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Introduction by the Organisers

The representation theory of quivers is probably one of the most fruitful parts of
modern representation theory because of its various links to other mathematical
subjects. This has been the reason for devoting a substantial part of this Ober-
wolfach meeting to problems that can be formulated and solved involving quivers
and their representations. The interaction with neighbouring mathematical sub-
jects like geometry, topology, and combinatorics is one of the traditions of such
Oberwolfach meetings; it can be quite challenging for the participants but it cer-
tainly continues to be a source of inspiration. There were 27 lectures given at the
meeting, and what follows is a quick survey of their main themes.

Representations of quivers. There continues to be rapid development in the
theory of representations of quivers, especially in the following interlinked areas:
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the geometry of quiver varieties (in the sense of Nakajima, so moduli spaces of
representations of the double of a quiver, with relations coming from a moment
map, as in the preprojective algebra), moduli spaces of representations of an un-
doubled quiver, Hall algebras, and Donaldson-Thomas invariants for quivers.

Three of the speakers, T. Hausel, E. Letellier and F. Rodriguez Villegas, spoke
on developments arising from their work on arithmetic harmonic analysis on char-
acter and quiver varieties. T. Hausel spoke about a series of conjectures relating
the cohomology of character varieties with Kac’s A-polynomial, which counts the
number of absolutely indecomposable representations of a quiver over finite fields of
varying sizes. One aim of the conjectures is to find a cohomological proof of Kac’s
conjecture that the coefficients of the A-polynomial are non-negative. Mostly, the
quivers which arise this way are of a specific shape - ‘comet-shaped’ - but one
conjecture extends these ideas to arbitrary quivers. E. Letellier’s talk related to
the character theory of the general linear group over a finite field. Although the
irreducible characters are known since Green’s work in 1955, the decomposition
of tensor products is not understood. By linking this problem with intersection
cohomology of quiver varieties, E. Letellier was able to show in some cases, when
the characters are sufficiently generic, that whether or not a given irreducible oc-
curs in a tensor product is determined by a Kac-Moody root system. Rodriguez
Villegas explored a refinement of Kac’s A-polynomial, and presented an explicit
formula for its evaluation at 1 in case the quiver consists of one vertex and several
loops.

M. Reineke and S. Mozgovoy both spoke about Donaldson-Thomas invariants
associated to symmetric quivers. Reineke described an explicit combinatorial
treatment of DT invariants for the quiver with one vertex and several loops. A
conjecture of Kontsevich and Soibelman (now proved by Efimov, which we learnt
about during the workshop, and with a preprint subsequently posted to the arxiv)
implies a positivity property for DT invariants, and S. Mozgovoy showed that this
property implies Kac’s non-negativity conjecture (mentioned above) for quivers
with a loop at every vertex. It is amazing that such different approaches can lead
to progress with this conjecture!

Instead of passing to a moduli space of representations of a quiver, one can
consider the corresponding group action on the affine space of representations
of a fixed dimension vector. Associated to any irreducible closed subset, stable
under the group action, there are classes in both equivariant cohomology and K-
theory. Such classes have been studied by Buch and others as a way to generalize
and unify various notions in Schubert calculus. The classes can be written as
linear combinations of products of Schur and Grothendieck polynomials, and in
his talk A. Buch described conjectural properties of the coefficients in these linear
combinations (known as ‘quiver coefficients’), and results obtained in case the
quiver is of Dynkin type.

There are many very basic open questions about representations of quivers,
and one such is how to construct the indecomposable representations in general.
However in his talk, T. Weist showed that for every dimension vector which is an
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imaginary Schur root, there exists an indecomposable representation given by a
tree.

Cluster algebras and cluster categories. Cluster algebras are certain commu-
tative algebras whose generators and relations are constructed recursively. They
were invented by S. Fomin and A. Zelevinsky in the year 2000 to serve as a combina-
torial framework for the study of Kashiwara/Lusztig’s canonical bases in quantum
groups and of the closely related notion of total positivity in algebraic groups. More
than a decade after Fomin-Zelevinsky’s invention, the precise connection between
cluster algebras and canonical bases remains a mystery. The best results confirm-
ing that such a link exists are certainly those due to Geiss-Leclerc-Schröer, who
have shown that in the cluster algebras arising as rings of coordinates on unipo-
tent cells in Kac–Moody groups, all cluster monomials belong to Lusztig’s dual
semi-canonical basis. In his talk, C. Geiss presented an interpretation of the dual
semi-canonical basis as the ‘generic basis’, which allows its conjectural generaliza-
tion to arbitrary cluster algebras. These remarkable results were complemented
in P.-G. Plamondon’s talk, devoted to a mutation-invariant parametrization of
the elements of the conjectural generic basis in an arbitrary cluster algebra. This
parametrization yields an important connection between Geiss-Leclerc-Schröer’s
conjecture and Fock-Goncharov series of duality conjectures motivated by their
higher Teichmüller theory. It is expected that a quantum version of the generic
basis will yield a generalization of Kashiwara/Lusztig’s canonical basis to an ar-
bitrary cluster algebra. The very first results in the direction of this long-term
goal are due to P. Lampe, who, in his talk, explained how in type A, the quantum
cluster algebra identifies with a quantum coordinate algebra in such a way that
the quantum cluster variables correspond to certain canonical basis vectors.

In their 2008 preprint ‘Stability structures, Donaldson-Thomas invariants and
cluster transformations’, Kontsevich-Soibelman have interpreted individual cluster
transformations as wall-crossing formulas for DT-invariants of certain 3-Cala-bi-
Yau categories. In remarkable work, K. Nagao has extended their idea to composi-
tions of cluster transformations and combined it with D. Joyce’s results to prove a
series of conjectures formulated by Fomin-Zelevinsky in 2006 (and recently proved
using different methods first by Derksen-Weyman-Zelevinsky and then by Plam-
ondon). Nagao’s talk combined a streamlined introduction to Donaldson-Thomas
theory with a beautiful presentation of the key ideas of his approach.

Cluster categories are triangulated 2-Calabi-Yau categories used to ‘categorify’
cluster algebras (as in the talks by Geiss and Plamondon). The study of par-
ticular classes of such categories reveals intricate combinatorial structures. For
finite cluster type and for tubes, these were explored in the talks by T. Holm and
by K. Baur. For cluster categories associated with ‘ciliated surfaces’, R. Marsh
analyzed the combinatorics of the mutation of rigid objects in terms of coloured
quivers. Generalized cluster categories of higher Calabi-Yau dimension were at
the center of O. Iyama’s talk. After a beautiful introduction to this circle of
ideas he sketched an extension of his ‘higher Auslander-Reiten theory’ to the new
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class of ‘n-representation-controlled algebras’ (joint work with S. Oppermann and
M. Herschend).

Derived categories and tilting theory. Much of the recent progress in repre-
sentation theory of algebras is formulated in terms of derived categories. In fact,
the derived category of an algebra captures a wealth of homological information
and is an interesting invariant in its own right. The study of the existence and
properties of (cluster) tilting objects provides one of the challenges in this sub-
ject. The talks of A. Beligiannis and L. Hille were devoted to this aspect. M. Van
den Bergh talked about autoequivalences of derived categories for singular elliptic
curves and pointed out the connection with mirror symmetry. Another method
to approach a derived category is the use of stratifications. In Koenig’s talk, the
stratification of the derived category of an algebra was discussed in terms of rec-
ollements. A completely different way of stratifying the stable module category
of a finite group was explained in S. Iyengar’s talk. He used group cohomology
and presented the connection with specific properties of the Bousfield lattice. An
interesting numerical invariant of a derived category is its dimension as a trian-
gulated category. It is a somewhat surprising result presented by S. Oppermann
that this dimension is finite for the derived category of finite dimensional modules,
while any proper triangulated subcategory containing the projectives is of infinite
dimension.

Auslander-Reiten theory. One classical invariant in the representation theory
of artin algebras is the Auslander-Reiten quiver of the category of the finitely
generated (left or right) modules. The quiver records the isomorphism classes of
the indecomposable modules and their relative position with respect to the radi-
cal of the category. In fact it records the category of finitely generated modules
modulo the infinite radical, radω = ∩i>0 rad

i. The talk of C. M. Ringel dis-
cussed how to describe the module category of finitely generated modules modulo
radω2 for suitable (1-domestic) special biserial algebras. This is obtained through
the socalled Auslander-Reiten quilt of the algebra, which is the Auslander-Reiten
quiver with additional vertices inserted for indecomposable algebraically compact
infinite dimensional modules and a convergence relation. The talk illustrated this
construction through a careful study of one example.

The Auslander-Reiten quiver gives rise to different classes of modules and in-
variants of the algebra. One important notion is that of a module lying on a short
chain: Given an almost split sequence 0 → A → B → C → 0, the end terms are
connected via the Auslander-Reiten translate τ , that is, A ≃ τ(C). Then an inde-
composable module M is on a short chain if there are non-zero homomorphisms
X → M → τ(X) for some indecomposable module X . An interesting fact about
indecomposable modules not in the middle of a short chain is that they are deter-
mined up to isomorphism by their composition factors. An omnipresent class of
algebras in the representation theory of artin algebras is the tilted algebras, that
is, endomorphism rings of a tilting module over a hereditary algebra. In the talk
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of A. Skowronski tilted algebras were characterized by the existence of a sincere
module which is not in the middle of a short chain.

Some links to commutative algebra. Eisenbud pointed out early on a link
between complete intersections and group rings by showing that ideas from ho-
mological algebra for complete intersections transferred to group rings by study-
ing projective resolutions and in addition introducing matrix factorizations. This
approach was extended in the talk of R.O. Buchweitz to construct complete reso-
lutions and showing that maximal Cohen-Macaulay modules over complete inter-
sections are also determined by matrix factorizations, not over the original ring,
but over a naturally associated larger ring.

In the mid 1980’s there was a strong influence from representation theory
on commutative algebra, through Auslander-Reiten theory for maximal Cohen-
Macaulay modules over isolated singularities and a theory of homologically finite
subcategories. The talk of J. Weyman extended this interplay as it dealt with
a new connection between generic free resolutions in commutative algebra and
Kac-Moody Lie algebras. A free complex

0→ Fn → Fn−1 → · · ·F1 → F0 → 0,

has format (rn, rn−1, . . . , r1) over a commutative ring if the rank of the i-th dif-
ferential di equals to ri for all i. Then an acyclic complex Fgen over a given
ring Rgen is generic if for every complex G of a given format (rn, rn−1, . . . , r1)
over a Noetherian ring S there exists a homomorphism f : Rgen → S such that
G ≃ Fgen ⊗Rgen S. For n = 3 associate to the format (r3, r2, r1) a graph Tp,q,r
with three arms of length p = r3, q = r2 − 2 and r = r1. Then Weyman showed,
among other things, that there exists a Noetherian generic ring for this format if
and only if the graph Tp,q,r is Dynkin. For the case n = 2 the problem was solved
by Hochster and Huneke.

Further links to Lie theory and algebraic groups. M. Brion spoke on a rep-
resentation-theoretic approach to the study of homogeneous bundles on abelian
varieties. This allowed him not only to recover a classical structure theorem of
Miyanishi and Mukai (in characteristic zero) but also to obtain new results on pro-
jective bundles, which he linked to standard representations of Heisenberg groups.

C. Stroppel presented ongoing joint work with E. Frenkel and J. Sussan moti-
vated by the problem of categorifying Turaev-Viro invariants of 3-manifolds. A key
step is the categorification of tensor products of representations of quantum groups
and of the intertwiners between tensor products. She focused on the case of sl2,
where she showed that a categorification with excellent properties is provided by
a certain category of Harish-Chandra bimodules. By work of Futorny-Mazorchuk-
König, this category is properly stratified, which provides a beautiful link to the
representation theory of finite-dimensional algebras.

The format of the workshop has been a combination of introductory survey lec-
tures and more specialized talks on recent progress. In addition there was plenty
of time for informal discussions. Thus the workshop provided an ideal atmosphere
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for fruitful interaction and exchange of ideas. It is a pleasure to thank the admin-
istration and the staff of the Oberwolfach Institute for their efficient support and
hospitality.
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Abstracts

Geometric realization of orbit categories

Karin Baur

(joint work with Robert Marsh)

The first part of the talk contained the presentation of various geometric models
for cluster categories. We write CQ to refer to a cluster category of type Q.

• In type An, the cluster categories can be modelled via diagonals in a disc
with n+ 3 marked points on the boundary, cf. [CCS]: diagonals give rise
to indecomposable objects of CAn

and simple rotations about endpoints
correspond to irreducible maps.
• For cluster categories of type Dn, one uses (tagged) arcs in a disc with
n marked points on the boundary to describe indecomposable objects,
see [S].
• m-cluster categories in types An andDn can be obtained fromm-diagonals
in a disc with marked points on the boundary resp. from m-arcs in a
punctured disc with marked points on the boundary ( [BM1], [BM2]).
• To construct cluster categories of type A∞, [HJ] uses diagonals in an ∞-
gon.

More recently, [BZ] have associated a cluster category C(S,M) for any Rie-
mann surface S with a set M of marked points on boundary components (without
punctures).

The main idea behind these combinatorial geometric models is that they give
rise to a stable translation quiver Γ = (Γ, τ) which is isomorphic to the Auslander-
Reiten quiver of the corresponding cluster category. The vertices of Γ are defined
as the arcs (diagonals, m-diagonals or m-arcs, respectively) in the figure and the
arrows arise from simple rotations between these arcs (diagonals, m-diagonals or
m-arcs, respectively).

Properties of the geometric models. Let C be a cluster category of any of
these types and let S be the corresponding surface (disc, infinity-gon, or a more
general surface). We will use “arc” to denote the lines between the marked points
(up to homotopy). Then the correspondence we have recalled above tell us that
arcs in S correspond to (isomorphism classes of) indecomposable objects of C. In
particular, we have the following

{simple arcs in S} ←→ {rigid indecomposable objects of C}/ ∼

If γ is an arc in S we write Mγ for the corresponding indecomposable object of C.
Then we can describe the dimensions of the Ext groups in terms of intersection
numbers of arcs:
dimExt1C(Mγ ,Mδ) is the minimal intersection number of γ and δ.
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New models. Our goal is to provide geometric models for more general categories
of modules. In cluster categories, we have the symmetry dim Ext1C(M,N) = dim
Ext1C(N,M) thanks to the Calabi-Yau property. In more general categories of
modules, this symmetry does not hold. Thus we cannot expect that simple arcs in
surfaces will provide an adequate model. We propose to use orientations of arcs
and to introduce winding numbers. To illustrate how this works, we discuss the
case of a tube, [BM4], and show how our approach leads to new combinatorial
geometric models.

Tube categories. A stable translation quiver (Γ, τ) is of tube type if Γ = ZA∞/n.
In this case, we say that Γ has rank n. If Γ has rank n, we denote the additive
hull of the mesh category of (Γ, τ) by Tn and call Tn a tube of rank n.

We recall that Tn is equivalent to the category of nilpotent representations of
kCn

1, cf. [R, 3.6 (6)] and [RVdB, III.1.1].
Tn has a number of nice properties: it is Hom-finite, abelian, hereditary, unis-

erial and Ext1Tn
(X,Y ) ∼= DHomTn

(Y, τX) (τ denotes the AR-translate). We can

form ist cluster category as in [BMRRT], CTn
:=Db(Tn)/τ

−1[1]. Observe that
AR(Tn)∼= AR(CTn

).

Combinatorial model. Let A(n) := A(n, 0) be an annulus with n marked points
on the outer boundary. Arcs in A(n) start at a vertex i, wind around the inner
boundary counterclockwise and, after a number of revolutions, end at a vertex j.
We best describe arcs using the universal cover of A(n).

A(n) ←→ Cyl(n)
π
←− U = (U, πn)

Here, we show an arc from 2 to 7 in A(8) and in Cyl(8), winding around twice.
The arc from 2 to 23 in the universal cover (U, π8) is a preimage of them.
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7 06543210

1 5 80 2 3 4 6 7 9 241610 11 12 13 14 15 17 18 19 20 232221

The map πn sends (x, y) to (x mod n, y) ∈ Cyl(n) or to its image in A(n).
Definition.
1) If i < j − 1 we call the curve [i, j] : (i, 0)→ (j, 0) in U an admissible arc in U .
2) An admissible arc in A(n) is the image πn([i, j]) of an admissible arc in U .

1for k = k and Cn a cyclic equioriented quiver with n vertices.
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Results. The arc model in the annulus gives rise to a stable translation quiver
Γ(A(n)) and that this quiver is isomorphic to the AR-quiver AR(Tn), [BM4]. This
isomorphism gives rise to a bijection

{admissible arcs in A(n)} ←→ {indec. obj. of Tn}/iso

Let M [a, b] ∈ ind(Tn) be the image of πn[a, b] under this bijection. Then we have:
Theorem. [BM4]
Let πn([a, b]) and πn([c, d]) be admissible arcs in A(n).
(i) dim Ext1Tn

(M [a, b],M [c, d]) = I−(πn[a, b], πn[c, d])

(ii) dim Ext1Tn
(M [c, d],M [a, b]) = I+(πn[a, b], πn[c, d])

(iii) dim Ext1CTn
(M [a, b],M [c, d]) = I+(πn[a, b], πn[c, d]) + I−(πn[a, b], πn[c, d])

In particular, if we restrict to the case of unoriented arcs, we obtain the dimen-
sion of Ext1 as the sum of the positive and the negative intersections.
Remarks.
a) We can describe explicitly how to calculate the signed intersection numbers I±

( [BM4, §3]).
b) In independent work, Warkentin has given a bijection between string modules

over a quiver of type Ãn and certain oriented arcs in the annulus, [W].
c) In [FST], cluster algebras are associated to annuli A(r, s) for r, s ≥ 1. We can
view our model A(n, 0) as a limit case of A(r, s).
d) Oriented arcs also have been used in [BM3] to obtain a geometric model for the
root category [H] of type A.
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Relative homology and higher cluster tilting theory

Apostolos Beligiannis

Let throughout T be a triangulated category with split idempotents and sus-
pension functor A 7→ A[1].

1. Cluster-tilting subcategories. We fix a full subcategory X of T . Recall
that X is called contravariantly finite in T if any object A ∈ T admits a right
X -approximation, i.e. a map XA → A, where XA ∈ X , such that the induced
map T (X , XA) → T (X , A) is surjective. Covariant finiteness is defined dually,
and X is functorially finite if X is both contravariantly and covariantly finite.

For an integer n ≥ 1, we say that X is (n+ 1)-cluster tilting, see [2, 4], if:

(1) X is functorially finite in T .
(2) X =

{
A ∈ T | T (X , A[i]) = 0, 1 ≤ i ≤ n

}
:= X⊥

n .

(3) X =
{
A ∈ T | T (A,X [i]) = 0, 1 ≤ i ≤ n

}
:= ⊥

nX .

In particular X is n-rigid in the sense that: T (X ,X [i]) = 0, 1 ≤ i ≤ n.
Let X be an (n + 1)-cluster tilting subcategory of T . The cluster tilted

category associated to X is the category mod-X of coherent functors over X ,
where an additive functor F : X op → Ab is coherent if there is an exact sequence
X (−, X1)→ X (−, X0)→ F → 0. An easy consequence of contravariant finiteness
of X is that the categorymod-X is abelian, and then we have a homological functor

H : T −→ mod-X , H(A) = T (−, A)|X .

In case n = 1, Keller and Reiten in [4,5] proved, under certain additional assump-
tions (removed later by Koenig and Zhu [6] who also proved that X is 2-cluster
tilting iff X is contravariantly finite and X = X⊥

1 iff X is covariantly finite and
X = ⊥

1 X ), the following basic result concerning the structure of T in connection
with certain homological properties of the cluster tilted category mod-X .

Theorem 1. [4, 5] (see also [6]). Let X be a 2-cluster tilting subcategory of T .

1. The cluster tilted category mod-X has enough projectives and injectives.
The functor H : T −→ mod-X induces equivalences between T /X [1] and
mod-X , between X and Projmod-X , and between X [2] and Injmod-X .

2. The cluster tilted category mod-X is 1-Gorenstein.
3. If T is 2-Calabi-Yau over a field k, then the stable triangulated category

CM(mod-X )

of Cohen-Macaulay objects of mod-X is 3-Calabi-Yau.
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Recall that T is called d-Calabi-Yau over a field k, d ≥ 1, if T is k-linear with
finite-dimensional Hom spaces over k and there exist natural isomorphisms

DT (A,B)
≈
−→ T (B,A[d]), ∀A,B ∈ T

where D denotes duality with respect to the base field k. Also recall that the
Gorenstein dimension, G-dimA, of an abelian category A is defined as follows.
First let spliA = sup{p.dI | I ∈ InjA} and silpA = sup{idP | P ∈ ProjA}. Then:

G-dimA = max{spliA, silpA}

and A is called Gorenstein, resp. k-Gorenstein, if G-dimA <∞, resp. G-dimA ≤ k.

In view of Theorem 1, we are interested in the problem of whether there exists
an analogous result for (n+ 1)-cluster tilting subcategories X of T , if n > 1.

2. Ghosts, Extensions and Homological Dimension. Let X be a full
subcategory of T . For any k ≥ 0, we consider all maps f : A → B in T such
that T (X [k], f) = 0. The set of all such maps forms a subgroup GhX [k](A,B) of
T (A,B), called the subgroup of X [k]-ghost maps. Clearly then we obtain an ideal

GhX [k](T ) of T and the product ideal Gh
[k]
X (T ) of X -ghost maps of depth k is

defined by

Gh
[k]
X (T ) = GhX (T ) ◦ GhX [1](T ) ◦ GhX [2](T ) ◦ · · · ◦ GhX [k−1](T )

i.e. Gh
[k]
X (A,B) consists of all maps f : A → B which can be written as a com-

position f = f0 ◦ f1 ◦ · · · ◦ fk−1, where f0 : A → B0 is X -ghost, f1 : B0 → B1 is
X [1]-ghost, · · · , fk−1 : Bk−2 → B is X [k − 1]-ghost. The structure of the ideal

Gh
[k]
X (T ) of X -ghost maps of depth k is related to the category of extensions

⋆k
i=0X [i] = X ⋆ X [1] ⋆ · · · ⋆ X [k] of X , see below. Recall that if Ai ⊆ T , i = 1, 2,

then A1 ⋆ A2 is the full subcategory of T consisting of all direct summands of
objects C ∈ T for which there exists a triangle A1 → C → A2 → A1[1], where
Ai ∈ Ai. The full subcategory A1 ⋆A2 ⋆ · · · ⋆Ak is defined inductively for k ≥ 3.

Now let X be contravariantly finite in T . Then ∀A ∈ T there exists a triangle

Ω1
X (A) −→ X0

A −→ A −→ Ω1
X (A)[1]

where the middle map is a right X -approximation of A. Note that the object
Ω1

X (A) is uniquely determined in the stable category T /X . Inductively we define
the object ΩkX (A), ∀k ≥ 1, and we set Ω0

X (A) = A. The minimum k ≥ 0 such that
ΩkX (A) lies in X , or ∞ if no such k exists, is well-defined, it is denoted by p.dXA
and is called the X -projective dimension of A. Then the X -global dimension
of T is defined by gl.dimXT = sup

{
p.dXA | A ∈ T

}
.

The ideal of X -ghost maps, the category of extensions of X and the X -projective
dimension are related via the following version of the Ghost Lemma:

Ghost Lemma. [1] If X is contravariantly finite in T , then ∀A ∈ T and

∀n ≥ 0, we have: p.dXA ≤ n =⇒ Gh
[n+1]
X (A,−) = 0 ⇐⇒ A ∈ X ⋆X [1]⋆ · · ·⋆X [n].

If X is in addition n-rigid, then we also have: Gh
[n+1]
X (A,−) = 0 =⇒ p.dXA ≤ n.

Then we have the following characterization of cluster tilting subcategories.
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Theorem 2. [1] For a subcategory X ⊆ T the following are equivalent, ∀n ≥ 1:

1. X is an (n+ 1)-cluster tilting subcategory of T .
2. X is contravariantly finite and X = X⊥

n .
3. X is covariantly finite and X = ⊥

nX .
4. X is contravariantly (or covariantly) finite n-rigid and: gl.dimXT = n.
5. X is contravariantly (or covariantly) finite n-rigid and: T = ⋆n

k=0X [k].

6. X is contravariantly (or covariantly) finite n-rigid and: Gh
[n+1]
X (T ) = 0.

If X is an (n + 1)-cluster subcategory of T , then mod-X has enough projectives
and enough injectives, and the functor H : T → mod-X is surjective on objects
and induces equivalences between X and Projmod-X and between X [n + 1] and
Injmod-X .

3. The Gorenstein Condition. Let as before T be a triangulated category
and X an (n + 1)-cluster tilting subcategory of T . If n = 1, then, by Theorem
1, the cluster tilted category mod-X is Gorenstein. However this fails if n > 1 by
an example of Iyama [4] who constructed a 3-cluster tilting subcategory X in a 3-
Calabi-Yau triangulated category T such that the cluster tilted category mod-X is
not Gorenstein, see [4, 5.3]. To remedy this failure we need the notion of a t-strong
subcategory, t ≥ 1, in the following sense: X is t-strong if X ⊆ X⊥

t [t + 1], i.e.
T (X ,X [−i]) = 0, 1 ≤ i ≤ t. E.g. the (n+1)-cluster category associated to a finite
dimensional hereditary algebra H contains H as an (n− 1)-strong (n+ 1)-cluster
tilting object, see [5, 4.1]. The following result generalizes [5, 4.6].

Theorem 3. [1] Assume that X is (n−k)-strong for some k with 0 ≤ k ≤ n+1
2 .

1. The cluster tilted category mod-X is k-Gorenstein.
2. If 0 ≤ k ≤ n

2 , n ≥ 2, then mod-X has finite global dimension if and only
if the functor H induces an equivalence:

H :
(
X ⋆ X [1] ⋆ · · · ⋆ X [k]

)
∩ X⊥

k [k + 1]
≈
−→ mod-X

Note that fullness of H implies 1-Gorensteinnes of mod-X :

Proposition 4. [1] Assume that n ≥ 2 and the functor H : T → mod-X is full.
Then X is (n−k)-strong for any k with 0 ≤ k ≤ n−1 and mod-X is 1-Gorenstein.

Using this and Iyama’s example mentioned above, we see that for n ≥ 2, the
functor H : T → mod-X , in contrast to the case n = 1, is not full in general.

4. The Calabi-Yau Condition. Finally assume that the triangulated cate-
gory T is (n+ 1)-Calabi-Yau over a field k.

Theorem 5. [1] Let X be an (n+ 1)-cluster tilting subcategory of T . Assume:

1. X is (n− k)-strong, for some integer k with 0 ≤ k ≤ n+1
2 .

2. Any object H(A) of mod-X , where A lies in X [−n + 1] ⋆ · · · ⋆ X [−1], has
finite projective dimension.

Then the stable triangulated category CMmod-X of Cohen-Macaulay objects of the
cluster tilted category mod-X is (n+ 2)-Calabi-Yau.

The case k = 1 of Theorem 3 and of Theorem 5, where H(A) = 0, ∀A ∈
X [−n+1]⋆ · · ·⋆X [−1], was obtained independently by Iyama-Oppermann, see [3].
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Some connections between abelian varieties and representation theory

Michel Brion

This talk is based on the preprints [3] and [4]. Its main objects are the homo-
geneous vector bundles over an abelian variety A, that is, those vector bundles
E over A such that τ∗a (E) ∼= E for all a ∈ A, where τa denotes the translation
x 7→ x+ a in A. We work over a fixed algebraically closed field k.

By a classical result of Rosenlicht and Serre (see [9]), a line bundle L over A is
homogeneous if and only if it is algebraically trivial. Thus, the homogeneous line

bundles are parametrized by the dual abelian variety Â = Pic0(A).
The homogeneous vector bundles have been described by Miyanishi and Mukai

(see [5, 6]). They showed that the following conditions are equivalent for a vector
bundle E over A:
(i) E is homogeneous.
(ii) E admits a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E by sub-bundles such that

Ei/Ei−1 ∈ Â for i = 1, . . . , r.
(iii) E admits a decomposition E ∼=

⊕
i Li ⊗ Ui such that the Li are pairwise

distinct line bundles in Â, and the Ui are unipotent vector bundles, i.e., they
admit a filtration with subquotients being trivial bundles.

As a consequence of (ii), any extension of homogeneous vector bundles is again
homogeneous. Also, note that the decomposition in (iii) is orthogonal in the sense
that ExtnA(Li ⊗ Ui, Lj ⊗ Uj) = 0 for all n and i 6= j, since Hn(A,L) = 0 for all n

whenever L ∈ Â is non-trivial.
By a result of Mukai in [6], the category of homogeneous (resp. unipotent)

vector bundles over A is equivalent to that of coherent sheaves on Â with finite
support (resp. with support at the origin). This is obtained by assigning to a

coherent sheaf F with finite support on Â, the sheaf p∗(P ⊗ q
∗F) on A, where P

denotes the Poincaré sheaf on A × Â, and p : A× Â→ A, q : A × Â → Â denote
the projections. (This defines the Fourier-Mukai transform, which yields in turn

an equivalence of derived categories of coherent sheaves on A and Â; see [7]).
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We present a structure result for homogeneous bundles that yields another
approach to these results. Assume for simplicity that k has characteristic 0. Then
the following hold:

(a) A vector bundle E over A is homogeneous if and only if there exist an extension
of commutative algebraic groups

(1) 0 −→ H −→ G −→ A −→ 0

and a faithful representation

(2) ρ : H −→ GL(V )

such that E is the associated bundle G×H V over G/H = A. Then there exists a
unique minimal extension (1), where G is anti-affine (i.e., O(G) = k).

(b) E is unipotent if and only if we may take for (1) the universal extension of E
by a vector group,

0 −→ H(A) −→ E(A) −→ A −→ 0,

where H(A) := H1(A,OA)
∗ is a vector group of dimension g := dim(A).

As a consequence, given two unipotent vector bundles E1, E2, we have for the
associated representations V1, V2 of the vector group H(A):

HomA(E1, E2) =
(
O(G) ⊗Hom(V1, V2)

)H(A)
= HomH(A)(V1, V2).

It follows that the category of unipotent vector bundles over A is equivalent to
the category RepH(A) of finite-dimensional representations of the vetor group
H(A). This implies in turn Mukai’s result (in characteristic 0), since RepH(A) is
equivalent to the category of finite-dimensional representations of the polynomial
ring k[t1, . . . , tg] on which each ti acts nilpotently, i.e., to that of finite-dimensional
modules over the local ring OÂ,0. But the latter is equivalent to the category of

coherent sheaves on Â with support at 0.
Also, our structure results readily implies the existence of a filtration as in (i)

(since the representation V of the commutative group H admits a filtration with
one-dimensional subquotients) and of a decomposition as in (ii) (by decomposing
V into a sum of generalized weight spaces for H).

The anti-affine algebraic groups are classified in [2, 8], and the extensions (1)
in [3]. In the latter preprint, the structure of homogeneous vector bundles is
generalized to that of homogeneous principal bundles under an arbitrary algebraic
group; recall that vector bundles of rank n correspond to principal bundles under
the general linear group GLn.

Also, principal bundles under the projective linear group PGLn correspond to
projective bundles of rank n, i.e., smooth proper morphisms with fibers isomorphic
to the projective space Pn−1. The structure of homogeneous projective bundles is
described similarly as in (a) and (b), by replacing the representation (2) with a
projective representation.

A new feature of these bundles is the existence of many irreducible bundles. Here
we say that a homogeneous projective bundle is irreducible, if it has no proper
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homogeneous sub-bundle; equivalently, the associated projective representation
ρ : H → PGL(V ) is irreducible. (The analogous notion for vector bundles just
gives the homogeneous line bundles).

In fact, the irreducible homogeneous projective bundles on A, up to bundle iso-

morphism, correspond bijectively to the pairs (H, e), where H ⊂ Â is a finite
subgroup, and e : H ×H → Gm a non-degenerate alternating bilinear map.

To construct a projective bundle from such a pair, consider the exact sequence

0 −→ H −→ Â −→ B −→ 0,

where B is some abelian variety. The dual exact sequence reads

0 −→ Ĥ −→ B̂ −→ A −→ 0,

where Ĥ denotes the character group of H . Now e yields an isomorphism H ∼= Ĥ ,
and also a central extension

0 −→ Gm −→ H̃ −→ H −→ 0,

where H̃ denotes the associated Heisenberg group. Moreover, H̃ has a unique
irreducible representation on which the center Gm acts by scalars; its dimension
n satisfies n2 = #(H). Thus, H acts irreducibly on Pn−1; the desired projective
bundle is the associated bundle

p : P = B̂ ×H Pn−1 −→ B̂/H = A.

For example, if A is an elliptic curve, then the subgroups H as above are
exactly the n-torsion subgroups An; then the pairing e is uniquely determined
up to multiplication by a primitive n-th root of unity. Thus, the homogeneous
irreducible projective bundles on A are parametrized by the pairs (n,m) where n
is a positive integer, andm an integer such that 0 ≤ m < n and (n,m) = 1. In fact,
every such bundle is the projectivization of an indecomposable vector bundle E of
rank n and degree m (then E is uniquely determined up to tensoring with a line
bundle, see [1]). But if dim(A) ≥ 2, then many homogeneous projective bundles
cannot be obtained as projectivizations of vector bundles; namely, one can show
that the Brauer group of A is generated by classes of homogeneous projective
bundles.
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Classes of quiver cycles and quiver coefficients

Anders S. Buch

Let Q be a quiver with vertex set {1, 2, . . . , n}, and let e = (e1, . . . , en) be
a dimension vector for Q. Set Ei = Cei for each i. The affine space of quiver
representations V =

⊕
i→j Hom(Ei, Ej) has a natural conjugation action of the

group G =
∏n
i=1 GL(Ei). A quiver cycle is any G-stable closed irreducible

subvariety Ω ⊂ V . For example, any G-orbit closure is a quiver cycle. A quiver
cycle Ω determines a G-equivariant cohomology class [Ω] ∈ H∗

G(V ) and a G-
equivariant Grothendieck class [OΩ] ∈ KG(V ). Notice that

H∗
G(V ) = H∗

G(point) = Z[ci,j ]1≤i≤n and 1≤j≤ei

is a polynomial ring, where the variables ci,1, ci,2, . . . , ci,ei are the Chern classes
of GL(Ei). The cohomology class [Ω] ∈ H∗

G(V ) is a polynomial in these variables.
The K-theory ring KG(V ) can be identified with the Grothendieck ring Rep(G)
of virtual representations of G.

The classes [Ω] and [OΩ] can be interpreted as formulas for degeneracy loci as
follows. Let X be a non-singular variety and let E• be a representation of Q on
vector bundles over X , i.e. a collection of vector bundles Ei corresponding to the
vertices i ∈ {1, 2, . . . , n} together with vector bundle maps Ei → Ej corresponding
to the arrows i → j of Q. Assume that rank(Ei) = ei for each i. For each point
x ∈ X , the fiber E•(x) is representation of Q of dimension vector e. We define a
degeneracy locus Ω(E•) ⊂ X by

Ω(E•) = {x ∈ X | E•(x) ∈ Ω} .

This degeneracy locus has a natural structure of subscheme of X . Examples of
degeneracy loci of this type include determinantal varieties and Schubert varieties
in flag manifolds GLm /P .

Proposition 1. Assume that Ω is Cohen-Macaulay and that

codim(Ω(E•);X) = codim(Ω;V ).

Assume also that X admits an ample line bundle. Then the (Chow) cohomology
class [Ω(E•)] ∈ H

∗(X) is obtained from [Ω] ∈ H∗
G(V ) by setting ci,j = cj(Ei) for

all i, j.

The simplest interesting example is when Q = {1 → 2} has two vertices and
one arrow. In this case any quiver cycle is a G-orbit closure defined by

Ω = {φ ∈ Hom(E1, E2) | rank(φ) ≤ r}
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for some non-negative integer r. To describe the class [Ω] we need the following
notation. Given an integer partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ ≥ 0) we define the
Schur polynomial

Sλ(E2 − E1) = det
(
hλi+j−i

)
ℓ×ℓ
∈ H∗

G(V )

where the classes hi are determined by the identity of power series

∑

i≥0

hiT
i :=

1− c1,1T + c1,2T
2 − · · · ± c1,e1T

e1

1− c2,1T + c2,2T 2 − · · · ± c2,e2T
e2
.

The classical Thom-Porteous formula states that [Ω] = Sλ(E2 − E1) in H∗
G(V )

for the partition λ = (e1 − r)e2−r = (e1 − r, . . . , e1 − r) consisting of e2 − r
copies of e1 − r. The Grothendieck class of Ω is given by the analogous formula
[OΩ] = Gλ(E2−E1) ∈ KG(V ) where Gλ denotes a stable Grothendieck polynomial.
This formula is proved in [5].

Let Q be a quiver without oriented cycles, and let Ω ⊂ V =
⊕

i→j Hom(Ei, Ej)

be a quiver cycle. For each vertex i, let Mi =
⊕

j→i Ej be the sum of all vertex

vector spaces mapping to Ei. For example, the quiver Q = {1 →→ 2 ← 3} gives
M2 = E1 ⊕ E1 ⊕ E3. The length ℓ(λ) of a partition λ is the number of non-zero
parts of λ, and its weight is the sum |λ| =

∑
λi of its parts.

Definition 1. The cohomological quiver coefficients of Ω are the unique
integers cµ(Ω) ∈ Z, indexed by sequences µ = (µ1, . . . , µn) of partitions µi with
ℓ(µi) ≤ ei, such that

[Ω] =
∑

µ

cµ(Ω)

n∏

i=1

Sµi(Ei −Mi) ∈ H
∗
G(V ) .

More generally, the K-theoretic quiver coefficients of Ω are given by

(1) [OΩ] =
∑

µ

cµ(Ω)

n∏

i=1

Gµi(Ei −Mi) ∈ KG(V ) .

Since H∗
G(V ) is a graded ring, it follows that the cohomological quiver coeffi-

cients of Ω are indexed by sequences µ for which |µ| :=
∑
|µi| = codim(Ω;V ).

These coefficients are a subset of the K-theoretic quiver coefficients, which are
defined for sequences µ with |µ| ≥ codim(Ω;V ). The cohomological quiver coeffi-
cients for equioriented quivers of type A were introduce in [8]. This was extended to
K-theory and more general quivers in [5,7]. Examples of quiver coefficients include
the Littlewood-Richardson coefficients, Stanley coefficients, the monomial coeffi-
cients of Schubert polynomials, and the analogous K-theoretic constants [10, 11].

Conjecture 1. Let Ω ⊂ V be any quiver cycle.

(a) The cohomological quiver coefficients of Ω are non-negative, i.e. cµ(Ω) ≥ 0 for
|µ| = codim(Ω;V ).

(b) The K-theoretic coefficient cµ(Ω) is non-zero for only finitely many sequences
µ, i.e. the sum (1) is finite.
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(c) If Ω has rational singularities, then the K-theoretic quiver coefficients of Ω
have alternating signs, i.e. (−1)|µ|−codim(Ω;V ) cµ(Ω) ≥ 0.

This conjecture is motivated in part by Schubert calculus on flag varieties G/P .
If Y ⊂ G/P is any closed irreducible subvariety, then the cohomology class [Y ] ∈
H∗(G/P ) can be uniquely written as a linear combination of Schubert classes,
and the coefficients in this combination are non-negative integers. Furthermore,
a result of Brion states that if Y has rational singularities, then its Grothendieck
class [OY ] ∈ K(G/P ) is a linear combination of Schubert structure sheaves with
alternating signs [3].

The Conjecture is known when Q = {1 → 2 → · · · → n} is an equioriented
quiver of type A. Special cases of (a) were proved Buch, Kresch, Tamvakis, and
Yong [4, 10] after which the general case was proved by Knutson, Miller, and
Shimozono [14]. Part (b) was proved by Buch [5], and part (c) was proved by
Buch [6] and by Miller [17].

Now suppose that Q is a quiver of Dynkin type. In this case Fehér and Rimányi
have given a set of linear equations that uniquely determine the cohomology class
[Ω] ∈ H∗

G(V ) [13]. These equations simply say that the restriction of [Ω] to any
disjoint G-orbit in V is zero. Reineke has given an explicit resolution of the
singularities of Ω [18]. Under the assumption that Ω has rational singularities,
this resolution has been used to prove formulas for the K-theory class [OΩ], by
Knutson and Shimozono [15] and by Buch [7]. The latter paper expresses the class
[OΩ] in terms of quiver coefficients and proves part (b) of the conjecture, as well
as part (c) when Q is of type A3. All quiver cycles of Dynkin type A or D are
known to have rational singularities by results of Bobiński and Zwara [1, 2] (see
also [16, 19] for the case of equioriented quivers of type A).

We refer to [6, 9, 12, 14] for a different type of positivity of quiver cycle classes,
which has been proved for the cohomology class of any quiver cycle of type A and
for the K-theory class of equioriented quiver cycles of type A.
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[19] A. V. Zelevinskĭı, Two remarks on graded nilpotent classes, Uspekhi Mat. Nauk 40 (1985),

no. 1(241), 199–200.

Complete resolutions over complete intersections

Ragnar-Olaf Buchweitz

(joint work with Thuy Pham and Collin Roberts)

In his groundbreaking paper [6], Eisenbud elucidated the structure of projec-
tive resolutions over complete intersections and introduced, in particular, matrix
factorizations as a tool to study maximal Cohen–Macaulay (MCM) modules over
hypersurface rings. In [1] it was shown how to perform his analysis in the category
of DG modules over the Koszul complex.

Here we extend that approach to construct complete resolutions and show that
MCM modules over complete intersection rings are as well determined by matrix
factorizations, albeit over a larger ring. For a conceptual geometric interpretation
of this latter point of view, see Isik’s recent work [7].

Complete Resolutions over Quasi–Frobenius Algebras. We fix a commu-
tative ring K, and unadorned tensor products are taken over it. In the graded
context, K will be concentrated in degree zero and (−)∨ denotes the (graded)
K–dual. Without further qualification, modules are right modules.

Definition 1. A K–algebra A is Quasi–Frobenius if A is finite1 projective as
K–module and the A–bimodule ω = A∨ is invertible, equivalently, for every ring
homomorphism from K to a field k, the Artin algebra A⊗k is self-injective.

If A is a (graded) Quasi–Frobenius algebra, so are its (graded) opposite algebra
Aop and its (graded) enveloping algebra Aev = Aop ⊗̃A, where ⊗̃ records the
(graded) tensor product algebra structure. Note that HomK(Aev,K) ∼= ω⊗ω and
HomAev(A,Aev) ∼= ω−1 as A–bimodules.

1finite=finitely generated=finitely presented for projective modules.
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Definition 2. A complete resolution C over A (of M = Im(∂ : C0 → C−1))
is an acyclic complex of finite projective A–modules with its dual complex C∗ =
HomA(C,A) still acyclic, then necessarily a complete resolution of M∗ over Aop.

Complete resolutions are stable under translation, thereby completely resolving
any (positive or negative) syzygy module of M .

Complete resolutions are unique up to homotopy, and so the stable or complete

extension groups Êxt
i

A(M,N) = Hi
(
HomA(C,N)

)
are well defined.

For a Frobenius algebra the first part of the following is due to Nakayama [8].

Theorem 1. Let P•
µ
−→ A be a resolution of A by finite projective Aev–modules,

set (−)⋆ = HomAev(−, Aev) and abbreviate further ⋆(−) = (−)⋆⊗Aω.

(1) The complex CR(A) = cone(⋆µ ◦ µ)[−1] of A–bimodules,

· · · // P1
// P0

⋆µ◦µ
//

µ &&NNNNNN
⋆P0

// ⋆P1
// · · ·

A
⋆µ

77oooooo

is a complete resolution of A as a bimodule over itself.
(2) For M an A–module that is finite projective over K, the complex CRA(M) =

M⊗ACR(A) constitutes a complete resolution of M over A.

Corollary 1. Over a (graded) Quasi–Frobenius algebra A any (graded) module
M that is finite projective over K defines a homomorphism of (bi-)graded rings

M⊗A(−) : ĤH
•
(A/K) = Êxt

•

Aev(A,A)→ Êxt
•

A(M,M), whose source is the stable
Hochschild cohomology of A over K and whose image is in the graded centre (for
the total degree) of the stable Ext–algebra of M over A.

Complete Resolutions over Hopf Algebras. (cf. [4, Ch.XII]) If A is a (graded)
Hopf K–algebra that is finite projective as K–module, then it is Quasi–Frobenius.
Given a (graded)A–moduleN , the comultiplication ∆ : A→ A ⊗̃A endows for any
A–module M the A ⊗̃A–module M⊗N with the twisted A–module structure M ⊠

N = ∆∗(M⊗N). For a (graded) projective A–module P , M ⊠ P is isomorphic to
M⊗P viewed as A–module through the second factor; see [2, Prop.3.1.5]. From a
(graded) complete resolutionC of the augmentation moduleK overA, one recovers
a (graded) complete resolution of A over Aev as A ⊠ C, and then CRA(M) ∼=

M ⊠ C for every A–module M . Accordingly, A ⊠ (−) : Ĥ•(A) = Êxt
•

A(K,K) →

Êxt
•

Aev(A,A) defines on ĤH
•
(A/K) the structure of an augmented graded algebra

over the graded commutative complete cohomology ring Ĥ•(A).

Complete Resolutions over an Exterior Algebra. Let F be a finite projec-
tive K–module, Λ• = ⊕iΛ

iF the exterior algebra over it. This is a graded Hopf
algebra over K with ω ∼= (detF )∨⊗Λ. A (graded) projective resolution of the
augmentation or co-unit was first exhibited by H. Cartan [3] and is given by

· · · // Γi⊗Λ
∂ //// · · ·

∂ // F⊗Λ
∂ // Λ(

ǫ // K // 0)
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where Γ• = ⊕iΓiF is the divided power algebra on F over K and ∂ is the Λ–linear
derivation on Γ⊗Λ induced by idF : Γ1 = F → F = Λ1. Now Γ∨

i
∼= Si = Si(F∨),

the symmetric power on the K–dual of F , and the preceding results yield:

Theorem 2. A Λ–module E that is finite projective as K–module admits a com-
plete resolution of the form

· · · // E⊗Γ1⊗Λ // E⊗Λ
∨ρ◦ρ

//

ρ ''N
NNNN E⊗ω // E⊗S1⊗ω // · · ·

E
∨ρ

77ppppp

where ρ = E ⊠ ǫ represents the right module structure on E and ∨ρ = E ⊠ ǫ∨.

Corollary 2. The cohomology ring H•(Λ) = Ext•Λ(K,K) is the polynomial ring2

K[F∨], its Hochschild cohomology is3 HH•(Λ/K) ∼= H•(Λ)⊗Λ. The complete co-
homology ring is naturally isomorphic to the total cohomology ring of P = PK(F ),

the projective space defined by F over K, that is, Ĥ•(Λ) ∼=
⊕

a+b=•H
a(P,OP(b)).

The complete Hochschild cohomology ring satisfies ĤH
•
(Λ/K) ∼= Ĥ•(Λ)⊗Λ.

Complete Resolutions over Complete Intersections. Assume λ : F → K
is a K–linear form on the finite projective K–module F such that the associated
Koszul complex Λ = (Λ, ∂ = ∂λ) resolves R = H0(Λ, ∂). In other words, R is a
(Koszul-regular) complete intersection in K.

If now E is a DG module over Λ with underlying finite projective K–module,
then the complete resolution just exhibited becomes a complex of projective DG
Λ–modules that is still acyclic.

Theorem 3. The total complex of the tensor product of a complete Λ–resolution
of such E over Λ with R results in a complete R–resolution

· · · // E⊗Γ1⊗R // E⊗R // E⊗ωR/K // E⊗S1⊗ωR/K // · · ·

where ωR/K ∼= RHomK(R,K) ∼= detF∨⊗R[− rkF ] is the relative dualizing com-
plex of R over K. It resolves completely any sufficiently high syzygy R–module in
a projective R–resolution of E⊗L

ΛR, in turn quasiisomorphic to E.

1. For a yet more concrete description, let F = ⊕ci=1Kσi be a free K–module
and λ(σi) = fi a regular sequence in the maximal ideal of the local noetherian
regular (or just Gorenstein) ring K, with Λ the Koszul complex over λ, and R =
K/(f1, ..., fc) its homology. Let E = ⊕ci=0Ei be a graded, finite free K–module,
endowed with a differential A = A• : E → E[1], and with K–linear maps Bi =
Bi• : E → E[1], i = 1, ..., c. Further, denote ΓR = ΓR(ζ1, ..., ζc) the free divided
power algebra over R, with ζi in (homological) degree 2, S ∼= R[s1, ..., sc] its graded
R–dual, and observe that ωR ∼= R 1

σ1···σc
is the dualizing module of R, based on the

dual of the volume form σ1 · · ·σc that in turn bases detF = Λc over K.

Theorem 4. Set M = cok(A0 : E1 → E0). The following are equivalent.

2Note that F∨ is concentrated in cohomological degree 1, but total degree 2.
3Exactly as for group algebras over finite abelian groups; see [5].
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(1) M is a maximal Cohen–Macaulay (MCM) R–module.
(2) Data (E,A,B) define on E the structure of a DG Λ–module, with Bi repre-

senting multiplication by σi ∈ Λ1 = F . The complex (E,A) then resolves M
over K.

(3) Viewing α = A +
∑c
i=1 B

isi as an endomorphism of the graded S–module

E⊗S, one has α2 =
(∑c

i=1 fisi
)
idE⊗S.

The MCM R–module M , the DG module (E,A,B), and the graded matrix factor-
ization (α, α) of

∑c
i=1 fisi determine each other up to the appropriate notion of

homotopy equivalence. Furthermore, when (1) through (3) hold,

(a) (E⊗ΓR, α) is a projective resolution of M over R; see [1, Thm.2.4].
(b) Shifting by [−1] the mapping cone over the composition of

(E⊗ΓR, α)
proj

// E0⊗R
β=

B1···Bc

σ1···σc // Ec⊗ωR
incl // (E⊗S⊗ωR, α⊗ωR)

produces a complete resolution of the R–module M ∼= Im β.

(c) Êxt
•

R⊗L

K
R(R,R)

∼=
⊕

a+b=•H
a(P,OP(b)), the total cohomology ring of the pro-

jectivized normal bundle P = PR(F⊗R) of R relative to K, and this graded

ring acts naturally on the stable graded extension groups Êxt
•

R(M,N).
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Generic bases and cluster character identities for unipotent groups

Christof Geiß

(joint work with Bernard Leclerc and Jan Schröer)

1. Cluster Algebras and Cluster Characters

For our purpose, a seed is a tuple (B, f) with B ∈ Zm×m antisymmetric, and
f = (f1, . . . , fm) a transcendence base of the rational function field C(x1, . . . , xm).
We consider the equivalence relation ∼ on seeds which is generated by seed muta-
tions.

The cluster algebra A(B, x) is the C-subalgebra of C(x1, . . . , xm) which is gen-
erated by the (certainly redundant) set of cluster monomials

⋃

(B′,x′)∼(B,x)

{(x′)e :=
m∏

i=1

x′i
e(i)
| e ∈ Nm}.

By the Laurent phenomenon, A(B, x) is contained in the upper cluster algebra

A+(B, x) :=
⋂

(B′,x′)∼(B,x)

C[x′
±
1 , . . . , x

′±
m] ⊂ C(x1, . . . , xm).

We identify B to a quiver with vertices {1, . . . ,m} and max{Bji, 0} arrows from i
to j. Thus, as a quiver, B has no loops or oriented 2-cycles. Fix a generic potential
W and consider the corresponding Jacobian algebra J := Jac(B,W ). We assume
for this talk that J is finite-dimensional. Thus, the E-invariant of a J-module M
is E(M) := dimHomJ(τ

−M,M), see [5, Sec. 10].
The following “cluster character” for J-modules M has been studied in slightly

different versions by several authors in the context of categorification of cluster
algebras:

CJM := xgM

∑

e∈Nm

χ(GrJe (M))x̂e for M ∈ J -mod,

where

xgM :=

m∏

i=1

x
dimExt1J (Si,M)−dimHomJ (Si,M)
i , x̂e :=

m∏

i=1

x
(B·e)i
i ,

and GrJe (M) is the projective variety whose points are the submodules of M with
dimension vector e, and χ denotes the (topological) Euler characteristic.

Remark 1. Let (B′, x′) = µk(B, x) be the seed obtained by seed mutation in
direction k. Since W is generic, we can find a potential W ′ for B′ such that
J ′ = Jac(B′,W ′) = µk(J). Following [4] we can consider µk(M) ∈ J ′ -mod. Now,
the key-lemma [5, Lemma 5.2] can be interpreted as the equation

CJM (x1, . . . , xm) = CJ
′

µk(M)(x
′
1, . . . , x

′
m) ∈ A+(B, x).
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2. Strongly reduced components and generic basis conjecture

Consider Repd(J), the (affine) variety of representations of J which have di-
mension vector d ∈ Nm. The group GLd := ×mi=1 GLd(i)(C) acts on it by con-
jugation, thus orbits are in bijection with isoclasses of modules. We note, that
C? : Repd(J) → C[x±1 , . . . , x

±
m] is a GLd-invariant constructible function. In par-

ticular, it makes sense to consider the generic value CZ of C? on an irreducible
component Z ∈ Irr(Repd(J)).

Definition 1. An irreducible component Z ∈ Irr(Repd(J)) is called strongly re-
duced if the subset

{M ∈ Z | codimZ(GLd .M) = E(M)}

is dense in Z.

Remark 2. A strongly reduced component is (scheme theoretically) generically
reduced by Voigt’s Lemma, since dimHomJ (τ

−M,M) ≥ dimExt1J (M,M). The
converse is not true in general. However, in case B is acyclic (and thus W = 0),
Repd(CB) is irreducible and strongly reduced. We denote by Irrsr(Repd(J)) the
set of strongly reduced irreducible components of Repd(CB).

Conjecture 1. The set

G := {xaCZ | Z ∈ Irrsr(Repd(J)), a,d ∈ Nm, a · d = 0},

is a basis of the cluster algebra A(B, x).

Remark 3. (1) E(M) = 0 implies that the closure of the GLdim(M)-orbit of M
is a strongly reduced component. Thus, it follows from [5] that the set of cluster
monomials is contained in G.

(2) Exploiting a bit further Remark 1 one can see that G is invariant under
mutation of quivers with (generic) potential. However, it is conceivable that G
depends on the choice of the potential W itself.

3. The dual semicanonical basis is generic

We show in this section that (part of) Lusztig’s dual semicanonical basis can
be viewed (after specializing coefficients to 1) as a generic basis in the above sense
for a large class of cluster algebras coming from representation theory.

Definition 2. Let A ∈ Zn×n be a symmetric generalized Cartan matrix, and
i = (ir, . . . , i2, i1) a reduced expression for an element w of the corresponding Weyl
group. We may assume {1, 2, . . . , n} = {i1, . . . , ir}. Following [2], we associate

to this data a quiver Q̃i with vertices {1, 2, . . . , r}. For k ∈ {1, . . . , r} set k+ :=

min({k < l ≤ r + 1 | il = ik} ∪ {r + 1}) . Then the vertices are Q̃i,0 := {1 ≤ k ≤
r | k+ 6= r+1}. For each k with k+ 6= r+1 there is an arrow k+ → k. Moreover,

there are −Aik,il arrows from l to k if k+ > l+ > k > l. Finally, Q̃
i
is the full

subquiver of Q̃i with vertices {1 ≤ k ≤ r | k+ 6= r + 1}. We call the elements of
this class of quivers Coxeter quivers.
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Remark 4. It is easy to see that different reduced expressions for the same Weyl
group element yield mutation equivalent quivers. Moreover, each acyclic quiver is

mutation equivalent to some Q̃
i
.

The quivers Q̃
i
admit a rigid potential, and the same is true for all quivers

which are mutation equivalent to some Q̃
i
, see [3].

Theorem 1 ( [8, Thm. 5]). Let Q̃ be a quiver which is mutation equivalent to a

Coxeter quiver Q̃
i
, then G is a basis of the cluster algebra A(Q̃, x). In particular,

the cluster monomials are linearly independent.

The idea behind the proof is to identify G with S∗, the dual of Lusztig’s sem-
icanonical basis. Let us explain this, for the technically easier special case, when
A is positive and w = w0 is the longest element of W . The starting point is to
dualize Lusztig’s lagrangian construction of the positive part U(n) of the envelop-
ing algebra U(g) of the simple, simply-laced Lie algebra g = n−⊕ h⊕ n associated
with A, together with the corresponding semicanonical basis: Let Q be a Dynkin
quiver such that the underlying graph |Q| corresponds to the Cartan matrix A,
and i a reduced expression for w0 which is adapted to Q.

Now, let Λ := Π1(CQ) be the corresponding preprojective algebra, and con-
sider for each dimension vector d ∈ Nn the affine variety Λd of Λ-modules with
dimension vector d. One obtains for each dimension vector d a constructible
GLd-invariant function

ϕ? : Λd → C[N ] := U(n)∗gr.

For Y ∈ Λ -mod the regular function ϕY ∈ C[N ] can be described as follows: For
each sequence j = (j1, . . . , jl) ∈ {1, . . . , n}

l we have

ϕY (xj1 (t1) · · · · · xjl(tl)) =
∑

a∈Nl

χ(P(ja, Y )) ta,

where xj : C→ N is the standard one-parameter subgroup associated to the simple
root αj , and P(j

a, Y ) is the (projective) variety of flags of submodules

{Y• = (0 = Y0 ⊂ Y1 ⊂ · · · ⊂ Yl = Y ) | Yk/Yk−1
∼= Sakjk , k = 1, . . . , l}.

If we denote by ϕZ the generic value of ϕ? on a component Z ∈ Irr(Λd), then

S∗ := {ϕZ | Z ∈ Irr(Λd),d ∈ Nn}

is the dual semicanonical basis of the coordinate ring C[N ] of the unipotent group
N with Lie(N) = n.

The category Λ -mod has a cluster structure in the sense of [2], with a canonical
cluster tilting object V = ⊕rk=1Vk. Using that ϕ? is a cluster character, one

can show that C[N ] is a cluster algebra with initial seed (Q̃i, (ϕV1, . . . , ϕVr
))).

Here, the ϕVk
are certain (generalized) flag minors, and the projective injective

summands of V correspond to coefficients in this cluster algebra. Moreover, all
cluster monomials are of the form ϕX for some rigid Λ-module X . In particular,
all cluster monomials belong by Voigt’s lemma to S∗.
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Now, we can relate this result with the generic basis setup by the following key
facts:

• The projective variety P(ia, Y ) is isomorphic to a quiver grassmannian

GrJ
′

d(a)(Ext
1
Λ(W,Y )) where the cluster tilting object W is obtained from

V by Heller’s loop functor, and J ′ := EndΛ(W )op is given by a quiver Q̃
i

with rigid potential.
• Since W is reachable by mutations from V , we obtain from this by the
Key-Lemma [5, 5.2] a Fu-Keller [6] like cluster expansion

ϕY = ϕ

(
dimJ̃T

HomΛ(T,Y )
)
·BT

T

∑

e

χ
(
GrJT

e

(
Ext1Λ(T, Y )

))
ϕ̂e

T

for each cluster tilting object T reachable from V , and each Λ-module Y .
Here, BT is the matrix of the Ringel bilinear form of J̃T := EndΛ(T ), and
the stable endomorphism ring JT := EndΛ(T )

op is given in this situation
by a quiver with rigid potential [3].
• Next, we have a natural bijection between the generically add(T )-free ir-
reducible components of the varieties Λd and the strongly reduced compo-
nents of the varieties Repa(JT ) thanks to the observation that for X ∈ Λd

we have

codimΛd
(GLd .X) =

1

2
dimExt1Λ(X,X) = EJT

(Ext1Λ(T,X)).

Here, the second equality holds, since the stable module category Λ -mod
is a generalized cluster category in the sense of Amiot [1]. Thus we can
apply [1, Prp. 2.12], see [8, Prp. 6.1] for details.
• Finally, we recall, that the dual semicanonical basis of C[N ] specializes to
a basis with similar properties for the corresponding cluster algebra with
trivial coefficients [7, Sec. 15].
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[7] Ch. Geiß, B. Leclerc, J. Schröer: Kac-Moody groups and cluster algebras, to appear
Adv. Math., arXiv:1001.3545v2 [math.RT]
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Quiver representations and the cohomology of Hitchin fibres

Tamás Hausel

In our recent work with Letellier and Villegas [4] a picture is emerging relating the
representations of quivers with character varieties and the representation theory
of finite groups and algebras of Lie type. For Γ a comet-shaped quiver (a quiver
with k-legs and g-loops on a central vertex) and dimension vector µ we associate
a character variety Mµ which can always be arranged to be non-singular and
when µ is indivisible a non-singular quiver variety Qµ. When additionally g = 0
we have the Riemann-Hilbert monodromy map Qµ →Mµ and the induced map
H∗(Mµ)→ H∗(Qµ). The purity conjecture says that this map is an isomorphism
on pure parts. Taking Poincaré polynomials gives:

PPc(Mµ; t) = Pc(Qµ; t)
[3]
= AΓ(µ, t

2),

where AΓ(µ, q)) is Kac’s number for µ-dimensional absolutely indecomposable rep-
resentations of Γ over Fq. When µ is no longer indivisible and g not necessarily 0
the purity conjecture takes the form

Conjecture 1. PPc(Mµ; t) = t2dµAΓ(µ, t
2)

One implication of this conjecture would be

Conjecture 2 ( [5]). AΓ(µ, q) ∈ N[q].

This is known for µ indivisible by [3] but open for any wild quiver. Here we
have a more general conjecture for the mixed Hodge polynomial H(Mµ; q, t) :=∑

k dim(GrW2kH
l(Mµ))q

ktl

Conjecture 3 ( [4]).

H(Mµ; z
2,−

1

zw
)wdµ

= (z2 − 1)(1− w2)

〈
Log

(∑

λ∈P

Hλ(z, w)
k∏

i=1

H̃λ(xi; z
2, w2

)
, hµ)

〉
,(1)

where H̃λ(xi; q, t) are Macdonald polynomials.

Theorem 1 ( [4] ). PHc(Mµ; q) = AΓ(µ, q).

Let Mµ be the moduli space of parabolic Higgs bundles on the Riemann surface
with generic parabolic weights and quasi-parabolic structure given by µ. Then
by non-Abelian Hodge theorem H∗(Mµ) ∼= H∗(Mµ). Let χµ : Mµ → Aµ be the
Hitchin fibration. LetWk(H

∗(Mµ)) denote the weight filtration and Pk(H
∗(Mµ))

denote the perverse filtration associated to the Hitchin map.

Conjecture 4 ( [1]). W2k(H
∗(Mµ)) ∼= Pk(H

∗(Mµ))

If so this would give an alternative geometrical meaning for

Hc(Mµ; q, t) =
∑

k

dim(GrPk H
l(Mµ))q

ktl
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which conjecturally are given by Macdonald polynomials as in Conjecture 3 and
whose ”pure” parts should be given by AΓ(µ, q) by Conjecture 1.

An overarching aim is to find cohomological meaning for AΓ(µ, q) for Γ not
necessarily comet-shaped. For this we offer the following: for any quiver Γ and
dimension vector v construct the projective curve CΓ,v for which Credv has non-
singular rational components, with a component for each vertex of Γ, nodal in-
tersection of components for edges of Γ and multiplicity vi of the ith component.

One can construct a certain compactified Jacobian Mv := J(Cv). Its cohomology
will be equipped with a perverse filtration Pk(H

∗(Mv)) induced from some uni-
versal Hitchin system. Finally let Mv be the Crawley-Boevey-Shaw generalized
character variety of [2] attached to (Γ,v).

Conjecture 5. There are graphical non-Abelian Hodge theory isomorphisms
H∗(Mv) ∼= H∗(Mv) inducing

W2k(H
∗(Mv)) ∼= Pk(H

∗(Mv));

and for the mixed Hodge polynomial

H(Mv; q, t) =
∑

k

dim(GrPk H
l(Mv))q

ktl.

As a generalization of Theorem 1 we should have

PH(Mv; t) = PPH(Mv; t) = t2dµAΓ(v, 1/t
2),

giving a cohomological interpration for the latter for every quiver (Γ,v).

If we allow more complicated singularities for the curve than nodes, one may
expect a similar circle of ideas, although the quiver will have to be enhanced to
reflect the singularities. The cohomology of the Hitchin fibre will lead to orbital
integrals on p-adic groups and Khovanov cohomology of links.
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Rational surfaces and tilting bundles

Lutz Hille

(joint work with Markus Perling)

1. The Main Result

We consider a smooth and projective algebraic variety X over an algebraically
closed field k. A tilting bundle on X is a vector bundle T satisfying two conditions

(1) Ext q(T, T ) = 0 for all q > 0 and
(2) the vector bundle T generates the bounded derived category of coherent

sheaves on X .

Theorem 1. Let X be a rational surface. Then there exists a tilting bundle T on
X.

As an immediate consequence we get an equivalence of derived categories be-
tween the bounded derived category of coherent sheaves on X and the bounded
derived category of finitely generated modules over the endomorphism algebra A
of T :

RHom(T,−) : Db(X) −→ Db(A−mod)

2. Proof

The aim of this talk was to prove the above theorem. The proof is constructive
and consists of three steps. In a first step we prove the result for minimal rational
surfaces. On any Hirzebruch surface we construct a tilting bundle whose direct
summands consist of line bundles. For the projective plane there exists a well-
known tilting bundle O ⊕ O(1) ⊕ O(2). In a second step we consider a blow up.
In this way we obtain a full exceptional sequence consisting of line bundles. The
direct summands of these line bundles may have non-vanishung Ext 1-groups. In a
final step we use universal (co–)extensions of these line bundles to obtain a tilting
bundle. At the end we relate the result to quasi-hereditary algebras.

Theorem 2. Let X be a rational surface then there exists a tilting bundle T on X
so that the endomorphism algebra A of T is a quasi-hereditary algebra. Moreover,
we can choose T in such a way that under the derived equivalence in the theorem
above the line bundles of a full strongly exceptional sequence are mapped to the
∆–modules over A.

The sequence of line bundles in the result we construct explicitly in the second
step of the proof. If we use universal extensions to construct the tilting bundle in
the third step then the endomorphism algebra of T is quasi-hereditary with the
properties claimed in the theorem.
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3. Line Bundles on Hirzebruch Surfaces

We consider the Hirzebruch surface Fa defined by the equation xn0 y0 − x
n
1 y1 in

P1 × P2, where the coordinates are (x0, x1; y0, y1, y2). We denote by P the divisor
of a fiber under the first projection Fa −→ P1. Moreover, we also need a divisor
Q with selfintersection a. By definition P 2 = 0. Then there exists a full, strongly
exceptional sequence of line bundles on Fa of the form ε = (O,O(P ),O(Q),O(P +
Q)). In fact one can even classify all full (strongly) exceptional sequences consisting
of line bundles on Fa (see [1, 3]).

4. Full Exceptional Sequences and Blow Up

There exist several rational surfaces admitting full strongly exceptional se-
quences of line bundles. However, we know that most of the rational surfaces (if
one blows up one point three times from a Hirzebruch surface) do not admit such a
sequence (see [2] for a counterexample). On the positive side, any rational surface
admits a full exceptional sequence of line bundles ( [3]) with only non-vanishing
Ext 1–groups. We start with a full exceptional sequence ε = (L1, . . . , Lt) of line
bundles on X and construct one on the blow up Y in one point of X . If we denote
by E the exceptional divisor on Y then

(L1(E), . . . , Li−1(E), Li, Li(E), Li+1, . . . , Lt)

is full exceptional on Y for any i = 1, . . . , t. In this way we can, starting with
a full (strongly) exceptional sequence of line bundles on a Hirzebruch surface Fa
construct a full exceptional sequence of line bundles on any rational surface.

Theorem 3. On any rational surface there exists a full exceptional sequence of
line bundles, so that all groups Ext 2 between these line bundles vanish.

5. Universal Extensions

In the last step we can even consider any exceptional sequence and then perform
universal extensions or coextensions. In the situation we are interested in we start
with an exceptional sequence where the only non-vanishing Ext –groups are Ext 1–
groups. Then applying the following construction recursively through all objects
in the sequence we get a new sequence that might have non-vanishing Hom–groups
in both directions (so it is no longer an exceptional sequence) but all Ext –groups
vanish.

We only define the construction for pairs of objects (E,F ) (which are vector
bundles in our situation, we start with line bundles and in any non-trivial step we
construct new vector bundles). We only need finite dimensional groups Ext 1(E,F )
to define it.

Universal Coextension
Let (E,F ) be a pair of objects. Then there is a canonical map in the derived
category Ext 1(E,F )⊗ E −→ F [1] which defines an exact sequence

0 −→ F −→ F −→ Ext 1(E,F )⊗ E −→ 0.
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So for any pair of objects (E,F ) we can define a new pair (E,F ). If the pair
(E,F ) was an exceptional sequence with all higher Ext –groups vanishing, then the
new pair has no non-vanishing Ext –group at all. However, we obtain nontrivial
homomorphisms from F to E (if Ext 1(E,F ) is non-trivial).

Universal Extension
Let (E,F ) be a pair of objects as above. Then there is a canonical dual map in
the derived category E −→ Ext 1(E,F )∗ ⊗ F [1] which defines an exact sequence

0 −→ Ext 1(E,F )∗ ⊗ F −→ E −→ E −→ 0.

So for any pair of objects (E,F ) we can define a new pair (E,F ). If the pair
(E,F ) was an exceptional sequence with all higher Ext –groups vanishing, then
the new pair has no non-vanishing Ext –group at all. However, in this case we
obtain nontrivial homomorphisms from F to E (if Ext 1(E,F ) is non-trivial).

Finally we apply either universal extensions or universal coextensions recur-
sively to the full exceptional sequence of line bundles on X . Then the direct sum
of these objects is a tilting bundle. To obtain a quasi-hereditary algebra one has
to apply universal extensions all the time.

References

[1] L. Hille, Exceptional Sequences of Line Bundles on Toric Varieties, Mathematisches Insti-
tut, Georg-August-Universität Göttingen: Seminar 2003/2004, 175 –190, Universitätsdrucke
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Classification of torsion pairs in cluster categories of Dynkin type

Thorsten Holm

(joint work with Peter Jørgensen and Martin Rubey)

We presented in the talk a complete classification of torsion pairs in the cluster
category of Dynkin type An, based on [6].

Torsion pairs. The concept of torsion pairs in abelian categories has been intro-
duced by Dickson [4] in 1966. In the context of tilting theory it has had a lasting
and fundamental impact on the representation theory of finite-dimensional alge-
bras. While one of the primary aims of representation theory remains to study the
module categories (which are abelian categories) the focus in modern representa-
tion theory has shifted towards related categories like derived module categories,
stable module categories or cluster categories. These are no longer abelian, but
carry the structure of a triangulated category. The following triangulated version
of the classical notion of a torsion pair has been proposed fairly recently by Iyama
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and Yoshino [7]: A torsion pair in a triangulated category C is a pair (X,Y) of full
subcategories closed under direct sums and direct summands such that

(i) the morphism space HomC(x, y) is zero for x ∈ X, y ∈ Y,
(ii) each object c ∈ C sits in a triangle x→ c→ y → Σx with x ∈ X, y ∈ Y.

Examples of such torsion pairs in the triangulated situation are given by the t-
structures of Beilinson, Bernstein, and Deligne [1] where, additionally, one assumes
ΣX ⊆ X, and by the co-t-structures of Bondarko and Pauksztello [2], [10] where,
additionally, one assumes Σ−1X ⊆ X. It is easily deduced from the definition that
a torsion pair (X,Y) is determined by one of its entries, namely we then have

Y = X⊥ := { c ∈ C | HomC(x, c) = 0 for each x ∈ X },

and X = ⊥Y := { c ∈ C | HomC(c, y) = 0 for each y ∈ Y }.

If the triangulated category C is Hom-finite over a field and Krull-Schmidt (condi-
tions which are satisfied for all categories considered below) we have the following
characterisation, see [7, Prop. 2.3]. Let X be a contravariantly finite full subcat-
egory of C which is closed under direct sums and summands. Then (X,X⊥) is a
torsion pair if and only if X = ⊥(X⊥).

Cluster categories. Let C be the cluster category of Dynkin type An; this is
a 2-Calabi-Yau triangulated category with finitely many indecomposable objects.
There is a beautiful combinatorial model for C, due to Caldero, Chapoton and
Schiffler [3]: there is a bijection between indecomposable objects of C and diagonals
of a regular (n+ 3)-gon P such that the suspension Σ acts by rotation on P and

dimExt1C(a, b) =

{
1 if a and b cross,
0 otherwise,

where we denote by a, b, . . . the diagonals corresponding to objects of C. This
extends to bijections between the following sets: clusters in the cluster algebra
of type An, cluster tilting objects in C, and triangulations of P by non-crossing
diagonals. These give rise to torsion pairs: if u is a cluster tilting object in C,
then (add(u),Σadd(u)) is a torsion pair [8, Section 2.1]. However, C admits many
other torsion pairs, as we shall see in our classification below.

Ptolemy diagrams. Full subcategories X of C closed under direct sums and
direct summands correspond to collections X of diagonals of the regular (n + 3)-
gon P . For characterising those collections X yielding torsion pairs (X,X⊥), the
following notation is useful: let ncX be the set of diagonals of P which do not
cross any diagonal from X. Then the perpendicular subcategory

X⊥ = { c ∈ C | Ext1C(Σx, c) = HomC(x, c) = 0 for each x ∈ X }

corresponds to ncΣX, and similarly

⊥X = { c ∈ C | Ext1C(c,Σ
−1x) = HomC(c, x) = 0 for each x ∈ X }

corresponds to ncΣ−1X. Since Σ acts by rotation, it commutes with nc and we
obtain: (X,X⊥) is a torsion pair if and only if the corresponding collection of
diagonals satisfies X = ncΣ−1(ncΣX) = nc ncX.
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Definition. A set X of diagonals in P is a Ptolemy diagram if it has the follow-
ing property: when a and b are diagonals in X which cross, then any diagonal
connecting endpoints of a and b must also be in X.

Simple examples of Ptolemy diagrams are: a polygon with no diagonals (an
empty cell), a polygon with all diagonals (a clique), and triangulations of a polygon
by non-crossing diagonals.

Theorem A. Let X be a subcategory of C closed under direct sums and direct
summands, and let X be the corresponding collection of diagonals.

(1) We have X = nc ncX if and only if X is a Ptolemy diagram.
(2) There is a bijection between torsion pairs (X,X⊥) in the cluster category

C of type An and Ptolemy diagrams X = nc ncX of the (n+ 3)-gon P .

We also presented in the talk enumerative results on the Ptolemy diagrams, and
hence on torsion pairs. For this, an alternative recursive description of Ptolemy
diagrams turns out to be very useful, see [6, Section 2] for details.

Theorem B.

(1) Each Ptolemy diagram can be decomposed into (smaller) Ptolemy diagrams
which are either empty cells or cliques. Moreover, in such a decomposition
the operator nc exchanges empty cells and cliques.

(3) The number of Ptolemy diagrams of a regular (n+ 3)-gon is equal to

1

n+ 2

∑

ℓ≥0

2ℓ
(
n+ 1 + ℓ

ℓ

)(
2n+ 2

n+ 1− 2ℓ

)
.

The first values (starting with n = 0) are 1, 4, 17, 82, 422, 2274, 12665,
72326, 421214, 2492112, 14937210, 90508256, 553492552,. . .

Concluding remarks and work in progress. (a) Recall that t-structures are
examples of torsion pairs, namely those for which ΣX = X. However, using that Σ
acts by rotation, one can deduce from our classification the well-known fact that
the cluster category C only admits the trivial t-structures (0,C) and (C, 0). The
analogous result holds for co-t-structures.

(b) We also enumerate in [6] the Ptolemy diagrams up to rotation (i.e. up to
the action of Σ, which is the Auslander-Reiten translation since C is 2-Calabi-
Yau). The first few values here are 1, 3, 5, 19, 62, 301, 1413, 7304, 38294, 208052,
1149018,. . . Both sequences of numbers of Ptolemy diagrams (up to rotation) do
not seem to have been encountered before in other contexts. They are now items
A181517 and A181519 in the Online Encyclopedia of Integer Sequences [12].

(c) Remarkably, the Ptolemy diagrams up to rotation exhibit a cyclic sieving phe-
nomenon [9]. This might indicate further interesting connections to combinatorics,
see e.g. [11, Note added in proof].

(d) Based on a well-known combinatorial model for the cluster category of Dynkin
type Dn (see e.g. [5, Section 3.5]) we have also obtained a complete classification
and enumeration of torsion pairs in the cluster category of type Dn; details will
appear in a subsequent publication.
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(e) For Dynkin type An, a combinatorial model for d-cluster categories is given via
d-admissible diagonals in an (d(n+1)+2)-gon. However, the ’d-Ptolemy condition’
characterising those sets of diagonals corresponding to torsion pairs is more subtle.
One structural reason is that for d > 1, vanishing of Ext1 is no longer symmetric
since the d-cluster category is (d+ 1)-Calabi-Yau. Details on the classification of
torsion pairs in higher cluster categories of type An will appear in yet another
subsequent publication.
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The Bousfield lattice of the stable module category of a finite group

Srikanth B. Iyengar

Let G be a finite group, k a field whose characteristic divides the order of G, and
StMod kG the stable module category of all (and not only the finite dimensional)
kG-modules, with its natural structure of a triangulated category. Benson, Krause,
and I [3,4,6] have been investigating global structural properties of StMod kG; to
be precise, the classification of its localizing subcategories and its colocalizing
subcategories. The aim of my talk was to cast our results in a different light,
by using them to discover the structure of certain lattices naturally associated to
the stable module category. For a more systematic treatment, in the context of
tensor triangulated categories, see [10]. This line of development is inspired by
Bousfield’s work [7] in stable homotopy theory; see also [9].
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For any kG-modulesM,N , the k-vectorspaceM⊗kN has a diagonal kG-action:

g(m⊗ n) = gm⊗ gn for g ∈ G and m⊗ n in M ⊗k N .

This induces a tensor product on StMod(kG) as well.

Definition 1. The Bousfield class of a kG-module M is the full subcategory

A(M) = {X ∈ StMod(kG) |M ⊗k X = 0 in StMod(kG)}

Recall that M ⊗k X is zero in StMod(kG) precisely when it is projective. Modules
in A(M) are said to be M -acyclic, whence the notation. Modules M and N are
Bousfield equivalent if A(M) = A(N).

A basic problem is to classify kG-modules, up to Bousfield equivalence. To this
end we mimic [7], and endow the collection of all Bousfield classes, A(StMod kG),
with the following partial order:

A(M) ≤ A(N) if A(M) ⊇ A(N) .

A priori, it is not even clear that A(StMod kG) is a set. That it is so, and much
more, is contained in the following:

Theorem 1. The collection A(StMod kG) with partial order ≤ is a lattice, with
supremum and infimum given by

A(M) ∨ A(N) = A(M ⊕N) and A(M) ∧ A(N) = A(M ⊗k N) .

Moreover, the lattice A(StMod kG) is distributive and complete.

Assume for the moment that A(StMod kG) is a set. It is clear that it is partially
ordered under ≤. Moreover, since −⊗kX commutes with (arbitrary) direct sums,
any set {Mi} of kG-modules has a supremum:

∨

i

A(Mi) = A(
⊕

i

Mi) .

It then follows from general principles, see [8], that any subset of A(StMod kG)
also has a infimum; that is to say, the lattice StMod kG is complete. The non-
trivial part in Theorem 1 is the explicit identification of the infimum; given that,
it is clear also that the lattice is distributive.

Localizing subcategories. The tensor product on StMod kG is compatible with
its structure as a triangulated category. A subcategory S is tensor closed if when-
ever M is in S so is M ⊗k X for any kG-module X . A localizing subcategory is
a triangulated subcategory that is closed under all set-indexed coproducts. We
write L(M) for the smallest (with respect to inclusion) tensor closed localizing
subcategory of StMod kG containing M , and L(StMod kG) for the collection of all
such subcategories, with the (natural !) partial order:

L(M) ≤ L(N) if L(M) ⊆ L(N) .

There is an analogue of Theorem 1 for this collection. There is a map of lattices
from L(StMod kG) and A(StMod kG), the key point being the following:
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Lemma 1. If L(M) ≤ L(N), then A(M) ≤ A(N). �

Corollary 3 contains the converse to the preceding lemma. Its proof uses the
theory of support, which we now recall.

Support. Let H∗(G, k) be the cohomology algebra, Ext∗kG(k, k), of G. This is a
k-algebra which is graded-commutative, because kG is a Hopf algebra, and also
finitely generated; the last statement is due to Evens and Venkov, and the starting
point of the cohomology study of modular representations of finite groups; see, for
instance, [1] for details. Set

VG = homogeneous prime ideals in H∗(G, k), except H>1(G, k).

For each p ∈ VG Benson, Carlson, and Rickard [2] (see also [3]) construct certain
idempotent exact functors on StMod kG, which we denote Γp. A crucial property
of these functors is that

ΓpM ∼= Γpk ⊗kM .

The support of a kG-module is the subset

suppGM = {p ∈ VG | Γpk ⊗kM 6= 0}

For finite dimensional modules, this coincides with the usual cohomological sup-
port; see [3]. We remark that when M is non-zero suppGM is non-empty. The
relevance of support to us is that there are maps:

L(StMod kG) oo
σ

ι

**UUUUUUUU
{subsets of VG}

{
tensor closed localizing

subcategories of StMod kG

}
τ 44iiiiiiii

where ι is the obvious inclusion, and τ and σ are defined as follows:

τ(S) =
⋃

M∈S

suppGM and σ(U) = L
(⊕

p∈U

Γpk
)

It is not hard to see that [4, Theorem 10.3] is equivalent to the following:

Theorem 2. The composition of any three consecutive maps in the diagram above
is the identity. In particular, the maps are all bijections. �

From this one can deduce the ‘tensor product theorem’; see [4, Theorem 11.1].

Corollary 1. For any kG-modules M and N one has

suppG(M ⊗k N) = suppGM ∩ suppGN .

In particular, A(M) = {N | suppGN ∩ suppGM = ∅}. �

Using this result one can prove Theorem 1 without much ado. The next corol-
lary extends Lemma 1 and characterizes Bousfield equivalent modules.

Corollary 2. One has L(M) ≤ L(N) if and only if A(M) ≤ A(N), if and only if
suppRM ⊆ suppRN . �
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Local objects. In what follows, the set of morphisms in StMod kG between kG-
modules M and N is denoted HomG(M,N). Once again inspired by the work
in [7], we consider the right orthogonal of the M -acyclic modules:

A(M)⊥ = {N ∈ StMod kG | HomG(X,N) = 0 for all X ∈ A(M)} .

The modules in this subcategory are said to beM -local. Note that the subcategory
of M -local objects is equivalent to the Verdier quotient of StMod kG by A(M).
Again, one is faced with the problem of classifying such subcategories. To address
it, we consider the right adjoint Λp = Homk(Γpk,−) to Γp. In [6] we introduced
the cosupport of a kG-module M to be the subset

cosuppRM = {p ∈ VG | Λ
pM 6= 0} .

The cosupport of M is non-empty when M 6= 0; see [6, Theorem 4.5].
In what follows Homk(M,N) is viewed as a kG-module with diagonal action.

The theorem below is a consequence of [6, Theorem 9.5] and [4, Theorem 10.3],
which are the central results of the corresponding articles. Theorem 2, and the
other results described above, can be easily deduced from it.

Theorem 3. For any kG-modules M and N one has

cosuppGHomk(M,N) = suppGM ∩ cosuppGN .

In particular, Homk(M,N) = 0 if and only if suppGM ∩ cosuppGN = ∅. �

This result and Corollary 1 yield

Corollary 3. One has A(M)⊥ = {N | cosuppGN ⊆ suppGM} . �

Using this result and [6, Theorem 11.3], one can prove an analogue of Theo-
rem 1, yielding bijections between subcategories of form A(M)⊥, the Hom closed
colocalizing subcategories of StMod kG, and the set of subsets of VG.

In all this the cosupport of modules plays a central role, but we do not yet have a
good understanding of its significance. In my lecture, I mentioned some examples
from commutative algebra where we have been able to compute the cosupport
of all finitely generated modules. These are discussed in detail in [6], where it
is also explained that the functor Λp is akin to completion at p, in the sense of
commutative algebra.
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On stratifications of derived module categories

Steffen Koenig

(joint work with Lidia Angeleri Hügel and Qunhua Liu)

Let R be a ring and M 6= 0 an R-module. If M is not simple, then it is the
middle term of a non-trivial short exact sequence 0 → M1 → M → M2 → 0,
where non-trivial means both M1 and M2 are not zero. If M1 is not simple,
it is the middle term of a non-trivial short exact sequence. And so on. If the
process stops after finitely many steps, then the module M has been ’stratified’,
and the simple end terms of the short exact sequences occuring in the process are
the composition factors (’strata’) of M . A version of the Jordan-Hölder theorem
asserts that for artinian modules a stratification exists, and that the strata are
unique up to isomorphism and reordering.

As this example illustrates, a Jordan-Hölder theorem can be stated - but not
necessarily verified - as soon as there is a concept of short exact sequences. Then
an object may be called simple, if it is not the middle term of a non-trivial short
exact sequence. Repeatedly forming short exact sequences yields a (possibly in-
finite) stratification. Additional assumptions are needed to guarantee finiteness
and uniqueness of the composition factors.

In the following, the objects to be stratified are derived module categories of
rings or algebras. Short exact sequences are recollements in the sense of Beilinson,
Bernstein and Deligne [5].

The concept of recollement is of geometric origin, providing a natural habitat for
Grothendieck’s six functors, which relate coherent sheaves on a topological space
with coherent sheaves on an open subspace and on its closed complement. Strati-
fications can be used to define perverse sheaves and intersection homology. Such
recollements pass to recollements of derived module categories in the context of the
proof of Kazhdan-Lusztig conjecture, which is based on a derived equivalence, and
abstractly in the context of quasi-hereditary or, more generally, stratified algebras.

Recollements have been used in representation theory for instance to connect
homological or K-theoretic data of the middle term with similar data of the
outer terms (finiteness of global or finitistic dimension, Hochschild cohomology,
Grothendieck groups). Recently, Angeleri Hügel and co-authors, in particular
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Javier Sánchez, have started a programme of classifying tilting modules by rec-
ollements, or vice versa. See also [1] for a discussion of connections between rec-
ollements and tilting modules.

Recollements of derived module categories can be seen as semi-orthogonal de-
compositions; they have been characterised in terms of perpendicular categories
and of torsion theoretic data. See [8] for the first result in this context and [10]
for a more general and technologically much more advanced result.

Theorem 1 ( [2, 3]). Let A be a finite-dimensional piecewise hereditary
algebra over a field k, S1, . . . , Sn its simple modules (up to isomorphism) and
Ei := EndA(Si) their endomorphism rings. Then:
(I) The unbounded derived category of A-modules, D(A −Mod), has a stratifica-
tion with factors D(Ei −Mod), i = 1, . . . , n, and this stratification is unique up
to ordering and Morita equivalence of the simple factors.
(II) The bounded derived category of finitely generated A-modules, Db(A−mod),
has a stratification with factors Db(Ei −mod), i = 1, . . . , n, and this stratification
is unique up to ordering and Morita equivalence of the simple factors.

Theorem 1 has been proven in [2] for unbounded derived categories of hereditary
artinian algebras. Here, a stronger uniqueness result is shown: There is a ’normal
form’ of the stratification, associated with a sequence of homological epimorphisms
A = A1 → · · · → An .
In [3], the geometric case - canonical algebras or weighted projective lines over
a field - has been settled as well and a bijection with stratifications of bounded
derived categories of finitely generated modules.
Theorem 1 fails completely when arbitrary triangulated categories are allowed as
factors, see [1, 2]. It also fails, when allowing derived categories of dg algebras as
factors.
For A a ring, there need not exist a finite stratification, see [2].
Recollements of bounded derived categories induce recollements of unbounded
derived categories, but the converse fails, in general, see [4, 8].
In general, uniqueness fails even for finite stratifications of unbounded derived
module categories. Chen and Xi [6] have constructed non-artinian algebras, whose
derived categories have two stratifications of different lengths and with different
composition factors.

Simple algebras are obviously derived simple with respect to any choice of de-
rived categories. Algebras studied by Happel [7] provide examples of algebras of
finite global dimension with two simples each - in particular, the Grothendieck
group decomposes - which are derived simple with respect to the bounded derived
category. Local algebras and polynomial rings in one variable over a field are de-
rived simple with respect to the unbounded derived category. More examples and
counterexamples in this context will be given in [4].

A large class of derived simple algebras is convincingly provided by a result of
Liu and Yang:
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Theorem 2 (Liu and Yang [9]). Let G be a finite group, k a field and B
a block (indecomposable algebra summand) of the group algebra kG. Then B is
derived simple with respect to any choice of bounded or unbounded derived category
and of finitely generated or arbitrary module category.

The results in [9] are more general and also cover symmetric algebras of finite
representation type.
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Quantum cluster algebras and dual canonical bases

Philipp Lampe

Let g = n⊕h⊕n− be a Kac-Moody Lie algebra with its triangular decomposition.
The talk concerned the quantized universal enveloping algebra Uv(n) of n. It is
a graded algebra generated by elements E1, E2, . . . , En subject to the quantum
Serre relations. The algebra is graded by the root lattice if we let deg(Ei) = αi be
the corresponding simple root. With every Weyl group element w ∈ W Lusztig [5]
associates a subalgebra Uv(w) ⊂ Uv(n).

The algebra Uv(w) possesses several bases. First of all, for every reduced de-
composition w = si1si2 · · · sir there is a Poincaré-Birkhoff-Witt basis consisting of
ordered monomials in the generators Ti1Ti2 . . . Tik−1

(Eik ) of Uv(w) (for 1 ≤ k ≤ r).
Furthermore, Lusztig [5] introduced a canonical basis B that does not depend on
the choice of the reduced expression for w.

Cluster algebras have been introduced by Fomin-Zelevinsky [2] to study the
dual of Lusztig’s canonical basis of Uv(w). In fact, it is conjectured that Uv(w)
carries the structure of a quantum cluster algebra (in the sense of Berenstein-
Zelevinsky [1]) and that all quantum cluster monomials belong (up to a power of
v) to the dual canonical basis B∗ of Uv(w).



Representation Theory of Quivers and Finite Dimensional Algebras 565

The non-quantized version is related to Geiß-Leclerc-Schröer’s cluster algebra
structure [3] on the coordinate ring C[N(w)] of the unipotent groupN(w) attached
to w.

We study a special case: Let g = sln+1, and let Q be a Dynkin quiver of
type An with alternating orientation. The element w = si1si2 · · · si2n of length
2n is choosen so that the si1si2 · · · sik−1

(αik ) ∈ ∆+ (for 1 ≤ k ≤ 2n) become
(under the bijection provided by Gabriel’s theorem) the dimension vectors of the
n indecomposable injective kQ-modules and their Auslander-Reiten translates.

The main theorem of our preprint [4] is the following:

Theorem 1. There are zi, pi ∈ vZB∗ (for 1≤ i ≤ n) and ∆i,j ∈ vZB∗ (for
1 ≤ i ≤ j ≤ n) such that Uv(w) carries the structure of a quantum cluster algebra
of type An; the pi ( for 1 ≤ i ≤ n) are frozen quantum cluster variables, the zi
(for 1 ≤ i ≤ n) are mutable quantum cluster variables in an initial seed whose
prinicipal part is given by an alternating quiver z1 → z2 ← z3 → · · · zn, and the
∆i,j (for 1 ≤ i ≤ j ≤ n) are all further quantum cluster variables.

The proof of the theorem features the embedding of Uv(w) in the quantized
shuffle algebra (compare Rosso [6]). Canonical basis elements can the described
combinatorially. In our case, the occuring shuffles are related to alternating per-
mutations and Euler numbers.
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[3] C. Geiß, B. Leclerc, J. Schröer, Cluster algebra structures and semicanonical bases for
unipotent groups, arXiv: math/0703039.

[4] P. Lampe, Quantum cluster algebras of type A and the dual canonical basis, arXiv:1101.0580.
[5] G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics 110 (1993),
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Quiver varieties and the character ring of general linear groups over
finite fields

Emmanuel Letellier

Given three complex irreducible characters X1,X2,X3 of GLn(Fq) one standard
problem is to compute the multiplicity 〈X1 ⊗ X2,X3〉. This problem is equivalent
to the computation of multiplicities 〈X1 ⊗X2 ⊗X3, 1〉.

Although the character table of GLn(Fq) is known since 1955 by the work of
Green, this problem does not seem to have been much studied in the literature.

In this talk we study multiplicities of the form 〈X1 ⊗ X2 ⊗ · · · ⊗ Xk, 1〉 where
(X1, . . . ,Xk) is a generic tuple of irreducible characters of GLn(Fq).

Let us first give the definition of generic tuple in the case where X1, . . . ,Xk
are characters of unipotent type. Assume that for each i = 1, . . . , k, we have
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Xi = (αi ◦ det) ·Ri with Ri a unipotent character and αi a linear character of F×
q .

Then the tuple (X1, . . . ,Xk) is said to be generic if the subgroup generated by the
linear character ρ = α1 · · ·αk is of size n.

Given any tuple (X1, . . . ,Xk) of irreducible characters (not necessarily generic)
we can define a star-shaped quiver Γ
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together with a dimension vector v of Γ.
Let us illustrate this with characters of unipotent type. We parameterize the

unipotent characters of GLn(Fq) by partitions of n so that the trivial character
corresponds to the trivial partition (1n) and the Steinberg character St to the
partition (n). We denote by Rλ the unipotent character corresponding to the
partition λ. Assume that Xi = (αi ◦ det) · Rλi

. Then the length of the i-th leg
of Γ is the length ℓ(λ′i) of the dual partition λ′i minus 1, i.e., di = ℓ(λ′i). The

coordinate of the vector v on the i-th leg are v0 = n, v[i,j] = n−
∑j

r=1 ni,r where
λ′i = (ni,1 ≥ ni,2 ≥ · · · ).

Assume now that the tuple (X1, . . . ,Xk) is generic.
We have the following conjecture.

Conjecture We have
(a) The multiplicity 〈X1 ⊗ X2 ⊗ · · · ⊗ Xk, 1〉 is a polynomial in q with integer
coefficients. If moreover the characters X1, . . . ,Xk are split, then the coefficients
are positive.
(b) The coefficient of the highest power of q in 〈X1 ⊗X2 ⊗ · · · ⊗ Xk, 1〉 is 1.
(c) 〈X1 ⊗X2⊗ · · · ⊗Xk, 1〉 6= 0 if and only if v is a root of the Kac-Moody algebra
associated to Γ. Moroever 〈X1 ⊗ X2 ⊗ · · · ⊗ Xk, 1〉 = 1 if and only if v is a real
root.

It is a theorem of Hausel, Rodriguez-Villegas and the author [3] that when
X1, . . . ,Xk are split semisimple irreducible characters then the multiplicity 〈X1 ⊗
X2 ⊗ · · · ⊗ Xk, 1〉 coincides with the so-called A-polynomial AΓ,v(q) which counts
the number of absolutely indecomposable representations of Γ of dimension v over
Fq. By a well-known theorem of V. Kac, we know that AΓ,v(q) is a polynomial in q
with integer coefficients and that it is non-zero if and only if v is a root of Γ (with
AΓ,v(q) = 1 if and only if v is real). Moreover it is was proved by Crawley-Boevey
and van den Bergh [2] that AΓ,v(q) has positive coefficients when v is indivisible.
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Hence in the split semisimple case the conjecture is true (except the positivity in
the divisible case).

Let us now discuss on the non-semisimple case.
We introduce quiver varieties which will provide a geometrical interpretation

of 〈X1 ⊗ · · · ⊗ Xk, 1〉 for a large class of generic tuples (X1, . . . ,Xk) which we call
admissible.

Let P be a parabolic subgroup of GLn(C), L a Levi factor of P and let Σ = σ+C
where C is a nilpotent orbit of the Lie algebra l of L and where σ is an element of
the center zl of l. Put

XL,P,Σ := {(X, gP ) ∈ gln × (GLn/P ) | g
−1Xg ∈ Σ+ uP }

where uP is the Lie algebra of the unipotent radical of P .
It is known that the image of the projection XL,P,Σ → gln on the first coordinate

is the Zariski closure of an adjoint orbit.
Consider triples {(Li, Pi,Σi)}i=1,...,k, with Σi = σi + Ci, as above and put

L := L1×· · ·×Lk, P := P1×· · ·×Pk, Σ := Σ1×· · ·×Σk and C := C1×· · ·×Ck.
Let (O1, . . . ,Ok) be the tuple of adjoint orbits of gln(C) such that the image of

XLi,Pi,Σi
→ gln is Oi.

We assume now that (O1, . . . ,Ok) is generic.
Define

VL,P,Σ :=

{
(X1, . . . , Xk, g1P1, . . . , gkPk) ∈ XL,P,Σ |

∑

i

Xi = 0

}
.

Put O := O1 × · · · × Ok and define

VO :=

{
(X1, . . . , Xk) ∈ O |

∑

i

Xi = 0

}
.

Let ρ : VL,P,Σ → VO be the projection on the first k coordinates.
The groupGLn acts on VL,P,Σ (resp. on VO) diagonally by conjugating the first

k coordinates and by left multiplication of the last k-coordinates (resp. diagonally
by conjugating the k coordinates). Since the tuple (O1, . . . ,Ok) is generic, this
action induces a free action of PGLn on both VL,P,Σ and VO. The PGLn-orbits
of these two spaces are then all closed. Consider the affine GIT quotient

QO := VO/PGLn = Spec
(
C[VO]PGLn

)
.

The variety QO can be identified with the orbit space VO/PGLn. We prove in [4]
that we can identify

QL,P,Σ := VL,P,Σ/PGLn

with some GIT quotient X//χG. In Nakajima’s notation, the varieties X//G and
X//χG are quiver varieties Mξ(v) and Mξ,θ(v) associated to some star-shaped
quiver Γ together with some dimension vector v of Γ. The pair (Γ,v) is obtained
from (L,C) similarly from partitions as explained above.
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There is an action (similar to Springer action) of

W (L,Σ) =W (L1,Σ1)× · · · ×W (Lk,Σk)

with W (L,Σ) := NGLn
(L,Σ)/L on the complex (ρ/PGLn

)∗

(
IC•

QL,P,Σ

)
and so on

the compactly supported intersection cohomology IHi
c (QL,P,Σ,C).

From the theory of quiver varieties, we have IHi
c (QL,P,Σ,C) = 0 for odd i. Let

us then consider the polynomials

Pw
c (QL,P,Σ, q) :=

∑

i

Tr
(
w
∣∣ IH2i

c (QL,P,Σ,C)
)
qi,

with w ∈ W (L,Σ).
Let (X1, . . . ,Xk) be a generic tuple of irreducible characters of GLn(Fq) of same

type as (L,C,w) in which case we say that (X1, . . . ,Xk) is admissible.
Theorem (see [4]) We have:

Pw
c (QL,P,Σ, q) = q

1
2dimQL,P,Σ〈X1 ⊗ · · · ⊗ Xk, 1〉.

Using some result of Crawley-Boevey [1] we prove that the theorem implies the
conjecture for admissible generic tuples (X1, . . . ,Xk).
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Coloured quivers for rigid objects and partial triangulations: the
unpunctured case.

Robert J. Marsh

(joint work with Yann Palu)

This talk was an exposition of [8]. Let (S,M) be a marked surface, i.e. a pair
consisting of a Riemann surface S with boundary and a finite set M of marked
points on the boundary. We assume S has no component homeomorphic to a
monogon, digon or triangle and that each boundary component has at least one
marked point. Let R be a partial triangulation of S, i.e. a collection of noncrossing
simple curves in S whose end-points lie inM . We shall refer to such curves as arcs.
We define the mutation of R as a generalisation of the usual flip of triangulations
(see [5, Defn. 3.5]), in order to associate a coloured quiver Q(R) to R.

The usual mutation of cluster-tilting objects in a Hom-finite, 2-Calabi-Yau
Krull-Schmidt triangulated category over a field k extends to rigid objects. We
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associate a coloured quiver Q(R) to a rigid object R in a way generalising that
of Buan-Thomas [3]. Note that, in the situation of [2], where, in particular, R is
maximal rigid, Q(R) contains the same information as the matrix associated there
to R. Brüstle-Zhang [4] have associated a generalised cluster category C(S,M) in
the sense of Amiot [1] to a surface (S,M) as above, using the quiver [5] associated
to (S,M) with potential from [7]. Brüstle-Zhang show that there is a bijection
α 7→ Xα between the indecomposable rigid objects in C(S,M) and the arcs in
(S,M) which extends to a bijection between partial triangulations in (S,M) and
rigid objects in C(S,M). Our main result is:

Theorem. Let (S,M) be a marked surface and R a partial triangulation of (S,M).
Let R be the corresponding rigid object in C(S,M). Then Q(R) and Q(R) are
isomorphic coloured quivers. Furthermore, if R′ denotes the mutation of R at an
arc α ∈ R and R′ denotes the mutation of R at Xα then R′ and R′ correspond
under the bijection above (and thus their coloured quivers are isomorphic).

In the type A case (a disk with marked points on its boundary), we give an
explicit description of mutation of the coloured quiver by analysing the combina-
torics.

Example: We consider the case of a disk with 10 marked points on its boundary.
Figure 1 gives a partial triangulation of the disk and the associated coloured quiver.
It also depicts the partial triangulation resulting from mutating the arc numbered
2 and the corresponding coloured quiver.

Suppose that α is an arc in (S,M) as above and Xα is the corresponding
rigid indecomposable object in C = C(S,M). A special case of a result of Iyama-
Yoshino [6] means that the quotient CXα

of the full subcategory of C consisting
of objects Ext-orthogonal to Xα by the additive subcategory generated by Xα is
triangulated. We show:

Theorem. The Iyama-Yoshino reduction CXα
is equivalent to the cluster category

attached to the surface (S,M)/α obtained by cutting (S,M) along the arc α.

Thus Iyama-Yoshino reduction can be regarded as a categorification of cutting
along an arc in a Riemann surface.
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Positivity questions related to quiver moduli spaces

Sergey Mozgovoy

0.1. Hall algebra and quantum torus. Let Q = (Q0, Q1) be a quiver. Let χ
be the corresponding Euler-Ringel form. Let

〈α, β〉 = χ(α, β)− χ(β, α), α, β ∈ ZQ0

be the anti-symmetric form of Q and let T (α) = χ(α, α) be the Tits form of Q.

Let H be the (opposite) Ringel-Hall algebra of Q over a finite field Fq. Let Ĥ be

its completion. Let T̂ = T̂Q be the quantum torus associated with Q. As a vector
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space it is Q(q
1
2 )[[x1, . . . , xr]], where r = #Q0 (q will be either a power of prime

number or a new variable, depending on the context). Multiplication is given by

xα ◦ xβ = (−q
1
2 )〈α,β〉xα+β .

It was proved by Reineke [7] that the map

I : Ĥ → T̂, [M ] 7→
(−q

1
2 )T (dimM)

#AutM
xdimM

is an algebra homomorphism.

0.2. Semistable representations. Given θ ∈ RQ0 , we define the slope function
µθ on NQ0\{0} by the formula

µθ(α) =
θ · α∑
αi
.

For any Q-representation M , we define µθ(M) = µθ(dimM), where dimM =
(dimMi)i∈Q0 ∈ NQ0 is the dimension vector of M . Using this slope function we
define the notions of θ-stability and θ-semistability of Q-representations in the
usual way. For any µ ∈ R, we define

Aθµ =
∑

µθ(α)=µ

Aθαx
α :=

∑

M is θ−sstµθ(M)=µ

I(M) ∈ T̂.

It was proved by Markus Reineke that Aα(q) are rational functions in the variable

q
1
2 [6]. For θ = 0, µ = 0, we denote Aθµ just by A.

0.3. Plethystic operations. Consider T̂ as an algebra endowed with the usual

commutative multiplication. Consider q
1
2 as a new variable. For any function

f(q
1
2 , x1, . . . , xr) in T̂, we define the Adams operations

ψn(f(q
1
2 , x1, . . . , xr)) = f(q

1
2n, xn1 , . . . , x

n
r ), n ≥ 1.

We define the plethystic exponential Exp : T̂+ → 1+ T̂+ (here T̂+ is the maximal

ideal of T̂) by the rule

Exp(f) = exp


∑

n≥1

1

n
ψn(f)


 .

Define the operator T : T̂ → T̂, xα 7→ (−q
1
2 )T (α)xα. Then we can write the

element A ∈ T̂ defined earlier as

A =
∑

α

(−q
1
2 )−T (α)

(q−1)α
xα = T−1

(∑

α

xα

(q−1)α

)
= T−1Exp

( ∑
xi

1− q−1

)
,

where (q)α =
∏
i(q)αi

and (q)n =
∏n
k=1(1− q

k) for n ≥ 0.
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0.4. Donaldson-Thomas invariants. Assume that Q is a symmetric quiver,

i.e. the anti-symmetric bilinear form 〈−,−〉 is zero. Then T̂ (with the twisted
multiplication) is a commutative algebra.

Definition 1. For any µ ∈ R, we define the Donaldson-Thomas invariants Ωθµ =∑
µθ(α)=µ

Ωθαx
α ∈ T̂ by the formula

Aθµ = Exp

(
Ωθµ
q − 1

)
.

For the trivial stability θ = 0, we denote Ωθα by Ωα.

Remark 1. The classical Donaldson-Thomas invariants

Ω
θ

µ =
∑

µ(α)=µ

Ω
θ

αx
α ∈ Q[[xi, i ∈ Q0]]

are defined by the formula

lim
q→1

(q − 1) logAθµ =
∑

α

Ω
θ

α Li2(x
α) =

∑

n≥1

1

n2

∑

α

Ω
θ

αx
nα,

where the dilogarithm function Li2 is defined by Li2(x) =
∑

n≥1
xn

n2 . If we “quan-
tize” this formula, we obtain

Aθµ = exp


 1

q − 1

∑

n≥1

1

n

q − 1

qn − 1

∑

α

Ωθα(q
n)xnα


 = Exp

(
1

q − 1

∑

α

Ωθα(q)x
α

)
.

This coincides with Definition 1.

The following statement is a consequence of [4, Conjecture 1]

Conjecture 1. For any α ∈ NQ0 , the functions Ωα(−q
1
2 ) are polynomials in q±

1
2

with non-negative integer coefficients.

Remark 2. A slightly weaker statement of Conjecture 1 for the quivers with one
vertex and several loops was recently proved by Markus Reineke [8]. The com-
plete proof of [4, Conjecture 1] and thus of Conjecture 1 was recently obtained by
Efimov [1].

Conjecture 2. For any stability parameter θ ∈ RQ0 and for any α ∈ NQ0 , the

functions Ωθα(−q
1
2 ) are polynomials in q±

1
2 with non-negative integer coefficients.

The fact that Ωθα ∈ Z[q±
1
2 ] follows from [4].

0.5. Combinatorial positivity conjecture. Let C be an r×r matrix with non-

negative coefficients (not necessarily symmetric). We define the operator T : T̂→

T̂ by T (xα) = qα
tCαxα.
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Conjecture 3. Assume that

Exp

(∑
bα(q)x

α

q − 1

)
= T Exp

(∑
aα(q)x

α

q − 1

)
,

where aα ∈ N[q], α ∈ Nr. Then bα ∈ N[q], α ∈ Nr.

Theorem 1. If Conjecture 1 is true then Conjecture 3 is also true.

0.6. Kac positivity conjecture. Let Q be an arbitrary quiver with r vertices
and let α ∈ NQ0 . It was proved by Kac [3] that there exists a polynomial aα ∈ Z[q],
such that the number of absolutely stable representations of Q of dimension α over
a finite field Fq equals aα(q). Kac conjectured that aα ∈ N[q].

There is a rather explicit formula due to Hua [2, 5] that allows to compute the
polynomials aα ∈ N[q] for an arbitrary quiver. Using a thorough analysis of this
formula together with Theorem 1 we can prove

Theorem 2. If Conjecture 1 is true then the Kac positivity conjecture is true for
quivers having at least one loop at every vertex.
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Donaldson-Thomas theory and cluster algebras

Kentaro Nagao

This is an extended abstract of my talk at the Oberwolfach workshop “Repre-
sentation Theory of Quivers and Finite Dimensional Algebras” (February 20–26,
2011). We study cluster algebras from the viewpoint of Donaldson-Thomas theory.
Consequently, we get a description of a composition of cluster transformations in
terms of quiver Grassmannians.
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0.1. Cluster algebras. Cluster algebras were introduced by Fomin and Zelevin-
sky ( [FZ02]) in their study of dual canonical bases and total positivity in semi-
simple groups. Although the initial aim has not been established, it has been
discovered that the theory of cluster algebras has many links with a wide range
of mathematics (see [Kel, §1.1] and the references there). Since a cluster transfor-
mation helps us to understand the whole structure in an inductive way, study of
compositions of cluster transformations is important.

In the case of a quiver of finite type, Caldero and Chapoton ( [CC06]) described
a composition of cluster transformations in terms of quiver Grassmannians of the
original quiver. This result is generalized

• for an acyclic quiver by Caldero and Keller ( [CK06]),
• for a Jacobi-finite quiver with a potential by Fu and Keller ( [FK]) using
the result of [Ami09] and [Pal08], and
• and for an arbitrary quiver without loops and 2-cycles by Derksen-Wey-
man-Zelevinsky ( [DWZ]), Plamondon ( [Pla]) and the author ( [Naga]).

In [DWZ] and [Pla], they prove six conjectures given in [FZ07] for cluster algebras
associated to quivers 1.

0.2. Donaldson-Thomas theory. Donaldson-Thomas invariants , introduced
in [Tho00,MNOP06], are defined as the topological Euler characteristics (more pre-
cisely, the weighted Euler characteristics weighted by Behrend function [Beh09])
of the moduli spaces of sheaves on a Calabi-Yau 3-fold (more generally, the mod-
uli spaces of objects in a 3-Calabi-Yau category [Sze08, Joy08,KS, JS]). Dominic
Joyce introduced the motivic Hall algebra for an Abelian category in his study of
generalized Donaldson-Thomas invariants ( [Joy07]). One of the important results
is that for a 3-Calabi-Yau category there exists a Poisson algebra homomorphism,
so called the integration map, from the motivic Hall algebra to a power series ring
( [Joy07, JS, Bri]). The integration map is given by taking the (weighted) Euler
characteristic of an element in the motivic Hall algebra. Due to the integration
map, we get the following powerful method in Donaldson-Thomas theory for 3-
Calabi-Yau categories, which originates with Reineke’s computation of the Betti
numbers of the spaces of stable quiver representations ( [Rei03]):

Starting from a simple categorical statement, provide an identity
in the motivic Hall algebra. Pushing it out by the integration
map, we get a power series identity for the generating functions of
Donaldson-Thomas invariants.

0.3. DT theory and cluster algebras. Konstevich and Soibelman ( [KS]) ob-
served that the cluster transformation appears in the transformation formula of
non-commutative Donaldson-Thomas invariants under a mutation.

1Cluster algebras are associated not only with quivers without loops and oriented 2-cycles
(equivalently, with skew-symmetric integer matrices) but also with skew-symmetrizable matrices.
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In [Naga], the author provides a transformation formula of non-commutative
Donaldson-Thomas invariants under a sequence of mutations. The formula is
described in terms of Euler characteristics of quiver Grassmannians.

As a consequence, we get a description of compositions of cluster transforma-
tions in terms of Euler characteristics of quiver Grassmannians. Similar results
were given by [DWZ] and [Pla].

0.4. Motivic DT theory and quantum cluster algebras. The quantum clus-
ter transformation defined in [BZ06] is the automorphism of the quantum torus
obtained by taking adjoint with respect to the quantum dilogarithm ( [FG09]).
In [KS], Kontsevich-Soibelman proposed a generalization of the DT invariants
which are called the motivic DT invariants and observed that the quantum clus-
ter transformation should appear in the transformation formula of motivic non-
commu-tative DT invariants under a mutation. It is natural to expect that we
can study the quantum cluster algebras from the view points of the motivic DT
theory.

After the workshop, I submitted a paper on the wall-crossing formula of the
motivic DT invariants to the arXiv ( [Nagb]). Unfortunately, the arguments work
only in a very special setting and are not strong enough to study the quantum
cluster algebras. I hope to provide the quantum version of [Naga] in the future.
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Generating the bounded derived category and perfect ghosts

Steffen Oppermann

(joint work with Jan Šťov́ıček)

Bondal and van den Bergh [2] have introduced the notion of being strongly finitely
generated for triangulated categories. They show that this property is useful when
studying the representability of certain cohomological functors. Their definition is
as follows:

Definition 1. Let T be a triangulated category, T an object in T . Set

thick1 T = add{T [i] | i ∈ Z},

and inductively

thickn+1 T = add{Cone f | f : thickn T → thick1 T }.

A triangulated category T is called strongly finitely generated if there is an object
T in T and some n ∈ N such that T = thickn T .

Note that being strongly finitely generated is equivalent to having finite dimen-
sion in the sense of Rouquier [5].

Probably the most widely used class of triangulated categories in algebra are
derived categories. Here we look at subcategories of bounded derived categories
in the following two setups:

Setup 1. Let Λ be a finite dimensional algebra. We denote by Db(modΛ) its
bounded derived category, and by Db(projΛ) the full subcategory whose objects are
bounded complexes of projectives. Assume

Db(projΛ) ⊆ T
thick
⊆ Db(modΛ).
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Setup 2. Let X be a projective scheme of finite type over some commutative
noetherian ring. We denote by Db(cohX) its bounded derived category, and by
Db(vectX) the full subcategory whose objects are bounded complexes of vector bun-
dles. Assume

Db(vectX) ⊆ T
thick
⊆ Db(cohX).

In these two setups we obtain the following result, which, somewhat surprisingly,
says that there are almost no strongly finitely generated triangulated categories T
satisfying the above setups.

Theorem 1 (O-Šťov́ıček [4]). Let T be a triangulated category as in Setup 1 or
2 above. Assume that T is strongly finitely generated. Then T = Db(modΛ) or
T = Db(cohX).

In Setup 1 it is immediate that Db(modΛ) is strongly finitely generated: Since
any module has Loewy length at most the Loewy length ℓℓ Λ of the algebra, one
sees that thickℓℓ Λ(Λ/RadΛ) = Db(modΛ).

Similarly, in Setup 2 if moreover the scheme is of finite type over a perfect field,
Rouquier [5, Theorem 7.38] has shown that the category Db(cohX) is strongly
finitely generated.

Thus in these setups the statement of the theorem immediately strenghtens to
an equivalence.

In the setup of finite dimensional algebras we immediately obtain the following
corollary.

Corollary 1. Let Λ be a finite dimensional algebra, T ∈ Db(modΛ) such that
Λ ∈ addT . Then either

(1) thick1 T ( thick2 T ( · · · , and ∪n∈N thickn T ( Db(modΛ), or
(2) ∃n ∈ N such that thickn T = Db(modΛ).

The main ingredient for proving the theorem is to strengthen the Ghost Lemma.
A (to our knowledge first) version of this lemma has appeared in work of

Kelly [3]. Subsequently the lemma has been generalized by many authors, see
for instance [1].

In the notation here the idea of the Ghost Lemma is that, given an object in
X ∈ thickn T , any sequence of n ghost maps ending in X must compose to zero.
Here a map f is called ghost map if “it cannot be seen from T ”, that is more
precisely if Hom(f, thick1 T ) = 0.

We show that, in the situations of Setup 1 and 2, the Ghost Lemma can be
strengthened to an equivalence, that is we show that it is enough to check if certain
sequences of ghosts compose to 0 in order to know if an object lies in thickn T .

We then further strengthen this result by showing that it is even enough to
consider “perfect ghosts”, that is ghost maps between objects in Db(proj Λ) or
Db(vectX).
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Using this version of the ghost lemma, the proof of the main theorem can be
sketched as follows:

T = thickn T

⇐⇒ all sequences of n perfect ghosts compose to zero

⇐⇒ Db( mod Λ) = thickn T resp. Db(cohX) = thickn T
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Indices and generic bases for cluster algebras

Pierre-Guy Plamondon

In their paper [9] published in 2002 , S. Fomin and A. Zelevinsky laid the founda-
tions of the theory of cluster algebras. One of their aims was to give a combina-
torial approach to the study of Kashiwara/Lusztig’s canonical bases in quantum
groups. For this reason, the search for suitable bases of cluster algebras is an im-
portant problem in the theory. The aim of this extended abstract is to put forward
a method, using the additive categorification of cluster algebras by means of 2-
Calabi–Yau triangulated categories (see [1], [13]), which will hopefully lead to the
construction of such bases. This method is based on that of C. Geiss, B. Leclerc
and J. Schröer [11], who obtained “generic” bases for a large class of cluster alge-
bras. Previously, such bases were constructed explicitly by G. Dupont [7], see also
the work of M. Ding, J. Xiao and F. Xu [6], for cluster algebras associated with
affine quivers.

1. Setting : 2-Calabi–Yau triangulated categories

We will work over the field C of complex numbers. Let C be a triangulated
C-category with suspension functor Σ. We will make the following assumptions:

• C is Hom-finite (i.e. all morphism spaces are finite-dimensional);
• C is 2-Calabi–Yau (i.e. for any objects X and Y of C, there exists a
bifunctorial isomorphism HomC(X,Y ) ∼= DHomC(Y,Σ

2X), where D =
HomC(?,C) is the standard duality);
• C admits a cluster-tilting object T (i.e. for any object X of C, the space
HomC(T,ΣX) vanishes iff X is in addT ) which is non-degenerate (i.e. if
T ′ is obtained from T by iterated mutations, then the Gabriel quiver of
EndC(T

′) has no oriented cycles of length ≤ 2).
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Example 1. C. Amiot’s generalized cluster category [1] associated to a quiver with
potential [5] satisfies the above assumptions, provided that the quiver with potential
is Jacobi-finite.

Example 2. Let Q be a finite quiver without oriented cycles. To any element w
of the Weyl group associated to Q, A. Buan, O. Iyama, I. Reiten and J. Scott [3]
(see also [10]) associated a category Cw which satisfies the above assumptions. To
any reduced expression i of w, they associated a cluster-tilting object Vi of Cw.

2. Generic basis of C. Geiss, B. Leclerc and J. Schröer

For any finite-dimensional C-algebra A with Gabriel quiver Q, we denote by
repd(A) the variety of finite-dimensional representations of A of dimension vector
d ; it is a closed subvariety of

⊕
α:i→j HomC(C

di ,Cdj). Let rep(A) be the union

of all the repd(A). For any irreducible component Z of rep(A), we let dimZ = d
if Z is contained in repd(A).

A significant result in the search for a good basis of cluster algebras is the
following theorem of C. Geiss, B. Leclerc and J. Schröer, which requires the defi-
nition [11, Section 7.1] of strongly reduced components of rep(A).

Theorem 1 (Theorem 5 of [11]). Let Cw be as in the setting of Example 2, with
a cluster-tilting object Vi. Let A = EndCw

(Vi), and let Q be the Gabriel quiver of
A. Then a basis of the cluster algebra AQ is given by the set
{
xeψZ

∣∣ Z is strongly reduced, e ∈ NQ0 , e and dimZ have disjoint support
}
,

where ψZ is the generic value taken by Y. Palu’s cluster character [13] inside Z.

Remarks 1. (1) The generic basis obtained is dual to the semicanonical basis
of G. Lusztig [12].

(2) The authors of [11] conjecture that the set defined in Theorem 1 is a basis
of the associated cluster algebra, even outside of the setting of Example 2.

3. Results

Let C be a category which satisfies the assumptions of section 1. Let T be a
cluster-tilting object of C, let A = EndC(T ) and let Q be the Gabriel quiver of A.
Denote byK0(projA) the Grothendieck group of the category of finite-dimensional
projective A-modules ; its elements are called indices, as in [13].

Theorem 2. There exists a canonical map I : K0(projA) → A
+
Q, where A

+
Q is

the upper cluster algebra of [2]. In the setting of Example 2, the image of I is the
generic basis of [11].

Remarks 2. (1) Let T1 and T0 be objects of addT ; then Pi = HomC(T, Ti)
is in addA, for i = 1, 2. In that case, I sends the index [P0] − [P1] to
the generic value taken by Y. Palu’s cluster character on the cones of
morphisms in HomC(T1, T0).
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(2) The canonical decomposition of H. Derksen and J. Fei [4] of a morphism
in HomA(P1, P0) yields a factorization of I([P0]− [P1]).

Theorem 3. The map I commutes with mutations.

Remark 3. This theorem links results of [11] to a conjecture of V. Fock and
A. Goncharov [8, Conjecture 4.1]. Together with the results of G. Lusztig and of
C. Geiss, B. Leclerc and J. Schröer, the theorem allows to prove this conjecture
in the setting of Example 2.

Theorem 4. There is a commutative diagram

{strongly reduced comp. of rep(A)} �

�

//

ψ

**UUUUUUUUUUUUUUUUUUUU
K0(projA)

I

��

A+
Q,

where ψ is the map described in Theorem 1.
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Cohomological Hall algebra and positivity conjectures

Markus Reineke

Let Q be a finite quiver with set of vertices I, and let d ∈ NI be a dimension
vector. We consider the following polynomials:

(1) Ad(q), the polynomial counting isomorphism classes of absolutely inde-
composable representations of Q of dimension vector d over the finite field
Fq. It is known to belong to Z[q], and conjectured to actually belong to
N[q] by [4]. This conjecture is proved when d is indivisible in [1].

(2) Sd(q), the polynomial counting isomorphism classes of absolutely simple
representations of Q of dimension vector d over the finite field Fq. It is
known to belong to Z[q], and conjectured to actually belong to N[q − 1]
in [7].

(3) (in case Q is a symmetric quiver) DTd(q), the quantized Donaldson-Tho-
mas invariant of Q (see below for the definition). It is known to belong to
Q[q, q−1], and conjectured to belong to N[q] by [5].

Define the so-called plethystic exponential of a formal series in one variable z by

Exp(
∑

n≥1

anz
n) =

∏

n≥1

(1− zn)−an .

(with an obvious extension to series in several variables). Using this notation,
there are the following explicit formulas for the above polynomials (in the third
case, this is actually the definition):

(1) We have

HuaQ(q, t) =
∑

λ

q−〈λ,λ〉

∏
i

∏
r(q

−1)λi
r

t|λ| = Exp(
1

q − 1

∑

d 6=0

Ad(q)t
d),

where λ = (λi)i) denotes a tuple of partitions (λi = λi1 ≥ . . . ≥ λili)i∈I ,

|λ| = (|λi|)i∈I ∈ NI, 〈λ, λ〉 =
∑

r〈λr, λr〉 for λr = (λir)i∈I ∈ NI and
(z)n = (1 − z) · . . . · (1− zn).

(2) We have

∑

d≥0

q−〈d,d〉

∏
i(q

−1)di
td ◦ Exp(

1

1− q

∑

d 6=0

Sd(q)t
d) = 1,

where td ◦ te = q−〈e,d〉td+e.
(3) We have

∑

d≥0

q−〈d,d〉

∏
i(q

−1)di
td = Exp(

1

1− q

∑

d 6=0

DTd(q)(±t)
d),

where the sign only depends on Q.

Potential proofs of positivity properties usually involve linking the above poly-
nomials to some geometry, like the geometry of preprojective varieties in the case



582 Oberwolfach Report 10/2011

of [1], or Higgs moduli in [3]. Here we use an algebraic approach to the poly-
nomials DTd(q) using the Cohomological Hall algebra of [5] and the geometry of
noncommutative Hilbert schemes (see [6]) in the case of the m-loop quiver.

Theorem 1. Let H(q, t) =
∑

n≥0
q
(m−1)(n2)

(1−q−1)·...·(1−q−n) t
n, and write

H(q, (−1)m−1t) = Exp(
1

1− q−1

∑

n≥1

DTn(q)t
n).

Then

(1) DTn(q) ∈ Z[q],

(2) DTn(1) =
1
n2

∑
d|n µ(

n
d )(−1)

(m−1)(n−d)
(
md−1
d−1

)
∈ N,

(3) DTn(q) = qn−1 1
1+q+...+qn−1

∑
C q

wt(C),

(4) DTn(1) = |{C |wt(C) ≡ d mod n}|,

where in the last two statements, C denotes the set of cyclic equivalence classes of
sequences

(a1, . . . , an) ∈ Nn :
∑

i

ai = (m− 1)n

which are primitive in the sense that the sequence is different from all its proper
cyclic shifts (a slight modification is needed in case m even, n ≡ 2 mod 4), and
wt(C) is the maximum of

∑n
i=1(m− i)(m− 1− ai) along the cyclic class C.

The algebraic approach towards positivity of DTd(q) pursued in [5] is to con-
struct a bigraded Q-algebra A whose Poincaré-Hilbert series

PA(q, t) =
∑

n≥0

∑

k

dimQAn,kq
ktn

equals H(q, t), and to prove that A is isomorphic to the symmetric algebra of
a bigraded supervectorspace C ⊗ Q[z] with z homogeneous of bidegree (0,−1).
Namely, in this case H(q, t) =

= PA(q, t) = PSym(C⊗Q[z](q, t) = Exp(PC⊗Q[z](q, t)) = Exp(
1

1− q−1
PC(q, t)).

The candidate proposed in [5] is the Cohomological Hall algebra of a quiver: for d ∈
NI, denote by Rd(Q) the variety of (complex) representations of Q of dimension
vector d with the action of the base change group Gd. There exists an analogue of
the Hall algebra construction in the Gd-equivariant cohomology of Rd(Q), defining
an algebra structure on ⊕

d

H∗
Gd

(Rd(Q),Q)

with a natural bigrading by d and cohomological degree (suitably normalized). A
proof of positivity using this algebra was announced recently [2].

The above theorem is proved using a degenerate version of the Cohomological Hall
algebra, which has a purely combinatorial definition:
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Define A as the Q-algebra with basis parametrized by all partitions

λ = (0 ≤ λ1, . . . , λl(λ)),

and with multiplication

λ ∗ µ = λ1, . . . , λl(λ), µ1 + (m− 1)l(λ), . . . , µl(µ) + (m− 1)l(λ)︸ ︷︷ ︸
resorted in ascending order

.

This algebra is bigraded by (l(λ), (m − 1)
(
n
2

)
− |λ|). The above theorem follows

from an isomorphism

A ≃ Sym(
⊕

n≥0

SnBL),

where Sλ = (λ1 + 1, . . . , λl(λ) + 1), and Bl is spanned by a subset of certain
partitions (Lyndon words in Dyck partitions; see [8] for details); the definition of
this class of partitions is motivated by partitions naturally arizing in the study of
Noncommutative Hilbert schemes, varieties parametrizing left ideals in the path
algebra of the m-loop quiver (see [6]).
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Some Auslander-Reiten quilts

Claus Michael Ringel

The lecture was dealing with the module categories of some special biserial alge-
bras. Special biserial algebras were first studied by Gelfand and Ponomarev in
1968, they have provided the methods in order to classify all the indecomposable
representations of such an algebra (the string modules and the band modules),
and there is also known a precise recipe for obtaining all the irreducible maps
(adding or deleting hooks and cohooks). The algebras which were considered in
the lecture are the wind wheel algebras, they are obtained from the hereditary
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algebras of type Ãn by identifying suitable pairs of linearly oriented subquivers,
the bars. The wind wheel algebras are minimal representation-infinite algebras.

The study of minimal representation-infinite k-algebras with k an algebraically
closed field was one of the central themes of the representation theory around 1984
with contributions by Bautista, Gabriel, Roiter, Salmeron, Bongartz, Fischbacher
and many others. Recent investigations of Bongartz [1] provide a new impetus
for analyzing the module category of such an algebra and even seem to yield
a basis for a classification of these algebras. Here is a short summary of this
development. First of all, there are algebras with a non-distributive ideal lattice,
such algebras have been studied already 1957 by Jans. Second, there are algebras

with a good universal cover Λ̃ and such that Λ̃ has a convex subcategory which is

a tame concealed algebra of type D̃n, Ẽ6, Ẽ7 or Ẽ8; these were the algebras which
have been discussed by Bautista, Gabriel, Roiter and Salmeron in 1984 (we say
that the universal cover is good provided it is a Galois cover with free Galois
group and is interval-finite). As Bongartz now has shown, the remaining minimal

representation-infinite algebras also have a good cover Λ̃, but all finite convex

subcategories of Λ̃ are representation-finite. These algebras can be shown to be
special biserial and can be classified completely: After the separation of nodes,

there are three different kinds: the hereditary algebras of type Ãn, the wind wheel
algebras, as well as the barbell algebras with non-serial bars. Whereas the barbell
algebras are algebras with non-polynomial growth, the hereditary ones and the
wind wheels are 1-domestic: this means that there is precisely one primitive 1-
parameter family of indecomposable modules (and of course additional isolated
indecomposables).

The aim of the lecture was to look at a wind wheel algebraW and to describe in
detail first its Auslander-Reiten quiver, but then also the Auslander-Reiten quilt Γ
of W (see [3]); the quilt is obtained from the set of Auslander-Reiten components
which contain string modules by inserting suitable (infinite dimensional) indecom-
posable algebraically compact modules. These additional modules are constructed
using N-words and Z-words, quite similar to the construction of the string modules
using finite words, but for the infinite dimensional modules often some completion
is necessary (see [2]).

We denote by rad the radical of the module category modW, it is the ideal gener-
ated by the non-invertible homomorphisms between indecomposable W -modules.
Using transfinite induction, one defines powers radλ for any ordinal number. For
example, for the first limit ordinal ω, one takes as radω the intersection of all finite
powers radn — note that the Auslander-Reiten quiver ofW is meant to display the
factor category modW/ radω. In the same way, the factor category modW/ radω2

(or at least part of it) is exhibited by the Auslander-Reiten quilt (here ω2 is the
second limit ordinal).

It turns out that the Auslander-Reiten quilt Γ of a wind wheel algebra is a
connected orientable surface with boundary, its Euler characteristic is χ(Γ) = −t,
where t is the number of bars.
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The components of the Auslander-Reiten quiver of W which contain string
modules are ramified components of type A∞

∞, the ramification data being given
by a permutation π. Such a component is sewn together from partial translation
quivers in the same way as one constructs Riemann surfaces in complex analy-
sis. The permutations π which arise for the wind wheel algebras with t bars are
precisely the commutators of two t-cycles.

As we have mentioned, the Auslander-Reiten quilt of any wind wheel algebra
W is orientable (for example, for the wind wheel with only two simple modules
we obtain a torus with one hole). On the other hand, it is easy to see that the
category of W -modules contains as a full subcategory the module category of a
representation-finite algebra L whose Auslander-Reiten quiver is homeomorphic to
a Möbius strip. In order to understand the embedding modL→ modW , one may
analyze in which way the irreducible maps of modL are factorized inside modW
by looking at the quilt Γ. It turns out that a curious change of direction occurs
when approaching some infinite dimensional W -modules which are not part of the
quilt.
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A(1) and the dilogarithm

Fernando Rodriguez Villegas

In this talk I presented an approach to obtaining a formula for the value at q = 1
of the A-polynomial of an arbitrary quiver. The A-polynomial A(q) of a quiver
Γ counts the number of absolutely indecomposable representations of Γ over the
field Fq with a given dimension vector. One one hand, by our joint work [2] with
Hausel and Letellier, we expect the value A(1) to be the middle Betti number of
an associated character variety. On the other, it is tempting to interpret A(1) as
counting certain simpler combinatorial objects resulting from letting the field size
become one. The formula might shed light into these questions. See [9] for the
full version.

I concentrate on the following example. Let Sg be the quiver consisting of one
vertex and g loops and let Agn(q) be the A-polynomial for dimension n. We define a
priori rational functions Aλ(q) indexed by partitions λ which give a decomposition

An(q) =
∑

|λ|=n

Aλ(q)
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of the A-polynomial of Sg.
Computations suggest that for g > 0, which we assume from now on, Aλ(q) is

in fact a polynomial in q with non-negative integer coefficients. For example, for
g = 2 and n = 3 we obtain

A(1,1,1)(q) = q10 + q8 + q7, A(2,1) = q6 + q5, A(3) = q4

with sum
A3(q) = q10 + q8 + q7 + q6 + q5 + q4

We have the following

Theorem 1. For any non-zero partition λ we have

(1) Aλ(1) =
1

ρ

∑

d|m

µ(d)

d2
1

P1(m/d)PN (m/d)

∏

i≥1

(
ρPi(m/d)− 1 +mi/d

mi/d

)

where λ = (1m12m2 · · ·NmN ) with N = λ1, the largest part of λ,

Pi(m) :=
∑

j≥1

min(i, j)mj , m := (m1,m2, . . .), ρ =: 2g − 2,

and µ is the Möbius function of number theory.

The case λ = (1n) was previously proved by Reineke [7] by different methods.
By the conjectures of [1] the number An(1) =

∑
|λ|=nAλ(1) should equal the

dimension of the middle dimensional cohomology group of the character variety
Mn studied there. A refined version of this conjecture states that Aλ(1) is the
number of connected components of type λ of a natural C× action on the moduli
space of Higgs bundles, which is diffeomorphic toMn. A proof of this conjecture
for λ = (1n) was recently given by Reineke [8, Theorem 7.1]. The refined conjecture
originates in [1, Remark 4.4.6] and was in fact the motivation to construct the
truncated polynomials Aλ(q) studied here.

Corollary 1. As a function of g, the quantity Aλ(1) is a polynomial of degree
l(λ)− 1; its leading coefficient in ρ := 2g − 2 is

(2)
1

P1(m)Pl(λ)(m)

∏

i≥1

Pi(m)mi

mi!
.

Remark 1. In particular, we recover the fact (noticed numerically in [1] and
proved in greater generality in [3]) that An(1) is a polynomial in ρ of degree n− 1
and leading coefficient nn−2/n!. (The appearance of the term nn−2, the number of
spanning trees on n labelled vertices, is not a coincidence.)

We also note the following important property (here we write Aρλ with ρ = 2g−2
for Aλ to indicate the dependence on g), which was inspired by the interpretation
of Aλ(1) in terms of the moduli space of Higgs bundles mentioned above.

Proposition 1. Let n be a positive integer and λ = (λ1, λ2, . . .) a non-zero parti-
tion. Define nλ := (nλ1, nλ2, . . .). Then

Aρnλ(q) = Anρλ (q), ρ := 2g − 2.
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In particular,

A(n)(q) = qn(g−1)+1

The starting point for the proof of (1) is the formula of Hua for theA-polynomial.
Truncating the sum for the Sg quiver to partitions of length at most N leads to a
series of the following form

(3)
∑

m=(m1,...,mN )

q(g−1)tmHNm

∏N
i=1(q

−1)mi

T
∑

i imi

where mi ∈ Z≥0 and HN := (min(i, j)) , i, j = 1, 2, . . . , N. The asymptotic as
q → 1 of this type of series has been studied extensively, starting with at least
Ramanujan who used it to study the validity of one of his famous formulae (now
known as the Rogers-Ramanujan formulae). There are several approaches which
yield an expression for its leading term as a sum of values of the dilogarithm
function (see for example [5], [6], and [10]). On the other hand, by Hua’s formula
the leading term can also be expressed in terms of Agn(1). Combining these two
expressions yields a proof of (1).

Series like (3) arise in conformal field theory in physics (see for example Nahm’s
paper [6]). From this point of view, (1) is a sort of fermionic-type formula. In
fact, the kind of analysis we used appears prominently in the physics literature
under the heading of Q-systems, originating from the work of Kirillov–Reshetikhin
on representation theory and the combinatorics of the Bethe Ansatz. There is a
substantial literature on the subject. The basic application of Lagrange’s inversion
can be found for example in [4]. We preferred to rederive the results we needed
from scratch.
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Tilted algebras and short chains of modules

Andrzej Skowroński

(joint work with Alicja Jaworska and Piotr Malicki)

Let A be a basic connected artin algebra over a commutative artin ring K. We
denote by modA the category of finitely generated right A-modules, by indA the
full subcategory of modA formed by the indecomposable modules, and by K0(A)
the Grothendieck group of A. Further, we denote by ΓA the Auslander-Reiten
quiver of A and by τA the Auslander-Reiten translation DTr . A module M in
modA is called sincere if every simple right A-module occurs as a composition
factor of M . Following [1], [5], a chain of nonzero homomorphisms X → M →
τAX in modA with X being indecomposable is called a short chain, and M is
called the middle of this short chain. It is known that if a module M in modA
is not the middle of a short chain, then the number of pairwise nonisomorphic
indecomposable direct summands of M is less or equal to the rank of K0(A)
(by [8, Lemma 2]) and the indecomposable direct summands of M are uniquely
determined by their images in K0(A) (by [5, Corollary 2.2]).

Let H be a hereditary algebra, T a tilting module in modH , and B = EndH(T )
the associated tilted algebra. Then the images HomH(T, I) of indecomposable
injective modules in modH via the functor HomH(T,−) : modH → modB form
the canonical section ∆T of a connected component CT of ΓB, called the connecting
component of ΓB. Moreover, the direct sum MT of all modules lying on ∆T is a
sincere module in modB which is not the middle of a short chain. In [5, Section
3] the authors asked whether the existence of a sincere module in modA that is
not the middle of a short chain implies that A is a tilted algebra.

During the talk we announced the following two theorems from [3].

Theorem 1. Let A be an artin algebra. Then A is a tilted algebra if and only if
modA admits a sincere module M which is not the middle of a short chain.

Theorem 2. Let A be an artin algebra and M be a module in modA which is not
the middle of a short chain. Then there exists a hereditary algebra H, a tilting
module T in modH, and an injective module I in modH such that the following
statements hold.

(i) The tilted algebra B = EndH(T ) is a quotient algebra of A.
(ii) M is isomorphic to the right B-module HomH(T, I).
(iii) The indecomposable direct summands of M lie on the section ∆T of the

connecting component CT of ΓB determined by T .

We refer to [2], [4], [6] and [7] for more results on tilted algebras as well as their
characterizations.
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Fractional Euler characteristics and 3j-symbols

Catharina Stroppel

(joint work with Igor Frenkel and Josh Sussan)

1. Representation theory of quantum sl2

Let C(q) be the field of rational functions in q. Let Uq = Uq(sl2) be the asso-
ciative algebra over C(q) generated by E,F,K,K−1 satisfying the relations:

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, EF − FE =
K −K−1

q − q−1

Let [k] =
∑k−1

j=0 q
k−2j−1 and

[
n
k

]
= [n]!

[k]![n−k]! . Let Vn be the (unique up to iso of

type I) irreducible Uq(sl2)-module. It has basis {v0, v1, . . . , vn} such that

(1) K±1vi = q±(2i−n)vi Evi = [i+ 1]vi+1 Fvi = [n− i+ 1]vi−1.

Recall that Uq is a Hopf algebra, hence it makes sense to consider tensor prod-
ucts Vd1 ⊗ Vd2 ⊗ · · · ⊗ Vdr of finite dimensional modules.

Question: Is it possible to categorify these representations?

2. Categorification using quasi-hereditary algebras

Let first d1 = · · · = dn = 1 and consider the n-fold tensor product V ⊗n
1 of the

vector representation. Let V ⊗n
1 =

⊕n
j=0 V

⊗n
1 (j) be the decomposition into weight

spaces.

Theorem 1. Let 1 ≤ j ≤ n. Then there is a finite dimensional quasi-hereditary
graded C-algebra Aj,n of finite global dimension such that

• Cj,n := Aj,n-gmod has up to isomorphism and grading shift precisely
(
n
j

)

simple objects L(λ) naturally indexed by {0, 1}-sequences λ of length n with
exactly j ones.
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• There is a natural isomorphism of Z[q, q−1]-modules

n⊕

j=0

K0(Cj,n) ∼=

n⊕

j=0

V ⊗n
1 (j)(2)

which sends the isomorphism class of a standard module ∆(λ) with head
in degree zero to the standard basis vector vλ1 ⊗ · · · ⊗ vλn

. The action of
q ∈ Z[q, q−1] on K0(Cj,n) is given by shifting the grading up by 1.
• There are exact functors satisfying the relations of Uq inducing a Uq-action
on the Grothendieck group which turns (2) and (3) into Uq-homomorphisms.
• The isomorphism classes of simple objects in degree zero correspond to
dual canonical basis elements.

Here K0(Cj,n) denotes the Grothendieck group of Cj,n defined as the free group
of isomorphism classes of objects in Cj,n modulo short exact sequences. The grad-
ing defines a free Z[q, q−1]-module structure on K0(Cj,n) with basis given by the
isomorphism classes of simple objects concentrated in degree zero. An alternative
basis is given by the isomorphism classes of indecomposable projective objects
with head concentrated in degree zero (which is however wrong if the algebra has
infinite global dimension).

3. Categorification using properly stratified algebras

Let now d1, d2, . . . , dr arbitrary. Then M := Vd1 ⊗ Vd2 ⊗ · · · ⊗ Vdr is a direct
summand of V ⊗n

1 with n =
∑r

i=1 di.

Theorem 2. There exists a Serre subcategory Sj of Cj,n for 1 ≤ j ≤ n (de-
pending on d1, d2, . . . , dr and invariant under grading shifts) such that there is
an isomorphism of Z[q, q−1]-modules respecting the weight space decomposition
M = ⊕nj=0M(j)

n⊕

j=0

K0(Cj,n/Sj) ∼=

n⊕

j=0

M(j)(3)

The quotient functor
n⊕

j=0

Cj,n →

n⊕

j=0

Cj,nSj

is exact, Uq-equivariant, and induces a morphism on the respective Grothendieck
groups which corresponds via (2) and (3) to the Jones-Wenzl projector

π : V ⊗n
1 → Vd1 ⊗ Vd2 ⊗ · · · ⊗ Vdr .(4)

Cj,n/Sj is equivalent to gmod-EndCj,n
(Pj) for some projective Pj ∈ Cj,n. The alge-

bra EndCj,n
(Pj) is graded properly stratified. The isomorphism (3) maps isoclasses

of

• standard modules ∆(λ) with head in degree zero to the standard basis,
vλ1 ⊗ · · · ⊗ vλn

,
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• proper standard modules ∆(λ) in degree zero to the dual standard basis,
vλ1 ⊗ · · · ⊗ vλn ,
• simple standard modules with head in degree zero to Lusztig’s dual canon-
ical basis elements.

Note that the dual standard basis vector vi ∈ Vn is defined as
[
n
i

]−1
vi. In

particular, the transformation matrix from proper standard objects to standard
objects is not integral, but involves rational (quantum) numbers. Categorically
this corresponds to the fact that ∆(λ) has an infinite projective and ∆-resolution.

4. The smallest non-trivial example and its categorification

Consider the Jones-Wenzl projector V2 → V1 ⊗ V1 displayed in the following
picture: The horizontal arrows indicate the action of E and F , whereas the loops
show the action of K. The vertical arrows indicate the projection and inclusion.

V2 : v0

q−2

��
[1]·

,,

ι3





v1

q0

��
[2]·

,,

[2]·

ll

ι3

��

v2

q2

��

[1]·

ll

ι3





V1 ⊗ V1 : v0 ⊗ v0

q−2

FF

(1q)
..

π3

JJ

v1 ⊗ v0, v0 ⊗ v1

(q−1 1)
--

(q−1 1)

mm

q0

FF

π3

JJ

v1 ⊗ v1

(1q)
nn

q2

FF

π3

JJ

Let A = EndC[x]/(x2)(C ⊕ C[x]/(x2)), the path algebra of the quiver
1
•⇆

2
•

subject to the relation 1 → 2 → 1. It is graded by the path length and R =
HomA(Ae2, Ae2) ∼= C[x]/(x2), hence R − gmod ∼= A − gmod /S, where S is the
graded Serre subcategory generated by Ce1. Set C0,2 = C2,2 = C − gmod and
C1,2 = A− gmod:

V2 : C− gmod

〈−2〉

�� ind
--

id

��

R − gmod

id

�� res
--

res
mm

A⊗R−〈1〉

��

C− gmod

〈2〉

��

ind
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id

��

V1 ⊗ V1 : C− gmod

〈−2〉

FF

Ae2⊗−
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id

KK

A− gmod

HomA(Ae2,−)〈−1〉
--

HomA(Ae2,−)〈−1〉

mm

id

FF

HomA(Ae2,−)〈−1〉

KK

C− gmod
Ae2⊗−

mm

〈2〉

FF

id

KK
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The tilting module T = q−1R corresponds to v1 and the equality v1 = [2]−1v1
is categorified via [C] = (1 − q2 + q4 − q6 + · · · )[R] from the infinite projective
resolution · · · q4R→ q2R→ R→ C.

Problems:

• Categorify the projections into the various summands of Vi ⊗ Vj .
• Categorify the matrix entries so-called 3j-symbols, in different bases.

We sketch answers to both problems. In particular, we show that 3j-symbols can
be viewed as generalized Kazhdan-Lusztig polynomials and explain how this could
lead to categorified 3-manifold invariants of Turaev-Viro. The categorification of
tensor product is based on [2]. Details can be found in [3] and [1].
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Derived autoequivalences of singular elliptic curves and mirror
symmetry

Michel Van den Bergh

(joint work with So Okoda)

1. Notation and conventions

Throughout k is an algebraically closed field of characteristic zero. For an
algebraic variety X over k we write Db(X) for Db(cohX).

2. The smooth case

If E is a smooth elliptic curve over k then there is a short exact sequence

0→ Auttriv(Db(E))→ Aut(Db(E))→ Sl2(Z)→ 0

with

Auttriv(Db(E)) = {σ∗(−⊗ L)[n] | σ ∈ Aut(E),L ∈ Pic0(E), n ∈ 2Z}

representing the “obvious” autoequivalences. These are precisely the derived au-
toequivalences which act trivially on K0(cohE). This result is a special case of a
general result by Orlov for abelian varieties [6].

The group Sl2(Z) is generated by so-called Seidel-Thomas twists [7]. To be
more precise: if C ∈ Db(E) then we say that C is (1-)spherical if

Homi
E(C,C[i]) =

{
k i = 0, 1

0 otherwise
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The following fact is well-known

Proposition 1. The spherical objects in Db(E) form a single orbit under
Aut(Db(E)). They are all shifts of sheaves (as are all indecomposable objects).

The Seidel-Thomas twist associated to a spherical object C is defined by

TC : Db(E)→ Db(E) : A 7→ cone(Hom•(C,A)⊗k C → A)

with the usual caveat that we need to use the standard enhancement on Db(E) to
make TC into a functor.

It is clear that OE is spherical. If y ∈ E then Oy is spherical as well. One has

Aut(Db(E))/Auttriv(Db(E)) = 〈TOE
, TOy

〉

with y an arbitrary point of E. A crude way of summarizing this is

Aut(Db(E)) = 〈PicE,AutE, 2Z, TOE
, TOy

〉

3. The singular case

Now we assume E is a cycle of n ≥ 2 projective lines
⋃n
i=1 Ei, Ei

∼= P1 where
the point 0 in Ei is identified with the point ∞ in Ei+1 mod n. For n = 1 it is
natural to let E = E1 be a nodal elliptic curve. This is what we will do. The
results stated in §2 generalize to the case n = 1 [2]. However it turns out that the
case n ≥ 2 is substantially harder.

Since E is now singular we have to make a distinction between Db(E) and its
full subcategory Perv(E) consisting of perfect complexes. By definition spherical
objects ly in Perv(E). They are in general no longer sheaves as the following
example from [1] shows.

Example 1. Consider the case n = 2. Let L be a line bundle on E whose restric-
tion to E1, E2 is respectively OE1(2) and OE2(−1). It is easy to see that such an
L is unique up to the choice of an element of k∗. Put C = TOE

(L). As L is a
line bundle it is spherical (this is easy to see). Since TOE

is an auto-equivalence
we obtain that C is spherical as well. A simple computation shows

(1) Hi(C) =





OE2(−1) if i = 0

OE2(−2) if i = −1

0 otherwise

Thus C is not a shifted sheaf. With a little more effort one may construct spherical
objects which are arbitrary long complexes.

The indecomposable objects in Db(E) are understood [2] but from the descrip-
tion in loc. cit. it seems non-trivial how to recognize the spherical objects among
the indecomposable objects.

In the lecture we outlined proofs of the following results.

Proposition 2. (1) The spherical objects in Perv(E) form a single orbit un-
der AutDb(E).
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(2) If n ≤ 3 then

Aut(Db(E)) = 〈PicE,AutE,Z, TOE
, TOy1

, . . . , TOyn
〉

for a choice of smooth points yi ∈ Ei.

Remark 1. • As said this result is known if n = 1 [2].
• (2) is not true for n ≥ 4. One needs extra generators (which are known).
• There has been work on this problem in [4, 5]. In particular (1) is proved
in the case n = 2.

Our proof uses mirror symmetry and the explict description of the mirror dual
to E given in [3] (see also [8]).
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Localization in quiver moduli spaces and tree modules

Thorsten Weist

Let k = C and Q = (Q0, Q1) be a quiver without oriented cycles. For a fixed
representation X of the quiver Q we choose a basis B of each vector space Xi.

Definition 1. The coefficient quiver Γ(X,B) of a representation X has vertex set
B and arrows between vertices are defined by the condition: if (Xα,B)b,b′ 6= 0, there
exists an arrow (α, b, b′) : b 7→ b′.
A representation X is called a tree module if there exists a basis B for X such that
the corresponding coefficient quiver is a tree.

This leads us to the following problem stated by Ringel, see [8]:
Does there exist an indecomposable tree module for every root d ∈ NQ0? In
particular, Ringel conjectured that there should be more than one isomorphism
class for imaginary roots.
Let 〈Q1〉 be the non-commutative group generated by the arrows α ∈ Q1 and its
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formal inverse α−1. The universal covering quiver Q̃ of Q is given by the vertex
set

Q̃0 = {(i, w) | i ∈ Q0, w ∈ 〈Q1〉}

and the arrow set

Q̃1 = {α(i,w) : (i, w)→ (j, wα) | α : i→ j ∈ Q1}.

Let Rd(Q) be the affine variety of k-representations. The push-down functor Π :

Rd̃(Q̃)→ Rd(Q) preserves indecomposability and stability, see [2] and [10].
For a fixed slope µ : NQ0 → Q denote by M s

d(Q) the moduli space of stable
representations of Q, see [4] and [5] for a more detailed discussion.
Let T := (C∗)|Q1| be the |Q1|-dimensional torus. It acts on Rd(Q) via (tα)α∈Q1 ·
(Xα)α∈Q1 = (tαXα)α∈Q1 inducing an action on M s

d(Q). Since torus fixed points
correspond to stable representations of the universal abelian cover, we can iterate
this procedure and define

M s
d(Q)T,n = (. . . (M s

d (Q)T1) . . .)Tn

where the tori Ti are appropriately chosen. We call a dimension vector d̃ ∈ NQ̃0

compatible with d ∈ NQ0 if

di =
∑

w∈〈Q1〉

d̃i,w

for all i ∈ Q0. Moreover, we consider dimension vectors of Q̃0 up to the equivalence
induced by the action of 〈Q1〉 on Q̃0 given by p · (i, w) = (i, wp). In summary, we
obtain the following Theorem, see [10] for more details:

Theorem 1. There exists an natural number n such that

Md(Q)T,n
′

≃
⋃

d̃

M s
d̃
(Q̃)

for all n′ ≥ n where d̃ ranges over all equivalence classes being compatible with d.

Moreover we immediately get the following corollary:

Corollary 1. For the topological Euler characteristic in singular cohomology we
have:

χ(M s
d(Q)) =

∑

d̃

χ(M s
d̃
(Q̃).

Example 1.

• LetK(m) be the generalized Kronecker quiver. We consider the dimension
vector (d, e) = (2, 3) with m ≥ 3. First we observe the quiver given by

1

i1��		
		
	 i2

��
55

55
5 1

i3��		
		
	 i4

��
55

55
5

1 1 1

By colouring the arrows in the colours {1, . . . ,m} such that we get a sub-

quiver of Q̃, every stable representation of this quiver gives rise to a torus
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fixed point. Note that each colouring is unique up to the symmetry in-
duced by S2.
Further torus fixed points are given by stable representations of the fol-
lowing quiver:

1

2
i2 //

i1
88qqqqqq

i3

&&M
MMMMM 1

1

Here we have to take into account the symmetries of S3. In summary, we
get

χ(Mm
2,3) =

m(m− 1)3

2
+
m(m− 1)(m− 2)

6
.

Obviously, the unique indecomposable representation of the first quiver of the
preceding example is a stable tree module. Moreover, we may easily construct
a factor representation of dimension type (2, 2) which is also an indecomposable
tree module. Investigating such torus fixed points in general, we get the following
result, where the map r : N2 → N2 is defined by r(d, e) := (e,me− d), see [11]:

Theorem 2. (1) For every root (d, e) of the generalized Kronecker quiver
there exists an indecomposable tree module.

(2) Let k, l, n ∈ N0. For each root (d, e) 6= rl(n, kn) there exists a stable tree
module.

Following the results of [12] we now construct indecomposable tree modules for
every imaginary Schur root of a quiver Q.
Therefore, fixed a pair of representations X, Y we always choose a tree-shaped
basis of Ext(X,Y ), i.e. the corresponding matrices are of type E(s, t)ij = δsiδtj .
Based on [9], the algorithm of [1] leads us to the following statement where we
also use the notation of [9]:

Proposition 1. Let α be an imaginary Schur root. Then at least one the following
cases holds:

(1) There exist a real Schur root β and t ∈ N+ such that γ = α − tβ is an
imaginary Schur root. Moreover, we have β ∈ γ⊥ and hom(β, γ) = 0 or
β ∈⊥ γ and hom(γ, β) = 0.

(2) There exist a real Schur root β and a real or isotropic root γ and d, e ∈ N+

such that α = βd + γe. Moreover, we have β ∈ γ⊥ and hom(β, γ) = 0
or β ∈⊥ γ and hom(γ, β) = 0 and (d, e) is a root of K(ext(β, γ)) or
K(ext(γ, β)).

(3) There exist two imaginary Schur roots γ and δ such that γ + δ = α.
Moreover, we have δ ∈ γ⊥ and hom(δ, γ) = 0.

This Proposition gives us a recipe how to decompose Schur roots in order to
construct an indecomposable tree module of such a root. In the first two cases we
may restrict to one of the two possible cases.
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In the first case let Xβ and Xγ be the corresponding indecomposable represen-
tations. Since they are exceptional, by [7] it follows that Xβ and Xγ are tree
modules. Since we also have Ext(Xβ , Xγ) = 0, see [9], it follows that the subcat-
egory consisting of middle terms of sequences of the form

0→ Xd
γ → Xα → Xe

β → 0

is equivalent to the category Re,d(K(ext(β, γ)). Thus by applying Theorem 2 we
get that there exists an indecomposable tree module of dimension α.
In the second case by applying Ringel’s reflection functor, see [6], we obtain the
following diagram

0 0

0 //
⊕n−k

i=1 S

OO

⊕n−k
i=1 S

OO

// 0

0 // X //

OO

XS

OO

//
⊕n

i=1 S

OO

// 0

0 // X // Y S

OO

//
⊕k

i=1 S

OO

// 0

0

OO

0

OO

0

OO

Now, since XS is indecomposable, one checks that Y S is indecomposable as well.
In the last case, we first construct indecomposable tree modules of dimension γ and
δ. By [3] it follows that Hom(Xγ , Xδ) = 0. Thus the middle terms of non-splitting
exact sequences of the form

0→ Xδ → Xα → Xγ → 0

are indecomposable. Thus in summary we get the following result, see [12]:

Theorem 3. For every imaginary Schur root there exists an indecomposable tree
module.
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Generic free resolutions and root systems

Jerzy Weyman

Consider the complexes

F• : 0→ F3
d3→ F2

d2→ F1
d1→ F0

of the free modules over commutative rings R. We assume that di : Fi → Fi−1

has rank ri, and that

fi := rank Fi = ri + ri+1

with the convention r4 = 0, r0 ≥ 0. We fix the numbers fi, ri. We will say that a
resolution with these ranks has a format f = (f3, f2, f1, f0).

Definition 1. Let us fix the format f . A pair (Rgen,G•) is a generic resolution
of format f if
a) G• is acyclic,
b) For every pair (R,F•) with F• acyclic of type f , there exists a homomorphism
φ : Rgen → R such that F• = G• ⊗Rgen

R.

In [3] I constructed candidates for the generic rings of types (f3, f2, f1, f0). The
construction of the ring Rgen depended on certain Lie algebra.

Definition 2. The algebra L(p,E, F ) is a graded Lie algebra, with

L(p,E, F ) = ⊕i>0Li,

where
a) L1 = Cr−1 ⊗

∧p
Cp+q,

b) L(p,E, F ) is a factor of a universal Lie algebra generated by L1 by the quadratic
relations ensuring that

L2 =

2∧
Cr−1 ⊗Ker(S2(

p∧
Cp+q)→ S2pC

p+q)⊕

⊕S2C
r−1 ⊗Ker(

2∧
(

p∧
Cp+q)→ S2p−1,12C

p+q).
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This means L(p,E, F ) is the universal Lie algebra generated by L1 with the qua-

dratic relations exhibiting L2 as a factor of
∧2

(L1).

The higher components Lm can be defined as cokernels of the graded compo-
nents of the Koszul complex

(

3∧
L)m → (

2∧
L)m → Lm → 0.

Let F• be the an acyclic complex of length three over a ring R. Let L :=
L(r1 + 1, F3, F1) be the corresponding defect algebra. Finally, let

0→
0∧
K →

1∧
K →

2∧
K →

3∧
K

be the beginning of the Koszul complex on I(d3), the ideal of maximal minors of
d3. Thus K :=

∧r3 F ∗
3 ⊗

∧r3 F2.
In [3] I proved that for the acyclic complex F• there exists a sequence of structure

maps pi : L
∗
i →

∧1
K satisfying the following commutative diagram

0 →
∧0
K →

∧1
K →

∧2
K →

∧3
K

↑ pm+1 ↑ q2,m+1 ↑ q3,m+1

0 → L∗
m+1 → (

∧2
L)∗m+1 → (

∧3
L)∗m+1

where q2,m+1 =
∑

(pi ∧ pj), q3,m+1 =
∑

(pi ∧ pj ∧ pk). Here the map p1 is related
to the second structure theorem of Buchsbaum-Eisenbud [1], and p2 was defined
in [3] for the first time.

One constructs the ring Rn by adding (generically) the coefficients of the struc-
ture maps p1, . . . , pn, dividing by the relations satisfied by their realizations for
acyclic complexes. Finally we define Rgen := limn7→∞Rn. The Lie algebra L acts
on Rgen.

In [3] I defined some complexes of free U(L)-modules

K ′
2 ⊕K

′′
2 → K1 → K0 → 0

where each term cosists of a single irreducible representation of the group GLodd
tensored with U(L). I showed that if these complexes are acyclic at the middle
term, then Rgen is indeed a generic ring.

Associate to the triple (r1, r2, r3) a triple (p, q, r) = (r1 + 1, r2 − 1, r3 + 1). We
associate to (p, q, r) the graph Tp,q,r.

xp−1 − xp−2 . . . x1 − u − y1 . . . yq−2 − yq−1

|
z1
|
. . .
zr−2

|
zr−1
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We denote g(Tp,q,r) the Kac-Moody Lie algebra associated to the graph Tp,q,r.
By

g(Tp,q,r) = ⊕i∈Zgi

we denote the grading on g(Tp,q,r) associated to the simple root α corresponding
to the node z1. More precisely, gi is span of weight spaces of roots β in which α
appears with coefficient 1.

Proposition 1. The defect Lie algebra L(r1, F3, F1) is isomorphic to the positive
part ⊕i>0gi of g(Tp.q.r).

This identification allows also to identify the complexes K∗(α, β, s).

Proposition 2. The complexes K∗(α, β, s) are (the graded duals) of the parts of
the parabolic BGG resolutions ( [2]) associated with the parabolic subalgebra ⊕i≥0gi
of g(T,q,r), and are therefore acyclic at the middle term.

The preceeding discussion proves.

Theorem 1. For every format f there exists a generic pair (Rgen,Fgen). The

generic ring Rgen carries a multiplicity free action of g(Tp,q,r)×SL(F2)×GL(F0),
where f3 = r − 1, f2 = q + r, f1 = p + q, r1 = p − 1. The generic ring Rgen is
Noetherian if and only if Tp,q,r is a Dynkin graph.
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Stable categories of preprojective algebras and cluster categories

Osamu Iyama

Let K be an algebraically closed field. For an integer n, we say that a Hom-
finite K-linear triangulated category T is n-Calabi-Yau (n-CY ) if there exists a
functorial isomorphism HomT (X,Y ) ≃ DHomT (Y,X [n]) for any X,Y ∈ T , where
D = HomK(−,K) is the K-dual. There are many important triangulated cate-
gories in representation theory, in particular cluster categories played an important
role in categorification of cluster algebras.

1. Background (I) For an acyclic quiver Q, we denote by KQ the path algebra
and by Π = Π(KQ) the preprojective algebra of Q. The following dichotomies of
representation theory of KQ and structure theory of Π are well known.

Q KQ Π

Dynkin representation finite finite dimensional selfinjective
non-Dynkin representation infinite infinite dimensional
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The stable category modΠ is 2-CY for Dynkin case, and the bounded derived
category Db(Π) of finite dimensional Π-modules is 2-CY for non-Dynkin case.

(II) Let Q be an extended Dynkin quiver with the extending vertex e. Then
R := eΠe is a Kleinian singularity, and in particular the stable category CM(R)
of maximal Cohen-Macaulay R-modules is 1-CY [19].

Recently higher analogue of preprojective algebras are introduced in represen-
tation theory [10, 11, 13] and non-commutative algebraic geometry [15, 16]:

Definition 1 Let n be a positive integer and Λ be a finite dimensional K-algebra
with gl.dimΛ ≤ n. The (n+ 1)-preprojective algebra of Λ is defined as the tensor
algebra of the Λ-bimodule ExtnΛ(DΛ,Λ):

Π = Πn+1(Λ) := TΛExt
n
Λ(DΛ,Λ).

For the case n = 1, this is a well-known description of preprojective algebras.
For the case n = 2, this gives a description of cluster tilted algebras [3].

We will generalize CY properties in (I) and (II) above to higher cases.

The above stable categories have realizations as cluster categories defined as
follows: Let n be a positive integer and Λ be a finite dimensional K-algebra with
gl.dimΛ ≤ n. Let Db(Λ) be the bounded derived category of finite dimensional Λ-
modules, ν be the Nakayama functor ofDb(Λ) and νn := ν◦[−n]. The triangulated
hull Cn(Λ) of the orbit category Db(Λ)/νn is called the n-cluster category [1, 4,
5, 12, 18]. If Cn(Λ) is Hom-finite, then it is n-CY. Notice that Πn+1(Λ) is the
endomorphism algebra EndCn(Λ)(Λ) of Λ in Cn(Λ).

We have the equivalences between stable categories and cluster categories:

Theorem 2 (a) [1] For a Dynkin quiver Q, we have a triangle equivalence
modΠ(KQ) ≃ C2(Γ) for the stable Auslander algebra Γ of KQ.

(b) [17] In (II) above, we have an equivalence CM(R) ≃ C1(KQ
′), where Q′ is

the Dynkin quiver obtained by removing e from Q.

We will generalize these equivalences to higher cases.

2. Our results Throughout let n be a positive integer and Λ be a finite di-
mensional K-algebra with gl.dimΛ ≤ n. In general, the homological behaviour of
Πn+1(Λ) is not as nice as the case n = 1. So we have to restrict to the following.

Definition 3 [8] We say that Λ is n-representation controlled if Hℓ(νin(Λ)) = 0
for any i ∈ Z and ℓ ∈ Z− nZ.

We have the following dichotomy of n-representation controlled algebras, where
M ∈ modΛ is n-cluster tilting if addM coincides with the following subcategories:
• {X ∈ modΛ | ExtiΛ(M,X) = 0 for any 0 < i < n}.
• {X ∈ modΛ | ExtiΛ(X,M) = 0 for any 0 < i < n}.

Proposition 4 (Dichotomy) Λ is n-representation controlled if and only if pre-
cisely one of the following conditions holds.

(a) Λ has an n-cluster tilting module M . (n-representation finite [6, 9, 10])
(b) ν−in (Λ) ∈ modΛ for any i ≥ 0. (n-representation infinite [8])
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For the case (a), the basic part ofM is unique. We call EndΛ(M) and EndΛ(M)
the n-Auslander algebra and the stable n-Auslander algebra of Λ respectively.

Example 5 (a) It is clear from definition that the path algebra of an acyclic
quiver is always 1-representation controlled. Moreover it is easy to check that
1-representation (in)finiteness coincides with representation (in)finiteness.

(b) [6] The tensor product KQ1⊗K · · ·⊗KKQn for non-Dynkin quivers Qi is n-
representation infinite. The tensor productKQ1⊗K · · ·⊗KKQn for Dynkin quivers
Qi is n-representation finite if each Qi is stable under the canonical involution of
the underlying graph and the Coxeter numbers of all Qi’s are equal.

Notice that n-representation infinite algebras are studied in non-commutative
algebraic geometry [15, 16] under the name ‘n-Fano algebra’.

2.1. Finite case We have the results for n-representation finite algebras:

Theorem 6 [11] Let Λ be an n-representation finite algebra and Π = Πn+1(Λ).
(a) Π is a finite dimensional selfinjective algebra and modΠ is (n+ 1)-CY.
(b) We have a triangle equivalence modΠ ≃ Cn+1(Γ) for the stable n-Auslander

algebra Γ of Λ (e.g. Theorem 2 (a)).

Example 7 [9–11] Let n = 2 and Λ be an Auslander algebra of the path algebra of
type A3. Then Λ is 2-representation finite and Π = Π3(Λ) is the Jacobian algebra
of the quiver below with potential

∑
xyz − zyx. The 2-Auslander algebra Γ and

the stable 2-Auslander algebra Γ are the following:
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There is a general structure theorem of 2-representation finite algebras in terms
of ‘selfinjective quivers with potential’ and their ‘cuts’ [7].

2.2. Infinite case We have the results for n-representation infinite algebras:

Theorem 8 Let Λ be an n-representation infinite algebra and Π = Πn+1(Λ).
(a) [13] Db(Π) is (n+ 1)-CY.
(b) [2] Let e ∈ Λ be an idempotent. Assume dimK(Π/(e)) <∞, eΛ(1− e) = 0

and that Π is noetherian. Then CM(Π) is n-CY and we have a triangle equivalence
CM(eΠe) ≃ Cn(Λ/(e)) (e.g. Theorem 2 (b)).

Example 9 [2, 8] Let n = 2 and Λ be a Beilinson algebra of dimension 2. Then
Λ is 2-representation infinite and Π = Π3(Λ) is the Jacobian algebra of the quiver
below with potential

∑
xyz − zyx.
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Moreover R = eΠe is the subring of K[x, y, z] generated by all monomials whose
degrees are multiples of 3. In particular we recover the equivalence CM(R) ≃

C2(KQ) for Q •
//
//
// • given in [14]. See [2] for more examples.

There is a general structure theorem of 2-representation infinite algebras in
terms of ‘good quivers with potential’ and their ‘cuts’ [8].

References

[1] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential,
Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, pp 2525–2590.

[2] C. Amiot, O. Iyama, I. Reiten, Stable categories of Cohen-Macaulay modules and cluster
categories, arXiv:1104.3658.
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Prof. Dr. Apostolos Beligiannis

Department of Mathematics
University of Ioannina
45110 Ioannina
GREECE

Prof. Dr. Petter A. Bergh

Department of Mathematical Sciences
NTNU
7491 Trondheim
NORWAY

Prof. Dr. Michel van den Bergh

Department of Mathematics
Limburgs Universitair Centrum
Universitaire Campus
B-3590 Diepenbeek

Dr. Grzegorz Bobinski

Faculty of Mathematics and Computer
Sc.
Nicolaus Copernicus University
ul. Chopina 12/18
87 100 Torun
POLAND

Prof. Dr. Michel Brion

Laboratoire de Mathematiques
Universite de Grenoble I
Institut Fourier
B.P. 74
F-38402 Saint-Martin-d’Heres Cedex

Dr. Aslak Bakke Buan

Department of Mathematical Sciences
NTNU
7491 Trondheim
NORWAY

Prof. Dr. Anders S. Buch

Department of Mathematics
Rutgers University
Hill Center, Busch Campus
110 Frelinghuysen Road
Piscataway , NJ 08854-8019
USA

Prof. Dr. Ragnar-Olaf Buchweitz

Dept. of Computer & Mathematical Sci-
ence
University of Toronto Scarborough
1265 Military Trail
Toronto Ont. M1C 1A4
CANADA



Representation Theory of Quivers and Finite Dimensional Algebras 605

Dr. Igor Burban

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn

Prof. Dr. William Crawley-Boevey

Department of Pure Mathematics
University of Leeds
GB-Leeds LS2 9JT

Dr. Karin Erdmann

Mathematical Institute
Oxford University
24-29 St. Giles
GB-Oxford OX1 3LB

Prof. Dr. Christof Geiss

Instituto de Matematicas
U.N.A.M.
Circuito Exterior
Ciudad Universitaria
04510 Mexico , D.F.
MEXICO

Prof. Dr. Dieter Happel

Fakultät für Mathematik
TU Chemnitz
Reichenhainer Str. 41
09126 Chemnitz

Prof. Dr. Tamas Hausel

Centre for Mathematical Biology
Oxford University
24 - 29, St. Giles
GB-Oxford OX1 3LB

Reiner Hermann

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld

Dr. Estanislao Herscovich

Fakultät für Mathematik
Universität Bielefeld
Universitätsstr. 25
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Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn

Prof. Dr. Dmitri A. Shmelkin

Independent University of Moscow
Bolshoi Vlasjevskii Pereulok 11
Moscow 119002
RUSSIA

Prof. Dr. Andrzej Skowronski

Faculty of Mathematics and Computer
Sc.
Nicolaus Copernicus University
ul. Chopina 12/18
87 100 Torun
POLAND

Prof. Dr. Oyvind Solberg

Department of Mathematical Sciences
NTNU
7491 Trondheim
NORWAY

Dr. Jan Stovicek

Faculty of Mathematics and Physics
Charles University
Sokolovska 83
186 75 Praha 8
CZECH REPUBLIC

Prof. Dr. Catharina Stroppel

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn

Thorsten Weist

Fachbereich Mathematik
Bergische Universität Wuppertal
Gaußstr. 20
42097 Wuppertal

Prof. Dr. Michael Wemyss

School of Mathematics
University of Edinburgh
King’s Buildings
Mayfield Road
GB-Edinburgh EH9 3JZ



608 Oberwolfach Report 10/2011

Prof. Dr. Jerzy Weyman

Department of Mathematics
Northeastern University
567 Lake Hall
Boston MA 02115-5000
USA

Kota Yamaura

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Furo-cho
Nagoya 464-8602
JAPAN


