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Abstract
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rich homological structure and satisfies several representation/torsion theoretic finiteness con
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stable equivalences of Morita type. In addition virtual Gorensteinness provides a useful tool
study of the Gorenstein Symmetry Conjecture and modified versions of the Telescope Conjec
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1. Introduction

Since the ubiquity fundamental paper of Bass [15] commutative Noetherian Gore
rings and Cohen–Macaulay modules are well established as central notions in com
tive algebra bearing important connections with algebraic geometry. During the last d
there is an increasing growth of interest in non-commutative algebraic geometry, a
this connection, several definitions of Gorensteinness were proposed by various au
various settings. In particular in the representation theory of Artin algebras, Ausla
Reiten [9,11] introduced Gorenstein algebras as the Artin algebras with finite self-inj
dimension from both sides, and they showed that much of the commutative theory
over to Artin algebras. Also Happel [33] studied Gorenstein algebras in connection
Auslander–Reiten theory in derived categories. The class of Gorenstein algebras g
importance from the fact that on the one hand it includes algebras with finite global d
sion and self-injective algebras as special cases and on the other hand the finitely ge
Cohen–Macaulay modules over them have rich homological structure and behave ve
with respect to many natural operations and constructions at the level of the module
derived category. In addition Gorenstein algebras have intimate connections with
theory and provide positive examples for many of the homological conjectures in th
resentation theory of Artin algebras.

Our aim in this paper is to study, in general infinitely generated, Cohen–Macau
CoCohen–Macaulay modules and modules of virtually finite projective or injectiv
mension over an arbitrary Artin algebraΛ. Using the terminology and notation of [22
see also [4,9], we denote by CM(PΛ), respectively CoCM(IΛ), the maximal subcategor
of the category Mod-Λ of all right Λ-modules which admits the full subcategoryPΛ,
respectivelyIΛ, of projective, respectively injective, modules as an Ext-injective coge
ator, respectively Ext-projective generator. We call the modules in CM(PΛ), respectively
CoCM(IΛ), Cohen–Macaulay, respectivelyCoCohen–Macaulay, modules. Then the full
subcategoryP≺∝

Λ , respectivelyI≺∝
Λ , of modules of virtually finite projective, respectively
injective, dimensionis defined to be the right, respectively left, Ext-orthogonal subcate-
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gory of CM(PΛ), respectively CoCM(IΛ). Note that Cohen–Macaulay modules prov
a generalization of finitely generated modules ofG-dimension zero [5] and the module
of virtually finite projective/injective dimension provide a natural generalization of m
ules of finite projective/injective dimension. Our main tools for their study are the th
of approximations of modules and the effective use of cotorsion pairs in the module
gory and torsion pairs in the stable module category combined with recent method
compactly generated triangulated categories.

We concentrate our investigation to the study of virtually Gorenstein algebras,
duced in [22], which provide a natural enlargement of the class of Gorenstein alg
giving at the same time a homological generalization of algebras of finite represen
type and more generally of algebras of finite Cohen–Macaulay type. Recall from [22
Λ is called virtually Gorenstein if:P≺∝

Λ = I≺∝
Λ . Note thatΛ is Gorenstein iffP<∞

Λ = I<∞
Λ ,

whereP<∞
Λ , respectivelyI<∞

Λ , is the full subcategory of all modules with finite projectiv
respectively injective, dimension. We stress that virtually Gorenstein algebras are d
by imposing representation theoretic finiteness conditions on Cohen–Macaulay m
or on modules of virtually finite projective or injective dimension whereas Goren
algebras are defined by imposing homological finiteness conditions on the ring. I
connection it is a long-standing open problem if one-sided finiteness of the self-inj
dimension of an Artin algebra is sufficient for Gorensteinness. In the literature this
lem is usually referred to as theGorenstein Symmetry Conjecture, (GSC) for short, see [13
Conjecture (13)], [22]. As a consequence of our results we give an affirmative ans
(GSC) for the class of virtually Gorenstein algebras.

Virtually Gorenstein algebras share many properties with genuine Gorenstein alg
For instance we show that they are stable under various operations like derived
alences or stable equivalences of Morita type. In addition virtually Gorenstein alg
enable us to have homological control on the (stable) module category which is sa
tory from many aspects. This controllability is expressed by the existence of well-be
(co)torsion pairs in the (stable) module category which restrict to (co)torsion pairs
nitely generated modules; in other words the (stable) category of all or finitely gene
modules admits well-behaved “semi-orthogonal decompositions” in the sense of Bo
Kapranov [24,25]. Here torsion pair in a stable category is meant in the sense of [22]
a cotorsion pair in an abelian category we mean complete hereditary cotorsion pair
sense of [57]. As a consequence we show that the finitely generated (Co)Cohen–Ma
modules and the finitely generated modules of virtually finite projective or injective dim
sion over a virtually Gorenstein algebra form functorially finite subcategories with
Grothendieck groups and admit Auslander–Reiten sequences. We also show that
Gorensteinness is left–right symmetric and we give a host of characterizations of vi
Gorenstein algebras, in particular of Gorenstein algebras, in various contexts rangin
module categories to stable or derived categories, or using (co)torsion theoretic con
We would like to stress that although the class of virtually Gorenstein algebras is
large since it includes Gorenstein algebras and algebras of finite representation or C
Macaulay type, we don’t know of any example of an Artin algebra that is not virtu
Gorenstein. However we show that all Artin algebras are “locally”, that is, at the fin

generated level, virtually Gorenstein.
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As with Gorenstein algebras, there is a nice relationship between the module ca
and the stable module category for a virtually Gorenstein algebra. This fruitful inte
is a consequence of the fact that the full subcategory of Cohen–Macaulay modules
finable and locally finitely presented, whereas the induced stable category is a sm
subcategory [37,42] of the stable module category which is a compactly generated
gulated category with compact generators induced by finitely generated modules. A
these facts characterize the class of virtually Gorenstein algebras. In general it is an
tant open problem if a smashing subcategory of the stable module category is gener
compact objects coming from the stable category. In the context of compactly genera
angulated categories this is precisely the content of the famous Telescope Conjectu
which has its origin in stable homotopy theory of CW-complexes [26,52]. Our results
some information on the problem in the context of the stable module category of an
algebra. For instance we show that the Telescope Conjecture holds for the stable c
of Cohen–Macaulay modules iff for any cotorsion pair(X ,Y) is Mod-Λ, the subcategor
X is the limit closure of the finitely generated modules it contains provided thatX ∩ Y
are the projectives andY is closed under coproducts. And this property is invariant un
derived equivalences or stable equivalences of Morita type.

We now give a short description of the organization of the paper which is div
roughly in four parts. In the first part, consisting of Sections 2–5, we study the structu
behavior under various operations and constructions of the (co)torsion pairs induc
natural way by the Cohen–Macaulay modules. This part sets the necessary materia
rest of the paper. In the second part, consisting of Sections 6–8, we study finiteness
tions on the Cohen–Macaulay (co)torsion pairs, and in particular we investigate whe
are of (co)finite type in an appropriate sense. This leads us naturally to Section 8
we study virtually Gorenstein algebras and derive their main properties. In the third
consisting of Sections 9 and 10, we give relative versions of the theory developed
ously by giving methods for constructing (co)torsion pairs arising from Cohen–Mac
modules. Then we present applications to the Telescope Conjecture for stable cate
In the last part of the paper which consists of Section 11 we study Artin algebras with
right self-injective dimension in connection with virtual Gorensteinness. In particula
show that(GSC) holds for any algebra lying in the derived or stable equivalence class
virtually Gorenstein algebra.

Convention. Although many of our results hold for Noetherian and/or left coherent
right perfect rings (even for suitable abelian categories), for simplicity and concretene
work in the context of Artin algebras. Throughout the paper the composition of morph
in a given category is meant in the diagrammatic order: the composition off :A → B with
g :B → C is denoted byf ◦ g :A → C.

2. Preliminaries: Artin algebras, torsion and cotorsion pairs

In this section we fix notation and recall some basic concepts and results conc
pretriangulated categories, torsion and cotorsion pairs which will be useful in the r

the paper.
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2.1. Pretriangulated and stable categories

Let C be an additive category.
If Ω :C → C, respectivelyΣ :C → C, is an additive functor, then we can consider

categoryLT (C,Ω), respectivelyRT (C,Σ), with objects the collection of all diagram
in C of the formΩ(C) → A → B → C, respectivelyA → B → C → Σ(A), with the
obvious morphisms. Aleft, respectivelyright, triangulation of the pair(C,Ω), respec-
tively (C,Σ), is a strict full subcategory∆, respectively∇, of LT (C,Ω), respectively
RT (C,Σ), which satisfies all the axioms of a triangulated category except thatΩ , re-
spectivelyΣ , is not necessarily an equivalence. Then the triple(C,Ω,∆), respectively
(C,Σ,∇), is called aleft, respectivelyright, triangulated category, Ω , respectivelyΣ ,
is theloop, respectivelysuspension, functor and the diagrams in∆, respectively∇, are
theleft, respectivelyright, triangles. An additive functorF :C →D between left, respec
tively right, triangulated categories is calledleft exact, respectivelyright exact, if F sends
left, respectively right, triangles to left, respectively right, triangles and commutes wit
loop, respectively suspension, functors.

Now let C be an additive category equipped with an adjoint pair(Σ,Ω) of additive
endofunctors. If the pair(C,Ω) admits a left triangulation∆ and the pair(C,Σ) admits
a right triangulation∇ such that certain compatibility conditions between∆ and∇ are
satisfied, see [22], then the quintuple(C,Σ,Ω,∆,∇) or simply C is called apretrian-
gulated category. An important source of examples of pretriangulated categories em
from functorially finite subcategories.

Let V be a full subcategory of an abelian categoryA. A morphismf :A → B in A is
calledV-epic if the mapA(V, f ) :A(V,A) → A(V,B) is surjective. The subcategoryV
is calledcontravariantly finite if there exists aV-epicfA :VA → A with VA in V . Then
fA is called aright V-approximation of A. Covariantly finitesubcategories,V-monics
and left V-approximationsare defined dually. A subcategory is calledfunctorially finite
provided that it is both contravariantly and covariantly finite; we refer to [6] for details.
stable category A/V of A modulo a subcategoryV has as objects the objects ofA and
morphism spacesA/V(A,B) := A(A,B)/AV (A,B) whereAV (A,B) is the subgroup o
A(A,B) consisting of all maps factorizing through an object fromV . If A, respectively
f , is an object, respectively morphism, inA, then we denote byA, respectivelyf , the
objectA considered as an object inA/V , respectively the equivalence class off . Then
π :A → A/V , whereπ(A) = A andπ(f ) = f , is an additive functor withπ(V) = 0. A
nice situation occurs whenV is functorially finite: in this case the stable categoryA/V is in
a natural way a pretriangulated category. The adjoint pair of loop and suspension fu
and the left/right triangles are defined via left and rightV-approximations, see [22] fo
details.

2.2. Torsion pairs in pretriangulated categories

Pretriangulated categories provide the proper setting for the study of torsion pairs
sense of the following definition which generalizes the notion of usual torsion pairs

abelian category.
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Definition 2.1 [22]. Let C be a pretriangulated category and letX , Y be full additive
subcategories ofC closed under isomorphisms and direct summands. The pair(X ,Y) is
called atorsion pair in C, and thenX is called atorsion class andY is called atorsion-
free class, if:

(i) C(X ,Y) = 0, i.e.,C(X,Y ) = 0, ∀X ∈X and∀Y ∈ Y .
(ii) Σ(X ) ⊆ X andΩ(Y) ⊆ Y .

(iii) For any objectC in C there exist objectsXC ∈X andYC ∈ Y , and triangles:

Ω
(
YC

) gC−→ XC
fC−→ C

gC−−→ YC ∈ ∆ and XC
fC−→ C

gC−−→ YC f C−−→ Σ(XC) ∈ ∇.

If (X ,Y) is a torsion pair inC, thenX⊥ := {C ∈ C | HomC(X ,C) = 0} = Y and
⊥Y := {C ∈ C | HomC(C,Y) = 0} = X . Moreover the assignmentC → XC gives a right
adjoint RX :C → X of the inclusioniX :X ↪→ C and the assignmentC → YC gives a
left adjoint LX :C → Y of the inclusioniY :Y ↪→ C, see [22]. The torsion pair(X ,Y)

is calledhereditary, respectivelycohereditary, if the idempotent functoriX RX :C → C,
respectivelyiYLY :C → C, is left, respectively right, exact.

2.3. Cotorsion pairs

Let A be an abelian category. For a subcategoryV of A we denote by⊥V := {A ∈
A | Extn(A,V ) = 0,∀n � 1,∀V ∈ V} the left Ext-orthogonal subcategory ofV and by
V⊥ := {A ∈ A | Extn(V,A) = 0,∀n � 1,∀V ∈ V} theright Ext-orthogonal subcategory
of V . A subcategoryU ⊆ V is called anExt-injective cogenerator of V if for any objectV
in V there exists an exact sequence 0→ V → U → V ′ → 0 whereV ′ lies inV andU lies
in U and is Ext-injective inV , i.e.,U ∈ V⊥. Ext-projective generators are defined dually

Ext-projective generators and Ext-injective cogenerators emerge naturally from
torsion pairs. First recall that for a full subcategoryU of A, a right U -approximation
f :UA → A, respectively leftU -approximationg :A → UA, of A is called special if
Ext1(U,KerfA) = 0, respectively Ext1(CokergA,U) = 0. Important examples of speci
approximations are the minimal ones. Recall that a mapf :A → B in A is calledright,
respectivelyleft, minimal, if any endomorphismα :A → A, respectivelyβ :B → B, is
invertible provided thatα ◦ f = f , respectivelyf ◦ β = f . A minimal right, respectively
left, approximation is a right, respectively left, approximation which is right, respect
left, minimal. Note that minimal approximations are unique up to isomorphism an
Wakamatsu’s Lemma [13], for any extension closed full subcategoryU of A, any minimal
right, respectively left,U -approximation is special.

Definition 2.2. A pair (X ,Y) of full subcategories ofA is called acotorsion pair, and
thenX is called acotorsion class andY a cotorsion-free class, if:

(i) X⊥ = Y and⊥Y = X .

(ii) Any object ofA admits a special rightX -, respectively leftY-, approximation.
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If (X ,Y) is a cotorsion pair in the abelian categoryA, then, by [22],X ∩ Y is an
Ext-injective cogenerator ofX and an Ext-projective generator ofY . If X ∩ Y is functo-
rially finite, so the stable categoryA/X ∩ Y is pretriangulated, then the pair(X /X ∩ Y,

Y/X ∩Y) is a torsion pair inA/X ∩Y .
The class of cotorsion, respectively torsion, pairs in an abelian, respectively pre

gulated, categoryA, respectivelyC, is partially ordered:(X1,Y1) � (X2,Y2) iff X1 ⊆ X2.
With respect to�, the least, respectively greatest, cotorsion pair is(P,A), respectively
(A,I), whereP , respectivelyI, are the projectives, respectively injectives, ofA, and the
least, respectively greatest, torsion pair is(0,C), respectively(C,0).

Cotorsion(-free) classes are examples of (co)resolving subcategories. Recall tha
subcategory ofA is calledresolving provided that it is closed under extensions, kernel
epics and contains the projectives.Coresolving subcategories are defined dually. Hav
a (co)resolving subcategory we can define the notion of (co)resolution dimension oA. If
X is a resolving subcategory ofA, then theX -resolution dimension of an objectA in A,
written res.dimX A, is defined inductively as follows. IfA is in X , then res.dimX A = 0.
If t � 1, then res.dimX A � t if there exists an exact sequence 0→ Xt → ·· · → X0 →
A → 0 where res.dimX Xi = 0, for 0� i � t . Then res.dimX A = t if res.dimX A � t and
res.dimX A � t − 1. Finally if res.dimX A �= t for anyt � 0, then define res.dimX A = ∞.
TheX -resolution dimension of A is defined by res.dimX A := sup{res.dimX A | A ∈A}.
TheY-coresolution dimension of A, which is denoted by cores.dimY A, for a coresolving
subcategoryY of A, is defined dually. We denote bŷX := {A ∈ A | res.dimX A < ∞},
respectivelyỸ := {A ∈ A | cores.dimY A < ∞}, the full subcategory ofA consisting of
all objects which admit finite exact resolutions by objects fromX , respectively finite exac
coresolutions by objects fromY .

2.4. Artin algebras

The basic examples of pretriangulated categories in this paper emerge from Ar
gebras. From now on we fix an ArtinR-algebraΛ over a commutative Artin ringR with
radical RadR. The radical ofΛ is denoted byr. Let Mod-Λ be the category of all righ
Λ-modules and let mod-Λ be the category of finitely generated rightΛ-modules. We view
left Λ-modules as rightΛop-modules and we denote by D : Mod-Λ → Mod-Λop the usual
duality which is given by D= HomR(−,E) whereE := R/RadR is the injective envelope
of R/RadR.

SinceΛ is left coherent and right perfect, the categoryPΛ of projectiveΛ-modules is
functorially finite and any module admits a minimal left and a minimal right projec
approximation [22]. Hence the stable category Mod-Λ modulo projectives is pretriangu
lated with induced adjoint pair of endofunctors(ΣP,Ω), whereΩ is the usual loop functo
andΣP(A) is the cokernel of a left projective approximation ofA. Since the categoryPΛ

of finitely generated projective modules is functorially finite, the stable category m-Λ
modulo projectives is pretriangulated with induced adjoint pair of endofunctors(ΣP ,Ω)

which is the restriction of the first one on the full subcategory mod-Λ.
Dually sinceΛ is right Noetherian, the categoryIΛ of injectiveΛ-modules is functori-

ally finite and any module admits a minimal left and a minimal right injective approx

tion. Hence the stable categoryMod-Λ modulo injectives is pretriangulated with induced
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adjoint pair of endofunctors(Σ,ΩI) whereΣ is the usual suspension functor andΩI(A) is
the kernel of a right injective approximation ofA. Since the categoryIΛ of finitely gener-
ated injective modules is functorially finite, the stable categorymod-Λ modulo injectives is
pretriangulated with induced adjoint pair of endofunctors(Σ,ΩI) which is the restriction
of the first one on the full subcategorymod-Λ.

In the sequel we shall need the following observations.

Remark 2.3. (i) By construction,∀A ∈ Mod-Λ, there exists an exact sequenceA → P A →
ΣP(A) → 0, wheregA :A → P A is a left PΛ-approximation ofA. If A

ε−→ ΩΣP(A)
µ−→

P A is the canonical factorization ofgA, then the mapε :A → ΩΣP(A) is the reflection
of A in the full subcategory ImΩ of Mod-Λ consisting of the syzygy modules. Simil
remarks hold for the functorΩI.

(ii) By [18], we haveΣP = ΣP|mod-Λ = TrΩ Tr andΩI = ΩI|mod-Λ = DTrΩ TrD,
where Tr :(mod-Λ)op ≈−→ mod-Λop is the Auslander–Bridger transpose duality functor
Recall that for anyT in mod-Λ and anyA in Mod-Λ we have the Auslander–Reite
formulas [8]:

Ext1Λ
(
A,DTr(T )

) ∼= DHomΛ(T ,A) and DExt1Λ(T ,A) ∼= HomΛ

(
A,DTr(T )

)
.

We denote byN+ : Mod-Λ → Mod-Λ the Nakayama functor defined byN+(A) =
A ⊗Λ D(Λ) and by N− : Mod-Λ → Mod-Λ its right adjoint defined byN−(A) =
HomΛ(D(Λ),A). It is not difficult to see that the adjoint pair(N+,N−) induces an equiv
alenceN+ : PΛ

≈−→ IΛ with quasi-inverseN− : IΛ
≈−→ PΛ. Krause observed that this fa

can be used to show that the Auslander–Reiten operators DTr and TrD can be ex
to the big module category. LetA and B be arbitrary modules. Let 0→ Ω2(A) →
P1 → P0 → A → 0 be the start of a (minimal) projective resolution ofA, and let
0 → B → I0 → I1 → Σ2(B) → 0 be the start of a (minimal) injective coresolution ofB.
Following [41] we define the modulesτ+(A) andτ−(B) by the exact sequences:

0→ τ+(A) → N+(P1) → N+(P0) → N+(A) → 0,

0→ N−(B) → N−(
I0) → N−(

I1) → τ−(B) → 0.

We call τ+ and τ− the Auslander–Reiten operators of Mod-Λ. By [41] the operators
τ+ andτ− induce an adjoint pair of stable equivalences(τ+, τ−) : Mod-Λ ≈−→ Mod-Λ,
and coincide with DTr and TrD respectively in case we work with finitely generated m
ules.

Remark 2.4. (i) If Λ is a finite-dimensionalk-algebra over a perfect fieldk, then the
Auslander–Reiten operators can be made functorial. That is, there exists an adjo
(F,G) of endofunctors of Mod-Λ such thatF sends injectives to projectives andF ∼=
τ− : Mod-Λ → Mod-Λ, andG sends projectives to injectives andG ∼= τ+ : Mod-Λ →
Mod-Λ, see [10,17].

(ii) Since the Nakayama functorsN± preserve filtered colimits, products and finite
presented modules, it follows that they preserve pure short exact sequences an

injective modules.
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For aΛ-moduleA, the projective, respectively injective, dimension ofA is denoted by
pdA, respectively idA. We denote bŷPΛ := P<∞

Λ , respectivelŷPΛ := P<∞
Λ , the full sub-

category of all, respectively finitely generated, modules with finite projective dimen
Dually ĨΛ := I<∞

Λ , respectivelỹIΛ := I<∞
Λ , denotes the full subcategory of all, respe

tively finitely generated, modules with finite injective dimension. Thebig projective fini-
tistic dimension FPD(Λ) of Λ is defined by FPD(Λ) = sup{pdC | C ∈ P<∞

Λ } and thelittle
projective finitistic dimension fpd(Λ) of Λ is defined by fpd(Λ) = sup{pdC | C ∈ P<∞

Λ }.
The big, respectively little, injective finitistic dimension FID(Λ), respectively fid(Λ), are
defined dually. The global dimension ofΛ is denoted by gl.dimΛ. Finally if V is a full sub-
category of Mod-Λ, then Prod(V), respectively Add(V), respectively add(V), denotes the
full subcategory consisting of all direct summands of products, respectively copro
respectively finite coproducts, of modules fromV .

An objectT in an additive categoryC which admits all small coproducts is calledcom-
pact if the representable functorC(T ,−) :C → Ab preserves all small coproducts. The f
subcategory of compact objects ofC is denoted byCb. If U ⊆ Mod-Λ, we denote byUfin

the full subcategory:

Ufin := U ∩ mod-Λ.

Note that ifU is closed under coproducts in Mod-Λ, then we haveUfin ⊆ Ub. And clearly
we have equalities(Mod-Λ)b = mod-Λ = (Mod-Λ)fin sinceΛ is right Noetherian.

3. Cohen–Macaulay modules and (co)torsion pairs

In this section we fix notation and recall some basic concepts concerning (Co)C
Macaulay modules. In addition we prove several useful results, mainly of homolo
nature, related to (Co)Cohen–Macaulay modules which will be essential in the rest
paper and we give the connections with torsion and cotorsion pairs.

From now on and throughout the rest of the paper we fix an Artin algebraΛ.

Remark 3.1. It is easy to see that we have the following identifications.

⊥Λ = ⊥PΛ = {
A ∈ Mod-Λ

∣∣ LnN+(A) = TorΛn
(
A,D(Λ)

) = 0, ∀n � 1
}
,

D(Λ)⊥ = I⊥
Λ = {

A ∈ Mod-Λ
∣∣ RnN−(A) = ExtnΛ

(
D(Λ),A

) = 0, ∀n � 1
}
.

Let CM(PΛ), respectively CoCM(IΛ), be the maximal subcategory of Mod-Λ which
admits the full subcategory of projective, respectively injective, modules as an Ext-inj
cogenerator, respectively Ext-projective generator. Clearly we have:

CM(PΛ) = {
X ∈ Mod-Λ

∣∣ there exists an exact sequence

0→ X → P 0 f 0−→ P 1 f 1−→ P 2 → ·· · , whereP s ∈ PΛ,( ) }
∀s � 0, and Kerf n ∈ ⊥Λ, ∀n � 0 ,
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CoCM(IΛ) = {
Z ∈ Mod-Λ

∣∣ there exists an exact sequence

· · · → I−2 g−1−−→ I−1 g0−→ I0 → Z → 0, whereI−s ∈ IΛ,

∀s � 0, and Coker
(
g−n

) ∈ D(Λ)⊥, ∀n � 0
}
.

The stable category of Cohen–Macaulay modules modulo projectives is deno
CM(PΛ) and the stable category of CoCohen–Macaulay modules modulo injectives
noted byCoCM(IΛ).

Note. Obviously we have: CM(PΛ) ∩ IΛ = PΛ ∩ IΛ = PΛ ∩ CoCM(IΛ).

Inspired by the work of Auslander–Bridger [5] and following [22] it is now natura
make the following definition.

Definition 3.2. The modules in CM(PΛ) are calledCohen–Macaulay modules and the
modules in CoCM(IΛ) are calledCoCohen–Macaulay modules.

We also consider the finitely generated versions of the above definitions. We set

CM(Λ) = CM(PΛ)fin = mod-Λ ∩ CM(PΛ),

CoCM
(
D(Λ)

) = CoCM(IΛ)fin = mod-Λ ∩ CoCM(IΛ),

CM(Λ) = mod-Λ ∩ CM(PΛ), CoCM
(
D(Λ)

) = mod-Λ ∩ CoCM(IΛ).

By [22], CM(PΛ), respectively CM(Λ), is a resolving subcategory of Mod-Λ, respec-
tively mod-Λ, with CM(PΛ), respectively CM(Λ), triangulated. And CoCM(IΛ), respec-
tively CoCM(D(Λ)), is a coresolving subcategory of Mod-Λ, respectively mod-Λ, with
CoCM(IΛ), respectivelyCoCM(D(Λ)) triangulated. The following result gives a conv
nient description of the (Co)Cohen–Macaulay modules which will be useful later.

Lemma 3.3.

(1) A moduleA is Cohen–Macaulay iff
(α) LnN+(A) = 0, ∀n � 1,
(β) RnN−(N+(A)) = 0, ∀n � 1, and
(γ ) the natural mapA → N−N+(A) is invertible.

(2) A moduleA is CoCohen–Macaulay iff
(α) RnN−(A) = 0, ∀n � 1,
(β) LnN+(N−(A)) = 0, ∀n � 1, and
(γ ) the natural mapN+N−(A) → A is invertible.

Proof. We prove only(1) since part(2) is dual. IfA is Cohen–Macaulay then the cond
tions hold by [22]. Conversely, by Remark 3.1, condition(α) implies thatA ∈ ⊥Λ. Let 0→

N+(A) → I0 → I1 → ·· · be an injective coresolution ofN+(A). Applying N− and using
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(β) and(γ ) we obtain an exact coresolution 0→ A → N−(I0) → N−(I1) → ·· · of A by
projectives. Denoting byAn the kernel ofN−(In) → N−(In+1) for n � 0 and applying to
the exact sequence 0→ A → N−(I0) → A1 → 0 the functorN+, we get LnN+(A1) =
0, ∀n � 2 and an exact sequence 0→ L1N+(A1) → N+(A) → I0 which shows tha
L1N+(A1) = 0 sinceN+(A) → I0 is a monomorphism. Hence LnN+(A1) = 0, ∀n � 1.
Inductively we see that LnN+(At ) = 0, ∀n � 1, ∀t � 2. HenceA is Cohen–Macaulay. �

The following result from [22] indicates an interesting interplay between (Co)Co
Macaulay modules, Nakayama functors and the Auslander–Reiten operators which
useful later.

Proposition 3.4. The adjoint pair(N+,N−) induces quasi-inverse equivalences

N+ : CM(PΛ) � CoCM(IΛ) : N− and N+ : CM(Λ) � CoCM
(
D(Λ)

)
: N−

which in turn induce exact quasi-inverse equivalences of triangulated categories

N+ : CM(PΛ) � CoCM(IΛ) : N− and N+ : CM(Λ) � CoCM
(
D(Λ)

)
: N−.

Moreover the Auslander–Reiten operatorsτ+ and τ− restrict to quasi-inverse triangle
equivalences

τ+ : CM(PΛ) � CoCM(IΛ) : τ− and τ− : CM(Λ) � CoCM
(
D(Λ)

)
: τ−

such thatΣ−2N+ ∼= τ+iCM andΩ−2N− ∼= τ−iCoCM, whereiCM and iCoCM are the inclu-
sion functors.

Our analysis of (Co)Cohen–Macaulay modules is based on the following r
from [22].

Theorem 3.5 [22]. If Λ is an Artin algebra, then we have the following.

(i) There is a cotorsion pair(CM(PΛ),P≺∝
Λ ) in Mod-Λ. The full subcategoryCM(PΛ)

of Cohen–Macaulay modules is functorially finite resolving and we have:

CM(PΛ) ∩ P≺∝
Λ = PΛ and P<∞

Λ = P≺∝
Λ ∩ ̂CM(PΛ).

(ii) There is a cotorsion pair(I≺∝
Λ ,CoCM(IΛ)) in Mod-Λ. The full subcategory

CoCM(IΛ) of CoCohen–Macaulay modules is functorially finite coresolving and
have:

≺∝ <∞ ≺∝
CoCM(IΛ) ∩ IΛ = IΛ and IΛ = IΛ ∩ ˜CoCM(IΛ).
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(iii) The subcategoriesP≺∝
Λ and I≺∝

Λ are resolving and coresolving. In particular w
have:

P<∞
Λ ⊆ P≺∝

Λ ⊇ I<∞
Λ and P<∞

Λ ⊆ I≺∝
Λ ⊇ I<∞

Λ .

(iv) The pair (CM(PΛ),P≺∝
Λ

) is a hereditary torsion pair inMod-Λ and the pair

(I≺∝
Λ ,CoCM(IΛ)) is a cohereditary torsion pair inMod-Λ.

It is now natural to call the modules inP≺∝
Λ the modulesof virtually finite projective

dimension and the modules inI≺∝
Λ the modulesof virtually finite injective dimension.

Remark 3.6. By [22] for any moduleA, there exist exact commutative diagrams and
quences:

0−→ WA

(f ∗
A,−ρ)−−−−−→ A ⊕ IA (gA∗

σ )−−−→ ZA −→ 00 0

0 YA

gA

XA

fA

κ

A

gA

0

0 YA
λ

PA

ν

µ

YA

f A

0

XA XA

0 0

0−→ XA
(fA,−κ)−−−−−→ A ⊕ PA

(gA

µ )−−−→ YA −→ 0

0 0

ZA

g∗
A

ZA

ξ

0 WA

ρ

f ∗
A

IA
τ

σ

WA 0

0 A
gA∗

ZA
f A∗

WA 0

0 0

wherefA :XA → A, respectivelyf ∗
A :WA → A, is a special right CM(PΛ)-, respectively

I≺∝
Λ -, approximation ofA andgA :A → YA, respectivelygA∗ :A → ZA, is a special left

P≺∝
Λ -, respectively CoCM(IΛ)-, approximation ofA. Also κ :XA → PA, respectively

σ : IA → ZA, is a leftPΛ-, respectively rightIΛ-, approximation ofXA, respectivelyZA.

Remark–Notation 3.7. Clearly CM(PΛ) = PΛ iff CoCM(IΛ) = IΛ iff ̂CM(PΛ) = P<∞
Λ

iff ˜CoCM(IΛ) = I<∞
Λ iff P≺∝

Λ = Mod-Λ iff Mod-Λ = I≺∝
Λ . This happens if gl.dimΛ <

∞. Also Λ is self-injective iff D(Λ) ∈ CM(PΛ) iff Λ ∈ CoCM(IΛ); in this case we have
CM(PΛ) = Mod-Λ = CoCM(IΛ) andP≺∝

Λ = PΛ = IΛ = I≺∝
Λ . To avoid trivialities we

usually assume throughout the paper thatΛ is a non-self-injective algebra of infinite glob
dimension.

In what follows we denote by:

(i) RCM : Mod-Λ → CM(PΛ) the right adjoint of the inclusioniCM : CM(PΛ) ↪→

Mod-Λ.
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(ii) LCoCM: Mod-Λ → CoCM(IΛ) the left adjoint of the inclusioniCoCM: CoCM(IΛ) ↪→
Mod-Λ.

(iii) LP : Mod-Λ → P≺∝
Λ

the left adjoint of the inclusioniP :P≺∝
Λ

↪→ Mod-Λ.

(iv) RI : Mod-Λ → I≺∝
Λ the right adjoint of the inclusioniI :I≺∝

Λ ↪→ Mod-Λ.

The existence of these functors follow from [22] in connection with Theorem 3.5 and the
discussion in Section 2.2. Note that, by [22], the functorsRCM, RI andiP are left exact,
the functorsLCoCM, LP andiI are right exact and the functorsiCM andiCoCM are exact.

The following result collects some basic properties of (Co)Cohen–Macaulay mo
and modules of virtually finite projective or injective dimension which will be usefu
the sequel. First we recall that a full subcategoryD of Mod-Λ is calleddefinable if D is
closed under filtered colimits, products and pure submodules. We refer to [43] for de
information concerning definable subcategories.

Proposition 3.8.

(i) The full subcategoriesCM(PΛ) and CoCM(IΛ) are exact Frobenius and definab
subcategories ofMod-Λ.

(ii) P≺∝
Λ andI≺∝

Λ are exact subcategories ofMod-Λ with enough projectives and injec
tives.

(iii) CM (PΛ) is closed under cokernels of pure monomorphisms andCoCM(IΛ) is closed
under kernels of pure epimorphisms.

(iv) (a) Any module admits a minimal rightCM(PΛ)-, respectivelyCoCM(IΛ)-, approxi-
mation.

(b) Any module admits a minimal leftP≺∝
Λ -, respectivelyCoCM(IΛ)⊥-, approxima-

tion.
(v) ∀A ∈ Mod-Λ, ∀X ∈ CM(PΛ), ∀Z ∈ CoCM(IΛ), there are isomorphisms∀n � 1,

∀m � 0:

ExtnΛ(X,A) ∼= HomΛ

(
Ωn(X),A

)
and ExtnΛ(A,Z) ∼= HomΛ

(
A,Σn

(
Z

))
,

Ext1Λ
(
Σm+1

P (A),X
) ∼= HomΛ

(
A,Ωm(X)

)
and

Ext1Λ
(
Z,Ωm+1

I (A)
) ∼= HomΛ

(
Σm

(
Z

)
,A

)
.

(vi) ∀T ∈ mod-Λ, ∀X ∈ CM(PΛ), ∀Z ∈ CoCM(IΛ), there are isomorphisms,∀m � 0:

DHomΛ

(
T ,Ωm(X)

) ∼= Extm+1
Λ

(
X,DTr(T )

) ∼= DExt1Λ
(
Σm+1

P (T ),X
)
,

DExtm+1
Λ

(
TrD(T ),Z

) ∼= DHomΛ

(
Σm(Z),T

) ∼= Ext1Λ
(
Z,Ωm+1

I (T )
)
.

Proof. (i) and (ii). Since CM(PΛ) is closed under extensions and admits the projective
an Ext-injective cogenerator, it follows directly that CM(PΛ) is an exact Frobenius subca

egory of Mod-Λ havingPΛ as the full subcategory of projective–injective objects. Dually
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CoCM(IΛ) is an exact Frobenius subcategory of Mod-Λ having IΛ as the full subcate
gory of projective–injective objects. By Remark 2.4(ii) and Lemma 3.3 it follows directly
that CM(PΛ) is closed under filtered colimits and products. We show that CM(PΛ) is
closed under pure-submodules. Since CM(PΛ) is resolving, by [46] it suffices to show
that CM(PΛ) is closed under the double dual functor D2. If X lies in CM(PΛ), then
there exists an exact sequence 0→ X → P 0 → P 1 → ·· · where theP i are projective
and Ker(P n → P n+1) ∈ ⊥Λ, ∀n � 0. Then 0→ D2(X) → D2(P 0) → D2(P 1) → ·· · is
exact and the D2(P i) are projective since D2 is exact and preserves projectives. Sin
Λ is pure-injective, it is easy to see that⊥Λ is definable and therefore Ker(D2(P n) →
D2(P n+1)) ∈ ⊥Λ, ∀n � 0, see [46]. We infer that D2(X) lies in CM(PΛ) and therefore
CM(PΛ) is definable. Since the Nakayama functorsN± induce quasi-inverse equivalenc
between CM(PΛ) and CoCM(IΛ), it follows easily that CoCM(IΛ) is definable. Part (ii)
follows directly from the fact thatP≺∝

Λ andI≺∝
Λ are resolving and coresolving.

(iii) and (iv). Let (E) : 0 → X1
g−→ X2 → A → 0 be a pure short exact sequence

Mod-Λ where theXi are Cohen–Macaulay. Let

X1
g−→ X2 → X → ΣP(X1)

be a triangle in CM(PΛ). Sinceg is a pure monomorphism and any projective is pu
injective, it follows thatg is PΛ-monic and therefore(E) induces a right triangleX1 →
X2 → A → ΣP(X1) in Mod-Λ. Since CM(PΛ) is closed under extensions of right t
angles, we infer thatA ∼= X lies in CM(PΛ), i.e., A is Cohen–Macaulay. The proof fo
CoCohen–Macaulay modules is similar. Part (iv) follows from [59] since by (i) the sub
gories CM(PΛ) and CoCM(IΛ) are contravariantly finite and closed under filtered colim
and extensions.

(v) and (vi). We prove only the assertions for Cohen–Macaulay modules. Let→
Ω(X)

g−→ P0 → X → 0 be exact withP0 projective. Then we have an exact s
quence HomΛ(P0,A)

g∗−→ HomΛ(Ω(X),A)
ϑ−→ Ext1Λ(X,A) → 0 and the canonical epi

� : HomΛ(Ω(X),A) → HomΛ(Ω(X),A) admits a factorization HomΛ(Ω(X),A)
ϑ−→

Ext1Λ(X,A)
ω−→ HomΛ(Ω(X),A). Since Ext1Λ(X,P ) = 0, for any projective moduleP , it

follows easily that Ker� = Img∗. This implies by diagram chasing thatω is monic. Then
ω is invertible since it is always epic, and the first isomorphism follows by dimension
Now let A → P A → ΣP(A) → 0 be exact and letA � ΩΣP(A) � P A be the canon
ical factorization of the minimal left projective approximation ofA → P A of A. From
the exact sequence 0→ HomΛ(ΣP(A),X) → HomΛ(P A,X) → HomΛ(ΩΣP(A),X) →
Ext1Λ(ΣP(A),X) → 0 it follows that the canonically induced map Ext1

Λ(ΣP(A),X) →
HomΛ(ΩΣP(A),X) is invertible. Since any Cohen–Macaulay module is a syzygy m
ule, by Remark 2.3 we have Ext1Λ(ΣP(A),X) ∼= HomΛ(ΩΣP(A),X) ∼= HomΛ(A,X).
Finally ∀m � 1 we have:

HomΛ

(
A,Ωm(X)

) ∼= HomΛ

(
Σm

P (A),X
) ∼= Ext1Λ

(
Σm+1

P (A),X
)
.

Part (vi) follows from (v) and Auslander–Reiten formulas, cf. Remark 2.3. �
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If U is a resolving, respectively coresolving, subcategory of an abelian categoryA, we
let U�n be the full subcategory ofA consisting of all objectsA with res.dimU A � n,
respectively cores.dimU A � n. In particularP�n

Λ , respectivelyI�n
Λ , is the subcategory o

all modules with projective, respectively injective, dimension� n. By [5, Lemma 3.12],
res.dimU A � n iff Ωn(A) ∈ U and cores.dimU A � n iff Σn(A) ∈ U .

The following result gives an alternative way to compute self-injective and finit
dimensions.

Proposition 3.9.

(i) CM(PΛ)�n ∩ P≺∝
Λ = P�n

Λ andI≺∝
Λ ∩ CoCM(IΛ)�n = I�n

Λ .

(ii) ⊥Λ ∩ ̂CM(PΛ) = CM(PΛ) andD(Λ)⊥ ∩ ˜CoCM(IΛ) = CoCM(IΛ).

(iii) For any non-zero moduleA in ̂CM(PΛ) and any non-zero moduleB in ˜CoCM(IΛ)

we have:

res.dimCM A = sup
{
n � 0 | ExtnΛ(A,Λ) �= 0

}
,

cores.dimCoCMB = sup
{
n � 0 | ExtnΛ

(
D(Λ),B

) �= 0
}
.

(iv) ∀W ∈ I≺∝
Λ : idW = cores.dimCoCMW and∀Y ∈ P≺∝

Λ : pdY = res.dimCM Y .
(v) idΛΛ = cores.dimCoCMΛ andpdD(Λ)Λ = res.dimCM D(Λ).

(vi) FPD(Λ) = sup{res.dimCM C | C ∈ ̂CM(PΛ)}.
(vii) FID (Λ) = sup{cores.dimCoCMC | C ∈ ˜CoCM(IΛ)}.

Proof. (i) Clearly P�n
Λ ⊆ CM(PΛ)�n ∩ P≺∝

Λ . If A lies in CM(PΛ)�n ∩ P≺∝
Λ , then, since

P≺∝
Λ is resolving,Ωn(A) lies in CM(PΛ) ∩ P≺∝

Λ . Hence, by Theorem 3.5, Ωn(A) is

projective and thereforeA lies in P�n
Λ . It follows that CM(PΛ)�n ∩ P≺∝

Λ = P�n
Λ and

duallyI≺∝
Λ ∩ CoCM(IΛ)�n = I�n

Λ .

(ii) Clearly CM(PΛ) ⊆ ⊥Λ ∩ ̂CM(PΛ). By [22, Proposition VI.2.3], for any mod
ule A we haveA ∈ ̂CM(PΛ) iff YA ∈ P<∞

Λ . Hence if A lies in ⊥Λ ∩ ̂CM(PΛ), then
pdYA < ∞. This implies, using dimension shifting on a projective resolution ofYA,
that Ext1Λ(A,YA) = 0 and therefore the special right CM(PΛ)-approximation sequenc
0 → YA → XA → A → 0 of A splits. HenceA is Cohen–Macaulay and consequen
CM(PΛ) = ⊥Λ ∩ ̂CM(PΛ). The second equality is proved similarly.

(iii) Let δ = supn�0{ExtnΛ(A,Λ) �= 0} andd = res.dimCM A < ∞. SinceΩd(A) lies
in CM(PΛ) we have ExtnΛ(A,Λ) = 0, ∀n � d + 1. If ExtdΛ(A,Λ) = 0, then pulling-back
the exact sequence 0→ Ωd(A) → P d−1 → Ωd−1(A) → 0, whereP d−1 is projective,
along the left projective approximationΩd(A) → P Ωd(A) of Ωd(A), we get an exac
sequence 0→ P Ωd(A) → ΣP(Ωd(A)) ⊕ P d−1 → Ωd−1(A) → 0 which splits by our
assumption. SinceΣP(Ωd(A)) is Cohen–Macaulay, we infer that so isΩd−1(A) and there-
fore res.dimCM(A) � d − 1, a contradiction. Hence Extd

Λ(A,Λ) �= 0 and thereforeδ � d .
If δ < d , then clearlyΩδ(A) lies in⊥Λ∩ ̂CM(PΛ) which is equal to CM(PΛ) by (ii). This
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implies that res.dimCM A � δ, a contradiction. Henceδ = d . The second equality is prove
similarly.

(iv) and (v). Clearly cores.dimCoCMW � idW and it suffices to show that idW �
cores.dimCoCMW if the latter, sayn, is finite. If n = 0, thenW ∈ I≺∝

Λ ∩ CoCM(IΛ) = IΛ

and therefore idW = 0. If n > 1, then sinceΣn(W) ∈ CoCM(IΛ) and I≺∝
Λ is core-

solving, we infer thatΣn(W) ∈ I≺∝
Λ ∩ CoCM(IΛ) = IΛ and therefore idW � n. Hence

idW = cores.dimCoCMW . The second equality is proved similarly. Then part (v) follo
directly from (iv) sinceΛ ∈ I≺∝

Λ and D(Λ) ∈ P≺∝
Λ .

(vi) and (vii). Let sup{res.dimCM C | C ∈ ̂CM(PΛ)} = d and FPD(Λ) = δ. If d < ∞,
then ̂CM(PΛ) = CM(PΛ)�d and therefore, using (i),

P<∞
Λ = ̂CM(PΛ) ∩ P≺∝

Λ = CM(PΛ)�d ∩ P≺∝
Λ = P�d

Λ .

Henceδ � d . On the other hand ifδ < ∞, soP�δ
Λ = P<∞

Λ , then letA ∈ ̂CM(PΛ) and let
0 → A → YA → XA → 0 be a special leftP≺∝

Λ -approximation sequence ofA. Clearly

YA lies in ̂CM(PΛ) ∩ P≺∝
Λ = P<∞

Λ = P�δ
Λ . Since pdYA � δ, by the first diagram in Re

mark 3.6 it follows thatYA = Ω(YA) lies in P�δ−1
Λ and this implies that res.dimCM A � δ.

Henced � δ. Part (vi) is proved similarly. �
Note. Since CM(PΛ) is contravariantly finite and CoCM(IΛ) is covariantly finite,
it follows by [22, Lemma IX.3.1] that∀A ∈ Mod-Λ: res.dimCM A = CM-pdA and
cores.dimCoCMA = CoCM-idA, where CM-pd, respectively CoCM-id, denotes relat
projective, respectively injective, dimension with respect to the relative homological
bra in Mod-Λ induced by the (Co)Cohen–Macaulay modules.

We close this section with some remarks on Gorenstein algebras. Recall that an
algebra is calledGorenstein if id ΛΛ < ∞ and idΛΛ < ∞. EquivalentlyP<∞

Λ = I<∞
Λ ,

or P<∞
Λ = I<∞

Λ . It is well known that for a Gorenstein algebraΛ we have idΛΛ = idΛΛ.
Recall thatT ∈ Mod-Λ is called atilting module if:

(α) T has finite projective dimension,
(β) ExtnΛ(T ,T (I)) = 0, for anyn � 1 and index setI , and

(γ ) Λ ∈ Ãdd(T ).

Dually T ∈ Mod-Λ is called acotilting module if:

(α) T has finite injective dimension,
(β) ExtnΛ(T I , T ) = 0, for anyn � 1 and index setI , and

(γ ) D(Λ) ∈ P̂rod(T ).

More generally a subcategoryT , respectivelyC, of Mod-Λ is calledtilting, respectively
cotilting, subcategory if there exists a tilting, respectively cotilting, moduleT , respec-

tively C, such thatT = T ⊥, respectivelyC = ⊥C, see [3].
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In the sequel we shall need the following characterizations of Gorensteinness, m
them well known for finitely generated modules, which follow from Theorem 3.5, Propo-
sition 3.8 and [4,18,22]. In essence for Gorenstein algebras “all dimensions are fini
equal”.

Proposition 3.10. The following are equivalent:

(i) Λ is Gorenstein.
(ii) cores.dimCoCMΛ < ∞ andres.dimCM D(Λ) < ∞.
(iii) fpd(Λop) < ∞ and idΛΛ < ∞, equivalentlyfpd(Λ) < ∞ and id ΛΛ < ∞.

(iv) ̂CM(PΛ) ∩ P≺∝
Λ = I≺∝

Λ ∩ ˜CoCM(IΛ).
(v) res.dimCM Mod-Λ < ∞ or equivalentlycores.dimCoCMMod-Λ < ∞.
(vi) P≺∝

Λ = P<∞
Λ or equivalently ̂CM(PΛ) = Mod-Λ.

(vii) I≺∝
Λ = I<∞

Λ or equivalently ˜CoCM(IΛ) = Mod-Λ.
(viii) (CM(PΛ),P<∞

Λ ) is a cotorsion pair inMod-Λ.
(ix) (I<∞

Λ ,CoCM(IΛ)) is a cotorsion pair inMod-Λ.
(x) The full subcategoryCM(PΛ), respectivelyCoCM(IΛ), is cotilting, respectively tilt-

ing.
(xi) Λ is a cotilting module, or equivalentlyD(Λ) is a tilting module.

If Λ is Gorenstein, thenCM(PΛ) = ⊥Λ andCoCM(IΛ) = D(Λ)⊥, and moreover:

id ΛΛ = idΛΛ = fpd(Λ) = fid(Λ) = FPD(Λ) = FID(Λ)

= cores.dimCoCMΛ = res.dimCM D(Λ) = res.dimCM Mod-Λ

= cores.dimCoCMMod-Λ < ∞.

In view of Propositions 3.9 and 3.10, it is now natural to define thevirtual finitistic
projective, respectivelyinjective, dimension vFPD(Λ), respectively vFID(Λ) of Λ as
follows:

vFPD(Λ) := sup
{
pdY | Y ∈ P≺∝

Λ

} = res.dimCM P≺∝
Λ ,

vFID(Λ) := sup
{
idY | Y ∈ I≺∝

Λ

} = cores.dimCoCMI≺∝
Λ .

Clearly FPD(Λ) � vFPD(Λ) and FID(Λ) � vFID(Λ). Since vFPD(Λ) < ∞, respectively
vFID(Λ) < ∞, is equivalent toP≺∝

Λ = P<∞
Λ , respectivelyI≺∝

Λ = I<∞
Λ , we have the

following consequence which shows that Gorenstein algebras are characterized
finiteness of the virtual finitistic dimensions.

Corollary 3.11. Λ is Gorenstein iffvFPD(Λ) < ∞ iff vFPD(Λ) < ∞.

The following result shows that for modules with finite (Co)Cohen–Macaulay (co
solution dimension we have an explicit description of their (Co)Cohen–Macaulay ap

imations.
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Proposition 3.12. For a moduleA in ̂CM(PΛ) and a moduleB in ˜CoCM(IΛ), we have the
following.

(i) The counit Σd
PΩd(A) → A is the coreflection ofA in CM(PΛ), where d =

res.dimCM A.
(ii) The unit B → Ωδ

I Σδ(B) is the reflection ofB in CoCM(IΛ), where δ =
cores.dimCoCMB.

Proof. Since Ωd(A) ∈ CM(PΛ) and, by Proposition 3.8(iii), CM(PΛ) is closed un-
der left projective approximations we infer thatΣd

PΩd(A) is Cohen–Macaulay. Le
εd
A :Σd

PΩd(A) → A be the counit of the adjoint pair(Σd
P ,Ωd) in Mod-Λ and letα :X →

A be a morphism whereX lies in CM(PΛ). Since the natural mapεd
X :Σd

PΩd(X) → X is

invertible, we deduce directly thatα = (εd
X)−1 ◦ Σd

PΩd(α) ◦ εd
A. Henceα factors through

εd
A and clearly this factorization is unique sinceΣP|CM(PΛ) is an equivalence. Henc

Σd
PΩd(A) is evaluation of the coreflection ofA in CM(PΛ). Part (ii) is similar. �
The above result in connection with Proposition 3.10 admits the following conse

quence, see also [18], which shows in particular that for Gorenstein algebras the fu
RCM : Mod-Λ → CM(PΛ) andLCoCM: Mod-Λ → CoCM(IΛ) preserves products and c
products. These conditions will play an important role later in the paper in connection
virtually Gorenstein algebras.

Corollary 3.13. Let Λ be a Gorenstein algebra withidΛ = d . Then there exist isomo
phisms of functors

RCM ∼= Σd
PΩd : Mod-Λ → CM(PΛ) and LCoCM ∼= Ωd

I Σd : Mod-Λ → CoCM(IΛ).

In particular RCM, respectivelyLCoCM, preserves coproducts, respectively products.

4. Cohen–Macaulay modules and (co)stabilizations

In this section we discuss structural properties of the (Co)Cohen–Macaulay mo
and (co)torsion pairs in connection with the behavior of the (co)universal triangulate
egories associated to the stable module categories modulo projectives/injectives
properties will be useful later in connection with virtually Gorenstein algebras and
bras with finite left or right self-injective dimension.

4.1. Stabilizations

Recall from [18] that to a given left triangulated categoryC, there is associated in
universal way a triangulated categoryT (C) which reflects many important homologic
properties ofC. More precisely there exists a left exact functorT :C → T (C) such that for
any left exact functorF :C → T to a triangulated categoryT , there exists a unique u

to isomorphism exact functorF ∗ :T (C) → T such thatF ∗T ∼= F . The categoryT (C) is
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called thestabilization of C and the functorT is called thestabilization functor. We refer
to [18,40] for details.

Here we need only the following facts. The objects ofT (C) are pairs(C,n), whereC is
an object inC andn ∈ Z. The space of morphismsT (C)[(A,n), (B,m)] is identified with
the direct limit:

T (C)
[
(A,n), (B,m)

] = lim−→
k�n,k�m

C
[
Ωk−n(A),Ωk−m(B)

]
.

The loop functorΩ :T (C) → T (C) is defined byΩ(C,n) = (C,n − 1) and the stabiliza
tion functorT is defined byT(C) = (C,0). Finally the extension of the left exact funct
F above is defined byF ∗(C,n) = ΩnF(C). Dually any right triangulated category adm
its stabilization which has a dual description and dual properties. In particular ifC is a
pretriangulated category, thenC admits a stabilizationTl :C → Tl (C) when considered a
a left triangulated category, and a stabilizationTr :C → Tr (C) when considered as a rig
triangulated category.

Now the stable module categories Mod-Λ and Mod-Λ are both pretriangulated. T
avoid confusion, we shall use the following notations:

• Pl : Mod-Λ → Tl (Mod-Λ) is theleft projective stabilization functor, i.e., the stabi-
lization functor of the left triangulated category Mod-Λ.

• Pr : Mod-Λ → Tr (Mod-Λ) is theright projective stabilization functor, i.e., the sta-
bilization functor of the right triangulated category Mod-Λ.

• Qr : Mod-Λ → Tr (Mod-Λ) is theright injective stabilization functor, i.e., the stabi-
lization functor of the right triangulated categoryMod-Λ.

• Ql : Mod-Λ → Tl (Mod-Λ) is the left injective stabilization functor, i.e., the stabi-
lization functor of the left triangulated categoryMod-Λ.

Note that mod-Λ andmod-Λ are pretriangulated subcategories of Mod-Λ andMod-Λ with
stabilization functors the restrictions of the stabilization functors of Mod-Λ andMod-Λ
to mod-Λ and mod-Λ respectively. The inclusions mod-Λ ↪→ Mod-Λ and mod-Λ ↪→
Mod-Λ extend to inclusionsT∗(mod-Λ) ↪→ T∗(Mod-Λ) andT∗(mod-Λ) ↪→ T∗(Mod-Λ)

respectively, where∗ = r , l.
In the sequel we shall need the following useful results.

Lemma 4.1 [18]. LetC be a right, respectively left, triangulated category with suspens
respectively loop, functorΣ , respectivelyΩ . Then the right, respectively left, stabilizatio
Tr (C), respectivelyTl (C), of C is trivial if and only if for any objectC in C there exists
n = nC � 0 such thatΣn(C) = 0, respectivelyΩn(C) = 0.

In particular Tl (Mod-Λ) = 0 iff gl.dimΛ < ∞ iff Tr (Mod-Λ) = 0.

As a direct consequence of the above lemma we have:

• KerPl = P<∞
Λ /PΛ and KerPr = {A ∈ Mod-Λ | id τ+A < ∞}.
• KerQl = {A ∈ Mod-Λ | pdτ−A < ∞} and KerQr = I<∞
Λ /IΛ.
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Lemma 4.2 [18].

(1) The mapHomΛ(X,A) → Hom[Pl (X),Pl (A] is invertible, ∀X ∈ ⊥Λ and ∀A ∈
Mod-Λ. In particular the exact functorPl iCM : CM(PΛ) → Tl (Mod-Λ) is fully faith-
ful.

(2) The mapHomΛ(A,Z) → Hom[Qr (A),Qr (Z)] is invertible for any moduleZ ∈
D(Λ)⊥ and any moduleA. In particular the exact functorQr iCoCM: CoCM(IΛ) →
Tr (Mod-Λ) is fully faithful.

The next remark gives more concrete realizations of the stabilization categories.

Remark 4.3. Let Hb(PΛ), respectivelyHb(IΛ), be the bounded homotopy category
complexes of projective, respectively injective, modules. Also letDb(Mod-Λ) be the
bounded derived category of Mod-Λ. ThenHb(PΛ) andHb(IΛ) are thick subcategories o
Db(Mod-Λ) and by a result of Keller–Vossieck [40], see also [18], the canonical fun
Db(Mod-Λ)/Hb(IΛ) ← Mod-Λ → Db(Mod-Λ)/Hb(PΛ) from Mod-Λ to the correspond
ing Verdier quotients induce triangle equivalences:

Tl (Mod-Λ)
≈−→ Db(Mod-Λ)/Hb(PΛ) and Tr

(
Mod-Λ

) ≈−→ Db(Mod-Λ)/Hb(IΛ).

If Hb(PΛ), respectivelyHb(IΛ), is the bounded homotopy category of complexes o
nitely generated projective, respectively injective, modules andDb(mod-Λ) is the bounded
derived category of mod-Λ, then the above triangle equivalences restrict to triangle eq
alences

Tl (mod-Λ)
≈−→ Db(mod-Λ)/Hb(PΛ) and Tr

(
mod-Λ

) ≈−→ Db(mod-Λ)/Hb(IΛ).

We denote byΩ∞(Mod-Λ), respectivelyΩn(Mod-Λ), the full subcategory o
Mod-Λ consisting of the projectives and the arbitrary syzygy, respectivelynth-syzygy,
modules. The induced stable categories modulo projectives are denoted byΩ∞(Mod-Λ)

and Ωn(Mod-Λ) respectively. Dually we denote byΣ∞(Mod-Λ), respectively
Σn(Mod-Λ), the full subcategory of Mod-Λ consisting of the injectives and the arbitra
cosyzygy, respectivelynth-cosyzygy, modules. The induced stable categories modul
jectives are denoted byΣ∞(Mod-Λ), respectivelyΣn(Mod-Λ) respectively. Part (i) o
the following result generalizes a result of Happel [33] and part (iv) generalizes a res
Auslander–Buchweitz [4].

Proposition 4.4. If idΛΛ = d < ∞, then we have the following.

(i) The stabilization functors

( ) ( )

Qr : Mod-Λ → Tr Mod-Λ and Pl : Mod-Λop → Tl Mod-Λop
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are surjective on objects: ∀(A,n) ∈ Tr (Mod-Λ), ∀(A,n) ∈ Tl (Mod-Λop) we have:

(
A,n

) ∼=
{

Qr (Σ
n(A)), if n � 0,

Qr (Ω−n(A)), if n < 0.
and (A,n) ∼=

{
Pl (Ω

−n(A), if n � 0,
Pl (Σ

n(A)), if n > 0.

(ii) Ω∞(Mod-Λ) = CM(PΛ) ⊆ Ωd(Mod-Λ) ⊆ ⊥Λ.
(iii) Σ∞(Mod-Λop) = CoCM(IΛop) ⊆ Σd(Mod-Λop) ⊆ D(Λ)⊥.
(iv) CM(PΛop) = ⊥Λop andCoCM(IΛ) = D(Λ)⊥.

(v) ⊥̂Λ = Mod-Λ andD̃(Λ)⊥ = Mod-Λop.

Proof. (i) Let (A,n) be inTr (Mod-Λ) and let· · · → P1 → P0 → A → 0 be a projective
resolution ofA. Applying the stabilization functorQr to the right triangleΩ(A) → P 0 →
A → ΣΩ(A) in Mod-Λ and using that:

(α) any projective module has finite injective dimension by hypothesis, and
(β) Qr kills the modules of finite injective dimension, we have an isomorphismQr (A) ∼=

Qr (ΣΩ(A)) in Tr (Mod-Λ).

Similarly considering the right triangleΩ2(A) → P 1 → Ω(A) → ΣΩ2(A) in Mod-Λ we
have an isomorphismQr (Ω(A)) ∼= Qr (ΣΩ2(A)) in Tr (Mod-Λ). Then we have isomor
phisms

Qr

(
A

) ∼= Qr

(
ΣΩ(A)

) ∼= ΣQr

(
Ω(A)

) ∼= Qr

(
Σ2Ω2(A)

)
.

Inductively we obtain isomorphismsQr (A) ∼= Qr (Σ
tΩt (A)), ∀t � 0. If n � 0, then(

A,n
) = Σn

(
A,0

) = ΣnQr

(
A

) = Qr

(
Σn

(
A

))
.

If n < 0, then

(
A,n

) = Σn
(
A,0

) = ΣnQr

(
A

) ∼= ΣnQr

(
Σ−nΩ−n(A)

) = ΣnΣ−nQr

(
Ω−n(A)

)
= Qr

(
Ω−n(A)

)
.

HenceQr is surjective on objects. The other assertion follows by duality.
(ii), (iii) and (v). For any moduleC we have Extn(Ωd(C),Λ) = Extn+d(C,Λ) = 0,

∀n � 1. HenceΩd(C) ∈ ⊥Λ. It follows that Ω∞(Mod-Λ) ⊆ Ωd(Mod-Λ) ⊆ ⊥Λ. This
implies that̂⊥Λ = Mod-Λ andΩ∞(Mod-Λ) ⊆ CM(PΛ) ⊆ Ω∞(Mod-Λ); hence

Ω∞(Mod-Λ) = CM(PΛ).

Finally the equalities

Σ∞(
Mod-Λop) = CoCM(IΛop) and D̃(Λ)⊥ = Mod-Λop
are proved similarly.
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(iv) Clearly CoCM(IΛ) ⊆ D(Λ)⊥. If A ∈ D(Λ)⊥ and(†) : 0 → A → I0 → I1 → ·· · is
an injective coresolution ofA, then we have an acyclic coresolution(††) : 0 → N−(A) →
N−(I0) → N−(I1) → ·· · of N−(A) by projectives. It follows thatN−(A) is an arbitrary
syzygy module, i.e.,N−(A) ∈ Ω∞(Mod-Λ) and thereforeN−(A) is Cohen–Macaulay
by (ii). Then N+N−(A) is a CoCohen–Macaulay module. IfΣn(A) are the cosyzygie
of A, then since D(Λ)⊥ is coresolving, we haveΣn(A) ∈ D(Λ)⊥, henceN−(Σn(A)) =
Im N−(In → In+1) := Kn. Observe that the modulesKn are also arbitrary syzygy mod
ules, hence they are Cohen–Macaulay. We now show that the natural mapN+N−(A) → A

is invertible. ApplyingN+ to the exact sequence(††) and using thatKn lies in CM(PΛ),
we infer that LtN+(Kn) = 0, ∀t � 1, ∀n � 0. Hence the sequence 0→ N+N−(A) →
N+N−(I0) → N+N−(I1) → ·· · is exact. Since the natural mapsN+N−(In) → In are in-
vertible∀n � 0, so is the natural mapN+N−(A) → A. SinceN+N−(A) lies in CoCM(IΛ),
we infer that so doesA. We conclude that D(Λ)⊥ ⊆ CoCM(IΛ). The equality CM(PΛop) =
⊥Λop is proved similarly. �
4.2. Costabilizations

Dually to any left, respectively right, triangulated categoryC we can associate in a un
versal way a triangulated categoryR(C). More precisely there exists a left, respectiv
right, exact functorZ :R(C) → C such that for any left, respectively right, exact func
F :R → C from a triangulated categoryR, there exists an exact functorF ∗ :R → R(C),
unique up to isomorphism, such thatZF ∗ ∼= F . The categoryR(C) is called thecostabi-
lization of C and the functorZ is called thecostabilization functor. By [18] any left or
right triangulated category admits its costabilization which can be realized as an ap
ate category of spectra of objects.

By [18] the costabilization of the stable category Mod-Λ considered as a left trian
gulated category, which we call the(projective) costabilization category of Λ, is the
homotopy categoryHAc(PΛ) of unbounded acyclic complexes of projective modules.
costabilization functor

Z :HAc(PΛ) → Mod-Λ

which we call(projective) costabilization functor, is given as follows. IfP • → · · · →
P −1 → P 0 → P 1 → ·· · is an acyclic complex of projectives, then

Z
(
P •) = Im

(
P −1 → P 0).

ThenZ is left exact in the sense thatZ sends triangles inHAc(PΛ) to left triangles in Mod-Λ
and satisfiesZ(P •[−1]) ∼=−→ ΩZ(P •), ∀P • ∈HAc(PΛ). In particular ImZ ⊆ Ω∞(Mod-Λ).

By a basic result of Jørgensen [36], the costabilization functor admits a left adjoin

Sp : Mod-Λ →HAc(PΛ)

called the(projective) spectrification functor, which is right exact. That is,Sp sends
right triangles in Mod-Λ to triangles inHAc(PΛ) and satisfiesSp(ΣP(A)) ∼= Sp(A)[1],

∀A ∈ Mod-Λ.
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By the universal property of stabilizations there exists a unique up to isomorphism
gulated functorSp∗ :Tr (Mod-Λ) →HAc(PΛ) such thatSp∗Pr = Sp. SettingHAc(PΛ)b :=
Hb

Ac(PΛ), we have the following result which gives a description of the compact objec
the projective costabilization.

Proposition 4.5 [36]. The spectrification functorSp induces a triangle equivalence:

Spb := Sp∗|Tr (mod-Λ) :Tr (mod-Λ)
≈−→ Hb

Ac(PΛ).

We are interested in the relations between the projective costabilization and C
Macaulay modules. In this connection the following result will be useful.

Proposition 4.6. The triangulated functorSpiCM : CM(PΛ) → HAc(PΛ) is fully faithful
and admits the functorRCMZ as a right adjoint. Moreover there exists a torsion p
(CM(PΛ),Z−1(P≺∝

Λ
)) in HAc(PΛ) identifyingCM(PΛ) with Im SpiCM andZ−1(P≺∝

Λ
) =

{P • ∈ HAc(PΛ) | Z(P •) ∈ P≺∝
Λ

}.

Proof. For any moduleX ∈ CM(PΛ) and any complexP • ∈ HAc(PΛ) we have isomor-
phisms:

Hom
(
SpiCM(X),P •) ∼= HomΛ

(
iCM(X),Z

(
P •)) ∼= HomΛ

(
X,RCMZ

(
P •)).

HenceSpiCM is left adjoint toRCMZ. Clearly SpiCM, henceRCMZ, is triangulated. By
the construction ofSp in [36], it follows that forX in CM(PΛ), SpiCM(X) is the com-

plex obtained by splicing a projective resolution· · · → P −2 → P −1 → X → 0 of X and
an exact coresolution 0→ X → P 0 → P1 → ·· · of X whereX → P 0 and the maps
Im(P n → P n+1) � P n+1 are left projective approximations,∀n � 0. This clearly implies
thatSpiCM is fully faithful. Consequently we have a torsion pair(Im SpiCM,KerRCMZ) in
HAc(PΛ), where ImSpiCM is triangle equivalent to CM(PΛ). Finally P • lies in KerRCMZ

iff RCMZ(P •) = 0 iff Z(P •) lies inP≺∝
Λ

. �
Corollary 4.7. The following are equivalent.

(i) The functorSpiCM : CM(PΛ) → HAc(PΛ) is a triangle equivalence.

(ii) Ω∞(Mod-Λ) ⊆ ⊥Λ. That isΛ is right CoGorensteinin the sense of[18].
(iii) Ω∞(Mod-Λ) ∩ P≺∝

Λ = PΛ.

If (i) holds, thenΛ satisfies the Nunke condition: if A ∈ Mod-Λ is such that

ExtnΛ
(
D(Λ),A

) = 0, ∀n � 0,
thenA = 0. In particular Λ satisfies the(generalized) Nakayama conjecture[13].
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Proof. The equivalence (i)⇔ (iii) follows from the torsion pair(Im SpiCM,KerRCMZ) in
HAc(PΛ). Clearly (ii) implies that

Ω∞(Mod-Λ) = CM(PΛ).

Then the counitSpiCMRCMZ → IdHAc(PΛ) is invertible. HenceSpiCM is a triangle equiv-
alence. The implication (i)⇒ (ii) follows from [18]. If (i) holds, then let 0→ A →
I0 → I1 → ·· · be an injective coresolution ofA. Applying N− we obtain an acyclic
complex of projectives 0→ N−(I0) → N−(I1) → ·· · . Applying N+ we obtain an ex-
act sequence 0→ L1N+(K) → N+N−(I0) → N+N−(I1) → N+(K) → 0, whereK :=
Coker(N−(I0) → N−(I1)), which implies that L1N+(K) ∼= A. ThenA = 0 sinceK lies in
Ω∞(Mod-Λ). �

Combining Proposition 4.4(ii), Proposition 4.5 and Corollary 4.7, we have the follow-
ing consequence which will be useful in the last section.

Corollary 4.8. If idΛΛ < ∞, then we have the following.

(i) The costabilization functorZ :HAc(PΛ) → Mod-Λ admits a factorization

Z = iCMZCM :HAc(PΛ)
ZCM−−→ CM(PΛ)

iCM−−→ Mod-Λ

where the exact functorZCM :HAc(PΛ)
≈−→ CM(PΛ) is a triangle equivalence with

quasi-inverseSpiCM : CM(PΛ)
≈−→ HAc(PΛ). In particular Z is fully faithful.

(ii) Z induces a triangle equivalenceZb
CM :Hb

Ac(PΛ)
≈−→ CM(PΛ)b.

(iii) The spectrification functorSp : Mod-Λ → HAc(PΛ) induces a triangle equivalence:

Zb
CMSpb :Tr (mod-Λ)

≈−→ CM(PΛ)b.

Remark 4.9. The above results admit dual versions concerning the injective spectrific
functor and the costabilization of the stable category modulo injectives which is eq
lent to the unbounded homotopy categoryHAc(IΛ) of acyclic complexes of injectives. W
state only the following equivalent conditions ensuring that the projective costabiliz
is triangle equivalent to the injective costabilization. Details are left to the reader (not
these conditions hold for Gorenstein algebras).

(i) The Nakayama functorsN± induce triangle equivalences(N+,N−) :HAc(PΛ)
≈−→

HAc(IΛ).
(ii) Ω∞(Mod-Λ) ⊆ ⊥Λ andΣ∞(Mod-Λ) ⊆ D(Λ)⊥.

∞ ≺∝ ∞ ≺∝
(iii) Ω (Mod-Λ) ∩ PΛ = PΛ andΣ (Mod-Λ) ∩ IΛ = IΛ.
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5. Auslander–Reiten operators and exact sequences of stabilization categories

In this section we study the behavior of the (Co)Cohen–Macaulay (co)torsion
and the Auslander–Reiten operators under stabilizations. More precisely we show t
torsion pairs(CM(PΛ),P≺∝

Λ
) and(I≺∝

Λ ,CoCM(IΛ)) in the respective stable module ca
egories can be lifted to torsion pairs in the triangulated stabilizations. In addition the
equivalencesτ± allow us to obtain several identifications which will be useful later.

5.1. Nakayama functors and stabilization categories

Since the adjoint pair(N+,N−) of Nakayama functors induces an equivalence betw
PΛ andIΛ, it induces an adjoint pair(N+,N−) of functorsN+ : Mod-Λ � Mod-Λ : N−.

Lemma 5.1. For an exact sequenceA → B → C → 0 in Mod-Λ, the following are equiv
alent:

(i) A → B is PΛ-monic, i.e., any mapA → P with P projective, factors throughA → B.
(ii) The sequence0→ N+(A) → N+(B) → N+(C) → 0 is exact.

In particular the Nakayama functorN+ : Mod-Λ → Mod-Λ is right exact. Moreover∀A ∈
Mod-Λ, ∀X ∈ CM(PΛ), there are isomorphisms,∀n � 1:

ExtnΛ
(
A,N+(X)

) ∼= ExtnΛ
(
N−(

ZA
)
,X

)
and HomΛ

(
A,N+(X)

) ∼= HomΛ

(
N−(

ZA
)
,X

)
.

Proof. The equivalence (i)⇔ (ii) is straightforward. Now let(T ) :A → B → C →
ΣP(A) be a right triangle in Mod-Λ. Then (T ) is induced by a right exact sequen
A

g−→ B → C → 0 in Mod-Λ whereg is PΛ-monic. Hence we have a short exact
quence 0→ N+(A) → N+(B) → N+(C) → 0 in Mod-Λ, which induces a right triangl
N+(A) → N+(B) → N+(C) → ΣN+(A) in Mod-Λ. If B is projective, thenC is iso-
morphic toΣP(A) and thereforeN+(ΣP(A)) ∼= ΣN+(A)). Hence the induced functo
N+ : Mod-Λ → Mod-Λ is right exact. Now by Proposition 3.8 we have isomorphisms
∀n � 1:

ExtnΛ
(
A,N+(X)

) ∼= HomΛ

(
A,Σn

(
N+(X)

)) ∼= HomΛ

(
LCoCM

(
A

)
,N+(

Σn
P(X)

))
∼= HomΛ

(
N−LCoCM

(
A

)
,Σn

P(X)
) ∼= HomΛ

(
ΩnN−LCoCM

(
A

)
,X

)
∼= ExtnΛ

(
N−(

ZA
)
,X

)
,

for anyX ∈ CM(PΛ) andA ∈ Mod-Λ. The second isomorphism follows similarly.�
Let Pr : Mod-Λ → Tr (Mod-Λ), respectivelyQr : Mod-Λ → Tr (Mod-Λ), be the right

stabilization functor of the right triangulated category Mod-Λ, respectivelyMod-Λ. The
following result shows that the right stabilization categoriesTr (Mod-Λ) andTr (Mod-Λ)
are triangle equivalent.
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Theorem 5.2. The stable equivalenceτ+ : Mod-Λ ≈−→ Mod-Λ and the stable Nakayam
functorN+ : Mod-Λ → Mod-Λ are right exact and induce triangle equivalencesτ̃+, Ñ+ ∼=
Σ2τ̃+ :Tr (Mod-Λ)

≈−→ Tr (Mod-Λ), making the following diagram commutative:

Mod-Λ
τ+,N+

Pr

Mod-Λ

Qr

Tr (Mod-Λ)
τ̃+,Ñ+

Tr (Mod-Λ).

Proof. Let A be in Mod-Λ and letA → P A
0 → ΣP(A) → 0 be a right exact sequenc

wheregA :A → P A
0 is a right projective approximation ofA. Let gA := ε ◦ µ :A ε−→

ΩΣP(A)
µ−→ P A

0 be the canonical factorization ofgA. By Lemma 5.1, the sequence 0→
N+(A) → N+(P A

0 ) → N+(ΣP(A)) → 0 is exact. It follows that the mapN+(ε) : N+(A) →
N+(ΩΣP(A)) is invertible. Now letP2

λ−→ P1
κ−→ A → 0 be a projective presentation ofA.

Then

P1
κ◦gA−−−→ P A

0 → ΣP(A) → 0

is a projective presentation ofΣP(A) and by construction ofτ+, we haveτ+(A) ∼=
Ker(N+(λ)) andτ+(ΣP(A)) ∼= Ker(N+(κ ◦ ε)). SinceN+(ε) is invertible, we have:

τ+(
ΣP(A)

) ∼= KerN+(κ) ∼= Im N+(λ)

and a short exact sequence 0→ τ+(A) → N+(P2) → τ+(ΣP(A)) → 0. SinceN+(P2)

is injective, it follows thatΣτ+(A)
∼=−→ τ+(ΣP(A)). Therefore we have a natural is

morphismτ+ΣP
∼=−→ Στ+ : Mod-Λ → Mod-Λ. Sinceτ+ commutes with the suspensio

functors, by the universal property of the stabilizations (without considering the invo
triangulated structures), it follows that there exists a unique functorτ̃+ :Tr (Mod-Λ) →
Tr (Mod-Λ) which commutes with the suspension functors and is such that:τ̃+Pr = Qrτ

+.
Sinceτ+ is an equivalence, it follows that̃τ+ is an equivalence. We show that̃τ+ is
triangulated. Since the functorN+ : Mod-Λ → Mod-Λ is right exact, by the universa
property of the stabilizations, there exists a unique exact functorÑ+ : Tr (Mod-Λ) →
Tr (Mod-Λ) making the square above commutative. By constructionÑ+ is given by
Ñ+(A,n) = (N+(A),n), and τ̃+ is given byτ̃+(A,n) = (τ+(A),n). From the exact se
quence 0→ τ+(A) → N+(P1) → N+(P0) → N+(A) → 0 defining the objectτ+(A) up
to injective summands, it follows thatΣ2τ+(A) ∼= N+(A) in Mod-Λ. Then for any objec
(A,n) in Tr (Mod-Λ) we have isomorphisms:

Σ2τ̃+(A,n) ∼= Σ2(τ+(A),n
) ∼= (

Σ2τ+(A),n
) ∼= (

N+(A),n
) ∼= Ñ+(A,n).

Hence we have a natural isomorphism of functorsΣ2τ̃+ ∼=−→ Ñ+. SinceΣ2 and τ̃+ are
equivalences, so is̃N+. Since the latter is exact, we infer thatÑ+ is a triangle equivalenc

and then so is̃τ+. �
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For later use we state below without proof the dual versions of the above results.

Proposition 5.3.

(1) If 0→ A → B → C is exact inMod-Λ, then the following are equivalent:
(i) B → C is IΛ-epic, i.e., any mapI → C with I injective, factors throughB → C.

(ii) The sequence0→ N−(A) → N−(B) → N−(C) → 0 is exact.
In particular the Nakayama functorN− : Mod-Λ → Mod-Λ is left exact. Moreove
∀B ∈ Mod-Λ, ∀Z ∈ CoCM(IΛ), we have isomorphisms,∀n � 1:

ExtnΛ
(
N−(Z),B

) ∼= ExtnΛ
(
Z,N+(XB)

)
and

HomΛ

(
N−(Z),B

) ∼= HomΛ

(
Z,N+(XB)

)
.

(2) The stable equivalenceτ− : Mod-Λ ≈−→ Mod-Λ and the left exact Nakayama funct
N− : Mod-Λ ≈−→ Mod-Λ induce triangle equivalences

τ̃−, Ñ− :Tl

(
Mod-Λ

) ≈−→ Tl (Mod-Λ), Ω2τ̃− ∼= Ñ−

which commute with the stabilization functorsQl andPl .

5.2. Exact sequences of stabilization categories

We have seen that the inclusioniCM : CM(PΛ) ↪→ Mod-Λ admits a right adjointRCM,
with kernel KerRCM = P≺∝

Λ
. The following result shows thatiCM admits a left adjoint

LCM with kernel⊥CM(PΛ).

Lemma 5.4. The inclusioniCM : CM(PΛ) ↪→ Mod-Λ admits a right exact left adjoin
LCM : Mod-Λ → CM(PΛ). MoreoverLCM = N−LCoCMN+ and KerLCM = ⊥CM(PΛ) is
a right triangulated subcategory ofMod-Λ closed under coproducts.

Proof. If A ∈ Mod-Λ, let 0 → N+(A) → ZN+(A) → WN+(A) → 0 be a special lef
CoCM(IΛ)-approximation ofN+(A). ThenN−(ZN+(A)) is Cohen–Macaulay; ifA is pro-
jective, thenZN+(A) = N+(A) ⊕ WN+(A) which implies thatZN+(A) is injective, hence
N−(ZN+(A)) is projective. SettingLCM(A) = N−(ZN+(A)), it is easy to see that in this wa
we obtain a well-defined functorLCM : Mod-Λ → CM(PΛ) and by construction we have
LCM = N−LCoCMN+. Using Proposition 3.4 we have, for any moduleA and any Cohen–
Macaulay moduleX, the following natural isomorphisms

HomΛ

[
N−LCoCMN+(A),X

] ∼= HomΛ

[
N+N−LCoCMN+(A),N+(X)

]
∼= HomΛ

[
LCoCMN+(A),N+(X)

]
∼= HomΛ

[
N+(A),N+(X)

]
[ ]
∼= HomΛ A,N−N+(X) ∼= HomΛ(A,X)



164 A. Beligiannis / Journal of Algebra 288 (2005) 137–211

s a

es
of
nstein
e
t-

nd

ce
which show thatLCM is left adjoint to the inclusioniCM. Since the stable functorsN+
and LCoCM are right exact and the functorN−|CoCM(IΛ) is exact it follows thatLCM is

right exact. Finally that⊥CM(PΛ) is a right triangulated category with coproducts i
consequence of [22].�

We have seen that the Auslander–Reiten operatorsτ± induce quasi-inverse equivalenc
between CM(PΛ) and CoCM(IΛ). The following result, which generalizes a result
Auslander–Reiten [11, Proposition 5.5] from finitely generated modules over a Gore
algebra to arbitrary modules over any Artin algebra, shows thatτ± induce quasi-invers
equivalences between⊥CM(PΛ) andI≺∝

Λ and further gives a description of the left Ex
orthogonal subcategory⊥ CM(PΛ).

Theorem 5.5.

(1) The Auslander–Reiten operatorsτ± induce quasi-inverse stable equivalences

τ+ : ⊥CM(PΛ) ≈ I≺∝
Λ : τ−≈

which make the following diagram of right triangulated categories commutative:

0 ⊥CM(PΛ)

τ+ ≈

Mod-Λ
LCM

τ+ ≈

CM(PΛ)

τ+ ≈

0

0 I≺∝
Λ Mod-Λ

LCoCM
CoCM(IΛ) 0

(2) The Auslander–Reiten operatorsτ± induce quasi-inverse stable equivalences

τ+ : ⊥ CM(PΛ)
≈ I≺∝

Λ ∩ Σ∞(Mod-Λ) : τ−≈
.

Proof. (1) Let A be in⊥CM(PΛ), i.e.,LCM(A) = 0. LetA → P A → ΣP(A) → 0 be ex-
act wheref :A → P A is the minimal left projective approximation ofA. If α :A → X

is a map, whereX is Cohen–Macaulay, thenα factors through a projective module a
thereforeα factors throughf . We infer thatf is a left CM(PΛ)-approximation ofA.
Applying N+ to this sequence, we get an exact sequence 0→ N+(A) → N+(P A) →
N+(ΣP(A)) → 0, which, by Lemma 5.4, is a special left CoCM(IΛ)-approximation of
N+(A). In particularN+(ΣP(A)) lies inI≺∝

Λ and thereforeN+(A) lies inI≺∝
Λ sinceI≺∝

Λ is
resolving. IfP1 → P0 → A → 0 is a projective presentation ofA, then the exact sequen
0 → τ+(A) → N+(P1) → N+(P0) → N+(A) → 0 shows thatτ+(A) lies in I≺∝

Λ . On the

other hand ifW lies in I≺∝
Λ , let τ−(W) → Xτ−(W) be a left CM(PΛ)-approximation of

∼ −

τ−(W). Then the mapτ+τ−(W)

=−→ W → τ+(Xτ (W)) is zero inMod-Λ sinceW lies in
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I≺∝
Λ andτ+(Xτ−(W)) is CoCohen–Macaulay. It follows that the mapτ−(W) → Xτ−(W)

is zero in Mod-Λ. Henceτ−(W) lies in ⊥CM(PΛ) and consequently the stable equiv
lenceτ+ : Mod-Λ ≈−→ Mod-Λ restricts to an equivalenceτ+ : ⊥CM(PΛ)

≈−→ I≺∝
Λ with

quasi-inverseτ− :I≺∝
Λ

≈−→ ⊥CM(PΛ).
(2) Let A be in⊥ CM(PΛ), i.e., ExtnΛ(A,X) = 0, ∀n � 1, ∀X ∈ CM(PΛ). In particular

A ∈ ⊥Λ and therefore LnN+(A) = 0, ∀n � 1. Then clearly HomΛ(Ωn(A),CM(PΛ)) = 0,
and thereforeΩn(A) ∈ ⊥CM(PΛ), ∀n � 1. Then by part(1) it follows that τ+(Ωn(A))

lies inI≺∝
Λ , ∀n � 1. Let

· · · → P −2 f −1−−→ P −1 f 0−→ A → 0

be a projective resolution ofA. Using thatA ∈ ⊥Λ, it follows that we have an ex
act sequence· · · → N+(P −2) → N+(P −1) → N+(A) → 0 such that KerN+(f −n) ∼=
τ+(Ωn−1(A)), ∀n � 1. SinceI≺∝

Λ is coresolving, this implies thatτ+(A) lies in I≺∝
Λ ∩

Σ∞(Mod-Λ). Therefore the stable equivalenceτ+ : Mod-Λ → Mod-Λ restricts to a fully
faithful functor

τ+ : ⊥ CM(PΛ) ↪→ I≺∝
Λ ∩ Σ∞(Mod-Λ).

Now let B be in I≺∝
Λ ∩ Σ∞(Mod-Λ) and let· · · → I−2 → I−1 → B → 0 be an exac

sequence where theI−s are injective. Then the sequence· · · → N−(I−2) → N−(I−1) →
N−(B) → 0 is a projective resolution ofN+(B). Applying N+ to this resolution and usin
thatN+N−(I t ) ∼= I t , we infer thatN+N−(B) ∼= B. Hence for any Cohen–Macaulay modu
X, ExtnΛ(N+(B),X) is thenth cohomology of the complex HomΛ(N−(I ∗),X). SinceX ∼=
N−N+(X), by the above argument it follows that Extn

Λ(N−(B),X) is thenth cohomology
of the complex HomΛ(I ∗,N+(X)) which is clearly zero sinceB lies inI≺∝

Λ andN+(X) is
CoCohen–Macaulay. We infer that Extn

Λ(N−(B),X) = 0, ∀n � 1 and thereforeN−(B) ∈
⊥ CM(PΛ). Now let 0→ B → I0 → I1 → Σ2(B) → 0 be the start of a minimal injectiv
resolution ofB. Then we have an exact sequence 0→ N−(B) → N−(I0) → N−(I1) →
τ−(B) → 0. Using that for any Cohen–Macaulay moduleX we have isomorphism
HomΛ(N−(I t ),X) ∼= HomΛ(I t ,N+(X)), t = 0,1, we infer easily the isomorphism
Ext1Λ(τ−(B),X) ∼= Ext1Λ(Σ2(B),N+(X)) and Ext2Λ(τ−(B),X) ∼= Ext1Λ(Σ(B),N+(X)).
SinceB lies in I≺∝

Λ andI≺∝
Λ is coresolving, it follows thatΣt(B) lies in I≺∝

Λ . Then the
above isomorphisms show that Ext1

Λ(τ−(B),X) = 0 = Ext2Λ(τ−(B),X) sinceN+(X) is
CoCohen–Macaulay. Also sinceN−(B) = Ω2(τ−(B)) andN−(B) lies in ⊥ CM(PΛ), we
infer thatτ−(B) lies in ⊥ CM(PΛ). Sinceτ+τ−(B) ∼= B, we infer thatτ+ is surjective on
objects. �

We now show that the exact sequence above behaves well with respect to sta
tion. First recall that a sequence of triangulated categories and exact functors 0→ B G−→
A F−→ C → 0 is calledshort exact if G is the inclusion of a thick subcategory a
F induces an equivalenceA/B ≈−→ C. It is called localization, respectivelycolocaliza-
tion, exact if F admits a right, respectively left, adjoint. Then it is well known t
the right, respectively left, adjoint ofF is fully faithful and G admits a right, respec

tively left, adjoint. Consider the right exact reflectionsLCM : Mod-Λ → CM(PΛ) and
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LCoCM: Mod-Λ → CoCM(IΛ). By the universal property of right stabilizations, the
exist unique exact functorsL∗

CM :Tr (Mod-Λ) → CM(PΛ) and L∗
CoCM:Tr (Mod-Λ) →

CoCM(IΛ) such thatL∗
CMPr = LCM andL∗

CoCMQr = LCoCM. Note that by constructio
L∗

CM(A,n) = Ω−nLCM(A) andL∗
CoCM(A,n) = ΣnLCoCM(A).

Proposition 5.6. There exists a commutative diagram of localization short exact seque

0 Tr (
⊥CM(PΛ))

τ̃+,Ñ+ ≈

Tr (Mod-Λ)
L∗

CM

τ̃+,Ñ+ ≈

CM(PΛ)

τ̃+,Ñ+ ≈

0

0 Tr (I
≺∝
Λ ) Tr (Mod-Λ)

L∗
CoCM

CoCM(IΛ) 0

of triangulated categories, where the vertical functors are triangle equivalences.

Proof. By Proposition 3.4 and Theorem 5.5 it follows that the vertical arrows in the righ
square of the diagram are triangle equivalences. For any object(A,n) in Tr (Mod-Λ) we
have isomorphisms:

N+L∗
CM(A,n) = N+Ω−nLCM(A) = ΣnN+LCM(A) = ΣnN+N−LCoCMN+(A)

∼= ΣnLCoCMN+(A) = L∗
CoCM

(
N+(A),n

) = L∗
CoCMÑ+(A,n)

which show that there exists a natural isomorphism:N+L∗
CM

∼=−→ L∗
CoCMN̂+ and therefore

the right square in the above diagram commutes. By [22] we know that the lower seq
is a localization exact sequence of triangulated categories. Hence so is the upper se
and the functorŝτ+, N̂+ induce the left vertical equivalences which clearly coincide w
τ̃ +, Ñ+. The right adjoint ofL∗

CM, respectivelyL∗
CoCM, is given by the unique exact exte

sion of the inclusion functori∗CM, respectivelyi∗CoCM. �
The above results admit dual versions which we include below for later use.

Proposition 5.7.

(1) The inclusion iCoCM: CoCM(IΛ) ↪→ Mod-Λ admits a left exact right adjoin
RCoCM: Mod-Λ → CoCM(IΛ). MoreoverRCoCM = N+RCMN− and KerRCoCM =
CoCM(IΛ)⊥.

(2) The Auslander–Reiten operatorsτ− andτ+ induce quasi-inverse equivalences

τ− : CoCM(IΛ)⊥ ≈
P≺∝

Λ
: τ+≈

and

− ⊥ P≺∝ ∩ Ω∞(Mod-Λ) : τ+≈

τ : CoCM(IΛ) ≈ Λ
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which make the following diagram of left triangulated categories commutative:

0 CoCM(IΛ)⊥

τ− ≈
Mod-Λ

RCoCM

τ− ≈

CoCM(IΛ)

τ− ≈

0

0 P≺∝
Λ

Mod-Λ
RCM

CM(PΛ) 0

This diagram extends to a colocalization exact sequence of triangulated categor:

0 Tl (CoCM(IΛ)⊥)

τ̃−,Ñ− ≈
Tl (Mod-Λ)

R∗
CoCM

τ̃−,Ñ− ≈

CoCM(IΛ)

τ̃−,Ñ− ≈

0

0 Tl (P
≺∝
Λ

) Tl (Mod-Λ)
R∗

CM
CM(PΛ) 0

Let E be any one of the categoriesPΛ, IΛ, CM(PΛ), CoCM(IΛ), P≺∝
Λ , I≺∝

Λ . ThenE
is an exact subcategory of Mod-Λ with split idempotents. LetDb(E) be the bounded de
rived category ofE [48]. The following result shows that the exact inclusionE ↪→ Mod-Λ
extends to a full exact embeddingDb(E) ↪→ Db(Mod-Λ) which fits nicely in an exact com
mutative diagram of triangulated categories. We state it only forE = CM(PΛ), noting that
there are similar exact commutative diagrams on the level of derived categories in
by the inclusionsP≺∝

Λ ↪→ Mod-Λ ←↩ I≺∝
Λ and CoCM(IΛ) ↪→ Mod-Λ. We leave to the

reader to state the other versions.

Proposition 5.8. The exact inclusioniCM : CM(PΛ) ↪→ Mod-Λ extends to a fully faith
ful exact functorDb(iCM) : Db(CM(PΛ)) → Db(Mod-Λ) with strict image the complexe
X• ∈ Db(Mod-Λ) such that the canonical morphismδX• :X• → RHomΛ(D(Λ),X• ⊗L

Λ

D(Λ)) is invertible. Moreover there exists an exact commutative diagram of triangu
categories:

0 0

0 Db(PΛ) Db(CM(PΛ))

Db(iCM)

CM(PΛ)

Pl iCM

0

0 Db(PΛ) Db(Mod-Λ) Tl (Mod-Λ) 0

Tl (P
≺∝
Λ

) Tl (P
≺∝
Λ

)

0 0
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Proof. Since CM(PΛ) is contravariantly finite resolving, it is not difficult to see (co
pare [28]) thatDb(iCM) is fully faithful and clearly its strict image consists of all complex
A such thatA ∼= X in D(Mod-Λ) whereX lies inHb(CM(PΛ)). Using the characterizatio
of Cohen–Macaulay modules in Lemma 3.3 it follows easily that a bounded complexX•
lies in the strict image ofDb(iCM) iff the canonical mapδX• :X• → RHomΛ(D(Λ),X•⊗L

Λ

D(Λ)) is invertible, see also [30]. Then exactness and commutativity of the two u
squares follow from [18,40,56], and exactness and commutativity of the remaining p
the diagram follows from the localization sequence of Proposition 5.7 induced from the
torsion pair(CM(PΛ),Tl (P

≺∝
Λ

)) in Tl (Mod-Λ). �
We have seen that the stabilization categoriesTr (Mod-Λ) andTr (Mod-Λ), respectively

Tl (Mod-Λ) andTl (Mod-Λ), are always triangle equivalent. We don’t know if this ho
for the stabilizationsTl (Mod-Λ) andTr (Mod-Λ). We close this section with the followin
consequences of the exact (co)localization sequences constructed above which,
several functorial characterizations of Gorensteinness, shows that in the Gorenste
the stabilization categories can be realized in the stable module categories, and th
lizationsTl (Mod-Λ) andTr (Mod-Λ) are triangle equivalent.

Corollary 5.9. The following are equivalent.

(i) Λ is Gorenstein.
(ii) The functorR∗

CM :Tl(Mod-Λ) → CM(PΛ) is a triangle equivalence.
(iii) The functorL∗

CoCM:Tr (Mod-Λ) → CoCM(IΛ) is a triangle equivalence.
(iv) The functorL∗

CM :Tr (Mod-Λ) → CM(PΛ) is a triangle equivalence.
(v) The functorR∗

CoCM:Tr (Mod-Λ) → CoCM(IΛ) is a triangle equivalence.
(vi) The functorDb(iCM) : Db(CM(PΛ)) → Db(Mod-Λ) is a triangle equivalence.

(vii) The functorDb(iCoCM) : Db(CoCM(IΛ)) → Db(Mod-Λ) is a triangle equivalence.
(viii) The functori∗CoCMN+R∗

CM :Tl (Mod-Λ) → Tr (Mod-Λ) is a triangle equivalence.
(ix) The functori∗CMN−L∗

CoCM:Tr (Mod-Λ) → Tl (Mod-Λ) is a triangle equivalence.
(x) The exact inclusionPΛ ↪→ P≺∝

Λ extends to a triangle equivalenceDb(PΛ)
≈−→

Db(P≺∝
Λ ).

(xi) The exact inclusionIΛ ↪→ I≺∝
Λ extends to a triangle equivalenceDb(IΛ)

≈−→
Db(I≺∝

Λ ).
(xii) ∀A ∈ Mod-Λ with HomΛ(A,X) = 0, ∀X ∈ CM(PΛ), ∃n � 0 such thatΣn

P(A) is
projective.

(xiii) ∀B ∈ Mod-Λ with HomΛ(Z,B) = 0, ∀Z ∈ CoCM(IΛ), ∃m � 0 such thatΩm
I (B) is

injective.

Proof. By Remark 4.3, Propositions 5.6, 5.7 and Proposition 5.8 and its dual, any one o
the conditions (ii), (v), (vi), (viii) and (x) is equivalent to

( )

Tl P≺∝

Λ
= 0,
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and any one of the conditions (iii), (iv), (vii), (ix), and (xi) is equivalent to

Tr

(
I≺∝

Λ

) = 0.

By Lemma 4.1, Tl (P
≺∝
Λ

) = 0 is equivalent to

P≺∝
Λ = P<∞

Λ

andTr (I
≺∝
Λ ) = 0 is equivalent to

I≺∝
Λ = I<∞

Λ .

These last conditions are equivalent to (i) by Proposition 3.10. Finally the equivalences (
⇔ (xii) and (i) ⇔ (xiii) follow from Propositions 5.6, 5.7 and the fact that the assertio
in (xii) and (xiii) are equivalent reformulations of the conditionsTr (

⊥CM(PΛ)) = 0 and
Tl (CoCM(IΛ)⊥) = 0 respectively. �

6. Compact generators and pure-injective cogenerators

Compact and pure-injective objects play an important role in the investigation of to
pairs in triangulated categories in connection with several finiteness conditions, see
for details. In this section we study the analogous situation in the stable module ca
of an Artin algebra in connection with the (Co)Cohen–Macaulay (co)torsion pairs.

Let A be an additive category. A setX of objects ofA is called agenerating set if
C(X,A) = 0, ∀X ∈ X , implies thatA = 0. Now letC be a pretriangulated category whi
admits all small coproducts. We say thatC is compactly generated if C admits a setX of
objects, which without loss of generality we may assume that is closed underΣ , consisting
of compact generators. It is easy to see that if any monomorphism inC splits, then a set o
compact objectsX in C which is closed underΣ is a generating set iff the objects inX
collectively reflect isomorphisms.

In the sequel we shall need the following easy and rather well-known result (
pare [51]).

Lemma 6.1. Let (F,G) :C → D be an adjoint pair of functors between additive ca
gories. If G preserves coproducts, thenF preserves compact objects. Assume thatC is
pretriangulated where the loop functorΩ preserves coproducts and furtherC admits a set
of compact generators. If any monomorphism inC splits andF preserves compact object
thenG preserves coproducts.

As a direct consequence we have the following.

Corollary 6.2. The reflection functorsLCM : Mod-Λ → CM(PΛ) andLCoCM: Mod-Λ →

CoCM(IΛ) preserve compact objects and generators.
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Proof. Since CM(PΛ) and CoCM(IΛ) are closed under coproducts, the inclusion func
iCM and iCoCM preserve coproducts. Hence by Lemma 6.1 their left adjointsLCM and
LCoCM preserve compact objects, and clearly they preserve generators.�

To proceed further we need a description of the compact objects of the stable m
categories.

Lemma 6.3. The pretriangulated categoriesMod-Λ andMod-Λ are compactly generate
and:

(Mod-Λ)b = mod-Λ and
(
Mod-Λ

)b = mod-Λ.

Proof. The first assertion follows from [19]. Clearly mod-Λ ⊆ (Mod-Λ)b. Let T be a
compact object in Mod-Λ. Clearly we may assume thatT has no non-zero projective sum
mands. LetT/Rad(T ) = ∐

i∈I Si be the top ofT and letε :T → ∐
i∈I Si be the canonica

epimorphism. Consider the following commutative diagram, where the involved map
the natural ones:

∐
i∈I HomΛ(T ,Si)

α

γ

HomΛ(T ,
∐

i∈I Si)

β∐
i∈I HomΛ(T ,Si)

δ
HomΛ(T ,

∐
i∈I Si)

Observe thatα is monic,γ andβ are epics and, by hypothesis,δ is invertible. Letf :T →∐
i∈I Si be a map which factorizes through a projective module. Let

f := κ ◦ λ :T κ−→ A
λ−→

∐
i∈I

Si

be the canonical factorization off . ThenA is semisimple as a submodule of the se
simple module

∐
i∈I Si and thereforeλ is split monic. This implies easily that the mapκ

factorizes through a projective module, say asκ = g ◦ h :T
g−→ P

h−→ A whereh is the pro-
jective cover ofA. Sinceκ is epic andh is essential, it follows thatg is epic and therefore
P is a direct summand ofT . SinceT admits no non-zero projective summands, we in
thatf is zero. Hence the mapβ is invertible and therefore so isα. It follows from this that
the canonical mapε :T → ∐

i∈I Si factors through a finite subcoproduct
∐

j∈J Sj where
J ⊆ I with |J | < ∞. Sinceε is epic, we infer that

∐
j∈J Sj = ∐

i∈I Si and thereforeI = J

is finite. This implies thatT is finitely generated. Hence(Mod-Λ)b ⊆ mod-Λ. Using the
Auslander–Reiten equivalencesτ±, we infer directly that

(
Mod-Λ

)b = mod-Λ. �
For compactly generated triangulated categories there is defined a theory of

which parallels the well-known theory of purity of modules. LetT be a compactly gen

erated triangulated category. A triangle(T ) : A → B → C → Σ(A) in T is calledpure
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if the sequence 0→ T (X,A) → T (X,B) → T (X,C) → 0 is exact for any compact ob
ject X in T . And an objectE is calledpure-injective if the sequence 0→ T (C,E) →
T (B,E) → T (A,E) → 0 is exact for any pure triangle(T ) as above. By [35,42] a mod
uleE in Mod-Λ, respectively an objectE in T , is pure-injective, iff for any index setI the
summation map

∐
I E → E factors through the canonical map

∐
I E → ∏

I E. We refer
to [16,42] for more details concerning purity in triangulated categories.

In the sequel we shall need the following observation which shows that (Co)Co
Macaulay pure-injective objects and modules are closely related.

Lemma 6.4. A Cohen–Macaulay moduleX, respectively CoCohen–Macaulay moduleZ,
is pure-injective inMod-Λ iff the objectX, respectivelyZ, is pure-injective inCM(PΛ),
respectivelyCoCM(IΛ).

Proof. If X is pure-injective, then so isX since CM(PΛ) is closed under product
and coproducts and the functorπ : CM(PΛ) → CM(PΛ) preserves products and c
products. IfX is pure-injective in CM(PΛ), then letε :

∐
I X → X be the summation

map andµ :
∐

I X → ∏
I X the canonical pure-monomorphism. Then there exists a

α :
∏

I X → X such thatµ ◦ α − ε :
∐

I X → X factors through a projective moduleP ,
say asµ ◦ α − ε = ∐

I X
κ−→ P

λ−→ X. SinceP is pure-injective andµ is pure-mono, there
exists a mapρ :

∐
I X → P such thatµ ◦ ρ = κ , and thenε = µ ◦ (α + ρ ◦ λ). HenceX is

pure-injective. The case of CoCohen–Macaulay modules is similar.�
If T is a triangulated category andV is a family of objects ofT , then we denote b

thick(V) the thick subcategory generated byV , that is, the smallest full triangulated su
category ofT which is closed under direct summands and containsV . We shall need the
following result.

Lemma 6.5 (Neeman [49]). LetT be a triangulated category which admits all small c
products, and letV be a set of compact generators ofT . Thenthick(V) = T b.

From now on we use the following notation (as beforer denotes the radical ofΛ):

• fr :Xr → r is the minimal right CM(PΛ)-approximation ofr of Λ andYr = Ker(fr).
• fΛ/r :XΛ/r → Λ/r is the minimal right CM(PΛ)-approximation ofΛ/r andYΛ/r =

Ker(fΛ/r). Note that, up to projective summands,Xr = Ω(XΛ/r) and ΣP(Xr) =
XΛ/r.

• gΛ/r :Λ/r → ZΛ/r is a special CoCM(IΛ)-approximation ofΛ/r and WΛ/r =
Coker(gΛ/r).

• hΛ/r :Λ/r → XΛ/r a left CM(PΛ)-approximation ofΛ/r.

We now show that the stable triangulated categories CM(PΛ) andCoCM(IΛ) are mono-
genic, that is, they admit a single compact generator. Moreover we determine pure-in

cogenerators.
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Theorem 6.6. The categoriesCM(PΛ) andCoCM(IΛ) are compactly generated by the se
{XT | T ∈ mod-Λ} and{ZT | T ∈ mod-Λ} respectively. Moreover we have the followin

(i) ZΛ/r is a compact generator of the categoryCoCM(IΛ), hence:

CoCM(IΛ)b = thick
(
ZΛ/r).

(ii) XΛ/r is a compact generator of the categoryCM(PΛ), hence:

CM(PΛ)b = thick
(
XΛ/r).

(iii) I≺∝
Λ = ⊥N+(Xr) and the objectN+(XΛ/r) is a compact generator ofCoCM(IΛ).

MoreoverN+(Xr) is pure-injective andN+(Xr) is a pure-injective cogenerator o
CoCM(IΛ).

(iv) P≺∝
Λ = N−(ZΛ/r)⊥ and the objectN−(ZΛ/r) is a compact generator ofCM(PΛ).

MoreoverXr is pure-injective andXr is a pure-injective cogenerator ofCM(PΛ).

Proof. The first assertion follows from Lemma 6.3 and Corollary 6.2. Since the objec
LCoCM(Λ/r) = ZΛ/r is compact inCoCM(IΛ), for any CoCohen–Macaulay moduleZ,
andn � 0, we have:

HomΛ

(
ZΛ/r,Σn

(
Z

)) ∼= HomΛ

(
Λ/r,Σn

(
Z

)) ∼= Extn(Λ/r,Z).

If HomΛ(ZΛ/r,Σn(Z)) = 0, ∀n ∈ Z, it follows that Extn(Λ/r,Z) = 0, ∀n � 1. By induc-
tion on the length of a finitely generated module, this implies that Extn(T ,Z) = 0, ∀n � 1,
∀T ∈ mod-Λ. Then clearlyZ is injective, i.e.,Z = 0. We infer thatZΛ/r is a compact
generator ofCoCM(IΛ) and thereforeCoCM(IΛ)b = thick(ZΛ/r) by Lemma 6.5. Hence
(i) holds and part (ii) is dual.

(iii) Let X be in CM(PΛ) and assume thatX ∈ ⊥Xr. Then clearlyX lies in ⊥r.
Applying the functor HomΛ(X,−) to the exact sequence 0→ r → Λ → Λ/r → 0
and using thatX is Cohen–Macaulay, we infer thatX ∈ ⊥(Λ/r). By induction on the
length of a finitely generated module, this implies that Extn

Λ(X,T ) = 0, ∀n � 1, ∀T ∈
mod-Λ. Then ExtΛn (X,D(S)) = 0, ∀n � 1, ∀S ∈ mod-Λop. Using the duality isomorphism
ExtnΛ(A,D(B)) ∼= D TorΛn (A,B), we infer that TorΛn (X,S) = 0, ∀n � 1, ∀S ∈ mod-Λop.
This clearly implies thatX is projective. Consequently CM(PΛ) ∩ ⊥Xr = PΛ. Now let
A be a module in⊥N+(Xr), i.e., ExtnΛ(A,N+(Xr)) = 0, ∀n � 1. By Lemma 5.1 we
have ExtnΛ(N−(ZA),Xr) = 0, ∀n � 1, and thereforeN−(ZA) is projective, or equiva
lently ZA is injective. It follows thatLCoCM(A) = 0 and consequentlyA ∈ I≺∝

Λ , i.e.,
A lies in I≺∝

Λ . Hence⊥N+(Xr) ⊆ I≺∝
Λ and therefore⊥N+(Xr) = I≺∝

Λ sinceN+(Xr)

is CoCohen–Macaulay. In particular⊥N+(Xr) ∩ CoCM(IΛ) = IΛ and this implies tha
the objectN+(Xr) is a cogenerator ofCoCM(IΛ). Finally since, by Proposition 3.8, we
have D2 CM(PΛ) ⊆ CM(PΛ), it follows thatXr is pure-injective by [46, Theorem 2.6
This implies thatXr is pure-injective in CM(PΛ). SinceN+ : CM(PΛ) → CoCM(IΛ) is an
equivalence, we infer thatN+(Xr) is pure-injective inCoCM(IΛ).
(iv) The proof is similar to the proof of (iii) and is left to the reader.�
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Remark 6.7. Pure-injectivity ofN+(Xr), and therefore ofXr andXr, follows from Brown
representability. Indeed let as beforeE be the injective envelope ofR/Rad(R). Then,
by [22], the Brown–Comenetz dualDE(ZΛ/r) in CoCM(IΛ) of the compact generato
ZΛ/r is a pure-injective cogenerator ofCoCM(IΛ). Recall that the objectDE(ZΛ/r) is
uniquely defined up to isomorphism by the following natural isomorphism which is a
sequence of Brown representability [50]:

DHomΛ

(
ZΛ/r,−)∣∣

CoCM(IΛ)
∼= HomΛ

(−,DE

(
ZΛ/r

))∣∣
CoCM(IΛ)

.

Using Auslander–Reiten’s formula D Ext1
Λ(T ,A) ∼= HomΛ(A,DTr(T )) and the easily es

tablished fact thatN− DTr(T ) ∼= Ω2(T ), ∀T ∈ mod-Λ and∀A ∈ Mod-Λ, we have isomor
phisms,∀Z ∈ CoCM(IΛ):

DHomΛ

(
ZΛ/r,Z

) = DHomΛ

(
LCoCM

(
Λ/r

)
,Z

) ∼= DHomΛ

(
Λ/r,Z

)
∼= DHomΛ

(
Λ/r,ΣΩI

(
Z

)) ∼= DExt1Λ
(
Λ/r,ΩI(Z)

)
∼= HomΛ

(
ΩI

(
Z

)
,DTr(Λ/r)

) ∼=−→ HomΛ

(
ΩI

(
Z

)
,RCoCMDTr(Λ/r)

)
∼= HomΛ

(
Z,ΣRCoCMDTr(Λ/r)

)
∼= HomΛ

(
Z,ΣN+RCMN− DTr(Λ/r)

) ∼= HomΛ

(
Z,ΣN+RCM

(
Ω(r)

))
∼= HomΛ

(
Z,ΣN+(XΩ(r))

) ∼= HomΛ

(
Z,N+ΣP(XΩ(r)))

)
∼= HomΛ

(
Z,N+(Xr)

)
.

So N+(Xr)
∼= DE(ZΛ/r) and thereforeN+(Xr) is a pure-injective cogenerator

CoCM(IΛ). ThenXr
∼= N−N+(Xr) is pure-injective cogenerator of CM(PΛ), andXr is

pure-injective by Lemma 6.4.

We have seen in Proposition 3.8 that anyΛ-module admits a minimal right CM(PΛ)-
approximation and a minimal leftP≺∝

Λ -approximation. As a consequence of Theorem.6
we have the following.

Corollary 6.8. The subcategoryI≺∝
Λ of Mod-Λ consisting of all modules of virtually fi

nite injective dimension is closed under filtered colimits, pure submodules and pure
modules. Moreover any module admits a minimal rightI≺∝

Λ -approximation and a minima
left CoCM(IΛ)-approximation.

Proof. By Theorem 6.6 we haveI≺∝
Λ = ⊥N+(Xr) and the moduleN+(Xr) is pure-

injective. Then the assertions follow from [46, Lemmas 4.1 and 4.2] and [59].�
We say that a cotorsion pair(A,B) is generated, respectivelycogenerated, by a class

of modulesV if A = ⊥V , respectivelyB = V⊥. In this terminology Theorem 6.6 says
that the cotorsion pair(I≺∝

Λ ,CoCM(IΛ)) is generated by the CoCohen–Macaulay mod

N+(Xr) and the cotorsion pair(CM(PΛ),P≺∝

Λ ) is cogenerated by the Cohen–Macaulay
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moduleN−(ZΛ/r). The following result, which will be useful in the sequel, shows t
the cotorsion pair(CM(PΛ),P≺∝

Λ ) is generated by a pure-injective module of virtua
finite projective dimension. For a subcategoryU of Mod-Λ, we denote by Filt(U) the full
subcategory of Mod-Λ consisting of direct summands of modulesU which admit a finite
filtration 0= Ut+1 ⊆ Ut ⊆ · · · ⊆ U1 ⊆ U0 = U where each quotientUi/Ui+1 lies inU .

Proposition 6.9.

(i) CM(PΛ) = ⊥YΛ/r = Filt[Prod(XΛ/r)].
(ii) P≺∝

Λ = [Prod(XΛ/r)]⊥ andCM(PΛ) = thick[Prod(XΛ/r)].
(iii) ∀n � 0, there exists a cotorsion pair(CM(PΛ)�n,P

�n
Λ ) in Mod-Λ, where

CM(PΛ)�n = ⊥(
Σn(YΛ/r)

) = Filt
[
Prod

(
Xn

Λ/r

)]

is definable andXn
Λ/r is the minimal rightCM(PΛ)�n-approximation ofΛ/r.

(iv) ∀n � 0: CM(PΛ)�n ∩ P
�n
Λ = P�n

Λ ∩ (P�n
Λ )⊥.

Proof. (i) and (ii). Since CM(PΛ) is a contravariantly finite resolving definable subc
egory of Mod-Λ the assertions in (i) are consequences of [46, Theorem 3.1]. Cl
Prod(XΛ/r) ⊆ CM(PΛ) since the latter is closed under products. HenceP≺∝

Λ =
CM(PΛ)⊥ ⊆ [Prod(XΛ/r)]⊥. If A lies in [Prod(XΛ/r)]⊥, then it follows easily by induc
tion thatA ∈ (Filt[Prod(XΛ/r)])⊥ = CM(PΛ)⊥ = P≺∝

Λ . Also (i) implies that the stabl
category CM(PΛ) is the thick closure of Prod(XΛ/r).

(iii) If n = 0 then the assertion follows from (i). Ifn � 1 andA lies in CM(PΛ)�n, then
as in Proposition 3.9 we haveΩn(A) ∈ CM(PΛ). Then by (i) it follows directly thatA lies
in ⊥(ΣnYΛ/r) and therefore CM(PΛ)�n ⊆ ⊥(ΣnYΛ/r). Now letA be in⊥(ΣnYΛ/r) and
consider the approximation sequence 0→ A → YA → XA → 0 from which we obtain
directly that YA lies in ⊥(ΣnYΛ/r). This implies thatΩn(YA) ∈ ⊥(YΛ/r) and there-
fore Ωn(YA) = Ωn−1(Ω(YA)) = Ωn−1(YA) is Cohen–Macaulay. SinceΩn−1(YA) lies
in P≺∝

Λ , it follows that Ωn−1(YA) is projective, i.e., pdYA � n − 1. Then from the ap
proximation sequence 0→ YA → XA → A → 0 we get that res.dimCM A � n. Hence
CM(PΛ)�n = ⊥(ΣnYΛ/r), ∀n � 0. SinceΣn(YΛ/r) is pure-injective and CM(PΛ)�n is

closed under products, by [45, Corollary 4.5] we infer that(CM(PΛ)�n,P
�n
Λ ) is a co-

torsion pair in Mod-Λ, whereP
�n
Λ := (CM(PΛ)�n)⊥, and CM(PΛ)�n is definable. In

particular CM(PΛ)�n is closed under filtered colimits and therefore there exists a min
right CM(PΛ)�n-approximation 0→ Yn

Λ/r → Xn
Λ/r → Λ/r → 0. Then CM(PΛ)�n =

Filt[Prod(Xn
Λ/r)] by [46, Theorem 3.1].

(iii) Since CM(PΛ) ⊆ CM(PΛ)�n, we haveP�n
Λ ⊆ P≺∝

Λ . Then by Proposition 3.9(i)
we have
CM(PΛ)�n ∩ P
�n
Λ ⊆ CM(PΛ)�n ∩ P≺∝

Λ = P�n
Λ .
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Λ ⊆ CM(PΛ)�n, we infer that CM(PΛ)�n ∩ P

�n
Λ ⊆ P�n

Λ ∩ (P�n
Λ )⊥. Conversely

if A lies in P�n
Λ ∩ (P�n

Λ )⊥, thenA ∈ CM(PΛ)�n. Let 0→ A → YA
�n → XA

�n → 0 be

a left P�n
Λ -approximation sequence forA. Then clearlyXA

�n
lies in CM(PΛ)�n ∩ P≺∝

Λ

which is equal toP�n
Λ by Proposition 3.9. Therefore the above sequence splits andA lies

in CM(PΛ)�n ∩ P
�n
Λ . We conclude that CM(PΛ)�n ∩ P

�n
Λ = P�n

Λ ∩ (P�n
Λ )⊥. �

We have the following consequence which generalizes [46, Corollary 2.7].

Corollary 6.10. For an Artin algebraΛ, the following conditions are equivalent.

(i) FPD(Λ) < ∞.
(ii) ̂CM(PΛ) is contravariantly finite.

If (i) holds, then we have a cotorsion pair( ̂CM(PΛ),P�∞) in Mod-Λ where ̂CM(PΛ)

is definable andP�∞ := ̂CM(PΛ)
⊥

. Moreover we have: ̂CM(PΛ) ∩ P�∞ = P<∞
Λ ∩

(P<∞
Λ )⊥.

Proof. If FPD(Λ) := d < ∞, then 3.9(vi) implies that ̂CM(PΛ) = CM(PΛ)�d . Hence
̂CM(PΛ) is contravariantly finite by Proposition 6.9. Conversely if (ii) holds, then̂CM(PΛ)

is closed under coproducts and this clearly implies that sup{res.dimCM A | res.dimCM A <

∞} < ∞. Then by Proposition 3.9(vi) we infer that FPD(Λ) < ∞. The last assertion fol
lows from Proposition 6.9. �
Remark 6.11. By the above results the least cotorsion pair and the greatest cotorsio
in Mod-Λ are connected via the following chain of cotorsion pairs (the first one fol
from [1]):

(PΛ,Mod-Λ) �
(
P�1

Λ ,
(
P�1

Λ

)⊥)
� · · · � (

P�n
Λ ,

(
P�n

Λ

)⊥)
� · · · � (Mod-Λ, IΛ),

(PΛ,Mod-Λ) � · · · � (
P�n

Λ ,
(
P�n

Λ

)⊥)
�

(
CM(PΛ)�n,P

�n
Λ

)
� · · · � (Mod-Λ, IΛ), ∀n � 0,

(PΛ,Mod-Λ) �
(
CM(PΛ),P≺∝

Λ

)
�

(
CM(PΛ)�1,P

�1
Λ

)
� · · · � (

CM(PΛ)�n,P
�n
Λ

)
� · · · � (Mod-Λ, IΛ)

and moreover: CM(PΛ)�n ∩ P
�n
Λ = P�n

Λ ∩ (P�n
Λ )⊥, ∀n � 0. If FPD(Λ) < ∞, then all

these cotorsion pairs are contained in the cotorsion pair( ̂CM(PΛ),P�∞), except possi
bly of (Mod-Λ, IΛ). This raises the question of when̂CM(PΛ) = P<∞

Λ , see [14, page 9]
This is equivalent to ask when CM(PΛ) = PΛ, i.e., when the above chains of cotorsi
pairs coincide. Indeed if ̂CM(PΛ) = P<∞

Λ , then ̂CM(PΛ) ∩ ⊥Λ = P<∞
Λ ∩ ⊥Λ. Then by

Proposition 3.9 we have CM(PΛ) = PΛ. The converse is clear. Certainly CM(PΛ) = PΛ if

gl.dimΛ < ∞ but we don’t know if there are additional algebras. By [22], CM(PΛ) = PΛ
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Λ ), in the sense of [22]

vanish forn � 1. Note that any tilting cotorsion pair(X ,Y), i.e., Y = T ⊥ for a tilting
moduleT , necessarily satisfies(X ,Y) � (P�n

Λ , (P�n
Λ )⊥), for n = pdT , see [57].

Let Γ , respectively∆, be the DG-algebra of graded stable endomorphism
XΛ/r, respectivelyZΛ/r. Note that Γn = Ext−n

Λ (Λ/r,XΛ/r) for n < 0 and Γn =
HomΛ(Λ/r,ΩnXΛ/r) for n � 0, and ∆n = ExtnΛ(Λ/r,ZΛ/r) for n > 0 and ∆n =
HomΛ(Λ/r,Σ−nXΛ/r) for n � 0. We letD(DG Mod-Γ ), respectivelyD(DG Mod-∆), be
the unbounded derived category of the DG-algebraΓ , respectively∆. Since CM(PΛ) and
CoCM(IΛ) are Frobenius exact categories such that their stable categories are com
generated, by Keller’s Morita Theorem for stable categories [38] we deduce the follo

Corollary 6.12. There are triangle equivalences:

CM(PΛ) ≈ D(DG Mod-Γ ) ≈ D(DG Mod-∆) ≈ CoCM(IΛ).

We have seen that ifE is pure-injective in CM(PΛ), then the moduleE is pure-injective.
In contrast to this nice behavior of pure-injective modules and objects, the situatio
compact objects is not so well behaved. That is, whereasX is compact in CM(PΛ) for any
compact (= finitely generated) Cohen–Macaulay moduleX, we don’t know if any compac
object in CM(PΛ) is induced by a Cohen–Macaulay module which is compact in ModΛ,
i.e., finitely generated. This leads to the investigation of when the Cohen–Macaulay t
pair is of finite type discussed in the next section.

7. (Co)Cohen–Macaulay torsion pairs of (co)finite type

In this section we study finiteness conditions on the Cohen–Macaulay torsion pa
should be mentioned that torsion pairs of finite type, in the sense of [22], play an imp
role in stable homotopy theory and more generally in compactly generated triang
categories. For instance they are in bijection with smashing subcategories and are in
in the Telescope Conjecture and the classification of thick subcategories of compa
jects, see [22,42,44] for details. More precisely we are interested in finding necessa
sufficient conditions ensuring that the (Co)Cohen–Macaulay torsion pairs are of fin
cofinite type in the sense of the following definition which generalizes (and is inspire
the notion of smashing subcategories of a triangulated category.

Definition 7.1. Let C be a pretriangulated category which admits all small (co)products
let (X ,Y) be a torsion pair inC. The torsion pair(X ,Y) is said to be offinite, respectively
cofinite, type, if the torsion-free classY , respectively the torsion classX , is closed unde
all small coproducts, respectively products.

As in the triangulated case we have the following characterization of torsion pa
(co)finite type. The proof is identical to the proof of the triangulated case, see fo

stance [22].
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Lemma 7.2. Let C be a pretriangulated category which admits all small products
coproducts, and assume that in the adjoint pair(Σ,Ω), the loop functorΩ preserves
coproducts and the suspension functorΣ preserves products. If(X ,Y) is a torsion pair
in C, then the following are equivalent:

(i) (X ,Y) is of finite type, respectively cofinite type.
(ii) The coreflection functorRX :C → X preserves coproducts, respectively the reflec

functorLY :C → Y preserves products.

If (X ,Y) is of finite type, then the reflection functorLY :C → Y and the inclusion functo
iX : X ↪→ C, preserve compact objects.

Corollary 7.3. The torsion pair(CM(PΛ),P≺∝
Λ

) in Mod-Λ is of cofinite type, and th

torsion pair(I≺∝
Λ ,CoCM(IΛ)) in Mod-Λ is of finite type. In particular the reflection fun

tor LCoCM: Mod-Λ → CoCM(IΛ) and the inclusion functoriI :I≺∝
Λ ↪→ Mod-Λ preserve

compact objects.

Proof. Since the pretriangulated categories Mod-Λ andMod-Λ satisfy the assumptions o
Lemma 7.2 andCoCM(IΛ), respectively CM(PΛ), is closed under coproducts inMod-Λ,
respectively products in Mod-Λ, the assertions follow from Lemma 7.2. �

Recall that a full subcategoryU of an abelian category is calledthick [45] if U is
closed under extensions, kernels of epimorphisms and cokernels of monomorphism
instanceI≺∝

Λ andP≺∝
Λ are thick subcategories of Mod-Λ and(I≺∝

Λ )fin and(P≺∝
Λ )fin are

thick subcategories of mod-Λ since, by Theorem 3.5, they are resolving and coresolving

Lemma 7.4. LetD be a thick subcategory ofMod-Λ which is closed under products an
coproducts. ThenD is definable iffD is closed under pure subobjects iffD is closed under
pure quotients.

Proof. Clearly if D is definable, thenD is closed under pure submodules and pure q
tients. IfD is closed under pure subobjects and{Di | i ∈ I } is a filtered system of module
from D, then the pure extension 0→ K → ∐

i∈I Di → lim−→ Di → 0 and the fact thatD is
thick show that lim−→ Di lies in D and thereforeD is definable. IfD is closed under pur
quotients, by the above argumentD is closed under filtered colimits. SinceD is thick,D
is closed under pure submodules and so it is definable.�

The following characterizes when the CoCohen–Macaulay torsion pair is of co
type.

Proposition 7.5. The following are equivalent.

(i) The torsion pair(I≺∝
Λ ,CoCM(IΛ)) is of cofinite type.
(ii) I≺∝
Λ is closed under products.
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(iii) If {Ai}i∈I is set of modules andAi → Zi are special left CoCohen–Macaulay a
proximations, then so is

∏
i∈I Ai → ∏

i∈I Zi . Equivalently⊥CM(PΛ) is closed under
products inMod-Λ.

(iv) I≺∝
Λ is definable.

If (i) holds, then(I≺∝
Λ )b = (I≺∝

Λ )fin.

Proof. Clearly (i) ⇔ (ii), and (ii) ⇔ (iii) follows from Lemma 7.2, Theorem 5.5 and the
definition of the reflection functorLCoCM: Mod-Λ → CoCM(IΛ). Obviously (iv)⇒ (ii)
and the implication (ii)⇒ (iv) follows from Corollary 6.8. The last assertion follows from
Lemma 7.2 and Corollary 7.3. �
Corollary 7.6. If the minimal rightCM(PΛ)-approximationXr of the radicalr of Λ is
finitely generated, then the torsion pair(I≺∝

Λ ,CoCM(IΛ)) is of cofinite type.

Proof. If Xr is finitely generated, then so isN+(Xr). Using Auslander–Reiten’s formu
we have:

ExtnΛ
(−,N+(Xr)

) ∼= HomΛ

(−,ΣnN+(Xr)
)

∼= DHomΛ

(
TrDΣn+1N+(Xr),−

)
, ∀n � 1.

This implies thatI≺∝
Λ = ⊥N+(Xr) is closed under products.�

Now we turn our attention to the question of when the Cohen–Macaulay torsion p
of finite type. We begin with the following useful characterization.

Lemma 7.7. The following are equivalent.

(i) CM(PΛ)b = CM(Λ).

(ii) CoCM(IΛ)b = CoCM(D(Λ)).

(iii) The torsion pair(CM(PΛ),P≺∝
Λ

) is of finite type.

Proof. The equivalence (i)⇔ (ii) follows from the fact that the adjoint pair(N+,N−)

induces equivalences between CM(PΛ) and CoCM(IΛ), hence between CM(PΛ)b and
CoCM(IΛ)b, and between CM(Λ) andCoCM(D(Λ)). By Lemmas 6.1 and 7.2 we have
(iii) ⇒ (i). If (i) holds, then the inclusioniCM preserves compactness and therefore its r
adjointRCM preserves coproducts by Lemma 6.1. Hence the torsion pair(CM(PΛ),P≺∝

Λ )

is of finite type by Lemma 7.2. �
Proposition 7.8. The following are equivalent.

(i) (CM(PΛ),P≺∝
Λ

) is of finite type.
(ii) P≺∝
Λ is closed under coproducts.
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(iii) If {Ai}i∈I is set of modules andXi → Ai are special Cohen–Macaulay approx
mations, then so is

∐
i∈I Xi → ∐

i∈I Ai . EquivalentlyCoCM(IΛ)⊥ is closed under
coproducts inMod-Λ.

(iv) P≺∝
Λ is definable.

Proof. Observe thatP≺∝
Λ is closed under coproducts in Mod-Λ iff P≺∝

Λ
is closed unde

coproducts in Mod-Λ iff the torsion pair(CM(PΛ),P≺∝
Λ

) is of finite type. Hence (i)⇔
(ii) and by Proposition 5.7 and the fact that the first part of (iii) is a reformulation of t
fact thatRCM preserves coproducts, we have (ii)⇔ (iii). Clearly (iv) ⇒ (ii) and it remains
to show that (ii)⇒ (iv). By Lemma 7.4 it suffices to show thatP≺∝

Λ is closed under pur
quotients. Let 0→ A → Y → B → 0 be a pure extension in Mod-Λ with Y in P≺∝

Λ and
let X be a finitely generated Cohen–Macaulay module. Since finitely generated mo
are pure-projective, we have the following exact commutative diagram:

0 HomΛ(X,A)

�X,A

HomΛ(X,Y )

�X,Y

HomΛ(X,B)

�X,B

0

· · · HomΛ(X,A) HomΛ(X,Y ) HomΛ(X,B)

where the vertical arrows are the canonical epimorphisms. From the above diag
follows that HomΛ(X,B) = 0, hence HomΛ(X,RCM(B)) = 0 for any moduleX in
CM(PΛ) ∩ mod-Λ = CM(Λ). Since, by Lemma 7.7, CM(Λ) = CM(PΛ)b generates
CM(PΛ), we infer thatRCM(B) = 0 and thereforeB lies in P≺∝

Λ . ConsequentlyP≺∝
Λ

is closed under pure quotients, i.e.,P≺∝
Λ is definable. �

Corollary 7.9. If the minimal rightCM(PΛ)-approximationXΛ/r of Λ/r is finitely gener-
ated, equivalently the minimal leftP≺∝

Λ -approximationYΛ/r of Λ/r is finitely generated
then the torsion pair(CM(PΛ),P≺∝

Λ
) is of finite type. In this caseP≺∝

Λ = (XΛ/r)
⊥ and

XΛ/r is a compact generator and a pure-injective cogenerator ofCM(PΛ).

Proof. ClearlyXΛ/r is finitely generated iff so isYΛ/r. If this holds, then Add(XΛ/r) =
Prod(XΛ/r) and therefore by Proposition 6.9 we have

P≺∝
Λ = [

Prod(XΛ/r)
]⊥ = Add(XΛ/r)

⊥ = (XΛ/r)
⊥.

This implies thatP≺∝
Λ is closed under coproducts and therefore, by Proposition.8,

the torsion pair(CM(PΛ),P≺∝
Λ

) is of finite type. SinceXΛ/r is finitely generated
the object XΛ/r is compact in CM(PΛ). Let X be in CM(PΛ) and assume tha
HomΛ(Ωn(XΛ/r),X) = 0, ∀n ∈ Z. Since forn � 1, we have

( )

HomΛ Ωn(XΛ/r),X

∼= Extn(XΛ/r,X),
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it follows thatX ∈ P≺∝
Λ . ThenX = 0 sinceX is Cohen–Macaulay. We conclude thatXΛ/r

is a compact generator of CM(PΛ). Finally as in the proof of Theorem 6.6 it follows that
XΛ/r is a pure-injective cogenerator generator of CM(PΛ). �

Let A be an additive category with filtered colimits. IfU is a full subcategory ofA,
then we denote by lim−→U the full subcategory ofA consisting of all filtered colimits o
objects fromU . An objectX in A is calledfinitely presentedif the functorA(X,−) :A →
Ab preserves filtered colimits. The full subcategory of finitely presented objects ofA is
denoted by fpA. Following [29] we say that an additive categoryA is locally finitely
presentedif A has filtered colimits, fpA is skeletally small andA = lim−→ fpA. The basic
properties of the categories of the form lim−→U are described in the following well-know
result.

Lemma 7.10 [29,47]. Let U be a full subcategory ofmod-Λ. Then lim−→U is locally fi-
nitely presented and closed under filtered colimits inMod-Λ. Moreoverlim−→U ∩ mod-Λ =
addU = fp lim−→U and a moduleA lies in lim−→U iff for any finitely presented moduleT ,
any mapT → A factors through a module inU . Finally lim−→U is closed under products i
Mod-Λ iff addU is covariantly finite inmod-Λ.

To proceed further we shall need the following basic result of Krause–Solberg.

Lemma 7.11 [45]. LetF be a resolving, respectively coresolving, subcategory ofmod-Λ.
If F is contravariantly, respectively covariantly, finite, thenF is covariantly, respectivel
contravariantly, finite. In particular a thick subcategory which contains the projective
the injective modules is contravariantly finite iff it is covariantly finite.

Finally we need to recall some results from [22]. First we introduce some termino
We call a cotorsion pair(X ,Y) in Mod-Λ projective, respectivelyinjective, if X ∩ Y =
PΛ, respectivelyX ∩Y = IΛ. For instance the cotorsion pair(CM(PΛ),P≺∝

Λ ) is projective
and the cotorsion pair(I≺∝

Λ ,CoCM(IΛ)) is injective. Following [22] we say that a tripl
of full subcategories(X ,Y,Z) in an abelian categoryA is a cotorsion triple if (X ,Y)

and(Y,Z) are cotorsion pairs. In this case the cotorsion pair(X ,Y) is projective and the
cotorsion pair(Y,Z) is injective [22]. IfA is Frobenius, then(X ,Y) is projective iff it is
injective iff Y is closed under kernels of epics iffX is closed under cokernels of monics

Theorem 7.12 [22].

(1) Let (X ,Y) be a cotorsion pair inMod-Λ or in mod-Λ. Then the following condition
are equivalent.
(i) (X ,Y) is a projective cotorsion pair.
(ii) Y is resolving, in which caseX consists of Cohen–Macaulay modules.

(iii) The stable categoryX /X ∩Y is triangulated.
(2) If Y is a functorially finite resolving and coresolving subcategory ofmod-Λ, then
there exists a cotorsion triple(X ,Y,Z) in mod-Λ with X ⊆ CM(Λ) and Z ⊆
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CoCM(D(Λ)). Moreover the Nakayama functorsN± induce quasi-inverse equiva
lences(N+,N−) :X ≈−→ Z , and the Auslander–Reiten operatorsτ± induce triangle
equivalences(τ+, τ−) :X ≈−→ Z .

Now we can prove the following basic result which gives characterizations of w
the Cohen–Macaulay torsion pair is of finite type in terms of finitely generated mod
This result will play a crucial role in the study of virtually Gorenstein algebras in the
section.

Theorem 7.13. For an Artin algebraΛ the following are equivalent.

(i) The torsion pair(CM(PΛ),P≺∝
Λ

) in Mod-Λ is of finite type.
(ii) Any finitely generated module admits a special left CoCohen–Macaulay appro

tion which is finitely generated.
(iii) There exists a cotorsion triple(CM(Λ), (P≺∝

Λ )fin = (I≺∝
Λ )fin,CoCM(D(Λ))) in

mod-Λ.
(iv) The full subcategory(I≺∝

Λ )fin of finitely generated modules of virtually finite injecti
dimension is covariantly finite inmod-Λ.

Proof. (i) ⇒ (ii). Since the torsion pair(I≺∝
Λ ,CoCM(IΛ)) in Mod-Λ is of finite type,

by Corollary 6.2, the reflection functorLCoCM: Mod-Λ → CoCM(IΛ) preserves compac
objects. Therefore for anyT in mod-Λ the reflectionLCoCM(T ) of T in CoCM(IΛ) is
compact inCoCM(IΛ). By Lemma 7.7, this implies that the left CoCohen–Macaulay a
proximation ofT is finitely generated. Hence for anyT in mod-Λ, there exists a specia
left CoCohen–Macaulay approximation sequence 0→ T → ZT → WT → 0 in Mod-Λ,
whereZT , hence alsoWT , is finitely generated. That is,ZT lies in CoCM(D(Λ)) andWT

lies in (I≺∝
Λ )fin.

(ii) ⇒ (iii) ⇒ (iv). The assumption in (ii) implies that the coresolving subc
egory CoCM(D(Λ)) is covariantly finite in mod-Λ and we have a cotorsion pa
((I≺∝

Λ )fin,CoCM(D(Λ)) in mod-Λ. Then Lemma 7.11 implies that(I≺∝
Λ )fin is covari-

antly finite since it is resolving. By Theorem 7.12 the thick subcategory(I≺∝
Λ )fin induces a

cotorsion triple(X , (I≺∝
Λ )fin,CoCM(D(Λ))) in mod-Λ with X = ⊥[(I≺∝

Λ )fin], where the
operation “⊥” is performed in mod-Λ. Also by Theorem 7.12 we haveX ⊆ CM(Λ) and
DTr(X) lies in CoCM(D(Λ)) for any X in CM(Λ). ThereforeHomΛ(W,DTr(X)) = 0,
∀W ∈ (I≺∝

Λ )fin. Auslander–Reiten formulaHomΛ(W,DTr(X)) ∼= D Ext1Λ(X,W) and the
fact that (I≺∝

Λ )fin is coresolving shows thatX lies in ⊥[(I≺∝
Λ )fin] = X . We infer that

X = CM(Λ).
(iv) ⇒ (i). By 7.11 we deduce the existence of a cotorsion triple(X , (I≺∝

Λ )fin,Z) in
mod-Λ. Using [45, Theorem 2.4], it follows directly that this cotorsion triple extend
a cotorsion triple(lim−→X , lim−→(I≺∝

Λ )fin, lim−→Z) in Mod-Λ. Since(I≺∝
Λ )fin ⊆ I≺∝

Λ and, by
Corollary 6.8, the latter is closed under filtered colimits, it follows that lim−→(I≺∝

Λ )fin ⊆ I≺∝
Λ .

Then CoCM(IΛ) = (I≺∝
Λ )⊥ ⊆ (lim−→(I≺∝

Λ )fin)⊥ = lim−→Z . Now since(I≺∝
Λ )fin is thick and

covariantly finite, by [45, Corollary 3.6], it follows that lim−→(I≺∝
Λ )fin is thick. Then by The-
orem 7.12 and its dual we infer that lim−→X consists of Cohen–Macaulay modules and lim−→Z
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consists of CoCohen–Macaulay modules, i.e., lim−→X ⊆ CM(PΛ) and lim−→Z ⊆ CoCM(IΛ).
In particular lim−→Z = CoCM(IΛ) and thereforeI≺∝

Λ = ⊥ CoCM(IΛ) = lim−→(I≺∝
Λ )fin. Since

the Nakayama functorsN+ and N− preserve filtered colimits and induce an equi
lence between CM(PΛ) and CoCM(IΛ), we infer that lim−→X = CM(PΛ). HenceP≺∝

Λ =
CM(PΛ)⊥ = lim−→(I≺∝

Λ )fin = I≺∝
Λ and this implies thatP≺∝

Λ is closed under coproduct

Then by Proposition 7.8 we infer that the torsion pair(CM(PΛ),P≺∝
Λ

) is of finite type. �
Now we can give the converse to Corollary 7.9.

Corollary 7.14. The following are equivalent.

(i) The torsion pair(CM(PΛ),P≺∝
Λ

) in Mod-Λ is of finite type.
(ii) The minimal rightCM(PΛ)-approximationXΛ/r of Λ/r is finitely generated.

Proof. By Corollary 7.9 it suffices to prove that (i)⇒ (ii). From the proof of Theorem 7.13
it follows thatP≺∝

Λ is definable andP≺∝
Λ = lim−→(P≺∝

Λ )fin. Then, by [43, Theorem 3.12
there exists a special leftP≺∝

Λ -approximation sequence 0→ Λ/r → YΛ/r → XΛ/r → 0
whereYΛ/r, henceXΛ/r, is finitely generated. ThenXΛ/r is finitely generated, since
by [22], we haveΩ(XΛ/r) ∼= XΛ/r. �
Corollary 7.15. If the Cohen–Macaulay torsion pair(CM(PΛ),P≺∝

Λ
) is of finite type, then

the CoCohen–Macaulay torsion pair(I≺∝
Λ ,CoCM(IΛ)) is of cofinite type.

Proof. By Corollary 7.14, the moduleXΛ/r is finitely generated. SinceXr = Ω(XΛ/r),
it follows that the moduleXr is finitely generated. Then the assertion follows from Co
lary 7.6. �

8. Virtually Gorenstein algebras

In this section we investigate in detail the class of virtually Gorenstein algebras,
duced in [22], which provides a natural generalization of Gorenstein algebras and al
of finite representation type, in connection with finiteness conditions on the Co
Macaulay (co)torsion pairs.

For a study of the connections between relative homological algebra, closed
structures in the sense of Quillen and virtually Gorenstein algebras we refer to [22].

Definition 8.1 [22]. An Artin algebraΛ is calledvirtually Gorenstein if the full subcate-
gory of modules of virtually finite projective dimension coincides with the full subcate
of modules of virtually finite injective dimension, i.e.,P≺∝

Λ = I≺∝
Λ .

Since for a Gorenstein algebraΛ we haveP≺∝
Λ = P<∞

Λ = I<∞
Λ = I≺∝

Λ , it follows that
Gorenstein algebras, in particular self-injective and algebras of finite global dime

are virtually Gorenstein. TriviallyΛ is virtually Gorenstein provided that CM(PΛ) = PΛ
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or equivalently CoCM(IΛ) = IΛ. This follows from Remark 3.7 since the condition
CM(PΛ) = PΛ implies thatP≺∝

Λ = Mod-Λ = I≺∝
Λ .

8.1. Characterizations of virtually Gorenstein algebras

If Λ is virtually Gorenstein, then the equationP≺∝
Λ = I≺∝

Λ implies that the Cohen
Macaulay torsion pair(CM(PΛ),P≺∝

Λ
) in Mod-Λ is of finite type. Our previous resul

enable us to show that this condition, as well as a host of other equivalent cond
characterize the class of virtually Gorenstein algebras.

Theorem 8.2. For an Artin algebraΛ, the following are equivalent.

(i) Λ is virtually Gorenstein.
(ii) The Cohen–Macaulay torsion pair(CM(PΛ),P≺∝

Λ
) is of finite type.

(iii) CoCM(IΛ)b = CoCM(D(Λ)).
(iv) CM(PΛ)b = CM(Λ).
(v) The subcategoryP≺∝

Λ of modules with virtual finite projective dimension is defi
able.

(vi) The subcategoryI≺∝
Λ of modules with virtual finite injective dimension is defina

and any finitely generated module admits a finitely generatedI≺∝
Λ -approximation.

(vii) The subcategory(I≺∝
Λ )fin is contravariantly, equivalently covariantly, finite

mod-Λ.
(viii) The subcategory(P≺∝

Λ )fin is covariantly, equivalently contravariantly, finite
mod-Λ.

(ix) The subcategoryCM(Λ) is contravariantly finite inmod-Λ and CM(Λ)⊥ ⊆
(P≺∝

Λ )fin.
(x) The subcategoryCoCM(D(Λ)) is covariantly finite inmod-Λ and⊥ CoCM(D(Λ))⊆

(I≺∝
Λ )fin.

(xi) The categoryCM(PΛ) is locally finitely presented and

fp CM(PΛ) = CM(Λ).

(xii) The categoryCoCM(IΛ) is locally finitely presented and

fp CoCM(IΛ) = CoCM
(
D(Λ)

)
.

(xiii) If 0 → A → B → C → 0 is exact inMod-Λ or mod-Λ, then the following are
equivalent:
(a) Any mapX → C whereX is Cohen–Macaulay factors throughB → C.
(b) Any mapA → Z whereZ is CoCohen–Macaulay factors throughA → B.

If Λ is virtually Gorenstein, then the torsion pair(I≺∝
Λ ,CoCM(IΛ)) is of cofinite type and
we have:
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• A cotorsion triple(CM(PΛ),P≺∝
Λ = I≺∝

Λ ,CoCM(IΛ)) in Mod-Λ where all the in-
volved categories are functorially finite and definable.

• A cotorsion triple(CM(Λ), (P≺∝
Λ )fin = (I≺∝

Λ )fin,CoCM(D(Λ))) in mod-Λ where all
the involved categories are functorially finite.

• A torsion pair(CM(Λ), (P≺∝
Λ

)b) in mod-Λ, where

(
P≺∝

Λ

)fin = (
P≺∝

Λ

)b
.

• A torsion pair((I≺∝
Λ )b,CoCM(D(Λ)) in mod-Λ, where(I≺∝

Λ )fin = (I≺∝
Λ )b.

• The categoriesCM(PΛ), P≺∝
Λ = I≺∝

Λ , andCoCM(IΛ) are locally finitely presented
and:

CM(PΛ) = lim−→ CM(Λ), P≺∝
Λ = lim−→

[(
P≺∝

Λ

)fin] = lim−→
[(

I≺∝
Λ

)fin] = I≺∝
Λ ,

CoCM(IΛ) = lim−→ CoCM
(
D(Λ)

)
.

Proof. The equivalences (ii)⇔ (iii) ⇔ (iv) ⇔ (v) follow from Lemma 7.7 and Propo-
sition 7.8. The equivalence (i)⇔ (xiii) follows from [22]. Also the equivalences (i)⇔
(ii) ⇔ (iv) ⇔ (vii) and the fact that (ii) implies (viii), (ix) (x), (xi) and (xii) follow from
Theorem 7.13 and its proof. We first show that each of the conditions in (viii), (ix) a
(x) implies thatΛ is virtually Gorenstein. Assume first that(P≺∝

Λ )fin is covariantly finite
in mod-Λ. Then, by [9], there exists a cotorsion pair(A, (P≺∝

Λ )fin) in mod-Λ and then
by Theorem 7.12 we haveA ⊆ CM(Λ). Let (E) : 0 → Y ∗

Λ/r → X∗
Λ/r → Λ/r → 0 be ex-

act where the mapfΛ/r :X∗
Λ/r → Λ/r is the minimal rightA-approximation ofΛ/r in

mod-Λ. ThenY ∗
Λ/r lies in (P≺∝

Λ )fin since any minimal rightA-approximation is specia
If α :X → Λ/r is a map whereX lies in CM(PΛ), then the pull-back ofα along(E) splits
sinceY ∗

Λ/r lies inP≺∝
Λ . This implies thatα factors throughfΛ/r and therefore the latter i

the minimal right CM(PΛ)-approximation ofΛ/r. SinceX∗
Λ/r is finitely generated, Corol

lary 7.9 implies that the torsion pair(CM(PΛ),P≺∝
Λ

) is of finite type. Next we show tha
(ix) implies (viii), leaving the proof of the implication (x)⇒ (vii) to the reader since it is
completely dual. So let CM(Λ) be contravariantly finite and CM(Λ)⊥ ⊆ (P≺∝

Λ )fin. Also
let (CM(Λ),B) be the induced cotorsion pair in mod-Λ. If Y lies in (P≺∝

Λ )fin, then the left
B-approximation sequence 0→ Y → BY → XY → 0 of Y splits sinceXY lies in CM(Λ).
HenceY lies inB and therefore(P≺∝

Λ )fin ⊆ B. Then by hypothesis we have(P≺∝
Λ )fin = B

and consequently(P≺∝
Λ )fin is covariantly finite. Since CM(PΛ) and CoCM(IΛ) are equiv-

alent via the Nakayama functors, it is clear that (xi) is equivalent to (xii). If (xii) holds,
clearly CoCM(IΛ) = lim−→ CoCM(D(Λ)). Since, by Proposition 3.8, the former is definable
it follows by [43, Theorem 3.12] that any finitely generated module admits a finitely g
ated left CoCM(IΛ)-approximation. Then Theorem 7.13 implies that condition (ii) holds
The remaining assertions follow from Theorem 7.13 and its proof. �

Combining Proposition 6.9, Corollary 7.14 and Theorem 8.2 we have the following

consequence which gives a characterization of virtually Gorenstein algebras in terms of
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finite generation and filtration properties of the approximation modulesXΛ/r, YΛ/r, WΛ/r

andZΛ/r.

Corollary 8.3. For an Artin algebra the following are equivalent.

(i) Λ is virtually Gorenstein.
(ii) The minimal rightCM(PΛ)-approximationXΛ/r of Λ/r is finitely generated.

(iii) The minimal leftP≺∝
Λ -approximationYΛ/r of Λ/r is finitely generated.

(iv) The minimal rightI≺∝
Λ -approximationWΛ/r of Λ/r is finitely generated.

(v) The minimal leftCoCM(IΛ)-approximationZΛ/r of Λ/r is finitely generated.

If Λ is virtually Gorenstein, then we have the following.

(i) CM(Λ) = Filt(addXΛ/r) and CM(PΛ) = ⊥YΛ/r = Filt(AddXΛ/r). Moreover
CM(PΛ) = thick(AddXΛ/r) andCM(Λ) = thick(XΛ/r).

(ii) (P≺∝
Λ )fin = Filt(addWΛ/r) = Filt(addYΛ/r) = (I≺∝

Λ )fin andI≺∝
Λ = Filt(AddYΛ/r)

= Filt(AddWΛ/r) = ⊥ZΛ/r = (XΛ/r)
⊥.

(iii) CoCM(D(Λ)) = Filt(addZΛ/r) and CoCM(IΛ) = (WΛ/r)⊥ = Filt(AddZΛ/r).
MoreoverCoCM(IΛ) = thick(AddZΛ/r) andCoCM(D(Λ)) = thick(ZΛ/r).

Example 8.4. (1) By Theorem 8.2 it follows that any Artin algebra of finite representati
type is virtually Gorenstein, since clearly representation finiteness implies CM(PΛ)b =
CM(Λ).

(2) We say thatΛ is of finite Cohen–Macaulay type if the full subcategory CM(Λ) of
finitely generated Cohen–Macaulay modules is of finite representation type. In this c
X† is a representation generator of CM(Λ), that is,X† is such that addX† = CM(Λ), then
since CM(Λ) is a Frobenius category, by [27] we infer that the stable endomorphism
End(X†) is a self-injective Artin algebra. It follows easily from this that ifX is compact
in CM(PΛ), thenX is a direct summand of a finite coproduct of copies ofX†. Hence
CM(PΛ)b = CM(Λ). We conclude that any Artin algebra of finite Cohen–Macaulay t
is virtually Gorenstein.

Combining Corollary 8.3 and Theorem 8.2, we have the following description of Gore
steinness.

Corollary 8.5. The following are equivalent.

(i) Λ is Gorenstein.
(ii) P≺∝

Λ is closed under coproducts and the minimal rightP≺∝
Λ -approximation of any

simple module has finite projective dimension.
(iii) P≺∝

Λ is closed under coproducts andpdYΛ/r < ∞, whereYΛ/r is the minimal right
P≺∝

Λ -approximation ofΛ/r.
(iv) I≺∝

Λ is closed under products and the minimal leftI≺∝
Λ -approximation of any simpl
module is finitely generated with finite injective dimension.
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(v) I≺∝
Λ is closed under products andidWΛ/r < ∞, whereWΛ/r is the minimal left

I≺∝
Λ -approximation ofΛ/r which is finitely generated.

Proof. (ii) ⇒ (i). SinceP≺∝
Λ is closed under coproducts, by Theorem 8.2, the resolving

subcategory(P≺∝
Λ )fin of mod-Λ is contravariantly finite. Hence by [9],

sup
{
pdY | Y ∈ (

P≺∝
Λ

)fin} = max{pdYS | S is simple}

whereYS is the minimal right(P≺∝
Λ )fin-approximation ofS. By hypothesis sup{pdY | Y ∈

(P≺∝
Λ )fin} < ∞ and therefore(P≺∝

Λ )fin ⊆ P<∞
Λ . Since we always haveP<∞

Λ ⊆ (P≺∝
Λ )fin,

we infer that(P≺∝
Λ )fin = P<∞

Λ and this implies that̂CM(Λ) = mod-Λ. HenceΛ is Goren-
stein.

(i) ⇒ (ii). If Λ is Gorenstein, then the assertions in (ii) follow from the fact t
(P≺∝

Λ )fin = P<∞
Λ andP≺∝

Λ = P<∞
Λ is closed under coproducts since FPD(Λ) < ∞ by

Proposition 3.10. Using Theorem 8.2, the proof of the other equivalences is similar an
left to the reader. �
8.2. Symmetry for virtually Gorenstein algebras

It is well known thatΛ is Gorenstein or representation finite iff so isΛop. Generalizing
this fact we shall show that virtual Gorensteinness is left-right symmetric. First we
the following preliminary result.

Lemma 8.6.

(1) The dualityD induces adjoint on the right pairs of functors

D : CM(PΛ) � CoCM(IΛop) : D and D : CoCM(IΛ) � CM(PΛop) : D,

and equivalences of categories

D : CM(Λ)op ≈−→ CoCM
(
D

(
Λop)) and D : CoCM

(
D(Λ)

)op ≈−→ CM
(
Λop).

(2) The dualityD induces equivalences:

D :
[(

P≺∝
Λ

)fin]op ≈−→ [
I≺∝

Λop

]fin
and D :

[(
I≺∝

Λ

)fin]op ≈−→ [
P≺∝

Λop

]fin
.

Proof. Part (1) is easy and is left to the reader. To prove(2) let Y be in (P≺∝
Λ )fin and

let (E) : 0 → Z → C → D(Y ) → 0 be an extension in Mod-Λop whereZ is CoCohen–
Macaulay. SinceY is finitely generated, dualizing(E) we get an extension D(E) : 0 →
Y → D(C) → D(Z) → 0 in Mod-Λ where D(Z) is Cohen–Macaulay by part(1). SinceY

lies in P≺∝
Λ , the extension D(E) splits. It is well known and easy to see that this impl

that the extension(E) is pure. Since D(Y ) is finitely generated we infer that(E) splits. It

follows that Ext1Λ(D(Y ),Z) = 0 for any CoCohen–MacaulayΛop-moduleZ and therefore
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D(Y ) lies in ⊥ CoCM(IΛop) = I≺∝
Λop. Similarly D(W) lies in (P≺∝

Λ )fin for any Λ-module
W in [I≺∝

Λop]b. We conclude that D gives a duality between(P≺∝
Λ )fin and (I≺∝

Λop)
fin. The

second equivalence is proved similarly.�
Theorem 8.7. Λ is virtually Gorenstein iffΛop is virtually Gorenstein.

Proof. Let Λ be virtually Gorenstein. By Theorem 8.2 it follows that we have a cotorsio
triple (CM(Λ), (P≺∝

Λ )b = (I≺∝
Λ )b,CoCM(D(Λ))) in mod-Λ and then Lemma 8.6 implies

the existence of a cotorsion triple

(
CM

(
Λop),D

[(
I≺∝

Λ

)fin] = D
[(

P≺∝
Λ

)fin]
,CoCM

(
D

(
Λop)))

in mod-Λop. By [45] the last cotorsion triple induces a cotorsion triple

(
lim−→ CM

(
Λop), lim−→ D

[(
I≺∝

Λ

)fin] = lim−→ D
[(

P≺∝
Λ

)fin]
, lim−→ CoCM

(
D

(
Λop)))

in Mod-Λop. By Lemma 8.6 this cotorsion triple is equal to

(
lim−→ CM

(
Λop), lim−→

(
P≺∝

Λop

)fin = lim−→
(
I≺∝

Λop

)fin
, lim−→ CoCM

(
D

(
Λop))).

It follows that lim−→(I≺∝
Λop)

fin is closed under products in Mod-Λop and therefore, by
Lemma 7.10, (I≺∝

Λop)
fin is covariantly finite in mod-Λop. ThenΛop is virtually Gorenstein

by Theorem 8.2. �
8.3. Grothendieck Groups and Auslander–Reiten sequences/triangles

Gorensteinness has several nice consequences for Grothendieck groups and Au
Reiten theory, see [11]. In this subsection we show that this continues to hold for vir
Gorenstein algebras.

We begin with the following generalization of a result of Auslander–Reiten [11] f
Gorenstein algebras to virtually Gorenstein algebras.

Proposition 8.8. LetΛ be a virtually Gorenstein algebra.

(i) The subcategoriesCM(Λ), CoCM(D(Λ)) and(P≺∝
Λ )fin = (I≺∝

Λ )fin have Auslander–
Reiten sequences.

(ii) The triangulated categoriesCM(Λ) = CM(PΛ)b and CoCM(D(Λ)) = CoCM(IΛ)b

have Auslander–Reiten triangles which remain such inCM(PΛ) andCoCM(IΛ) re-
spectively.

(iii) The triangulated categoriesCM(PΛ)b andCoCM(IΛ)b admit a Serre functor which

is given byΣPRCM DTr andΩILCoCMTrD respectively.
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Proof. Part (i) follows from the fact that, by Theorem 8.2, the involved subcategories a
functorially finite, see [7]. IfX ∈ CM(Λ), then, using Auslander–Reiten formula, we ha
the following isomorphisms:

DHomΛ

(
X,X′) ∼=−→ Ext1Λ

(
X′,DTr(X)

) ∼=−→ HomΛ

(
Ω

(
X′),DTr(X)

)
∼=−→ HomΛ

(
Ω

(
X′),RCM DTr(X)

)
∼=−→ HomΛ

(
X′,ΣPRCM DTr(X)

)
, ∀X′ ∈ CM(Λ).

Since right CM(PΛ)-approximations of finitely generated modules are finitely g
erated, it follows that the functor DHomΛ(X,−) : CM(Λ)op → Ab is representable
by the objectΣPRCM DTr(X). Dually if Z lies in CoCM(D(Λ)), then the functor
DHomΛ(−,Z) : CoCM(D(Λ)) → Ab is representable by the objectΩILCoCMTrD(Z)

Consequently the functor DHomΛ(−,X) : CM(Λ) → Ab is representable by the ob
ject TrDΩILCoCM(X) and the functor DHomΛ(Z,−) : CoCM(D(Λ))op → Ab is repre-
sentable by the object DTrΣPRCM(Z). HenceSCM := ΣPRCM DTr : CM(Λ) → CM(Λ),
respectivelySCoCM := ΩILCoCMTrD : CoCM(D(Λ)) → CoCM(D(Λ)), is a Serre functo
in CM(Λ), respectivelyCoCM(D(Λ)). Then by [53], CM(Λ), respectivelyCoCM(D(Λ)),
has Auslander–Reiten triangles which, by [20], remain such in CM(PΛ), respectively
CoCM(IΛ), since any compact object in CM(PΛ), respectivelyCoCM(IΛ), is pure-
injective by Corollary 7.9. �

If τ±
CM, respectivelyτ±

CoCM, denotes the Auslander–Reiten translations in CM(Λ), re-
spectivelyCoCM(D(Λ)), then sinceΩI|mod-Λ = DTrΩ TrD and ΣP|mod-Λ = TrΩ Tr,
Proposition 8.8 implies that:

τ+
CM = RCM DTr, τ−

CM = TrD LCoCM and

τ+
CoCM = LCoCMTrD, τ−

CoCM = DTr RCM.

Let U be any one of the exact subcategories of mod-Λ: CM(Λ), CoCM(D(Λ)),
(P≺∝

Λ )fin, (I≺∝
Λ )fin. We denote byK0(U) the 0th Quillen’s K-group ofU . The following

result shows that the groupK0(U) is free provided thatΛ is virtually Gorenstein.

Theorem 8.9. If Λ is virtually Gorenstein, then there exist isomorphisms:

K0
(
CM(Λ)

) � K0
((

P≺∝
Λ

)fin) ∼= K0(PΛ) � K0(mod-Λ),

K0
(
CoCM

(
D(Λ)

)) � K0
((

I≺∝
Λ

)fin) ∼= K0(IΛ) � K0(mod-Λ),

K0
(
CM(Λ)

) � K0
((

P≺∝
Λ

)fin) ∼= K0(mod-Λ),( ( )) (( ≺∝)fin) ∼ ( )

K0 CoCM D(Λ) � K0 IΛ = K0 mod-Λ .
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Proof. By Theorem 8.2 we have a cotorsion pair(CM(Λ), (P≺∝
Λ )fin) in mod-Λ with

CM(Λ)∩(P≺∝
Λ )fin = PΛ. Let i :K0(PΛ) → K0(CM(Λ)) andj :K0(PΛ) → K0((P

≺∝
Λ )fin)

be the natural maps defined byi([P ]) = [P ] andj([P ]) = [P ]. Also letα :K0(CM(Λ)) →
K0(mod-Λ) ← K0((P

≺∝
Λ )fin) :β be defined byα([X]) = [X] andβ([Y ]) = [Y ]. We claim

that there exists a cocartesian square

K0(PΛ)
j

i

K0((P
≺∝
Λ )fin)

β

K0(CM(Λ))
α

K0(mod-Λ)

(†)

in Ab. Clearly the above diagram commutes. LetG be an abelian group and l
ζ :K0((P

≺∝
Λ )fin) → G and ϑ :K0(CM(Λ)) → G be group homomorphisms, such th

j ◦ ζ = i ◦ θ . We define a group homomorphismη :K0(mod-Λ) → G as follows. Let
A be in mod-Λ and consider the exact sequence 0→ YA → XA → A → 0 where
the mapXA → A is the minimal right Cohen–Macaulay approximation ofA. We set
η′(A) = θ([XA]) − ζ([YA]). If 0 → ỸA → X̃A → A → 0 is exact where the ma
X̃A → A is a right Cohen–Macaulay approximation ofA, then it is easy to see th
there exists a projective moduleP such thatX̃A

∼= XA ⊕ P and ỸA
∼= YA ⊕ P . Then

ϑ([X̃A]) = ϑ([XA]) + ϑ([P ]) and ζ([ỸA]) = ζ([YA]) + ζ([P ]) in G and therefore
ϑ(X̃A) − ζ(ỸA) = ϑ([XA]) − ζ([YA]) − (ϑ([P ]) − ζ([P ])). Sinceϑ([P ]) − ζ([P ]) =
ϑ(i([P ])) − ζ(j([P ])) = 0, it follows that the assignmentA �→ η′(A) = θ([XA]) − ζ([YA])
is independent of the right Cohen–Macaulay approximations and gives a well d
map on the set of isoclasses of mod-Λ. If 0 → A → B → C → 0 is a short exact se
quence in mod-Λ, then by [9, Proposition 3.6] it follows that there exist exact seque
0 → XA → XB → XC → 0 in CM(Λ) and 0→ YA → YB → YC → 0 in (P≺∝

Λ )fin and
therefore we have:θ([XB ]) − ζ([YB ]) = θ([XA]) + θ([XC]) − (ζ([YA]) + ζ([YC])) =
(θ([XA]) − ζ([YA])) + (θ([XC]) − ζ([YC])). It follows thatη′(A) = η′(B) + η′(C) and
therefore there exists a unique group mapη :K0(mod-Λ) → G such thatη′(A) = η([A]).
Clearly α ◦ η = ϑ . Let Y be in (P≺∝

Λ )fin. Then the minimal right Cohen–Macaulay a
proximation ofY is its projective coverP � Y . Thereforeη(β([P ]) = η([P ]) = ϑ([P ])−
ζ([Ω(Y)]) = ϑ i([P ]) − ζ([Ω(Y)]) = ζ j([P ]) − ζ([Ω(Y)]) = ζ([P ] − [Ω(Y)]) = ζ([Y ]).
Henceβ ◦ η = ζ . If µ :K0(mod-Λ) → G is a group map such thatα ◦ µ = β ◦ µ,
then for any moduleA we haveµ([A]) = µ([XA] − [YA]) = µ(α([XA]) − β([YA])) =
ϑ([XA]) − ζ([YA]) = η([A]). Henceη = µ. We infer that(†) is cocartesian and therefo
we have a short exact sequence inAb

K0(PΛ)
(i,−j)−−−→ K0(CMΛ)) � K0

((
P≺∝

Λ

)b) (α
β)−−→ K0(mod-Λ) −→ 0 (††)

which induces a short exact sequence 0→ H → K0(PΛ) → G → 0 whereG := Ker
(
α
β

)
.

We shall show thatH = 0. To this end we first show that the finitely generated abe
groupsK0(CM(Λ)) andK0((P

≺∝
Λ )fin) both have rank� n, where{S1, . . . , Sn} are the

non-isomorphic simpleΛ-modules. Fori = 1, . . . , n, let Xi , respectivelyYi , be the min-

imal right CM(Λ)-, respectively(P≺∝

Λ )fin-, approximation ofSi . Let A, respectivelyB,
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be the full subcategory CM(Λ), respectively(P≺∝
Λ )fin, consisting of all modules whic

admit finite filtrations with factors in{Xi}, respectively{Yi}. By a result of Auslander–
Reiten [9], for any Cohen–Macaulay moduleX and any moduleY in (P≺∝

Λ )fin, there
exist projective modulesP andQ such thatX ⊕ P ∈ A andY ⊕ Q ∈ B. This means tha
the categoryA, respectivelyB, is cofinal in CM(Λ), respectively(P≺∝

Λ )fin. Therefore the
canonical mapsK0(A) → K0(CM(Λ)) andK0(B) → K0((P

≺∝
Λ )fin) are monomorphisms

It follows thatK0(CM(Λ) andK0((P
≺∝
Λ )fin) both have rank� n, since clearlyK0(A), re-

spectivelyK0(B), is free on the set{Xi}, respectively{Yi}. SinceK0(mod-Λ) is free of
rankn, the rank ofG is � n. In turn this implies that the rank of the free subgroupH of
K0(PΛ) is zero, henceH = 0. Therefore the map(i,−j) in (††) is a monomorphism an
then the freeness ofK0(mod-Λ) implies the first isomorphism. The second isomorph
follows in a similar way by using the cotorsion pair((I≺∝

Λ )fin,CoCM(D(Λ))) in mod-Λ
with CoCM(D(Λ)) ∩ (I≺∝

Λ )fin = IΛ. Finally the last two isomorphisms follow direct
from first two or alternatively from [22, Corollary II.5.7].�

We close this section with the following consequence of Proposition 8.8 and [20, The-
orem 12.1].

Corollary 8.10. The following are equivalent for an Artin algebraΛ.

(i) Λ is of finite Cohen–Macaulay type.
(ii) Λ is virtually Gorenstein and the set{[X1] − [X2] + [X3] ∈ K0(CM(Λ),⊕)}, where

Ω(X3) → X1 → X2 → X3 is an Auslander–Reiten triangle inCM(Λ), is a free basis
of K0(CM(Λ),⊕).

(iii) Λ is virtually Gorenstein and the set{[X1] − [X2] + [X3]} ∪ {[XrP ] − [P ]} ⊆
K0(CM(Λ),⊕), where0 → X1 → X2 → X3 → 0 is an Auslander–Reiten sequen
in CM(Λ) andXrP is the minimal right Cohen–Macaulay approximation ofrP for
any indecomposable projective moduleP , is a free basis ofK0(CM(Λ),⊕).

8.4. Derived equivalences, stable equivalences of Morita type and virtually Gorenst
algebras

It is well known that Gorensteinness is preserved under derived equivalences,
also a consequence of our next result. On the other hand there exist derived equ
Artin algebrasΛ andΓ such thatΛ is representation finite butΓ is not, see [31]. The nex
result, which shows that virtual Gorensteinness is preserved under derived equiva
implies that ifΛ is representation finite, hence virtually Gorenstein, and derived equiv
to Γ , thenΓ is virtually Gorenstein.

Theorem 8.11. Let Λ and Γ be derived equivalent finite-dimensionalk-algebras over a
field k. Then there exist triangle equivalences:

CM(PΛ)
≈−→ CM(PΓ ) and CoCM(IΛ)

≈−→ CoCM(IΓ ).
Moreover:
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(i) Λ is virtually Gorenstein iffΓ is virtually Gorenstein.
(ii) gl .dimΛ < ∞, respectivelyΛ is Gorenstein, iff the same holds forΓ .

(iii) Λ is of finite Cohen–Macaulay type iffΓ is of finite Cohen–Macaulay type.
(iv) If Λ is representation-finite, thenΓ is virtually Gorenstein of finite Cohen–Macaula

type.

Proof. Let F : D(Mod-Λ)
≈−→ D(Mod-Γ ) be a triangle equivalence, which we may

sume that it is standard [55], that is,F is given by a two-sided tilting complex. Assum
first thatΛ is virtually Gorenstein, in particular we have CM(Λ) = CM(PΛ)b. Since, by
Theorem 8.2, there exists a cotorsion triple(CM(Λ), (P≺∝

Λ )fin = (I≺∝
Λ )fin,CoCM(D(Λ)))

in mod-Λ, where all the involved categories are functorially finite, there exists a
nitely presented” version of the exact commutative diagram of Proposition 5.8, i.e., the
same diagram but CM(PΛ) is replaced by CM(Λ), PΛ and Mod-Λ are replaced by
PΛ and mod-Λ respectively, andP≺∝

Λ is replaced by(P≺∝
Λ )fin. Now it is well known

thatF restricts to a triangle equivalence betweenDb(Mod-Λ) andDb(Mod-Γ ), between
Db(mod-Λ) andDb(mod -Γ ), betweenHb(PΛ) andHb(PΓ ) and finally betweenHb(PΛ)

andHb(PΓ ) [54]. In particular by Remark 4.3, F induces a triangle equivalence betwe
Tl (Mod-Λ) and Tl (Mod-Γ ), and betweenTl (mod-Λ) and Tl (mod-Γ ). Also by [55] it
follows thatF commutes with the total derived functors− ⊗L

Λ D(Λ) and− ⊗L

Γ D(Γ ).
Using the characterization of the objects in the strict image of the fully faithful fu
tor Db(iCM) : Db(CM(PΛ)) ↪→ Db(Mod-Λ) in Proposition 5.8, it follows thatF induces
a triangle equivalence betweenDb(CM(PΛ)) and Db(CM(PΓ )). Using the finitely pre-
sented version of Proposition 5.8, it follows that this triangle equivalence restricts to
triangle equivalence betweenDb(CM(Λ)) and Db(CM(Γ )). Then from the exact com
mutative diagram of Proposition 5.8 and its finitely presented version, it follows thatF

induces a triangle equivalence between CM(PΛ) and CM(PΓ ), hence between CM(PΛ)b

and CM(PΓ )b, which restricts to a triangle equivalence between CM(Λ) and CM(Γ ). That
is, we have the following commutative diagram where the horizontal arrows are inclu
and the vertical arrows are triangle equivalences induced byF :

Tl (mod-Λ)

F ≈

CM(Λ)

F ≈

CM(PΛ)b

F ≈

Tl (mod-Γ ) CM(Γ ) CM(PΓ )b

Since CM(Λ) = CM(PΛ)b, it follows that CM(Γ ) = CM(PΓ )b and thereforeΓ is virtu-
ally Gorenstein by Theorem 8.2. Since, by Corollary 5.9 and Lemma 4.1, an Artin algebra
∆ is Gorenstein, respectively it holds gl.dim∆ < ∞, iff CM (∆) ≈ Tl (mod-∆), respec-
tively Tl (mod-∆) = 0, it follows thatΛ is Gorenstein, respectively it holds gl.dimΛ < ∞
iff the same holds forΓ . Now part (iii) follows from the above analysis and Corollary 8.10,
and part (iv) follows from (i) and (iii) and the fact that, by Example 8.4, representation fi

nite algebras are virtually Gorenstein.�
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Recall that a stable equivalenceF : Mod-Λ ≈−→ Mod-Γ between Artin algebrasΛ and
Γ is called astable equivalence of Morita type, and thenΛ andΓ are stably equivalen
of Morita type, if there are bimodulesΛMΓ andΓ NΛ such that(α) ΛM andNΛ are fi-
nitely generated projectiveΛ-modules andMΓ andΓ N are finitely generated projectiv
Γ -modules,(β) M ⊗Γ N ∼= Λ ⊕ P asΛ-bimodules whereP is a projectiveΛ-bimodule,
andN ⊗Λ M ∼= Γ ⊕Q asΓ -bimodules whereQ is a projectiveΓ -bimodule, and(γ ) there
exists a natural isomorphismFπΛ

∼=−→ πΓ (− ⊗Λ M) of functors: Mod-Λ → Mod-Γ
(πΛ : Mod-Λ → Mod-Λ andπΓ : Mod-Γ → Mod-Γ are the canonical functors).

We have the following result which shows that (virtual) Gorensteinness is inva
under stable equivalences of Morita type.

Theorem 8.12. Let ΛMΓ andΓ NΛ be bimodules inducing a stable equivalence of Mo
typeF : Mod-Λ ≈−→ Mod-Γ between the Artin algebrasΛ andΓ .

(i) F induces a triangle equivalenceF : CM(PΛ)
≈−→ CM(PΓ ).

(ii) Λ is virtually Gorenstein iffΓ is virtually Gorenstein.
(iii) Λ is Gorenstein iffΓ is Gorenstein.

Proof. (i) Clearly it suffices to show that ifX is a Cohen–MacaulayΛ-module, then
X ⊗Λ M is a Cohen–MacaulayΓ -module. Let(P •, dP •) be an acyclic complex of pro
jectiveΛ-modules which remains exact after the application of HomΛ(−,P ), whereP is
projective, and such that Kerd0

P • = X. Since the modulesΛM andMΓ are projective, it
follows that the functorFM := −⊗Λ M : Mod-Λ → Mod-Γ is exact and preserves proje
tives. Therefore we have an acyclic complex(FM(P •),FM(dP •)) of projectiveΓ -modules
such that KerFM(d0

P •) = FM(X). ConsequentlyFM(X) is Cohen–Macaulay provided th
X lies in ⊥Λ implies thatFM(X) lies in ⊥Γ . Equivalently ifX satisfies TorΛn (X, I) = 0,
∀n � 1, for any injectiveΛ-moduleI , then TorΓn (FM(X),J ) = 0,∀n � 1, for any injective
Γ -moduleJ . Let · · · → P −1 → P 0 → X → 0 be a projective resolution ofX ∈ ⊥Λ. Then
we have a projective resolution· · · → FM(P −1) → FM(P 0) → FM(X) → 0 of FM(X)

in Mod-Γ and therefore for any injectiveΓ op-moduleJ , TorΓn (FM(X),J ) is then-th co-
homology of the complex· · · → P −1 ⊗Λ M ⊗Γ J → P 0 ⊗Λ M ⊗Γ J → 0. It is easy to
see that the functorMF := M ⊗Γ − : Mod-Γ op → Mod-Λop preserves injectives. Henc
M ⊗Γ J is an injectiveΛop-module and therefore TorΓ

n (FM(X),J ) ∼= TorΛn (X,MF(J )) =
0, ∀n � 1, sinceX lies in ⊥Λ andMF(J ) lies in IΛop. We infer that the functorFM pre-
serves Cohen–Macaulay modules. HenceF induces a stable equivalence between CM(PΛ)

and CM(PΓ ) which is clearly a triangulated functor.
(ii) and (iii). Since the modulesΛM , NΛ, MΓ andΓ N are finitely generated, it follow

directly that the triangle equivalence of (i) restricts to a triangle equivalence CM(Λ)
≈−→

CM(Γ ). Then the assertion in (ii) follows by Theorem 8.2. If Λ is Gorenstein, then, b
Proposition 3.10, anyΛ-module lies in ̂CM(PΛ). By (i) this easily implies that anyΓ -
modules is a direct summand of a module which admits a finite exact resolution by C
Macaulay modules. ThereforeΓ is Gorenstein. �

Although the class of virtually Gorenstein algebras is rather large, we don’t know o

example of an Artin algebra that is not virtually Gorenstein. We close this section with the
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following result which shows that “locally”, i.e., at the finitely generated level, all A
algebras are virtually Gorenstein.

Proposition 8.13. For any Artin algebraΛ we have:

(
P≺∝

Λ

)fin = (
I≺∝

Λ

)fin
.

Proof. Let T be in (I≺∝
Λ )fin. By Proposition 5.5(1) we have that TrD(T ) lies in

⊥CM(PΛ) ∩ mod-Λ. Also by Proposition 3.8(vi) we have ExtnΛ(X,DTrTrD(T )) = 0,
∀n � 1,∀X ∈ CM(PΛ). HenceT lies inP≺∝

Λ ∩mod-Λ = (P≺∝
Λ )fin. Therefore(I≺∝

Λ )fin ⊆
(P≺∝

Λ )fin. Similarly (P≺∝
Λ )fin ⊆ (I≺∝

Λ )fin. �

9. Thick subcategories, (co)torsion pairs and virtually Gorenstein algebras

In this section we give relative versions of our previous results thus generalizing th
ation of virtually Gorenstein algebras. More precisely we present methods for constr
thick subcategories, cotorsion pairs/triples, and torsion pairs of finite type. In additio
give bijections between certain cotorsion pairs in the module category and torsion p
the stable category which are of interest in connection with the Telescope Conjectu
stable categories discussed in Section 10.

9.1. Torsion pairs induced by Cohen–Macaulay modules

We have seen thatI≺∝
Λ andP≺∝

Λ are thick resolving and coresolving subcatego
of Mod-Λ. On the other hand it is easy to see that CM(PΛ) is coresolving, respectivel
CoCM(IΛ) is resolving, iffΛ is self-injective. The following result shows that CM(PΛ)

and CoCM(IΛ) are not always thick.

Lemma 9.1. For an Artin algebraΛ the following are equivalent.

(i) CM(PΛ), respectivelyCoCM(IΛ), is thick.

(ii) ̂CM(PΛ) = CM(PΛ), respectively ˜CoCM(IΛ) = CoCM(IΛ).

(iii) FPD(Λ) = 0, respectivelyFID(Λ) = 0.

Proof. If CM(PΛ) is thick, then clearly ̂CM(PΛ) = CM(PΛ). By Theorem 3.5, (ii) implies
that P<∞

Λ = PΛ and therefore FPD(Λ) = 0. If FPD(Λ) = 0, then ̂CM(PΛ) = CM(PΛ)

by Proposition 3.9. Hence CM(PΛ) is thick since so is ̂CM(PΛ). CoCohen–Macaula
modules are treated dually.�
Example 9.2. If Λ is a local Artin algebra, then it is easy to see that FPD(Λ) = 0 =
FID(Λ). Hence the subcategories CM(PΛ) and CoCM(IΛ) are thick. Since there exis
Artin algebrasΛ such that FPD(Λ) = 0 and FID(Λ) �= 0, it may happen that CM(PΛ) is

thick but CoCM(IΛ) is not thick.
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However CM(PΛ) is projectively thick and CoCM(IΛ) is injectively thick in the follow-
ing sense. A full subcategoryU of an abelian categoryC is calledprojectively, respectively
injectively, thick, if U is resolving, respectively coresolving, and closed under coke
of P-monics, respectively kernels ofI-epics, whereP , respectivelyI, are the projectives
respectively injectives, ofC. It is easy to see that a full subcategory ofU of CM(PΛ), re-
spectively CoCM(IΛ), is projectively, respectively injectively, thick iff its imageU , respec-
tively U , in the stable category is a thick subcategory of CM(PΛ), respectivelyCoCM(IΛ).
Also a cotorsion pair(X ,Y) is projective, respectively injective, iffX , respectivelyY , is
projectively, respectively injectively, thick and consists of Cohen–Macaulay, respec
CoCohen–Macaulay, modules.

Throughout we fix an Artin algebraΛ. In the sequel we shall need the following res
from [22]. The corresponding result for injective cotorsion pairs is dual.

Theorem 9.3 [22]. The mapΦ : (X ,Y) �→ (X ,Y) gives a bijective correspondence b
tween projective cotorsion pairs(X ,Y) in Mod-Λ and torsion pairs(X ,Y) in Mod-Λ
such thatX is triangulated.

We are interested in cotorsion pairs induced by projectively thick subcategories
sisting of finitely generated Cohen–Macaulay modules. In this connection we hav
following result.

Theorem 9.4. LetF be a projectively thick subcategory ofCM(Λ).

(i) There exists a cotorsion triple(XF ,YF ,ZF ) in Mod-Λ, where:

XF = lim−→F , YF = F⊥ = ⊥{
τ+(F)

}
, ZF = F⊥⊥ = {⊥{

τ+(F)
}}⊥

.

(ii) XF ⊆ CM(PΛ), ZF ⊆ CoCM(IΛ), andYF is thick and definable.
(iii) There exists a torsion pair(XF ,YF ) of finite type inMod-Λ where the triangulated

categoryXF is compactly generated, and a torsion pair(YF ,ZF ) of cofinite type in
Mod-Λ where the triangulated categoryZF is compactly generated.

(iv) The categoriesXF , ZF are triangle equivalent. The Auslander–Reiten operatorDTr

induces a triangle equivalenceDTr :F ≈−→ Zfin
F with quasi-inverse induced byTrD

and the Nakayama functorN+ induces an equivalenceN+ :F ≈−→ Zfin
F with quasi-

inverse the functorN−.

Proof. As already mentioned the stable categoryF is a thick subcategory of CM(Λ). Let
XF be the full subcategory of Mod-Λ consisting of all modulesA such thatA lies in the
localizing subcategory of CM(PΛ) generated byF , which we denote byXF . SinceF
consists of compact objects of CM(PΛ), it follows that the inclusioni′X :XF ↪→ CM(PΛ)

admits a right adjointR′
F : CM(PΛ) → XF which preserves coproducts [50]. Then t

compositionRF := R′
FRCM : Mod-Λ →XF is a right adjoint of the inclusioniF :XF ↪→

Mod-Λ. SinceXF is a triangulated subcategory of Mod-Λ it follows thatXF is a resolving

subcategory of Mod-Λ and admitsPΛ as an Ext-injective cogenerator. Therefore, by [22],
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we have a torsion pair(XF ,YF ) in Mod-Λ, whereYF = (XF )⊥, and a cotorsion pai
(XF ,YF ) in Mod-Λ, whereYF = (XF )⊥. Since(XF )b = F , it follows that the inclu-
sion iF preserves compact objects and therefore by Lemmas 6.1 and 7.2 the torsion pair
(XF ,YF ) is of finite type. SinceXF is triangulated, by [22] it follows thatYF is thick.
Next we show thatYF = F⊥. SinceF ⊆ XF it follows thatYF = (XF )⊥ ⊆ F⊥. Let A

be inF⊥, i.e., ExtnΛ(F ,A) = 0, ∀n � 1. By Proposition 3.8 we have

HomΛ

(
Ωn(F),A

) ∼=−→ HomΛ

(
Ωn(F ),RF (A)

) = 0, ∀n � 1, ∀F ∈ F .

SinceF is a thick generating subcategory ofXF , we infer thatRF (A) = 0 and therefore
A lies inYF , i.e.,A lies inYF . HenceF⊥ = YF . SinceF consists of finitely generate
modules, it follows from [43] thatYF is definable. Since it is also resolving, by [46]
follows thatYF is contravariantly finite and there exists a pure-injective moduleT such
thatYF = ⊥T , in fact T is the kernel of the minimal rightYF -approximationYΛ/r →
Λ/r of Λ/r. SinceF⊥ is resolving, by [32],T generates a cotorsion pair(⊥T , (⊥T )⊥)

in Mod-Λ. SettingZF := (⊥T )⊥, it follows thatZF ⊆ CoCM(IΛ) and therefore we hav
a cotorsion triple(XF ,YF ,ZF ) in Mod-Λ. Moreover by [22] we haveYF ∩ ZF = IΛ,
the stable categoryZF is triangulated and triangle equivalent toXF . We now show tha
XF = lim−→F . By the results of Krause–Solberg [46], it follows that a moduleA lies inYF
iff A is a direct summand of a moduleY which admits a finite filtration 0= Y0 ⊆ Y1 ⊆
· · · ⊆ Yt−1 ⊆ Yt = Y where each quotientYk/Yk−1 lies in Prod(YΛ/r). Using thatYΛ/r is
pure-injective, it follows that

ExtnΛ
(
lim−→F ,Prod(YΛ/r)

) ∼=−→ Prod ExtnΛ(lim−→F , YΛ/r)
∼=−→ Prod lim−→ ExtnΛ(F , YΛ/r) = 0.

Then by induction we have lim−→F ⊆ ⊥YF = XF . Finally by the results of Hügel–Trlifaj [2
it follows that lim−→F = ⊥PInj(YF ), where PInj(YF ) denotes the class of pure-injecti
modules inYF . Since clearlyXF ⊆ ⊥PInj(YF ), we infer thatXF ⊆ lim−→F . We conclude
that XF = lim−→F . Now let F be in F and Z in Zfin

F . Then from the Auslander–Reite
formulas

Ext1Λ
(
F⊥,DTr(F )

) ∼= DHomΛ

(
F,F⊥)

and DExt1Λ
(
TrD(Z),F⊥) ∼= HomΛ

(
F⊥,Z

)
we infer that DTr(F ) lies in Zfin

F and TrD(Z) lies in X fin
F = F . This implies thatN+(F )

lies in Zfin
F and N−(Z) lies in F . Then the assertions in (iv) follow directly from the

observations. Now since the restrictionΣP|F is an equivalence, the isomorphisms

DExtnΛ
(
A,τ+(F)

) ∼= DHomΛ

(
A,Σnτ+(F)

) ∼= DHomΛ

(
A,τ+Σn

P(F)
)

∼= Ext1Λ
(
Σn

P(F),A
)

show directly thatYF = ⊥τ+(F). The remaining assertions follow from the resu

of [22]. �
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As already stated in Lemma 7.11, Krause and Solberg proved in [45] that contrav
antly finite resolving, respectively covariantly finite coresolving, subcategories of mΛ
are covariantly, respectively contravariantly, finite. Notice that there exist covarian
nite subcategoriesY ⊆ mod-Λ which are not contravariantly finite [34]. In [34] such aY
consists of modules of finite projective dimension. The following result, which gives a
verse to the result of [45], shows that the above “pathology” is impossible for subcate
of Cohen–Macaulay modules.

Corollary 9.5. LetF be a projectively thick subcategory ofCM(Λ) andH an injectively
thick subcategory ofCoCM(D(Λ)). Then we have the following.

(i) If F is covariantly finite, thenF is contravariantly finite.
(ii) If H is contravariantly finite, thenH is covariantly finite.

In particular CM(Λ), respectivelyCoCM(D(Λ)), is contravariantly finite iff it is covari-
antly finite. If Λ is self-injective, then a thick subcategory ofmod-Λ is contravariantly
finite iff it is covariantly finite.

Proof. Let (XF ,YF ,ZF ) be the cotorsion triple in Mod-Λ constructed in Theorem 9.4.
ThenXF = lim−→F and the adjoint pair(N+,N−) induces an equivalence betweenF =
X fin
F and Zfin

F . This implies thatZfin is covariantly finite; indeed ifT ∈ mod-Λ and

N+(T ) → XN+(T ) is a leftF -approximation, then it is easy to see that the compos
T → N−N+(T ) → N−(XN+(T )) is a leftZfin

F -approximation ofT . SinceZfin
F is coresolv-

ing, Lemma 7.11 implies thatZfin
F is contravariantly finite. Using again the adjoint p

(N+,N−) we infer thatF is contravariantly finite. Part (ii) follows by duality and the fin
assertion follows from the fact that CM(Λ) = mod-Λ if Λ is self-injective. �

We continue with other consequences of Theorem 9.4.

Corollary 9.6. The mapφ :F �→ (F⊥⊥)fin gives a bijection between contravariant
(covariantly) finite projectively thick subcategoriesF of CM(Λ) and covariantly(con-
travariantly) finite injectively thick subcategoriesH of CoCM(D(Λ)). The inverse is
given byψ :H �→ (⊥⊥H)fin. Any suchF , respectivelyH, induces a cotorsion triple
(lim−→F , lim−→G, lim−→H) in Mod-Λ, whereG = (F⊥)fin = (⊥H)fin.

Proof. Let (XF ,YF ,ZF ) be the cotorsion triple in Mod-Λ induced byF as in Theo-
rem 9.4. SinceF is contravariantly finite, by [22], there exists a cotorsion triple(F ,G,H)

in mod-Λ, which, by [45], induces a cotorsion triple(lim−→F , lim−→G, lim−→H) in Mod-Λ. Since
XF = lim−→F , it follows that

YF = F⊥ = lim−→G and ZF = lim−→H = F⊥⊥.

Since lim−→H is closed under products, Lemma 7.10 implies that(F⊥⊥)fin = H is covari-
antly finite and plainlyH is injectively thick and consists of CoCohen–Macaulay modu

Clearly the mapφ is a bijection with inverseψ . �
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Let C be a pretriangulated, respectively abelian, category which admits all
(co)products. We say that a torsion, respectively cotorsion, pair(X ,Y) in C is perfect
if (X ,Y) is both of finite and cofinite type. Combining Lemma 7.10, Theorems 9.3, 9.4
and Corollary 9.6, we have the following consequence.

Corollary 9.7. If F ⊆ CM(Λ) is projectively thick, then the torsion(cotorsion) pair
(XF ,YF ) ((XF ,YF )) in Mod-Λ (Mod-Λ) is perfect iffF is contravariantly or covari-
antly finite inmod-Λ.

Corollary 9.8. The mapΦ :F �→ (XF ,YF ) gives a bijection between the class of proje
tively thick subcategoriesF of CM(Λ) and the class of torsion pairs(X ,Y) of finite type in
Mod-Λ such that the torsion classX is triangulated and compactly generated. Under t
correspondence,F is contravariantly(covariantly) finite iff the torsion pair(XF ,YF ) is
perfect.

Proof. Clearly the mapΦ is injective. Let (X ,Y) be a torsion pair of finite type in
Mod-Λ whereX is a compactly generated triangulated category. ThenX ⊆ CM(PΛ)

by Theorems 7.12 and 9.3. Also by Lemma 7.2 the finite type property implies tha
X b ⊆ (Mod-Λ)b = mod-Λ and thereforeX b ⊆ CM(Λ). Finally compact generation im
plies thatX = XF whereF = {F ∈ mod-Λ | F ∈ X b} is clearly a projectively thick
subcategory of CM(Λ), since the subcategoryX b is thick. Hence(X ,Y) = (XF ,YF )

and therefore the mapΦ is bijective. �
Summarizing the above results, we have the following consequence.

Corollary 9.9. There exist bijective correspondences between:

(i) Contravariantly(covariantly) finite projectively thick subcategoriesF of CM(Λ).
(ii) Covariantly (contravariantly) finite injectively thick subcategoriesH of

CoCM(D(Λ)).
(iii) Perfect projective cotorsion pairs(X ,Y) in Mod-Λ such thatX = lim−→X fin.
(iv) Perfect injective cotorsion pairs(W,Z) in Mod-Λ such thatZ = lim−→Zfin.
(v) Perfect torsion pairs(X ,Y) in Mod-Λ such thatX is triangulated and compactl

generated.
(vi) Perfect torsion pairs(W,Z) in Mod-Λ such thatZ is triangulated and compactl

generated.
(vii) Cotorsion triples(A,B,C) in Mod-Λ such thatA is closed under products an

A = lim−→Afin.
(viii) Cotorsion triples(A,B,C) in Mod-Λ such thatC = lim−→Cfin.

We close this section with the following complement to Corollary 9.8 which generalizes
a result of Krause–Solberg [45] who proved the following result for self-injective alge

by using functor categories.
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Theorem 9.10. LetΛ be an Artin algebra and let(X ,Y) be a projective cotorsion pair in
Mod-Λ. Then the following statements are equivalent.

(i) The torsion pair(X ,Y) in Mod-Λ is of finite type andX is compactly generated.
(ii) X = lim−→X fin.

If (ii ) holds, thenY is definable and the map(X ,Y) �→ (X ,Y) gives a bijection betwee
projective cotorsion pairs(X ,Y) in Mod-Λ such thatX = lim−→X fin, and torsion pairs
of finite type(A,B) in Mod-Λ such that the torsion classA is a compactly generate
triangulated category.

Proof. (i) ⇒ (ii). The assumptions imply thatX is compactly generated byX b ⊆ mod-Λ.
Then by Corollary 9.8 and Theorem 9.4 we infer thatX = lim−→X fin.

(ii) ⇒ (i). We first show thatX is compactly generated. LetA be a module inX such
that HomΛ(X,A) = 0 for any X ∈ X fin and letα :T → A be a map whereT lies in
mod-Λ. SinceA ∈ X = lim−→X fin, α factors through a moduleX in X fin. Since any map
X → A factors through a projective module andX is finitely generated, it follows tha
any mapX → A factors through a finitely generated projective module. This implies
Lemma 7.10, thatA lies in lim−→PΛ = PΛ. HenceA = 0 and thereforeX fin generatesX .
SinceX fin is thick and consists of compact objects, we infer thatX fin = X b is a compact
generating subcategory ofX . Now let {Yi}i∈I be a filtered system of modules inY . Then
for any moduleX in X fin we have ExtnΛ(X, lim−→ Yi) ∼= lim−→ ExtnΛ(X,Yi) = 0. SinceX b is
triangulated, it follows that any moduleX in X fin is an arbitrary syzygy of a moduleX′ in
X b. This implies that HomΛ(X, lim−→ Yi) ∼= HomΛ(Ω(X′), lim−→ Yi) ∼= Ext1Λ(X′, lim−→ Yi) = 0.
But HomΛ(X, lim−→ Yi) ∼= HomΛ(X,RX (lim−→ Yi)) and therefore HomΛ(X,RX (lim−→ Yi)) = 0
for any objectX in X b. SinceX b generatesX , we infer thatRX (lim−→ Yi) = 0 in Mod-Λ
and therefore lim−→ Yi ∈ Y , i.e., lim−→ Yi lies inY . We conclude thatY is closed under filtered
colimits, in particularY is closed under coproducts and therefore the torsion pair(X ,Y)

is of finite type. �

10. The Telescope Conjecture for stable categories

The results of the previous section suggest to study further the question of when t
pairs of finite type are generated by compact objects. This question is exactly th
tent of the Telescope Conjecture in case we work with a compactly generated triang
category, see [42]. The latter conjecture is a generalization of the classical conjec
Bousfield and Ravenel for the stable homotopy category of CW-complexes, see [2
The Telescope Conjecture can be formulated more generally for pretriangulated cat
and more concretely for stable categories.

Let C be an additive category which admits all small coproducts and letU be a func-
torially finite subcategory ofC with the property that anyU -epic admits a kernel inC and

anyU -monic admits a cokernel inC. Then by [19] the stable categoryC/U is pretriangu-
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functorially finite subcategory.

Telescope Conjecture for stable categories. Assume that the stable categoryC/U is com-
pactly generated as a right triangulated category. If(X ,Y) is a torsion pair of finite type
in C/U , thenX is generated by compact objects fromC/U .

Remark 10.1. Note that this conjecture is equivalent to the telescope conjecture for de
categories of rings and stable categories of Frobenius exact categories, for instance-Λ
whereΛ is a self-injective Artin algebra. In the first case chooseC to be the homotopically
projective complexes ofΛ-modules in the sense of Keller [39] andU is the subcategor
of contractible complexes. Then the stable categoryC/U is equivalent to the unbounde
derived categoryD(Mod-Λ).

We say that a torsion pair(X /U,Y/U) of finite type inC/U satisfies the Telescope
Conjecture if the stable categoryX /U is generated by compact objects fromC/U . Using
this terminology, Theorem 9.10 can be formulated as follows.

Theorem 10.2. LetΛ be an Artin algebra and let(X ,Y) be a projective cotorsion pair in
Mod-Λ. Assume thatY is closed under coproducts. Then the following are equivalent

(i) The torsion pair(X ,Y) in Mod-Λ satisfies the Telescope Conjecture.
(ii) X = lim−→X fin.

If (ii ) holds, thenY is definable and the map(X ,Y) �→ (X ,Y) gives a bijection betwee
projective cotorsion pairs(X ,Y) in Mod-Λ such thatX = lim−→X fin, and torsion pairs of
finite type(A,B) in Mod-Λ satisfying the Telescope Conjecture and such that the tor
classA is triangulated.

10.1. Self-injective algebras

We recall that a full thick subcategoryL of a triangulated categoryT is calledlocalizing
if the inclusionL ↪→ T admits a right adjoint, i.e.,L is the torsion class of a torsion pa
(L,L⊥) in T . And a localizing subcategoryL is calledsmashing if the right adjoint of
the inclusionL ↪→ T preserves coproducts, i.e., the torsion pair(L,L⊥) is of finite type.
As a consequence of Corollary 9.8 and Theorem 10.2 we have the following result o
Krause–Solberg [45].

Corollary 10.3 [45]. If Λ is a self-injective Artin algebra, then the following are equiv
lent.

(i) The stable categoryMod-Λ satisfies the Telescope Conjecture.

(ii) If X is a smashing subcategory ofMod-Λ, thenX = lim−→X fin.
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(iii) If X is a thick subcategory ofMod-Λ, thenX = lim−→X fin provided that any module ad
mits a special rightX -approximation and the class of special rightX -approximations
is closed under all small coproducts.

If Λ is a self-injective algebra and(X ,Y,Z) is a cotorsion triple in Mod-Λ, then the
cotorsion pairs(X ,Y) and (Y,Z) are projective–injective. Hence the stable catego
X , Y andZ are triangulated. Moreover the torsion pair(X ,Y) is of finite type and the
torsion pair(Y,Z) is of cofinite type. We are interested in finding necessary and suffi
conditions ensuring that the torsion pair(Y,Z) is of finite type and the torsion pair(X ,Y)

is of cofinite type. To proceed further we need the following.

Lemma 10.4 [20, Corollary 5.15]. LetC be a compactly generated triangulated categ
and let(X ,Y) be a torsion pair inC. Then we have the following.

(i) (X ,Y) is of cofinite type iff there exists a torsion triple(W,X ,Y) in C iff the inclusion
X ↪→ C admits a left adjoint. If this is the case, thenX is compactly generated.

(ii) (X ,Y) is of finite type iff there exists a torsion triple(X ,Y,Z) in C iff the inclusion
Y ↪→ C admits a right adjoint. If this holds, then the torsion-free classY is compactly
generated.

(iii) If (X ,Y) is of finite type, then(X ,Y) satisfies the Telescope Conjecture iff the tors
classX is compactly generated.

(iv) C satisfies the Telescope Conjecture, if any torsion pair of finite type is of cofinite

Theorem 10.5. LetΛ be a self-injective algebra and let(X ,Y,Z) be a cotorsion triple in
Mod-Λ. Then the following are equivalent.

(i) The torsion pair(X ,Y) is of cofinite type, i.e.,X is closed under products inMod-Λ.
(ii) The torsion pair(Y,Z) is of finite type, i.e.,Z is closed under coproducts inMod-Λ.

(iii) X fin or Yfin or Zfin is contravariantly, or equivalently covariantly, finite inmod-Λ.
(iv) There exists a cotorsion triple(X fin,Yfin,Zfin) in mod-Λ.
(v) There exists a torsion triple(X b,Yb,Zb) in mod-Λ.

If one of the above conditions holds, thenX = lim−→X fin, Y = lim−→Yfin andZ = lim−→Zfin.
Moreover the stable categoriesX , Y andZ are compactly generated and the maps

F �→ (
F ,F⊥,F⊥⊥)

and (F ,G,H) �→ (
X := lim−→F , Y := lim−→G, Z := lim−→H

)
give bijections between contravariantly finite resolving subcategoriesF of mod-Λ, cotor-
sion triples(F ,G,H) in mod-Λ, and cotorsion triples(X ,Y,Z) in Mod-Λ such that the
torsion pair (Y,Z) is of finite type or equivalently the torsion pair(X ,Y) is of cofinite
type.

Proof. (i) ⇒ (ii). Assume that the torsion pair(X ,Y) is of cofinite type. Then by
Lemma 10.4 it follows thatX is compactly generated. By Theorem 9.4 and Corollary 9.8

we haveX = lim−→F whereF = X b andZ = F⊥⊥. SinceX is closed under products in
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Mod-Λ, the same holds forX in Mod-Λ. By Lemma 7.10 it follows thatF is covariantly
finite and then by Corollary 9.5 it follows thatF is contravariantly finite. Hence there e
ists a cotorsion triple(F ,G,H) in mod-Λ and, as in the proof of Corollary 9.6, we infer
thatZ = lim−→H. HenceZ is closed under coproducts.

(ii) ⇒ (i). If Z is closed under coproducts, then by [22, Proposition IV.1.11] it
lows thatX is compactly generated and we have a torsion pair(X b,Yb) in mod-Λ.
This implies thatX fin is contravariantly finite, hence covariantly finite by Corollary 9.5.
Then, by Lemma 7.10, lim−→X fin is closed under products and the assertion follows s
X = lim−→X fin by Corollaries 9.6 and 9.7.

The equivalences (iii)⇔ (iv) and (i) ⇔ (ii) follow from [22, Proposition IV.4.11 and
Corollaries VI.4.10 and VI.4.11]. The remaining assertions follow from Corollary 9.8. �

We say that a pretriangulated categoryC with all small products and coproducts satisfi
the strong Telescope Conjecture if any torsion pair of finite typeC is of cofinite type.
By part (iv) of Lemma 10.4 it follows that the strong Telescope Conjecture implies
Telescope Conjecture.

Theorem 10.6. For a self-injective algebraΛ, the following are equivalent.

(i) The stable categoryMod-Λ satisfies the strong Telescope Conjecture.
(ii) The stable categoryMod-Λ satisfies the Telescope Conjecture and the mapF �→ lim−→F

gives a bijection between the setThick of thick subcategories ofmod-Λ and the set
ThDef of thick definable subcategories ofMod-Λ.

Proof. (i) ⇒ (ii). As already mentioned Mod-Λ satisfies the Telescope Conjecture. LeF
be a thick subcategory of mod-Λ. Then by Theorem 9.4, we have a torsion pair of finit
type (X ,Y) in Mod-Λ, whereX = lim−→F . By hypothesis,X is closed under product
and thereforeF is covariantly finite in mod-Λ by Lemma 7.10. Then lim−→F is definable
by [43], and thick since the stable category lim−→F is thick. Hence we have a mapThick �→
ThDef, F �→ lim−→F which is clearly injective. Now letD be a thick definable subcatego
of Mod-Λ. Then by [46, Theorem 2.6 and Corollary 4.5] it follows thatD is contravariantly
finite. SinceD is closed under filtered colimits, this implies that there exists a cotor
pair (D,C) in Mod-Λ. Also thickness ofD implies thatD is triangulated and therefor
the cotorsion pair(D,C) is projective–injective by Theorem 9.3. We infer that(D,C) is
a torsion pair in Mod-Λ which is clearly of cofinite type. Then, by Lemma 10.4, D is
compactly generated and there exists a torsion triple(B,D,C) in Mod-Λ. Since the torsion
pair (B,D) is of finite type, by hypothesis,B is closed under products. Then Theorem 1.5
implies thatC is closed under coproducts, i.e., the torsion pair(D,C) is of finite type. By
Theorem 10.2 we infer thatD = lim−→Dfin where the subcategoryDfin is thick. Hence the
mapThick �→ ThDef is surjective.

(ii) ⇒ (i). If (X ,Y) is a torsion pair of finite type in Mod-Λ, then the conditions in
(ii) imply that X = lim−→X fin. SinceX fin is thick, we infer thatX is definable. It follows
thatX , henceX , is closed under products and therefore the torsion pair(X ,Y) is of cofi-

nite type. �
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Let G a finite p-group, wherep is a prime, and letk be a field. Also letVG be the
maximal ideal spectrum of the cohomology ringH ∗(G, k) of G. We letVar be the collec-
tion of all closed homogeneous subvarieties ofVG which are closed under subvarieties a
finite unions. ForV ∈ Var, let C(V ) be the full subcategory of mod-kG consisting of all
modulesM whose varietyVG(M), in the sense of [23], is contained inV . Then by [23]
and Theorem 10.6 we have the following consequence.

Corollary 10.7. If Mod-kG satisfies the strong Telescope Conjecture, then the mapV �→
lim−→C(V) gives a bijection between subsets ofVar and the classThDef of thick definable
subcategories ofMod-kG.

10.2. Virtually Gorenstein algebras

In this section we study the Telescope Conjecture for the stable category of a vir
Gorenstein algebra. We begin with the following result which, in particular, shows th
class of projective cotorsion pairs of finite type in Mod-Λ is a set which is a complete lattic
under the order relation(X1,Y1) ≺ (X2,Y2) iff X1 ⊆ X2. We say that a full triangulate
subcategoryS of a compactly generated triangulated categoryT is definable if S is closed
under products and coproducts inT .

Theorem 10.8. LetΛ be a virtually Gorenstein algebra.

(i) The mapΦ : (X ,Y) �→ X induces a bijection between the classC of projective cotor-
sion pairs of finite type inMod-Λ and the classSCM of smashing subcategories
CM(PΛ).

(ii) The mapΨ : (X ,Y) �→ YCM := CM(PΛ) ∩ Y induces a bijection betweenC and the
classDCM of definable compactly generated subcategories ofCM(PΛ).

In particular the classesC, DCM andSCM are sets which are complete lattices.

Proof. (i) If (X ,Y) lies in C, then (X ,Y) is a torsion pair of finite type in Mod-Λ
and X is triangulated, in particularX ⊆ CM(PΛ). It is easy to see that the funct
RX iCM : CM(PΛ) → X is the coreflection of CM(PΛ) in X and preserves coproduc
Hence(X ,Y ∩ CM(PΛ)) is a torsion pair of finite type in CM(PΛ), i.e.,X is a smashing
subcategory of CM(PΛ). If (X ,Y) is a torsion pair of finite type in CM(PΛ), then the
coreflectionRX : CM(PΛ) → X preserves coproducts and it is easy to see that the fu
RX RCM : Mod-Λ → X is the coreflection of Mod-Λ in X . Therefore, by [22], we ob
tain a torsion pair(X ,Y ′) in Mod-Λ and a projective cotorsion pair(X ,Y ′) in Mod-Λ.
SinceΛ is virtually Gorenstein,RX RCM preserves coproducts and therefore the tors
pair (X ,Y ′) in Mod-Λ is of finite type, i.e.,Y ′, or equivalentlyY ′, is closed under co
products. Hence the cotorsion pair(X ,Y ′) in Mod-Λ is of finite type. Clearly the ma
Φ :C → SCM, (X ,Y) �→ X is a bijection.

(ii) If (X ,Y) ∈ C, thenYCM is a triangulated subcategory of CM(PΛ) sinceY is thick.
By Lemma 10.4, YCM is compactly generated and definable. IfY ′ lies in DCM, then the

inclusionY ′ ↪→ CM(PΛ) admits a left adjoint [51]. Hence we have a torsion pair of finite
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type(X ,Y ′) in CM(PΛ), i.e.,X is smashing in CM(PΛ). Then by (i) there exists a proje
tive cotorsion pair of finite type(X ,Y) in Mod-Λ. ClearlyΨ :C → DCM, (X ,Y) �→ YCM
is a bijection. The last assertion follows from [44].�

The following comparison for the Telescope Conjecture follows from Theorems.3,
9.10 and 10.8.

Corollary 10.9. Let Λ be a virtually Gorenstein algebra. Then the following are equi
lent.

(i) The triangulated categoryCM(PΛ) satisfies the Telescope Conjecture.
(ii) Mod-Λ satisfies the Telescope Conjecture for torsion pairs with triangulated tor

class.
(iii) For any projective cotorsion pair(X ,Y) of finite type inMod-Λ, we haveX =

lim−→X fin.

If (i) holds, then the mapF �→ lim−→F , respectivelyF �→ F⊥ ∩ CM(PΛ), gives a bijection
between the complete lattice of projectively thick subcategories ofCM(Λ) and the com-
plete latticeSCM, respectivelyDCM, of smashing, respectively definable and compa
generated, subcategories ofCM(PΛ).

The following two results show that validity of the Telescope Conjecture for the s
category of a virtually Gorenstein algebra is invariant under of derived equivalence
stable equivalences of Morita type.

Theorem 10.10. Let Λ, Γ be derived equivalent finite dimensionalk-algebras over a
field k. Assume thatΛ is virtually Gorenstein. Then the stable categoryMod-Λ satis-
fies the Telescope Conjecture for torsion pairs of finite type such that the torsion c
triangulated iff so doesMod-Γ .

Proof. The algebraΓ is virtually Gorenstein by Theorem 8.11. Assuming that the con
dition holds forΓ , let (X ,Y) be a torsion pair of finite type in Mod-Λ such thatX
is triangulated. ThenX ⊆ CM(PΛ) and we obtain a torsion pair(X ,Y ′) in CM(PΛ),
where Y ′ = Y ∩ CM(PΛ), which clearly is of finite type. By Theorem 8.11, it fol-
lows that a given derived equivalence betweenΛ andΓ induces a triangle equivalenc
F : CM(PΛ)

≈−→ CM(PΓ ). Then(W,Z) is a torsion pair of finite type in CM(PΓ ), where
W := F(X ) andZ := F(Y ′). As in the proof of Theorem 10.8, this torsion pair extend
to a torsion pair(W,Z ′) of finite type in Mod-Γ , whereW is triangulated. By hypothes
W is compactly generated and therefore so isX . Hence the torsion pair(X ,Y) in Mod-Λ
satisfies the Telescope Conjecture.�

Using Theorem 8.13, a similar argument as in the proof of Theorem 10.10 implies the

following.
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Theorem 10.11. Let Λ, Γ be Artin algebras which are stably equivalent of Morita ty
Assume thatΛ is virtually Gorenstein. Then the stable categoryMod-Λ satisfies the Tele
scope Conjecture for torsion pairs of finite type such that the torsion class is triangu
iff so doesMod-Γ .

Since a representation-finite algebra is virtually Gorenstein and obviously satisfi
Telescope Conjecture for torsion pairs with triangulated torsion class, we have the f
ing consequence.

Corollary 10.12. LetΛ be a finite dimensionalk-algebra of finite representation type ov
a fieldk. If Γ is ak-algebra derived equivalent toΛ, then the stable categoryMod-Γ sat-
isfies the Telescope Conjecture for torsion pairs such that the torsion class is triangu

If Λ is self-injective and(X ,Y) is a cotorsion pair in Mod-Λ, then by a result o
Krause–Solberg [45, Theorem 7.6] the subcategoriesX andY are closed under filtere
colimits. The following observation generalizes the result of Krause–Solberg from
injective to virtually Gorenstein algebras.

Theorem 10.13. Let Λ be a virtually Gorenstein algebra and let(X ,Y) be a projective
cotorsion pair inMod-Λ. Then for the following statements

(i) the torsion pair(X ,Y) in Mod-Λ is of finite type;
(ii) X andY ∩ CM(PΛ) are closed under filtered colimits;

we have(i) ⇒ (ii ). If X is compactly generated then they are equivalent.

Proof. By Theorem 8.2 we have CM(PΛ)b = CM(Λ). This enables us to consider t
functors

HCM : CM(PΛ) → Mod-CM(Λ), HCM(X) = Hom(−,X)|CM(Λ),

TCM : CM(PΛ) → Mod-CM(Λop)op, TCM(X) = X ⊗Λ −|CM(Λop)

as in [45, Section 7]. It is easy to see that the arguments of Krause–Solberg work
setting, if we replace Mod-Λ with CM(PΛ). We leave to the reader to fill in the details.�

11. Algebras with finite right self-injective dimension

In this section we study Artin algebras with finite right self-injective dimension. M
precisely we analyze the consequences of the assumption idΛΛ < ∞ on the structure o
Cohen–Macaulay modules in connection with the virtual Gorensteinness property.
ticular we are interested in finding conditions ensuring thatΛ is Gorenstein provided tha
idΛΛ < ∞. Our motivation here emerges from the well-knownGorenstein Symmetry

Conjecture, (GSC) for short, see [13,22]:
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(GSC) If id ΛΛ < ∞, then idΛΛ < ∞, i.e.,Λ is Gorenstein.

Recall that, by Lemma 5.4, the inclusioniCM : CM(PΛ) ↪→ Mod-Λ admits a left
adjoint LCM : Mod-Λ → CM(PΛ) which preserves compact objects. We denote
Lb

CM : mod-Λ → CM(PΛ)b the induced right exact functor. If idΛΛ < ∞, there is
an alternative description ofLCM which will be useful later. We use the adjoint pa
(Sp,Z) : Mod-Λ � HAc(PΛ) from 4.2. Note that if idΛΛ < ∞, then, by Corollary 4.8,
the costabilization functorZ :HAc(PΛ) → Mod-Λ is fully faithful and admits a factor
ization Z = iCMZCM, whereZCM :HAc(PΛ) → CM(PΛ) is a triangle equivalence wit
quasi-inverse the functorSpiCM. Recall from Section 4 that ifF : Mod-Λ → T is a
right exact functor, whereT is a triangulated category, thenF ∗ :Tr (Mod-Λ) → T de-
notes the unique exact extension ofF through the right projective stabilization funct
Pr : Mod-Λ → Tr (Mod-Λ).

Lemma 11.1. Assume thatidΛΛ < ∞. Then there exist natural isomorphisms of functo

LCM ∼= ZCMSp : Mod-Λ → CM(PΛ) and L∗
CM

∼= ZCMSp∗ :Tr (Mod-Λ) → CM(PΛ).

Proof. Let A be in Mod-Λ and X in CM(PΛ). SettingQ• := SpiCM(X) ∈ HAc(PΛ),
henceZCM(Q•) = X, and using thatZCM is an equivalence, we have the following n
ural isomorphisms:

HomΛ

(
A, iCM(X)

) ∼= HomΛ

(
A, iCMZCM

(
Q•)) ∼= HomΛ

(
A,Z

(
Q•)) ∼= Hom

(
Sp

(
A

)
,Q•)

∼= HomΛ

(
ZCMSp(A),ZCM

(
Q•)) ∼= HomΛ

(
ZCMSp(A),X

)
which show that the functorZCMSp is the left adjoint of iCM. Therefore LCM ∼=
ZCMSp. Since the functorZCM :HAc(PΛ) → CM(PΛ) is exact, using thatΩ−n|CM(PΛ) =
Σn

P |CM(PΛ), ∀n � 0, we have the following isomorphisms, for any object(A,n) ∈
Tr (Mod-Λ):

L∗
CM(A,n) ∼= Σn

PLCM(A) ∼= Σn
P

(
ZCM

(
Sp(A)

)) ∼= ZCM

(
Sp(A)[n]) ∼= ZCM

(
Sp∗(A,n)

)
∼= ZCMSp∗(A,n).

Consequently we have a natural isomorphism of functorsL∗
CM

∼= ZCMSp∗. �
As a direct consequence we have the following useful result.

Lemma 11.2. Assume thatidΛΛ < ∞. Then the natural isomorphism of functorsL∗
CM

∼=
ZCMSp∗ :Tr (Mod-Λ) → CM(PΛ) induces a natural isomorphism of functors(Lb

CM)∗ ∼=

Zb

CMSpb :Tr (mod-Λ) → CM(PΛ)b. Moreover(Lb
CM)∗ ∼= L∗

CM|Tr (mod-Λ) and there exists a
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commutative diagram of triangulated categories where all the involved functors are
gle equivalences.

Tr (mod-Λ)
(Lb

CM)∗

N̂+ ≈

CM(PΛ)b

N+ ≈

Tr (mod-Λ)
(Lb

CoCM)∗
CoCM(IΛ)b.

Proof. Since the reflection functorLCM : Mod-Λ → CM(PΛ) restricts to a right exac
functorLCM : mod-Λ → CM(PΛ)b it follows directly that

(
Lb

CM

)∗ ∼= L∗
CM|Tr (mod-Λ) :Tr (mod-Λ) → CM(PΛ)b.

Hence by Lemma 11.1 we have(Lb
CM)∗ ∼= (ZCMSp∗)|Tr (mod-Λ). Since, by Proposi

tion 4.5, Spb = Sp∗|Tr (mod-Λ) is a triangle equivalence and since, by Corollary 4.8,

Zb
CM = ZCM|Hb

Ac(PΛ) is a triangle equivalence, we infer that

(
Lb

CM

)∗ ∼= Zb
CMSpb :Tr (mod-Λ)

≈−→ CM(PΛ)b

is a triangle equivalence. Finally since the right exact reflection functorLCoCM: Mod-Λ →
CoCM(IΛ) preserves compact objects, it induces a right exact functorLCoCM: mod-Λ →
CoCM(IΛ)b. Then the commutativity of the diagram and the claim that the vertical ar
are triangle equivalences follow from Proposition 5.6. Since(Lb

CM)∗ is a triangle equiva
lence, so is(Lb

CoCM)∗. �
We know that in general it holdsI<∞

Λ ⊆ (I≺∝
Λ )fin and that the inclusionI<∞

Λ ⊆ I≺∝
Λ

is an equality iffΛ is Gorenstein. The next result gives several characterizations o
Artin algebras with finite right self-injective dimension in terms of properties of mod
of (virtually) finite injective dimension. As a consequence the inclusionI<∞

Λ ⊆ (I≺∝
Λ )fin

is an equality if and only if idΛΛ < ∞.

Theorem 11.3. The following are equivalent.

(i) id ΛΛ < ∞.
(ii) (I≺∝

Λ )fin = I<∞
Λ .

(iii) (P≺∝
Λop)

fin = P<∞
Λop .

(iv) I≺∝
Λ = lim−→I<∞

Λ .
(v) lim−→(P≺∝

Λop)
fin = lim−→P<∞

Λop .
In particular if idΛΛ < ∞, then:I<∞
Λ = lim−→I<∞

Λ ∩ ˜CoCM(IΛ).
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Proof. Clearly (ii) ⇒ (i) sinceΛ lies in (I≺∝
Λ )fin. If id ΛΛ < ∞, then consider the se

quence

0−→ Tr

(
I≺∝

Λ

) −→ Tr (Mod-Λ)
L∗

CoCM−−−−→ CoCM(IΛ) −→ 0

which is localization exact by Proposition 5.6. By Lemma 11.2 we have a triangle equiv
alence(Lb

CoCM)∗ :Tr (mod-Λ)
≈−→ CoCM(IΛ)b. Since the functorL∗

CoCM|Tr (mod-Λ) is iso-

morphic to(Lb
CoCM)∗, it follows that the kernel ofL∗

CoCM|Tr (mod-Λ), which is equivalen

to Tr ((I
≺∝
Λ )fin), is trivial. It follows thatTr ((I

≺∝
Λ )fin) = 0 and therefore, by Lemma 4.1,

(I≺∝
Λ )fin = I<∞

Λ . Hence (i)⇔ (ii) and clearly (iii) ⇔ (v). Also the implication (iv)⇒ (i)
follows sinceΛ ∈ (I≺∝

Λ )fin and the equivalence (ii)⇔ (iii) follows by using the duality
D and Lemma 8.6. Assume now that (i) holds or equivalently lim−→[(I≺∝

Λ )fin] = lim−→I<∞
Λ .

By a result of Eklof–Trlifaj [32], the subcategoryI<∞
Λ cogenerates a cotorsion pa

(⊥[(I<∞
Λ )⊥], (I<∞

Λ )⊥) in Mod-Λ. By Proposition 4.4 we have D(Λ)⊥ = CoCM(IΛ) and
by induction it is not difficult to see that(I<∞

Λ )⊥ = D(Λ)⊥. Consequently CoCM(IΛ) =
(I<∞

Λ )⊥ and thereforeI≺∝
Λ = ⊥[(I<∞

Λ )⊥]. SinceΛ lies in I<∞
Λ , by a result of Hügel–

Trlifaj [2, Theorem 2.3], we have lim−→
⊥[(I<∞

Λ )⊥] ⊆ lim−→I<∞
Λ . HenceI≺∝

Λ ⊆ lim−→I<∞
Λ .

Since, by Corollary 6.8, I≺∝
Λ is closed under filtered colimits and containsI<∞

Λ , we
conclude that lim−→I<∞

Λ = I≺∝
Λ , hence (iv) holds. The last assertion follows from Th

rem 3.5. �
Now we can prove the following characterization of Gorensteinness.

Theorem 11.4. For an Artin algebraΛ the following conditions are equivalent.

(i) Λ is Gorenstein.
(ii) Λ is virtually Gorenstein andidΛΛ < ∞.
(iii) Λ is virtually Gorenstein andid ΛΛ < ∞.
(iv) Λ is virtually Gorenstein andI<∞

Λ = lim−→(I≺∝
Λ )fin.

(v) Λ is virtually Gorenstein andP<∞
Λ = lim−→(P≺∝

Λ )fin.
(vi) I≺∝

Λ ⊆ lim−→I<∞
Λ andI<∞

Λ is covariantly finite, respectivelyfid(Λ) < ∞.
(vii) P≺∝

Λ = lim−→P<∞
Λ .

(viii) id ΛΛ < ∞ andI≺∝
Λ ⊆ lim−→P<∞

Λ .

(ix) id ΛΛ < ∞ and lim−→I<∞
Λ ⊆ ˜CoCM(IΛ).

(x) idΛΛ < ∞ and the torsion pair(I≺∝
Λ ,CoCM(IΛ)) is of cofinite type.

(xi) (I≺∝
Λ )fin = I<∞

Λ and(P≺∝
Λ )fin = P<∞

Λ .

Proof. Clearly (i) implies all the remaining assertions and (ii) is equivalent to (iii) sin
by Theorem 8.7, virtual Gorensteinness is left–right symmetric. If (ii) holds, then by T
orem 11.3 we have(I≺∝

Λ )fin = I<∞
Λ and then by Theorem 8.2 we have a cotorsion pa

(I<∞
Λ ,CoCM(D(Λ)) in mod-Λ. This implies that ˜CoCM(D(Λ)) = mod-Λ and therefore
Λ is Gorenstein by [22]. SinceΛ lies in (I≺∝
Λ )fin, it follows that (iv) implies (ii). Similarly
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since D(Λ) lies in (P≺∝
Λ )fin, equivalentlyΛ lies in I≺∝

Λop, it follows directly that (v)⇒
(iii). Assume now thatI≺∝

Λ = lim−→I<∞
Λ and therefore(I≺∝

Λ )fin = I<∞
Λ . If I<∞

Λ is covari-
antly finite, thenΛ is virtually Gorenstein by Theorem 8.2. SinceΛ lies in I≺∝

Λ we have
clearly idΛΛ < ∞ and therefore condition (ii) holds. If fid(Λ) < ∞, then the inclusion
I≺∝

Λ ⊆ lim−→I<∞
Λ implies that any module inI≺∝

Λ has finite injective dimension and ther
foreI≺∝

Λ = I<∞
Λ . HenceΛ is Gorenstein by Proposition 3.10. Now (vii) implies thatP≺∝

Λ

is closed under coproducts and D(Λ) ∈ P<∞
Λ . ThereforeΛ is virtually Gorenstein and

id ΛΛ < ∞, i.e., condition (iii) holds. The implications (viii), (ix)⇒ (i) follow by Propo-
sition 8.13 and Theorem 11.3. Also the implication (xi)⇒ (i) is a direct consequence o
Theorem 11.3. Finally if (x) holds, thenI≺∝

Λ is closed under products. Hence by The
rem 11.3(iv) and Lemma 7.10 we have that(I≺∝

Λ )fin = I<∞
Λ is covariantly finite. Hence

Λ is virtually Gorenstein and the assertion follows.�
The following consequence gives necessary and sufficient conditions for an Artin

braΛ to be Gorenstein provided thatΛ has finite right self-injective dimension.

Corollary 11.5. If idΛΛ < ∞, then the following are equivalent.

(i) Λ is Gorenstein.
(ii) (I≺∝

Λ )fin is covariantly finite, equivalently contravariantly finite, inmod-Λ.
(iii) (P≺∝

Λ )fin is contravariantly finite, equivalently covariantly finite, inmod-Λ.
(iv) The minimal rightCM(PΛ)-approximationXΛ/r of Λ/r is finitely generated.
(v) The minimal leftP≺∝

Λ -approximationYΛ/r of Λ/r is finitely generated.
(vi) The minimal rightI≺∝

Λ -approximationWΛ/r of Λ/r is finitely generated.
(vii) The minimal leftCoCM(IΛ)–approximationZΛ/r of Λ/r is finitely generated.

We have the following consequences of Theorems 11.3, 8.11 and 8.12 which show tha
the Gorenstein Symmetry Conjecture holds for algebras lying in the derived equiva
class or the stable equivalence class of Morita type of a virtually Gorenstein algebra

Theorem 11.6. Let Λ be an Artin algebra such thatid ΛΛ < ∞ or idΛΛ < ∞. If Λ is
derived equivalent or stably equivalent of Morita type to a virtually Gorenstein alge
thenΛ is Gorenstein.

Corollary 11.7. Let Λ be an Artin algebra such thatid ΛΛ < ∞ or idΛΛ < ∞. If Λ is
derived equivalent to an algebra of finite representation or Cohen–Macaulay type, thΛ

is Gorenstein.

Theorem 11.6 shows that the Gorenstein Symmetry Conjecture is equivalent to th
lowing.

Conjecture 11.8. An Artin algebra with finite right (or left) self-injective dimension

derived equivalent to a virtually Gorenstein algebra.
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We now give two additional conditions ensuring that the Gorenstein Symmetry Co
ture holds. First recall that, fork � 0, Λ is calledk-Gorensteinif in the minimal injective
resolution 0→ Λ → I0 → I1 → ·· · of Λ we have pdI t � t for 1 � t < k. Auslander–
Reiten proved that beingk-Gorenstein is left–right symmetric and in addition thatΛ is
Gorenstein if idΛΛ < ∞ andΛ is k-Gorenstein for allk � 0, see [12]. In the next resu
we observe that it is sufficient to takeΛ to bek-Gorenstein fork = idΛΛ and we also
show that if idΛΛ < ∞, thenΛ is Gorenstein iff the compact objects of the costabilizat
HAc(PΛ) of Mod-Λ coincide with the costabilizationHAc(PΛ) of mod-Λ.

Corollary 11.9. Let Λ be an Artin algebra withidΛΛ < ∞. ThenΛ is Gorenstein if one
of the following conditions hold:(α) Hb

Ac(PΛ) = HAc(PΛ), (β) Λ is idΛΛ-Gorenstein.

Proof. (α) By Corollary 4.8 it follows that CM(PΛ)b = CM(Λ), henceΛ is virtually
Gorenstein. ThenΛ is Gorenstein by Theorem 11.4. (β) By [12] there exists a finitely
generated cotilting moduleT whose indecomposable summands are the indecompo
projective modulesP with idP � d andΩdI whereI is indecomposable injective wit
pdI > d . Since idΛΛ < ∞, Λ is a direct summand ofT and sinceT is cotilting it follows
that pdD(Λ)Λ < ∞. HenceΛ is Gorenstein. �

We have seen in Theorem 6.6 that the cotorsion pair(I≺∝
Λ ,CoCM(IΛ)) is generated by

a CoCohen–Macaulay module and the cotorsion pair(CM(PΛ),P≺∝
Λ ) is cogenerated by

Cohen–Macaulay module. The following consequence of our previous results charac
Gorensteinness in terms of (co)generation properties of the (co)Cohen–Macaulay co
pairs and (co)tilting modules.

Corollary 11.10. Then following are equivalent.

(i) Λ is Gorenstein.
(ii) id ΛΛ < ∞ and the minimal leftP≺∝

Λ -approximationYΛ/r of Λ/r hasidYΛ/r < ∞.
(iii) id ΛΛ < ∞ and the minimal right I≺∝

Λ -approximation WΛ/r of Λ/r has
pdWΛ/r < ∞.

(iv) (CM(PΛ),P≺∝
Λ ) is generated by a moduleS with finite injective dimension.

(v) (I≺∝
Λ ,CoCM(IΛ)) is cogenerated by a moduleT with finite projective dimension.

In cases(iv), respectively(v), we may choose the moduleS, respectivelyT , to be a(finitely
generated) cotilting, respectively tilting, module and thenProd(S) = PΛ = Prod(Λ) and
Add(T ) = IΛ = Add(D(Λ)).

Note. The results of this paper are extended to more general situations in [21]. T
instead of working with the (Co)Cohen–Macaulay (co)torsion pairs, we work
(co)torsion pairs induced by relative (Co)Cohen–Macaulay modules CM(T ) and CoCM(S)

in the sense of [22], whereS andT are suitable (co)tilting modules in the sense of Wa

matsu [58].
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