that
X =CM(A).

(iv) = (i). By 7.11 we deduce the existence of a cotorsion trigte (35°)™, 2) in
mod-A. Using [45, Theorem 2.4], it follows directly that this cotorsion triple extends to
a cotorsion triple(lim X, lim(35%)f", lim Z) in Mod-A. Since(35*)" € 35 and, by
Corollary 68, the latter is closed under filtered colimits, it follows tk@;dﬁgo‘)f'” C I3~
Then CoCMI 4) = (35%)* < (lim(35%)M~+ = lim Z. Now since(35*)™ is thick and
covariantly finite, by [45, Corollary 3.6], it follows theil)i(ﬁjoc)ﬁ” is thick. Then by The-
orem 712 and its dual we infer that lidh’ consists of Cohen—Macaulay modules and&m
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consists of CoCohen—Macaulay modules, i.e,, i CM(P,) and lim2z € CoCM(l »).

In particular im2 = CoCM(l ) and thereforg > =+ CoCM(l ») = lim (35*)™. Since
the Nakayama functorsi™ and N~ preserve filtered colimits and induce an equiva-
lence between CIP,) and CoCMI »), we infer that lim¥’ = CM(P,). HenceB;* =
CM(P)* =1lim(35%) = 35> and this implies thaf3 ;™ is closed under coproducts.
Then by Proposition.B we infer that the torsion paiCM(P ), @Z‘X) is of finite type. O

Now we can give the converse to Corollar@7
Corollary 7.14. The following are equivalent.

(i) The torsion paifCM(P,), s)3“") in Mod- A is of finite type.
(i) The minimal rightCM(P,4)- approxmatlonXA/t of A/vis finitely generated.

Proof. By Corollary 7.9 it suffices to prove that (& (ii). From the proof of Theorem.T3

it follows thatP ™ is definable and3 3> = lim (P3>)™. Then, by [43, Theorem 3.12],
there exists a special et ;> -approximation sequence-8 A/t — YA  xAlv 50
where Y4/t henceX4/t, is finitely generated. Thel 4. is finitely generated, since,
by [22], we have2 (X)) = X pe. O

Coroallary 7.15. If the Cohen—Macaulay torsion pai€CM(P,), %Z“) is of finite type, then
the CoCohen—Macaulay torsion pa([ﬁjf‘, CoCM(l »)) is of cofinite type.

Proof. By Corollary 714, the moduleX , . is finitely generated. Sinck. = 2(X 4,.),
it follows that the moduleX, is finitely generated. Then the assertion follows from Corol-
lary 7.6. O

8. Virtually Gorenstein algebras

In this section we investigate in detail the class of virtually Gorenstein algebras, intro-
duced in [22], which provides a natural generalization of Gorenstein algebras and algebras
of finite representation type, in connection with finiteness conditions on the Cohen-—
Macaulay (co)torsion pairs.

For a study of the connections between relative homological algebra, closed model
structures in the sense of Quillen and virtually Gorenstein algebras we refer to [22].

Definition 8.1 [22]. An Artin algebraA is calledvirtually Gorenstein if the full subcate-
gory of modules of virtually finite projective dimension coincides with the full subcategory
of modules of virtually finite injective dimension, i.g35* = 3.

Since for a Gorenstein algebrawe haveB 1> = P3>° = 17> =37, it follows that
Gorenstein algebras, in particular self-injective and algebras of finite global dimension,
are virtually Gorenstein. TriviallyA is virtually Gorenstein provided that Ci2,) = P4
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or equivalently CoCMl 4) = | 4. This follows from Remark 3 since the condition
CM(P,) =P, implies that 3= = Mod-A = J5<.

8.1. Characterizations of virtually Gorenstein algebras

If A is virtually Gorenstein, then the equati@sr;™ = 33 implies that the Cohen—
Macaulay torsion pai(w(PA),ﬁj“x) in Mod-A is of finite type. Our previous results
enable us to show that this condition, as well as a host of other equivalent conditions,
characterize the class of virtually Gorenstein algebras.

Theorem 8.2. For an Artin algebraA, the following are equivalent.

(i) A is virtually Gorenstein.
(i) The Cohen-Macaulay torsion paiEM(P ), B7*) is of finite type.
(i) CoCM(I 4)P = CoCM(D(A)).
(iv) CM(P4)° =CM(A).
(v) The subcategor§3 1= of modules with virtual finite projective dimension is defin-
able.
(vi) The subcategory ;> of modules with virtual finite injective dimension is definable
and any finitely generated module admits a finitely generatgt-approximation.
(vii) The subcategor;(ﬁjﬁ)“” is contravariantly, equivalently covariantly, finite in
mod-A. '
(viii) The subcategor;(mjo‘)f'” is covariantly, equivalently contravariantly, finite in
mod-A.
(ix) The subcategoryCM(A) is contravariantly finite inmodA and CM(A)* c
(;ﬁj(}()fln.
(X) The subcategorZoCM(D(A)) is covariantly finite inrmod-A andL CoCM(D(A)) <
(jza)fln.
(xi) The categonCM(P,) is locally finitely presented and

fo CM(P4) = CM(A).
(xii) The categonfCoCM(l ») is locally finitely presented and
fp CoCM(I 4) = CoCM(D(4)).
(xiii) f 0> A — B — C — 0 is exact inMod-A or mod-A, then the following are
equivalent
(a) Any mapX — C whereX is Cohen—Macaulay factors through— C.

(b) Any mapA — Z whereZ is CoCohen—Macaulay factors through— B.

If A is virtually Gorenstein, then the torsion pa(iﬁj“, CoCM(l 4)) is of cofinite type and
we have
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e A cotorsion triple(CM(P,), P71 = T;%, CoCM(l 4)) in Mod-A where all the in-
volved categories are functorially finite and definable.

e A cotorsion triple(CM(A), (P59 = (35%)fi", CoOCM(D(A))) in mod-A where all
the involved categories are functorially finite.

e Atorsion pair(CM(A), @Z‘X)b) in mod- A, where

<o\ fi <o\b

( Aoc) " = (%AO() .

e Atorsion pair((35%)?, COCM(D(A)) in mod 4, Where(ﬁoc)f'n (35%)P.

e The categorie€M(P,), P> = T3, andCoCM(l ,) are locally finitely presented
and:

CM(P,) = lim CM(A), =lim[(B5%)™] = lim[(35%)™] = 35,

— —>

CoCM(l 4) = lim CoCM(D(4)).

Proof. The equivalences (ii}> (iii) < (iv) < (v) follow from Lemma 77 and Propo-
sition 7.8. The equivalence (i (xiii) follows from [22]. Also the equivalences (&

(i) « (iv) < (vii) and the fact that (ii) implies (viii), (ix) (x), (xi) and (xii) follow from
Theorem 713 and its proof. We first show that each of the conditions in (viii), (ix) and
(x) implies thatA is virtually Gorenstein. Assume first thaleO‘)ﬁ” is covariantly finite

in mod-A. Then, by [9], there exists a cotorsion pai, (‘Bj“)ﬁn) in mod-A and then

by Theorem 712 we haveAd € CM(4A). Let (E):0— Y}, — X7, — A/t — 0 be ex-
act where the mapfA/t:Xj}/t — A/t is the minimal rightA-approximation ofA /¢ in
mod-A. Thean;/t lies in (‘Bj“x)ﬁ” since any minimal rightd-approximation is special.

If o:X — A/visamap wherX liesin CM(P,), then the pull-back ok along(E) splits
sinceY; . lies in®B7*. This implies thatr factors throughyf’s . and therefore the latter is
the minimal right CMP 4)-approximation ofA /«. Sincer‘Vt is finitely generated, Corol-
lary 7.9 implies that the torsion pa'(w(PA),gj‘X) is of finite type. Next we show that
(ix) implies (viii), leaving the proof of the implication (>3 (vii) to the reader since it is
completely dual. So let CkM) be contravariantly finite and Cii)*= < (Bx*)fin. Also

let (CM(A), B) be the induced cotorsion pair in motl-If Y lies in (‘Bj“)fi”, then the left
B-approximation sequence8 ¥ — BY — XY — 0 of Y splits sincex? lies in CM(A).
HenceY lies in B and thereforéP>)" C B. Then by hypothesis we hay@ )" = B
and consequentl@j“)ﬁ” is covariantly finite. Since CIP 4) and CoCM] ,4) are equiv-
alent via the Nakayama functors, it is clear that (xi) is equivalent to (xii). If (xii) holds, then
clearly CoCMI 4) = lim CoCM(D(A)). Since, by Proposition.8, the former is definable,

it follows by [43, Theorem 3.12] that any finitely generated module admits a finitely gener-
ated left CoCMI 4)-approximation. Then Theorem1B implies that condition (ii) holds.
The remaining assertions follow from TheoremiJ and its proof. O

Combining Proposition .®, Corollary 714 and Theorem .2 we have the following
consequence which gives a characterization of virtually Gorenstein algebras in terms of
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finite generation and filtration properties of the approximation modkiles, YA/, Waje
andzA/r.

Coroallary 8.3. For an Artin algebra the following are equivalent.

(i) A is virtually Gorenstein.

ii e minimal rig (Pa)-approximationX 4 /. of A /v is finitely generated.
(i) The minimal rightCM(P imati /e Of A/vis finitel d
(ii) The minimal IefE]:?jx‘X—approximationYA/t of A/t is finitely generated.

iv e minimal rig -approximationW 4 ;. of A/t is finitely generated.

iv) The minimal righty ;< imati /v Of is finitel d
(v) The minimal lefiCoCM(I 4)-approximationZ4/® of A /v is finitely generated.

If A is virtually Gorenstein, then we have the following.

(i) CM(A) = Filt(addX /c) and CM(P,) = 1Y, = Filt(AddX 4,c). Moreover
CM(P,) = thick(Add X 4 ) andCM(A) = thick(X 4 ,,).
(i) (P3)™ = Filt(@ddW 4 /.) = Filt(addy 4/*) = (3;%)" and 35* = Filt(Add Y 4/%)
= Filt(Add Was) = LzAl = (XA/t)J‘.
(i) CoCM(D(A)) = Filt(addZz4/*) and CoCM(l4) = (WA/%)L = Filt(Add Z4/%).
MoreoverCoCM(l 4) = thick(Add Z4/*) and CoCM(D(A)) = thick(Z4/*).

Example 8.4. (1) By Theorem & it follows that any Artin algebra of finite representation
type is virtually Gorenstein, since clearly representation finiteness impliePgM =
CM(4).

(2) We say that is of finite Cohen—M acaulay typeif the full subcategory CNA) of
finitely generated Cohen—Macaulay modules is of finite representation type. In this case if
XTis a representation generator of CM, that is,X T is such that add T = CM(A), then
since CM A) is a Frobenius category, by [27] we infer that the stable endomorphism ring
EndX") is a self-injective Artin algebra. It follows easily from this that¥fis compact
in CM(P,), then X is a direct summand of a finite coproduct of copiesﬁt Hence
CM(P4)P = CM(A). We conclude that any Artin algebra of finite Cohen—Macaulay type
is virtually Gorenstein.

Combining Corollary 8 and Theorem.2, we have the following description of Goren-
steinness.

Corollary 8.5. The following are equivalent.

(i) A is Gorenstein.
(i) P1* is closed under coproducts and the minimal righk>-approximation of any
simple module has finite projective dimension.
(iii)y P> is closed under coproducts apdlY 4 r < oo, whereY 4; is the minimal right
1 -approximation ofA /r.
(iv) 3% is closed under products and the minimal Bf{*-approximation of any simple
module is finitely generated with finite injective dimension.
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(v) 35= is closed under products arid W4/" < oo, where W4/" is the minimal left
J5*-approximation ofA /r which is finitely generated.

Proof. (ii) = (i). Since'P;* is closed under coproducts, by Theorer},8he resolving
subcategoryP<*)" of mod-A is contravariantly finite. Hence by [9],

sup{pdY | Y € ( jo‘)ﬁn} =maxpdYs | S is simplg

whereYs is the minimal right(p ;)""-approximation ofs. By hypothesis sujpdY | ¥ ¢
(P59} < oo and thereforgP ;)" < P Since we always have ;> < (B3,
we infer that(3 <) = P> and this implies thaEM(A) = mod-A. HenceA is Goren-
stein.

() = (ii). If A is Gorenstein, then the assertions in (i) follow from the fact that
(P59 = P> and P> = P5> is closed under coproducts since RRD < oo by
Proposition 310. Using Theorem .2, the proof of the other equivalences is similar and is
left to the reader. O

8.2. Symmetry for virtually Gorenstein algebras

It is well known thatA is Gorenstein or representation finite iff saA8P. Generalizing
this fact we shall show that virtual Gorensteinness is left-right symmetric. First we need
the following preliminary result.
Lemma 8.6.
(1) The dualityD induces adjoint on the right pairs of functors

D:CM(P,) = CoCM(l gop):D and D:CoCM(l 4) = CM(Pop) : D,
and equivalences of categories
D:CM(A)% = CoCM(D(A%)) and D:CoCM(D(A))*® = CM(AP).
(2) The dualityD induces equivalences
D[( <O()fin]0pi> [jzgé]ﬂn al’ld D:[(jj‘o()fin]opg [ng;()]ﬁn.

Proof. Part(1) is easy and is left to the reader. To pro\® let Y be in (‘Bj@)ﬁ” and
let (E):0— Z — C — D(Y) — 0 be an extension in Modt°P where Z is CoCohen—
Macaulay. Since is finitely generated, dualizingt) we get an extension (&):0 —
Y — D(C) — D(Z) — 0in Mod-A where 0 Z) is Cohen—Macaulay by paftl). SinceY
lies in P71, the extension DF) splits. It is well known and easy to see that this implies

that the extensioFE) is pure. Since DY) is finitely generated we infer thak) splits. It
follows that ExL, (D(Y), Z) = 0 for any CoCohen—Macaulay®P-moduleZ and therefore
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D(Y) lies in + CoCM(I qo0) = 35S5. Similarly D(W) lies in (B5*)™" for any A-module
W in [3551°. We conclude that D gives a duality betwegp>)" and (355)™. The
second equivalence is proved similarlyo

Theorem 8.7. A is virtually Gorenstein iffA°P is virtually Gorenstein.

Proof. Let A be virtually Gorenstein. By Theoremit follows that we have a cotorsion
triple (CM(4), (P5)P = (35%)P, CoOCM(D(A))) in mod-A and then Lemma.8 implies
the existence of a cotorsion triple

(CM(4%), D[(35%)"™] = D[(B1*)™]. CoCM(D(4°F)))
in mod-A°P. By [45] the last cotorsion triple induces a cotorsion triple

(1im CM(A°P), lim D[ (35%)™] = lim D[ (15%)™]. lim CoCM(D(4%®)) )

— — —

in Mod-A°P. By Lemma 86 this cotorsion triple is equal to

(tim CM(A°P), lim (7555) ™ = lim (3738)" lim CoCM(D(4%7)) ).

—

It follows that M(Jj%)fi” is closed under products in Mad®P and therefore, by

Lemma 710, (35%)™ is covariantly finite in modA°P. Then A°P is virtually Gorenstein
by Theorem &. 0O

8.3. Grothendieck Groups and Auslander—Reiten sequences/triangles

Gorensteinness has several nice consequences for Grothendieck groups and Auslander—
Reiten theory, see [11]. In this subsection we show that this continues to hold for virtually
Gorenstein algebras.

We begin with the following generalization of a result of Auslander—Reiten [11] from
Gorenstein algebras to virtually Gorenstein algebras.

Proposition 8.8. Let A be a virtually Gorenstein algebra.

(i) The subcategorieBM(A), COCM(D(A)) and (P5*) ™M = (35%)" have Auslander—
Reiten sequences.

(i) The triangulated categorieEM(A) = CM(P4)? and CoOCM(D(A)) = CoCM(l 4)°
have Auslander—Reiten triangles which remain suc@M(P ) and CoCM(l 4) re-
spectively.

(iii) The triangulated categorieSM(P 4)? and CoCM(l »)P admit a Serre functor which
is given byXpRcym DTr and 2/ L cocm TrD respectively.
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Proof. Part (i) follows from the fact that, by Theorem28the involved subcategories are
functorially finite, see [7]. IfX € CM(A), then, using Auslander—Reiten formula, we have
the following isomorphisms:

DHom, (X, X") = Ext} (X', DTr(X)) = Hom, (22(X’), DTr(X))
=, Hom, (22(X"), Rem DTr(X))
= Hom, (X/, 2pRcm DTI’(X)), VX' € CM(A).

Since right CMP»)-approximations of finitely generated modules are finitely gen-
erated, it follows that the functor DHopiX, —):CM(A)°P — Ab is representable
by the object XpRcym DTr(X). Dually if Z lies in CoCMD(A)), then the functor
DHomy (—, Z) : CoCM(D(A)) — Ab is representable by the obje L cocmTrD(Z)
Consequently the functor DHopi—, X):CM(A) — Ab is representable by the ob-
ject TrD£2;Lcocm(X) and the functor Blomy (Z, —) : CoOCM(D(A))%° — Ab is repre-
sentable by the object DBpRcm(Z). HenceScym := XpRcm DTr: CM(A) — CM(A),
respectivelyScocm := 21Lcocm TrD : CoCM(D(A)) — CoCM(D(A)), is a Serre functor
in CM(A), respectivelyCoCM(D(A)). Then by [53], CM A), respectivelyfCoCM(D(A)),
has Auslander—Reiten triangles which, by [20], remain such in(R5M, respectively
CoCM(l ), since any compact object in GM,), respectivelyCoCM(l 4), is pure-
injective by Corollary . O

If réEM, respectivelyrcioCM, denotes the Auslander—Reiten translations in(@M re-

spectively CoCM(D(A)), then sinces?| 5544 = DTr2 TrD and Xp|moga = Tr22Tr,
Proposition 83 implies that:

tdu=RcmDTr,  15,=TrDLcocm  and

+ _ — —
TCoCM = LcocmTrD, TCoCM = DTrRcMm.

Let & be any one of the exact subcategories of modEM(A), CoCM(D(A)),
(‘BZO‘)“”, (jj‘“)f'”. We denote byKo (/) the Oth Quillen’s K-group ot/. The following
result shows that the grougp(i/) is free provided thati is virtually Gorenstein.

Theorem 8.9. If A is virtually Gorenstein, then there exist isomorphisms

Ko(CM(A)) LT Ko((P3%)™) = Ko(P4) LT Ko(mod-4),
Ko(COCM(D(4A))) L1 Ko((35%)™) = Ko(Z4) LI Ko(mod-4),
Ko(CM(4)) 11 Ko(($5%)™) = Ko(mod-A),

Ko(CoCM(D(4))) LI Ko((355)™) = Ko(mod-4).
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Proof. By Theorem & we have a cotorsion paiiCM(A), (B5*)™) in mod-A with
CM(A)NEPZ)N =Py4. Leti: Ko(P4) — Ko(CM(A)) and;: KO(PA)*KO((&BZO()W)
be the natural maps defined iiyP]) = [P] andj([P]) = [P] Also leta : Ko(CM(A)) —
Ko(mod-A) < Ko((P oyfiny - g be defined by ([X]) = [X] andB([Y]) = [Y]. We claim
that there exists a cocartesian square

Ko(P4) Ko((P5%)M)

il ﬁl ()

Ko(CM(A)) —=—= Ko(mod-A)

in Ab. Clearly the above diagram commutes. L&t be an abelian group and let
¢ Ko((P5)M) — G and ¥ : Ko(CM(A)) — G be group homomorphisms, such that
jo¢ =io6. We define a group homomorphisnm Ko(mod-A) — G as follows. Let

A be in modA and consider the exact sequence>0Y4, — X4 — A — 0 where
the mapX, — A is the minimal right Cohen—Macaulay approximation 4f We set

n "(A) = 0([XaD) — ¢([Ya]). f 0 — Y4 — XA — A — 0 is exact where the map
X4 — A is a right Cohen—Macaulay approximation af then it is easy to see that
there exists a projective module such thatXA =X,® P and YA =Y4s® P. Then
([XAD = 2([XaD) + 9P and ¢((Ya]) = ¢((YaD) + ¢([PD in G and therefore
F(Xa) —¢(Ya) = 3(XaD — ¢([YaD) — @(APD — ¢([P])). Sinced([P]) — ¢([P]) =
?([P]) — ¢(G([P]) =0, it follows that the assignmertt i~ n'(A) = 0([X4]) — ¢([Ya])

is independent of the right Cohen—Macaulay approximations and gives a well defined
map on the set of isoclasses of mdad4f 0 - A — B — C — 0 is a short exact se-
guence in modA, then by [9, Proposition 3.6] it follows that there exist exact sequences
0— X4 — Xp — Xc — 01in CM(A) and 0— Y4 — Y5 — Yc — 0 in (P51 and
therefore we haved ([Xp]) — ¢([Yp]) = 0([Xal) + 0([Xc]) — (C([Ya]) + ¢([Yc]) =
O(XaD) — ¢(YaD) + @(Xc]) — ¢([YcD). It follows thatn'(A) = »n'(B) +n'(C) and
therefore there exists a unique group magKo(mod-A) — G such that;’ (A) = n([A]).
Clearlya o n = 9. Let ¥ be in (P5*)™. Then the minimal right Cohen-Macaulay ap-
proximation ofY is its projective coveP — Y. Thereforen(8([P]) = n([P]) = 3 ([P]) —
(2D =i PD — ¢([2(Y)D = ¢i([PD — ¢([$2(X)]) = ¢([P] = [£2(Y)]) = (Y D).
HenceB on =¢. If u:Ko(mod-A) — G is a group map such that o u = B o pu,
then for any moduleA we haveu([A]) = n([Xa] — [YaD) = pn(@([Xal) — B([YaD) =
F([XaD) — ([ Ya]) =n([A]). Hencen = 1. We infer that(T) is cocartesian and therefore
we have a short exact sequencedib

Ko(P4) L2 Ko(CM A)) 11 Ko((B5%)°) - ®

— Kop(mod-A) — 0 (1)
which induces a short exact sequence-0f — Ko(P4) — G — 0 whereG := Ker (%)

We shall show that? = 0. To this end we first show that the finitely generated abelian
groupsKo(CM(A)) and Ko((P5%)™) both have rank> n, where{ss, ..., S,} are the
non-isomorphic simpleti-modules. Foi =1,..., n, let X;, respectivelyy;, be the min-
imal right CM(A)-, respectively(%j“)f'”-, approximation ofS;. Let A, respectivelys,
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be the full subcategory Ci), respectively(‘lijo‘)ﬁ”, consisting of all modules which
admit finite filtrations with factors if{X;}, respectively{Y;}. By a result of Auslander—
Reiten [9], for any Cohen—Macaulay module and any module& in (‘Bj“)ﬁ“, there
exist projective module® and Q such thatX @ P € A andY @ Q < B. This means that
the categoryA4, respectively3, is cofinal in CM A), respectivelxmza)f'”. Therefore the
canonical map&o(A) — Ko(CM(A)) andKo(B) — Ko((mj‘x)“”) are monomorphisms.
It follows that Ko(CM(A) and Ko((B5*)™) both have rank: n, since clearlyKo(A), re-
spectivelyKo(B), is free on the setX;}, respectively{Y;}. Since Ko(mod-A) is free of
rankn, the rank ofG is > n. In turn this implies that the rank of the free subgradpof
Ko(P,) is zero, hencéd = 0. Therefore the mafi, —j) in (t1) is @ monomorphism and
then the freeness dfp(mod-A) implies the first isomorphism. The second isomorphism
follows in a similar way by using the cotorsion p&i>)™, CoCM(D(4))) in mod-A
with COCM(D(A)) N (35%)" = 7. Finally the last two isomorphisms follow directly
from first two or alternatively from [22, Corollary I1.5.7]. O

We close this section with the following consequence of Propositi8ragd [20, The-
orem 12.1].

Corollary 8.10. The following are equivalent for an Artin algebré&.

(i) A is of finite Cohen—Macaulay type.

(i) A is virtually Gorenstein and the séitX ;] — [X,] + [X3] € Ko(CM(A), @)}, where
2(X3) - X1 — X, — Xjis an Auslander—Reiten triangle @M(A), is a free basis
of Ko(CM(A), @).

(i) A is virtually Gorenstein and the sd{X1] — [X2] + [X3]} U {[X,p] — [P]}
Ko(CM(A), ®), where0 — X1 — X2 — X3 — 0is an Auslander—Reiten sequence
in CM(A) and X; p is the minimal right Cohen—Macaulay approximationraf for
any indecomposable projective moduleis a free basis oKo(CM(A), ®).

8.4. Derived equivalences, stable equivalences of Morita type and virtually Gorenstein
algebras

It is well known that Gorensteinness is preserved under derived equivalences, this is
also a consequence of our next result. On the other hand there exist derived equivalent
Artin algebrasA andI” such thatA is representation finite but is not, see [31]. The next
result, which shows that virtual Gorensteinness is preserved under derived equivalences,
implies that if A is representation finite, hence virtually Gorenstein, and derived equivalent
to I, thenrI is virtually Gorenstein.

Theorem 8.11. Let A and I be derived equivalent finite-dimensiorkablgebras over a
field k. Then there exist triangle equivalences

CM(P,) = CM(Pr) and CoCM( 4) = CoCM(l ).

Moreover
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(i) A is virtually Gorenstein iffl" is virtually Gorenstein.
(ii) gl.dimA < oo, respectivelyA is Gorenstein, iff the same holds for.
(i) A is of finite Cohen—Macaulay type iff is of finite Cohen—Macaulay type.
(iv) If A is representation-finite, thef is virtually Gorenstein of finite Cohen—Macaulay
type.

Proof. Let F:D(Mod-A) => D(Mod-I") be a triangle equivalence, which we may as-
sume that it is standard [55], that iB, is given by a two-sided tilting complex. Assume
first that A is virtually Gorenstein, in particular we have M) = CM(P,)P. Since, by
Theorem &, there exists a cotorsion tripl€M(A), (P75 = (35, CoCM(D(A)))

in mod-A, where all the involved categories are functorially finite, there exists a “fi-
nitely presented” version of the exact commutative diagram of Proposit&ni.b., the
same diagram but Ci®,) is replaced by CNA), P4, and Mod-A are replaced by
P, and modA respectively, andg ;< is replaced bwq:%j‘o‘)ﬁ“. Now it is well known
that F restricts to a triangle equivalence betwé@hMod-A) andD°(Mod-I"), between
DP(mod-A) andDP(mod-I"), betweer?(P 1) and+P(P) and finally betwee®(P )
andHP(Pr) [54]. In particular by Remark 8, F induces a triangle equivalence between
7;(Mod-A) and 7;(Mod-I"), and betweer?;(mod-A) and 7;(mod-I"). Also by [55] it
follows that F commutes with the total derived functo#s@% D(A) and — ®]% D(I").
Using the characterization of the objects in the strict image of the fully faithful func-
tor DP(icm) : DP(CM(P4)) — DP(Mod-A) in Proposition 58, it follows that F induces

a triangle equivalence betwe®P(CM(P,)) and DP(CM(P ). Using the finitely pre-
sented version of Proposition& it follows that this triangle equivalence restricts to a
triangle equivalence betweddP(CM(A)) and DP(CM(I")). Then from the exact com-
mutative diagram of Proposition&and its finitely presented version, it follows thét
induces a triangle equivalence between @\) and CMP), hence between Ci® )P

and CMP )P, which restricts to a triangle equivalence between@yand CMI"). That

is, we have the following commutative diagram where the horizontal arrows are inclusions
and the vertical arrows are triangle equivalences inducefi:by

7;(modtA) <—— CM(A) —= CM(P)P

7,(mod-I") <—— CM(I") — CM(P)°

Since CMA) = CM(P4)P, it follows that CM(I") = CM(Pr)P and thereford™ is virtu-
ally Gorenstein by Theorem® Since, by Corollary ® and Lemma 4., an Artin algebra
A is Gorenstein, respectively it holds.dim A < oo, iff CM (A) ~ 7;(mod-A), respec-
tively 7;(mod-A) = 0, it follows thatA is Gorenstein, respectively it holds.dim A < oo
iff the same holds for”. Now patrt (iii) follows from the above analysis and Corollary®,
and part (iv) follows from (i) and (iii) and the fact that, by Exampld ,&epresentation fi-
nite algebras are virtually Gorensteinz
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Recall that a stable equivalenée Mod-A => Mod-I" between Artin algebrag and
I is called astable equivalence of Morita type, and thenA andI” are stably equivalent
of Morita type, if there are bimodulegsM and N, such thatw) 4M andN, are fi-
nitely generated projectiva-modules andW- and - N are finitely generated projective
I'-modules(8) M @ - N = A & P as A-bimodules whereP is a projectiveA-bimodule,
andN ® 4 M = I" ® Q asI"-bimodules wherg) is a projectivel"-bimodule, andy) there
exists a natural isomorphism 4 = 7r(— ®4 M) of functors: ModA — Mod-I
(4 :Mod-A — Mod-A andzn - :Mod-I" — Mod-I" are the canonical functors).

We have the following result which shows that (virtual) Gorensteinness is invariant
under stable equivalences of Morita type.

Theorem 8.12. Let 4 M and N 4 be bimodules inducing a stable equivalence of Morita
type F : Mod-A => Mod-I" between the Artin algebras and I".

() F induces a triangle equivalende: CM(P,) => CM(Pr).
(i) A is virtually Gorenstein iffl" is virtually Gorenstein.
(iii) A is Gorenstein iffl" is Gorenstein.

Proof. (i) Clearly it suffices to show that if( is a Cohen—Macaulayt-module, then
X ®4 M is a Cohen—Macaulay’-module. Let(P*®, dp.) be an acyclic complex of pro-
jective A-modules which remains exact after the application of Hom, P), whereP is
projective, and such that Kéf,. = X. Since the moduleg M and M are projective, it
follows that the functof; := — ® 4 M : Mod-A — Mod-I" is exact and preserves projec-
tives. Therefore we have an acyclic compié, (P*®), Fy (dp+)) of projectivel’-modules
such that KeFy; (d%.) = Fu (X). Consequently, (X) is Cohen—Macaulay provided that
X lies in+ A implies thatFy (X) lies in+I". Equivalently if X satisfies Tof (X, 1) =0,
Vn > 1, for any injectiveA-modulel, then Tof(FM(X), J)=0,vn > 1, for any injective
I'-moduleJ. Let--- — P~1 — P% X — 0 be a projective resolution of € - A. Then
we have a projective resolution- — Fy (P~ — Fy(P% — Fy(X) — 0 of Fy(X)

in Mod-I" and therefore for any injectivE°P-moduleJ, Torf;(FM(X), J) is then-th co-
homology of the complex-- — P~ 1@, M @r J - PO, M ®r J — 0. Itis easy to
see that the functoy F := M ® r —:Mod-I"°°P — Mod-A°P preserves injectives. Hence
M ®r J is an injectiveA°P-module and therefore THX Fi (X), J) = Tord (X, y F(J)) =
0,Vn > 1, sinceX lies in+A and F(J) lies inl 0. We infer that the functoFy, pre-
serves Cohen—Macaulay modules. HeAdaduces a stable equivalence between(@ly)
and CMP) which is clearly a triangulated functor.

(i) and (iii). Since the moduleg M, N4, M andp N are finitely generated, it follows
directly that the triangle equivalence of (i) restricts to a triangle equivalenceAg N>
CM(I'"). Then the assertion in (ii) follows by Theoren28If A is Gorenstein, then, by
Proposition 310, any A-module lies inCﬁ(?A). By (i) this easily implies that any™-
modules is a direct summand of a module which admits a finite exact resolution by Cohen—
Macaulay modules. Thereforeé is Gorenstein. O

Although the class of virtually Gorenstein algebras is rather large, we don’t know of any
example of an Artin algebra that is not virtually Gorenstein. We close this section with the
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following result which shows that “locally”, i.e., at the finitely generated level, all Artin
algebras are virtually Gorenstein.

Proposition 8.13. For any Artin algebraA we have

( Zo()fin _ (jjo()fin.

Proof. Let T be in (35%)™. By Proposition 35(1) we have that TrDT) lies in
LCM(P4) N mod-A. Also by Proposition B(vi) we have EX} (X,DTrTrD(T)) = 0,
Vn >1,YX € CM(P,). HenceT lies inp5*Nmod-A = (P5*)". ThereforeJ5)fin
(P, Similarly (P54 < 359™. o

9. Thick subcategories, (co)torsion pairsand virtually Gorenstein algebras

In this section we give relative versions of our previous results thus generalizing the situ-
ation of virtually Gorenstein algebras. More precisely we present methods for constructing

thick subcategories, cotorsion pairs/triples, and torsion pairs of finite type. In addition we

give bijections between certain cotorsion pairs in the module category and torsion pairs in
the stable category which are of interest in connection with the Telescope Conjecture for

stable categories discussed in Section 10.
9.1. Torsion pairs induced by Cohen—Macaulay modules

We have seen thdt;* and B3> are thick resolving and coresolving subcategories
of Mod-A. On the other hand it is easy to see that @) is coresolving, respectively
CoCM(l ») is resolving, iff A is self-injective. The following result shows that GRl)
and CoCMl ) are not always thick.

Lemma 9.1. For an Artin algebraa the following are equivalent.

(i) CM(P,), respectivefCoCM(l ), is thick.
(ii) Cm) = CM(P,), respectivefCoCM(l 4,) = CoCM(l »).
(i) FPD(A) =0, respectivelyFID(A) = 0.

Proof. If CM(P,) is thick, then cIearI)Cﬁ(EA) = CM(P,). By Theorem 3, (ii) implies
that P> = P, and therefore FPQ1) = 0. If FPD(A) = 0, thenCM(P,) = CM(P,)

by Proposition 3. Hence CMP,) is thick since so iscm). CoCohen—Macaulay
modules are treated dually.

Example 9.2. If A is a local Artin algebra, then it is easy to see that FRP= 0 =
FID(A). Hence the subcategories CR)) and CoCMI 4) are thick. Since there exist
Artin algebrasA such that FPDA) = 0 and FID(A) # 0, it may happen that Ci#P,) is
thick but CoCMl ,) is not thick.
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However CMP,) is projectively thick and CoCM ,) is injectively thick in the follow-
ing sense. A full subcategoty of an abelian categolyis calledprojectively, respectively
injectively, thick, if U is resolving, respectively coresolving, and closed under cokernels
of P-monics, respectively kernels Gfepics, whereP, respectivelyZ, are the projectives,
respectively injectives, af. It is easy to see that a full subcategorylobf CM(P,), re-
spectively CoCMI »), is projectively, respectively injectively, thick iff its imag@é respec-
tively I/, in the stable category is a thick subcategory of @M), respectivelyCoCM(l 4).
Also a cotorsion paifX, )) is projective, respectively injective, ift’, respectively), is
projectively, respectively injectively, thick and consists of Cohen—Macaulay, respectively
CoCohen—Macaulay, modules.

Throughout we fix an Artin algebrad. In the sequel we shall need the following result
from [22]. The corresponding result for injective cotorsion pairs is dual.

Theorem 9.3 [22]. The map® : (X, )) — (X, )) gives a bijective correspondence be-
tween projective cotorsion pairéY, )) in Mod-A and torsion pairs(X, ) in Mod-A
such thatX is triangulated.

We are interested in cotorsion pairs induced by projectively thick subcategories con-
sisting of finitely generated Cohen—Macaulay modules. In this connection we have the
following result.

Theorem 9.4. Let F be a projectively thick subcategory ©M(A).

(i) There exists a cotorsion tripleX s, V£, Zx) in Mod-A, where
Xp=lmF, — Yr=Fl=tlctP),  Zr=F =@

(i) Xr CCM(P,), Zr CCoCM( ,), and) £ is thick and definable.

(iii) There exists a torsion paitX x, ) ) of finite type inMod- A where the triangulated
categoryX’ » is compactly generated, and a torsion p&) =, Z r) of cofinite type in
Mod-A where the triangulated categod = is compactly generated.

(iv) The categoriest r, Z & are triangle equivalent. The Auslander—Reiten oper&tdr

induces a triangle equivalendaTr: F => Z}” with quasi-inverse induced birD

and the Nakayama functod™ induces an equivalenagt : 7 = Z}” with quasi-
inverse the functoN—.

Proof. As already mentioned the stable categfiys a thick subcategory of Ci). Let
X7 be the full subcategory of Modt consisting of all moduled such thatA lies in the
localizing subcategory of CiP,) generated byF, which we denote by ~. Since £
consists of compact objects of GRl4), it follows that the inclusion’, : X x < CM(P,)
admits a right adjoinR’.:CM(P,) — Xz which preserves coproducts [50]. Then the
compositiorR z := R’-Rcm :Mod-A — X 1 is a right adjoint of the inclusions : X r —
Mod- A. SinceX £ is a triangulated subcategory of Maotlit follows thatXr is a resolving
subcategory of Mod4 and admit?, as an Ext-injective cogenerator. Therefore, by [22],
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we have a torsion paitX’ r, Yr) in Mod-A, Whereyf (/‘\,’Jr)L and a cotorsion pair
(Xr, YF) in Mod-A, whereYr = (Xz)*. Smce(;\’]:)b F, it follows that the inclu-
sioniz preserves compact objects and therefore by Lemmkaarﬁ:i 72 the torsion pair
(X, V5) is of finite type. SinceX - is triangulated, by [22] it follows thaVz is thick.
Next we show tha))r = FL. SinceF C X it follows that)r = (Xr)- € FL. Let A
beinFL,ie., Ext, (F, A) =0,Vn > 1. By Proposition 3 we have

Hom, (2"(F), A) = Hom, (2" (F),RF(4)) =0, V¥n>1, VFeF.

SinceF is a thick generating subcategory &f-, we infer thatR z(4) = 0 and therefore
A liesin yf, i.e., A liesin Y. HenceF+ = Yr. SinceF consists of finitely generated
modules, it follows from [43] thadr is definable. Since it is also resolving, by [46] it
follows that) £ is contravariantly finite and there exists a pure-injective modukich
that)z = T, in fact T is the kernel of the minimal righy)F-approximationy 4 ;. —
A/ of A/t. SinceFL is resolving, by [32],T generates a cotorsion pait 7, (-7)+)
in Mod-A. SettingZ 7 := (+7), it follows that Zx € CoCM(l ) and therefore we have
a cotorsion triple( Xz, Y, Zr) in Mod-A. Moreover by [22] we hav@r N Zx =1 4,
the stable categorg # is triangulated and triangle equivalentdd,. We now show that
Xz =lim F. By the results of Krause-Solberg [46], it follows that a moddilkes in V.
iff A is a direct summand of a module which admits a finite filtration @& Yo C Y1 C

- CY;_1 €Y, =Y where each quotierif; /Y, _; lies in ProdY 4,.). Using thatY, . is
pure-injective, it follows that

Ext!, (lim F, Prod ¥ 4 .)) = Prod Ext, (lim F, Y4 /¢) => Prod imExt’, (F, Y 4 :) = 0.

Then by induction we have lith C LYy = Xz Finally by the results of Hiigel-Trlifaj [2]
it follows that limF = LPInj(Yx), where PInj)z) denotes the class of pure-injective
modules inY~. Since clearlyXz € LPInj(Vr), we infer thatYr lim 7. We conclude
that Xz = lim 7. Now let F be in F and Z in ZE‘. Then from the Auslander—Reiten
formulas

Exty (F+, DTr(F)) = DHom, (F, F1) and DEx{ (TrD(2), F1) = Hom,(F1, Z)
we infer that DT(F) lies in ZI" and TrD(Z) lies in X" = 7. This implies than* (F)

lies in ZE‘ andN~(Z) lies in F. Then the assertions in (iv) follow directly from these
observations. Now since the restrictiaip| r is an equivalence, the isomorphisms

DEXxt} (A, t+(F)) = DHom, (A, 2"t (F)) = DHom, (A, t+ ZE(F))
= Exty (Zp(F), A)

show directly that)yr = L7+ (F). The remaining assertions follow from the results
of [22]. O
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As already stated in LemmaZ/l, Krause and Solberg proved in [45] that contravari-
antly finite resolving, respectively covariantly finite coresolving, subcategories ofmod-
are covariantly, respectively contravariantly, finite. Notice that there exist covariantly fi-
nite subcategoriey € mod-A which are not contravariantly finite [34]. In [34] sucha
consists of modules of finite projective dimension. The following result, which gives a con-
verse to the result of [45], shows that the above “pathology” is impossible for subcategories
of Cohen—Macaulay modules.

Corollary 9.5. Let F be a projectively thick subcategory 8M(A) andH an injectively
thick subcategory c€oCM(D(A)). Then we have the following.

(i) If F is covariantly finite, therf is contravariantly finite.
(i) If H is contravariantly finite, thefi{ is covariantly finite.

In particular CM(A), respectivelfCoCM(D(A)), is contravariantly finite iff it is covari-
antly finite. If A is self-injective, then a thick subcategoryrabd A is contravariantly
finite iff it is covariantly finite.

Proof. Let (Xr, V£, Z) be the cotorsion triple in Modt constructed in Theorem4.
Then X'z = lim 7 and the adjoint paifNT,N™) induces an equivalence betwe&n=

XM and 2. This implies thatZ™ is covariantly finite; indeed iff € mod-A and

NT(T) - XN s a left F-approximation, then it is easy to see that the composition
T — N-NHT) > N~ (XN D) isa left ZfIM-approximation off". SinceZM" is coresolv-
ing, Lemma 711 implies thatZ}” is contravariantly finite. Using again the adjoint pair
(N, N™) we infer thatF is contravariantly finite. Part (i) follows by duality and the final
assertion follows from the fact that QM) = mod-A if A is self-injective. O

We continue with other consequences of Theoredn 9

Corollary 9.6. The map¢: F — (FLH)fin gives a bijection between contravariantly
(covariantly) finite projectively thick subcategories of CM(A) and covariantly(con-
travariantly) finite injectively thick subcategorie’ of CoCM(D(A)). The inverse is
given by :H — (L-H)™. Any suchF, respectivelyH, induces a cotorsion triple
(lim F, lim G, lim ) in Mod- A, whereG = (F4)f" = (11)fin.

Proof. Let (Xr, Y, ZFr) be the cotorsion triple in Modt induced byF as in Theo-
rem Q4. SinceF is contravariantly finite, by [22], there exists a cotorsion trigte G, H)
in mod-A, which, by [45], induces a cotorsion triplém 7, lim G, lim ) in Mod-A. Since
Xr =lim F, it follows that

Vr=Ft=lmgG and Zr=IlmH=F""
Since limH is closed under products, Lemmadl@ implies that(F11)" =  is covari-

antly finite and plainlyH is injectively thick and consists of CoCohen—Macaulay modules.
Clearly the mapp is a bijection with inverse/. 0O
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Let C be a pretriangulated, respectively abelian, category which admits all small
(co)products. We say that a torsion, respectively cotorsion, @aj)) in C is perfect
if (X,)) is both of finite and cofinite type. Combining Lemmd.@, Theorems 3, 94
and Corollary 9%, we have the following consequence.

Corollary 9.7. If F € CM(A) is projectively thick, then the torsiofcotorsion pair
(Xr, Y ) (Xr,YF)) in Mod-A (Mod-A) is perfect iffF is contravariantly or covari-
antly finite inmod-A.

Corollary 9.8. The map® : F (X, Y ) gives a bijection between the class of projec-
tively thick subcategorie® of CM(A) and the class of torsion pailst, ))) of finite type in
Mod- A such that the torsion clas¥ is triangulated and compactly generated. Under this
correspondencef is contravariantly(covariantly) finite iff the torsion pair(X », Y ») is
perfect.

Proof. Clearly the map® is injective. Let(X,)) be a torsion pair of finite type in
Mod-A where X' is a compactly generated triangulated category. Theg CM(P»)
by Theorems 72 and 93. Also by Lemma 22 the finite type property implies that
XP < (Mod-4)P = mod A and thereforeX® € CM(A). Finally compact generation im-
plies thatX = X » where F = {F e mod-A | F € XP} is clearly a projectively thick
subcategory of CNIA), since the subcategorﬁyb is thick. Hence(X, )) = (X £, YV £)
and therefore the mag is bijective. O

Summarizing the above results, we have the following consequence.

Corollary 9.9. There exist bijective correspondences between

(i) Contravariantly(covariantly) finite projectively thick subcategori€/s of CM(A).
(i) Covariantly (contravariantly finite injectively thick subcategoriesH of
CoCM(D(A)).
(iii) Perfect projective cotorsion pairst, ) in Mod- A such thatt = linp X",
(iv) Perfect injective cotorsion pairé/V, 2) in Mod-A such thatZ = lim 2",
(v) Perfect torsion pairg X, )) in Mod-A such thatt is triangulated and compactly

generated.

(vi) Perfect torsion pairg)V, Z) in Mod-A such thatZ is triangulated and compactly
generated.

(vii) Cotorsionf_triples(A, B,C) in Mod-A such thatA is closed under products and
A=lim A™.

(viii) Cotorsion triples(A4, B, C) in Mod-A such thatC = lim "

We close this section with the following complement to Corolla8®hich generalizes
a result of Krause—Solberg [45] who proved the following result for self-injective algebras
by using functor categories.



198 A. Beligiannis / Journal of Algebra 288 (2005) 137-211

Theorem 9.10. Let A be an Artin algebra and letY, )) be a projective cotorsion pair in
Mod- A. Then the following statements are equivalent.

(i) The torsion pairn( X, )) in Mod-A is of finite type andt’ is compactly generated.
(i) & =lim X",

If (i) holds, theny is definable and the ma@t’, V) — (X, )) gives a bijection between
projective cotorsion pairgx’,)) in Mod-A such thatt’ = @Xfi”, and torsion pairs
of finite type(A, B) in Mod-A such that the torsion clasg is a compactly generated
triangulated category.

Proof. (i) = (ii). The assumptions imply that is compactly generated by® € mod-A.
Then by Corollary 8 and Theorem @ we infer thatt' = lim A",

(i) = (i). We first show thatt’ is compactly generated. Leét be a module in¥’ such
that Hom, (X, A) =0 for any X € X and leta: T — A be a map wherd lies in
mod-A. SinceA € X = lim &A™, « factors through a modul& in X", Since any map
X — A factors through a projective module axdis finitely generated, it follows that
any mapX — A factors through a finitely generated projective module. This implies, by
Lemma 710, thatA lies in limP, = P,. HenceA = 0 and thereforet™ generatest.
Since X is thick and consists of compact objects, we infer thidf = XP is a compact
generating subcategory &f. Now let{Y;};c; be a filtered system of modules }a Then
for any moduleX in Xfi" we have EX} (X, lim Y;) = lim Ext}, (X, ¥;) = 0. SinceX® is
triangulated, it follows that any modulé in X" is an arbitrary syzygy of a modulé’ in
XP. This implies that Hom (X, lim ¥;) = Hom, (22(X"), lim ¥;) = Ext} (X', lim ¥;) = 0.
But Hom, (X, lim Y¥;) = Hom, (X, Ry (lim ¥;)) and therefore Homp(X, Ry (lim ¥;)) =0
for any objectX in XP. Sincex® generatest, we infer thatR v (lim ¥;) = 0 in Mod-A
and therefore lin; € Y, i.e., limY; lies in)). We conclude tha}’ is closed under filtered
colimits, in particular) is closed under coproducts and therefore the torsion(gaip/)
is of finite type. O

10. The Telescope Conjecturefor stable categories

The results of the previous section suggest to study further the question of when torsion
pairs of finite type are generated by compact objects. This question is exactly the con-
tent of the Telescope Conjecture in case we work with a compactly generated triangulated
category, see [42]. The latter conjecture is a generalization of the classical conjecture of
Bousfield and Ravenel for the stable homotopy category of CW-complexes, see [26,52].
The Telescope Conjecture can be formulated more generally for pretriangulated categories
and more concretely for stable categories.

Let C be an additive category which admits all small coproducts ant! le¢ a func-
torially finite subcategory of with the property that any/-epic admits a kernel i@ and
anyl-monic admits a cokernel ii. Then by [19] the stable categofyl/ is pretriangu-
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lated. For instance we can choasé¢o be Mod-AA where A is an Artin algebra and/ a
functorially finite subcategory.

Telescope Conjecturefor stable categories. Assume that the stable categaiyi/ is com-
pactly generated as a right triangulated category Af, )) is a torsion pair of finite type
in C/U, thenX is generated by compact objects fraii/.

Remark 10.1. Note that this conjecture is equivalent to the telescope conjecture for derived
categories of rings and stable categories of Frobenius exact categories, for instande Mod
whereA is a self-injective Artin algebra. In the first case cho64e be the homotopically
projective complexes oft-modules in the sense of Keller [39] atdlis the subcategory

of contractible complexes. Then the stable categhfy is equivalent to the unbounded
derived categorp(Mod-A).

We say that a torsion paitt’ /U, Y /U) of finite type inC/U satisfies the Telescope
Conjecture if the stable category’ /U is generated by compact objects fraifi{. Using
this terminology, Theorem.@0 can be formulated as follows.

Theorem 10.2. Let A be an Artin algebra and letY, )) be a projective cotorsion pair in
Mod-A. Assume thay is closed under coproducts. Then the following are equivalent.

(i) The torsion pair(X, ) in Mod-A satisfies the Telescope Conjecture.
(i) X =limxfin.

If (i) holds, ther)y is definable and the ma@t’, V) — (X, ))) gives a bijection between
projective cotorsion pairgx’, V) in Mod-A such that¥’ = lim Xfin and torsion pairs of
finite type(A4, B) in Mod- A satisfying the Telescope Conjecture and such that the torsion
classA is triangulated.

10.1. Self-injective algebras

We recall that a full thick subcategofyof a triangulated categof is calledlocalizing
if the inclusion£ < 7 admits a right adjoint, i.e £ is the torsion class of a torsion pair
(L, £1) in T. And a localizing subcategorg is calledsmashing if the right adjoint of
the inclusionl < 7 preserves coproducts, i.e., the torsion g&ir£+) is of finite type.
As a consequence of Corollary8and Theorem 1@ we have the following result of
Krause—Solberg [45].

Corollary 10.3 [45]. If A is a self-injective Artin algebra, then the following are equiva-
lent.

() The stable categorMod- A satisfies the Telescope Conjecture.
(i) If X is a smashing subcategory Mod- A, thenX’ = lim X",
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(iii) If X is athick subcategory dflod- A, thenX’ = lim X" provided that any module ad-
mits a special rightv-approximation and the class of special rigkitapproximations
is closed under all small coproducts.

If A is a self-injective algebra angt, ), Z) is a cotorsion triple in ModA, then the
cotorsion pairg(X', )) and (), Z) are projective—injective. Hence the stable categories
X, Y and Z are triangulated. Moreover the torsion p&ir, )) is of finite type and the
torsion pair(), 2) is of cofinite type. We are interested in finding necessary and sufficient
conditions ensuring that the torsion p&)t, Z) is of finite type and the torsion pai#’, )))
is of cofinite type. To proceed further we need the following.

Lemma 10.4 [20, Corollary 5.15] LetC be a compactly generated triangulated category
and let(X, )) be a torsion pair inC. Then we have the following.

(i) (X,))is of cofinite type iff there exists a torsion trighe/, X, )) in C iff the inclusion

X — C admits a left adjoint. If this is the case, th&his compactly generated.

(iiy (x,) is of finite type iff there exists a torsion trip{e’, )V, Z) in C iff the inclusion
Y — C admits a right adjoint. If this holds, then the torsion-free clasis compactly
generated.

(i) If (X, ) is of finite type, theX’, V) satisfies the Telescope Conjecture iff the torsion
classX is compactly generated.

(iv) C satisfies the Telescope Conjecture, if any torsion pair of finite type is of cofinite type.

Theorem 10.5. Let A be a self-injective algebra and &X', ), Z) be a cotorsion triple in
Mod- A. Then the following are equivalent.

(i) The torsion pair( X, ))) is of cofinite type, i.e.X is closed under products iod-A.
(i) The torsion pain)/, 2) is of finite type, i.e.Z is closed under coproducts Mod-A.
(i) X" or YN or 21N is contravariantly, or equivalently covariantly, finite inod-A.
(iv) There exists a cotorsion triple¥in, Yfin zfiny in mod-A.

(v) There exists a torsion triplex®, J°, 2°) in mod-A.

If one of the above conditions holds, thah= lim X", Y = lim V" and 2 = lim 2.
Moreover the stable categories, ) and Z are compactly generated and the maps

Fres (F,FLFHY) and (F,G,H) = (X :=limF, Y:=limg, 2Z:=limH)

give bijections between contravariantly finite resolving subcategdfie$ mod-A, cotor-
sion triples(F, G, H) in mod-A, and cotorsion triplegX’, ), Z) in Mod- A such that the
torsion pair (), 2) is of finite type or equivalently the torsion pait’, )) is of cofinite

type.

Proof. (i) = (ii). Assume that the torsion paifX,)) is of cofinite type. Then by
Lemma 104 it follows thatX is compactly generated. By Theorend @nd Corollary B
we haveX' = lim 7 whereF = XP andZ = F+L. SinceX is closed under products in
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Mod- A, the same holds fak’ in Mod-A. By Lemma 710 it follows thatF is covariantly
finite and then by Corollary.$ it follows thatF is contravariantly finite. Hence there ex-
ists a cotorsion tripléF, G, H) in mod-A and, as in the proof of Corollary.®, we infer
that Z = lim H. HenceZ is closed under coproducts.

(i) = (i). If Z is closed under coproducts, then by [22, Proposition 1V.1.11] it fol-
lows that X' is compactly generated and we have a torsion paif, J*) in mod A.
This implies thatt"" is contravariantly finite, hence covariantly finite by Corollar$.9
Then, by Lemma 20, Ii_r)nXﬂ” is closed under products and the assertion follows since
X =lim X" by Corollaries % and 97.

The equivalences (iii}> (iv) and (i) < (i) follow from [22, Proposition 1V.4.11 and
Corollaries VI.4.10 and V1.4.11]. The remaining assertions follow from Corolla8y 90

We say that a pretriangulated categBnyith all small products and coproducts satisfies
the strong Telescope Conjecture if any torsion pair of finite type is of cofinite type.
By part (iv) of Lemma 1034 it follows that the strong Telescope Conjecture implies the
Telescope Conjecture.

Theorem 10.6. For a self-injective algebrat, the following are equivalent.

(i) The stable categorilod- A satisfies the strong Telescope Conjecture.

(i) The stable categoylod- A satisfies the Telescope Conjecture and the fiap lim 7
gives a bijection between the sHtick of thick subcategories ahod A and the set
ThDef of thick definable subcategoriesibd-A.

Proof. (i) = (ii). As already mentioned Modi satisfies the Telescope Conjecture. [Fet
be a thick subcategory of mad- Then by Theorem €, we have a torsion pair of finite
type (&, )) in Mod-A, where X = lim 7. By hypothesis " is closed under products
and thereforeF is covariantly finite in modA by Lemma 710. Then lim7 is definable
by [43], and thick since the stable category lims thick. Hence we have a mahick —

ThDef, F > lim F which is clearly injective. Now leD be a thick definable subcategory
of Mod-A. Then by [46, Theorem 2.6 and Corollary 4.5] it follows tiais contravariantly
finite. SinceD is closed under filtered colimits, this implies that there exists a cotorsion
pair (D, C) in Mod-A. Also thickness ofD implies thatD is triangulated and therefore
the cotorsion paiKD, C) is projective—injective by Theorem® We infer that(D, C) is

a torsion pair in_MoeA which is clearly of cofinite type. Then, by Lemma.40D is
compactly generated and there exists a torsion t(iglé, C) in Mod- A. Since the torsion
pair (B, D) is of finite type, by hypothesig; is closed under products. Then Theorenb10
implies thatC is closed under coproducts, i.e., the torsion gairC) is of finite type. By
Theorem 1@ we infer thatD = lim D" where the subcatego®™ is thick. Hence the
mapThick — ThDef is surjective.

(i) = (i). If (X,)) is a torsion pair of finite type in Modi, then the conditions in
(i) imply that X = lim x™. Since X is thick, we infer thatY is definable. It follows
that X', henceX, is closed under products and therefore the torsion(@aig)) is of cofi-
nite type. O
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Let G a finite p-group, wherep is a prime, and lekt be a field. Also letVs be the
maximal ideal spectrum of the cohomology ribj (G, k) of G. We letVar be the collec-
tion of all closed homogeneous subvarietie¥’gfwhich are closed under subvarieties and
finite unions. ForV € Var, let C(V) be the full subcategory of mekiG consisting of all
modulesM whose varietyVs (M), in the sense of [23], is contained n. Then by [23]
and Theorem 18 we have the following consequence.

Corollary 10.7. If Mod-kG satisfies the strong Telescope Conjecture, then the ¥nap
lim C(V) gives a bijection between subsetsvaf and the classthDef of thick definable
subcategories dflod-kG.

10.2. Virtually Gorenstein algebras

In this section we study the Telescope Conjecture for the stable category of a virtually
Gorenstein algebra. We begin with the following result which, in particular, shows that the
class of projective cotorsion pairs of finite type in Madis a set which is a complete lattice
under the order relatioft, V1) < (Xo, )»o) iff X1 C A». We say that a full triangulated
subcategons of a compactly generated triangulated catedgbrig definableif S is closed
under products and coproductsin

Theorem 10.8. Let A be a virtually Gorenstein algebra.

(i) The mapo: (X,))— X induces a bijection between the clagsf projective cotor-
sion pairs of finite type iMod-A and the classScy of smashing subcategories of
CM(P4).

(i) The maply :(X,)) > Yoy = CM(P4) N Y induces a bijection betweahand the
class®cm of definable compactly generated subcategorieSM{P ).

In particular the classe€, ®cm and Sy are sets which are complete lattices.

Proof. (i) If (X,)) lies in &, then(X,)) is a torsion pair of finite type in_ Modi
and X is triangulated, in particulat € CM(P,). It is easy to see that the functor
Ryicm:CM(P,) — X is the coreflection of CNP,4) in X and preserves coproducts.
Hence(X, Y N CM(P,)) is a torsion pair of finite type in CiP,), i.e., X is a smashing
subcategory of CNP,). If (X,)) is a torsion pair of finite type in CP,), then the
coreflectionR y : CM(P,) — X preserves coproducts and it is easy to see that the functor
RyRcm:Mod-A — X is the coreflection of Modd in X. Therefore, by [22], we ob-
tain a torsion pairX, )’) in Mod-A and a projective cotorsion pai®’, )’) in Mod-A.
Since A is virtually GorensteinR yRcm preserves coproducts and therefore the torsion
pair (X, )’) in Mod-A is of finite type, i.e.)’, or equivalently)’, is closed under co-
products. Hence the cotorsion p&it’, )') in Mod-A is of finite type. Clearly the map
@ :.¢— Gcm, (X,))— Xis a bijection.

@iyIf (X, ec, thenyCM is a triangulated subcategory of GRl) since) is thick.
By Lemma 104, ), is compactly generated and definable)/flies in ®cw, then the
inclusion)” — CM(P,) admits a left adjoint [51]. Hence we have a torsion pair of finite
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type(X,)) in CM(P,), i.e.,X is smashing in CNP4). Then by (i) there exists a projec-
tive cotorsion pair of finite typeX’, V) in Mod-A. Clearly¥ : € — Dcwm, (X, V) = Ve
is a bijection. The last assertion follows from [44]c

The following comparison for the Telescope Conjecture follows from TheoreB)s 9
9.10 and 108.

Corollary 10.9. Let A be a virtually Gorenstein algebra. Then the following are equiva-
lent.

(i) The triangulated categorgM(P ) satisfies the Telescope Conjecture.
(i) Mod-A satisfies the Telescope Conjecture for torsion pairs with triangulated torsion
class.
(i) For any projective cotorsion paifXx’, ) of finite type inMod-A, we haveX =
lim N,

If (i) holds, then the mag — lim F, respectivelyF — FLNCM(P,), gives a bijection
between the complete lattice of projectively thick subcategori€MifA) and the com-
plete latticeGcwm, respectively®cm, of smashing, respectively definable and compactly
generated, subcategoriesGM(P,).

The following two results show that validity of the Telescope Conjecture for the stable
category of a virtually Gorenstein algebra is invariant under of derived equivalences and
stable equivalences of Morita type.

Theorem 10.10. Let A, I be derived equivalent finite dimensionaklgebras over a

field k. Assume thatA is virtually Gorenstein. Then the stable categd®pd-A satis-

fies the Telescope Conjecture for torsion pairs of finite type such that the torsion class is
triangulated iff so doeMod-I".

Proof. The algebral” is virtually Gorenstein by TheoremBL. Assuming that the con-
dition holds forI", let (X, )) be a torsion pair of finite type in Med such thatt’

is triangulated. Then¥ € CM(P,) and we obtain a torsion pait¥, )’) in CM(P,),
where ) = Y N CM(P,), which clearly is of finite type. By Theorem.HL, it fol-
lows that a given derived equivalence betweerand I" induces a triangle equivalence
F:CM(P4) = CM(Pr). Then(W, 2) is a torsion pair of finite type in CMP-), where
W= F(X) andZ := F())'). As in the proof of Theorem 18, this torsion pair extends
to a torsion paiV, Z’) of finite type in ModI", where)V is triangulated. By hypothesis
W is compactly generated and therefore s@isHence the torsion pai¢Y, ))) in Mod-A
satisfies the Telescope Conjecture

Using Theorem &3, a similar argument as in the proof of TheoremlDOmplies the
following.
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Theorem 10.11. Let A, I be Artin algebras which are stably equivalent of Morita type.
Assume thatt is virtually Gorenstein. Then the stable categMgd- A satisfies the Tele-
scope Conjecture for torsion pairs of finite type such that the torsion class is triangulated
iff so doesMod-TI".

Since a representation-finite algebra is virtually Gorenstein and obviously satisfies the
Telescope Conjecture for torsion pairs with triangulated torsion class, we have the follow-
ing consequence.

Corollary 10.12. Let A be a finite dimensiondl-algebra of finite representation type over
afieldk. If I" is ak-algebra derived equivalent ta, then the stable categoiod-I" sat-
isfies the Telescope Conjecture for torsion pairs such that the torsion class is triangulated.

If A is self-injective and(X’,))) is a cotorsion pair in Modd4, then by a result of
Krause—Solberg [45, Theorem 7.6] the subcategotiesnd ) are closed under filtered
colimits. The following observation generalizes the result of Krause—Solberg from self-
injective to virtually Gorenstein algebras.

Theorem 10.13. Let A be a virtually Gorenstein algebra and €&, ))) be a projective
cotorsion pair inMod- A. Then for the following statements

(i) the torsion pair(X, )) in Mod-A is of finite type
(i) X andyY NCM(P,) are closed under filtered colimits

we have(i) = (ii). If X is compactly generated then they are equivalent.

Proof. By Theorem & we have CMP4)P = CM(A). This enables us to consider the
functors

Hem :CM(P4) — Mod-CM(A),  Hem(X) = Hom(—, X)|cma)s
Tem:CM(P4) — Mod-CM(A%P)P, - Tem(X) = X ® 4 —lemcacs)

as in [45, Section 7]. It is easy to see that the arguments of Krause—Solberg work in our
setting, if we replace Modt with CM(P ). We leave to the reader to fill in the detailso

11. Algebraswith finiteright self-injective dimension

In this section we study Artin algebras with finite right self-injective dimension. More
precisely we analyze the consequences of the assumptitp id oo on the structure of
Cohen—Macaulay modules in connection with the virtual Gorensteinness property. In par-
ticular we are interested in finding conditions ensuring thas Gorenstein provided that
id A4 < co. Our motivation here emerges from the well-kno@orenstein Symmetry
Conjecture, (GSC) for short, see [13,22]:
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(GSC) Ifid A4 < oo, thenidgA < o0, i.e., A is Gorenstein.

Recall that, by Lemma .8, the inclusionicy:CM(P4) <— Mod-A admits a left
adjoint Lcy :Mod-A — CM(P,) which preserves compact objects. We denote by
LgM:m}A — CM(P4)? the induced right exact functor. If id, < oo, there is
an alternative description dfcy which will be useful later. We use the adjoint pair
(Sp, Z2) :Mod-A = Hac(P4) from 4.2. Note that if idA 4 < oo, then, by Corollary 8,
the costabilization functoZ : Hac(P4) — Mod-4 is fully faithful and admits a factor-
ization Z = icmZcp, WhereZey : Hac(Pa) — CM(P,) is a triangle equivalence with
guasi-inverse the functogpicm. Recall from Section 4 that i :Mod-A — 7 is a
right exact functor, wherd is a triangulated category, thefi*: 7, (Mod-A) — T de-
notes the unique exact extension Bfthrough the right projective stabilization functor
P,:Mod-A — 7,(Mod-A).

Lemma 11.1. Assume thaid A 4 < oo. Then there exist natural isomorphisms of functors
Lem =ZgySp:Mod-A — CM(P4)  and Lém zgc,v,%* :7,(Mod-A) — CM(P,).

Proof. Let A be in Mod-A and X in CM(P,). Setting 0® := Spicm(X) € Hac(Pa),
hencezq (Q®) = X, and using thakc,, is an equivalence, we have the following nat-
ural isomorphisms:

Hom, (A, icm(X)) = Hom, (A, icmZewm(Q*)) = Hom, (A, 2(Q*)) = Hom(sp(4), 0°)
= Hom, (ZcmSP(A), Zewm(Q°)) = Hom, (ZowSp(A), X)

which show that the functoZc),Sp is the left adjoint oficm. ThereforeLcm =

ZcpSp. Since the functoZey, - Hac(Pa) — CM(P,) is exact, using tha ™" |cmp,) =

Eg|&(p/\), Vn > 0, we have the following isomorphisms, for any objeet, n)
7,(Mod-A):

Lem(A, n) = ZELem(A) = T3 (Zom(SP(A))) = Zem(Sp(A)In]) = Zew(Sp* (A, n)
=ZcmSpH (A, n).
Consequently we have a natural isomorphism of fundt@rg = ZcySp*. O
As a direct consequence we have the following useful result.
Lemma 11.2. Assume thaid A 4 < oo. Then the natural isomorphism of functdr§,, =

ZcmSp*:7-(Mod-A) — CM(P,4) induces a natural isomorphism of functqﬂng)* ~
22,,5p%: 7;(mod A) — CM(P4)P. Moreover(L2,)* = L&y |7 (mog-4) and there exists a
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commutative diagram of triangulated categories where all the involved functors are trian-
gle equivalences.

(L2y*
7,(mod-A) —— CM(P,)P

Nt | ~ N+ix
(LR ow*

T.(MoGA) ——% CoCM(l 4)P.

Proof. Since the reflection functoccy : Mod-A — CM(P,4) restricts to a right exact
functorLcp : mod A — w(PA)b it follows directly that

(L20)" = LEwIT mod-4) : Zr (MOd-A) — CM(P4)P.

Hence by Lemma 11 we have(L W = (ZemSP)I7 (mot-4)- Since, by Proposi-
tion 4.5, %b = Sp*|7;mod-4) IS @ triangle equivalence and since, by Corollar$,4
;P:M =Zcum |HEC(PA) is a triangle equivalence, we infer that

(L2y)* = 22\,Sp°: 77 (mod-4) > CM(P )P

is a triangle equivalence. Finally since the right exact reflection fungtgem : Mod-A —
CoCM(l 4) preserves compact objects, it induces a right exact fungigen : mod-A —
CoCM(l 4)P. Then the commutativity of the diagram and the claim that the vertical arrows
are triangle equivalences follow from PropositiaﬁBSince(LgM)* is a triangle equiva-
lence, s igL2 o). O

We know that in general it hold& 5>  (35*)" and that the inclusiohs> C 35
is an equality iff A is Gorenstein. The next result gives several characterizations of the
Artin algebras with finite right self-injective dimension in terms of properties of modules
of (virtually) finite injective dimension. As a consequence the includigf® < (jjo‘)ﬁ”
is an equality if and only if idd 4 < oo.

Theorem 11.3. The following are equivalent.
(i) id Ay < oo.

(i) (FOM =175,

(i) (Pr0)" =P5-

(iv) 33 =limZIz>.

V) “m(m/‘op)fm lim P65 .

In particular ifid A4 < oo, then:1 3> =1lim Z3> N CoCM(IA)
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Proof. Clearly (i) = (i) since A lies in (35%)™. If id A4 < oo, then consider the se-
quence

0— 7;(3;%*) — 7;(Mod-A) -, Leoom, SoCM(1 ) —> 0

which is localization exact by Propositionés By Lemma 112 we have a triangle equiv-
aIence(Lb0CM)*'7;(mod-A) =, CoCM(l 4)°. Since the fU”CtOLéocMh(rﬁd-A) is iso-
morphic to(LCOCM)* it follows that the kernel Of‘*CoCMl'T,(rWd-A)' which is equivalent

to 7, (351, is trivial. It follows thatZ; ((35>)f") = 0 and therefore, by Lemma4
(359I = 7<% Hence (i)« (ii) and clearly (iii) < (v). Also the implication (iv)= (i)
follows sinceA € (jj‘“)fi” and the equivalence (i (iii) follows by using the duality
D and Lemma 8&. Assume now that (i) holds or equivalently [ii%) "] = lim Z 5.
By a result of Eklof-Trlifaj [32], the subcategory ;> cogenerates a cotorsion pair
T )11, (Z5%)1) in Mod-A. By Proposition 44 we have @A)t = CoCM(l 4) and
by induction it is not difficult to see ths(l‘Z<°°)L D(A)L. Consequently CoCKl ) =
(Z;>)* and therefored s> = L[(Z;>)1]. Since 4 lies in Z;*°, by a result of Higel-
Trlifaj [2, Theorem 2. 3] we have lim[(Z;>°)*] C lim I<°° HenceJ ;™ C lim Z;*.
Since, by Corollary 8, 35~ is closed under f||tered colimits and contatﬁg‘”, we
conclude that linff > = 33, hence (iv) holds. The last assertion follows from Theo-
rem35. O

Now we can prove the following characterization of Gorensteinness.
Theorem 11.4. For an Artin algebraA the following conditions are equivalent.

(i) Ais Gorenstein.

(i) A is virtually Gorenstein andd A 4 < oo.

(iii) A is virtually Gorenstein andd 4 A < oo. _

(iv) Ais virtually Gorenstein and ;> = IiLn>(Cij1°<)f'”'.

(v) Aisvirtually Gorenstein andP > = I@)(‘Bj‘“)f'“.

(vi) 33 ClimZ3;°° andZ ;> is covariantly finite, respectiveljd(A) < oo.
(vii)) PZ* =limP;*.

viii) id A4 <ocoan Clim .
(viii) id A dJz* Clim Py

(ix) id A4 < 0o andlim 75 € COCM( ).

(x) id A4 < oo and the torsion paiJ;>, CoCM(l »)) is of cofinite type.
(XI) (jzd)fln I<oo and (;ﬁ-«x)fln fP<<>o

Proof. Clearly (i) implies all the remaining assertions and (ii) is equivalent to (iii) since,
by Theorem &, virtual Gorensteinness is left-right symmetric. If (ii) holds, then by The-
orem 113 we have(35*)M = 75 and then by Theorem.8 we have a cotorsion pair
(Z37>°,CoCM(D(A)) in mod-A. This implies thalCoCM(D(A)) = mod-A and therefore

A is Gorenstein by [22]. Sinc4 lies in (jj‘x)f'”, it follows that (iv) implies (ii). Similarly
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since O(A) lies in (P5*)™, equivalently A lies in 3555, it follows directly that (v)=
(ii). Assume now that 3> = lim Z 5> and thereforg35>) " = 75 If 75> is covari-
antly finite, thenA is virtually Gorenstein by Theorema SinceA lies in 3> we have
clearly idA 4 < oo and therefore condition (ii) holds. If fidl) < co, then the inclusion
335 S lim Z7°° implies that any module iiy™ has finite injective dimension and there-
fore 35 =13°°. HenceA is Gorenstein by Proposition). Now (vii) implies thatp ;<

is closed under coproducts and D € P;*. ThereforeA is virtually Gorenstein and
id 4 A < 00, i.e., condition (iii) holds. The implications (viii), (ix} (i) follow by Propo-
sition 813 and Theorem 13. Also the implication (xi)= (i) is a direct consequence of
Theorem 113. Finally if (x) holds, therJ{* is closed under products. Hence by Theo-
rem 113(iv) and Lemma 710 we have that35>)™ = 75> is covariantly finite. Hence
A is virtually Gorenstein and the assertion followsa

The following consequence gives necessary and sufficient conditions for an Artin alge-
bra A to be Gorenstein provided that has finite right self-injective dimension.

Corollary 11.5. If id A 4 < 00, then the following are equivalent.

(i) Ais Gorenstein.

(i) (jj“)f'” is covariantly finite, equivalently contravariantly finite,nmod A.

(i) (mj@)f'” is contravariantly finite, equivalently covariantly finite,nmod-A.

(iv) The minimal rightCM(P 4)-approximationX 4 ;. of A/t is finitely generated.
(v) The minimal Iefmjf’(—::1pproximationYA/t of A/t is finitely generated.

(vi) The minimal righty ;> -approximationW , ;. of A/t is finitely generated.

(vii) The minimal lefCoCM(I 4)—approximationZ4/* of A/t is finitely generated.

We have the following consequences of Theorem8,1811 and 812 which show that
the Gorenstein Symmetry Conjecture holds for algebras lying in the derived equivalence
class or the stable equivalence class of Morita type of a virtually Gorenstein algebra.

Theorem 11.6. Let A be an Artin algebra such that yA < oo orid A4 < oo. If A'is
derived equivalent or stably equivalent of Morita type to a virtually Gorenstein algebra,
then A is Gorenstein.

Corollary 11.7. Let A be an Artin algebra such thatl yA < cc oridA, < oo. If A'is
derived equivalent to an algebra of finite representation or Cohen—Macaulay typedthen
is Gorenstein.

Theorem 116 shows that the Gorenstein Symmetry Conjecture is equivalent to the fol-
lowing.

Conjecture 11.8. An Artin algebra with finite right (or left) self-injective dimension is
derived equivalent to a virtually Gorenstein algebra.
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We now give two additional conditions ensuring that the Gorenstein Symmetry Conjec-
ture holds. First recall that, fdr > 0, A is calledk-Gorensteinif in the minimal injective
resolution 0— A — 19 — 1 — ... of A we have pd’ <t for 1<t < k. Auslander—
Reiten proved that being-Gorenstein is left—right symmetric and in addition thatis
Gorenstein if idA 4 < co and A is k-Gorenstein for alk > 0, see [12]. In the next result
we observe that it is sufficient to také to be k-Gorenstein fork = id A, and we also
show that if idA 4 < oo, thenA is Gorenstein iff the compact objects of the costabilization
Hac(P4) of Mod- A coincide with the costabilizatio®ac(P4) of mod-A.

Corollary 11.9. Let A be an Artin algebra withd A 4 < co. ThenA is Gorenstein if one
of the following conditions holdi) HRC(PA) =Hac(Pa), (B) Aisid A ,-Gorenstein.

Proof. () By Corollary 48 it follows that CMP4)? = CM(A), henceA is virtually
Gorenstein. Them is Gorenstein by Theorem ML (8) By [12] there exists a finitely
generated cotilting modul® whose indecomposable summands are the indecomposable
projective modulesP with id P < d and 291 where! is indecomposable injective with
pd/ > d. Since idA 4 < oo, A is a direct summand df and sincel is cotilting it follows

that pd 0 A) 4, < 0o. HenceA is Gorenstein. O

We have seen in TheoremgGathat the cotorsion paid ;*, CoCM(l »)) is generated by
a CoCohen—Macaulay module and the cotorsion @i (P,), B;*) is cogenerated by a
Cohen—Macaulay module. The following consequence of our previous results characterizes
Gorensteinness in terms of (co)generation properties of the (co)Cohen—Macaulay cotorsion
pairs and (co)tilting modules.

Corollary 11.10. Then following are equivalent.

(i) A is Gorenstein.
(if) id A4 < oo and the minimal leff3 ;> -approximationy 4/* of A /x hasid Y 4/* < co.
(iii) id pA < oo and the minimal right 35> -approximation W,,. of A/t has
pdWy e < oo.
(iv) (CM(P,),PB1%) is generated by a modulewith finite injective dimension.
(V) (3%, CoCM(l »)) is cogenerated by a modufewith finite projective dimension.

In caseq(iv), respectivelyv), we may choose the modulerespectivelyT', to be a(finitely
generatedl cotilting, respectively tilting, module and thé&rod S) = P4, = Prod A) and
Add(T) =1, = Add(D(A)).

Note. The results of this paper are extended to more general situations in [21]. There,
instead of working with the (Co)Cohen—Macaulay (co)torsion pairs, we work with
(co)torsion pairs induced by relative (Co)Cohen—Macaulay modulegQlshd CoCMS)

in the sense of [22], wher& and T are suitable (co)tilting modules in the sense of Waka-
matsu [58].
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