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1. Introduction

Auslander and Reiten introduced in the early seventies almost split
sequences, now called Auslander–Reiten sequences, in the representation
theory of Artin algebras [5]. Since then Auslander–Reiten theory together
with its companion theory of purity of modules became an indispensable tool
for the structural analysis of a module category. On the other hand there is a
close relationship between purity and model theory of modules culminating
in the study of pure-injectivity in connection with the Ziegler spectrum of a
module category introduced by Ziegler [80] in model theoretic terms. This
fruitful relationship and interplay produced many important results in both
directions as documented in the book of Prest [68]. In this connection Prest in
the mid-eighties was the first who indicated a close relationship between
Auslander–Reiten theory and the structure of the Ziegler spectrum of a
module category, see [68]. Notice that Auslander–Reiten theory mainly
concerns the behavior of finitely generated modules whereas the Ziegler
spectrum controls the complexity of the whole module category. We refer to
the work of Prest [68], Herzog [41] and Krause [53] for comprehensive
treatments of the subject.
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Generalizing part of these developments Happel in the mid-eighties [36]
introduced triangulated categories in representation theory offering in this
way new invariants and classification limits in the study of representations.
One of the most successful developments in this setting is Happel’s extension
of Auslander–Reiten theory in the bounded derived category of an Artin
algebra. Since triangulated categories provide the natural setting for the
investigation of several homological or representation theoretic problems in
representation theory, algebraic geometry and algebraic topology (see for
instance Serre and Poincaré duality [23,44,75]), the above developments
provide strong motivation for the investigation of Auslander–Reiten theory
in more general triangulated categories, for instance those which may be of
interest in non-commutative geometry, in connection with suitably defined
notions of purity and the Ziegler spectrum.

On the other hand most of the triangulated categories which occur in
practice are compactly generated in the sense of Neeman [64], for instance the
stable homotopy category of spectra, the derived category of quasi-coherent
sheaves over a quasi-compact separated scheme, the derived category of
modules over a ring, and the stable module category of a modular group
algebra or more generally a quasi-Frobenius ring. In this framework a
concept of purity has been introduced by Krause [51] and the author [18], and
the first direct connections between purity, the Ziegler spectrum and Aus-
lander–Reiten theory were developed in [19,52].

Our main aim in this paper is to make a detailed systematic investigation
of Auslander–Reiten theory in, mainly compactly generated, triangulated
categories and to study the interplay and the connections with the theory of
purity and the Ziegler spectrum in the triangulated level. In analogy with
Auslander–Reiten theory in module categories, we study the connections
with Grothendieck groups, torsion pairs, representation embeddings, and
pure-semisimplicity or the finite type property. Since Auslander–Reiten
theory imposes several finiteness conditions, in the working setting of a
compactly generated triangulated category C, it behaves better when we
restrict our attention to suitable ‘‘finite’’ objects. Therefore we are mainly
interested in constructing a satisfactory Auslander–Reiten theory in the full
subcategory of compact objects. In turn this theory gives valuable infor-
mation for the Ziegler spectrum which controls the behavior of C in a
certain sense.

Existence of Auslander–Reiten sequences or triangles is, of course, of
central importance in both the abelian and triangulated setting and is related
to the question of representability of functors and/or realizability of injective
modules, so it is crucial to have representability theorems, like Brown’s
representability, at our disposal. Working in suitable categories of finite
objects, global existence of Auslander–Reiten triangles gives a pleasant
behavior to the category and is related to existence of Serre functors and a
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certain non-singularity or Gorensteinness property expressed by some form
of duality.

The paper is divided roughly in three parts. We devote the first
part, consisting of Sections 2–5, to the study of global existence of
Auslander–Reiten triangles in various settings and we give the connections
with Serre functors, dualizing categories and torsion pairs. In the second
part, consisting of Sections 6–9, we concentrate on Auslander–Reiten theory
in a compactly generated category, we give the connections with purity, the
Ziegler spectrum and derived categories and we present methods for con-
structing categories with Auslander–Reiten triangles. The last part, consist-
ing of Sections 10–12, is devoted to the study of Auslander–Reiten theory in
connection with pure-semisimplicity and the finite type property, endofi-
niteness and Grothendieck groups. We refer to the text for the precise
statements of our results, noting that many of them are triangulated ana-
logues and extensions of well-known ring and module theoretic results
proved by different methods, so in this way the range of their applications is
widened.

CONVENTION. The composition of morphisms in a given category is
meant in the diagrammatic order: the composition of f : A! B with
g : B! C is denoted by f � g : A! C. Our additive categories admit finite
direct sums.

2. Realizability of Injectives and Construction of Morphisms

In this section we present a method for constructing morphisms with pre-
scribed properties in an additive category. The method, which will be
important later in connection with existence of Auslander–Reiten triangles, is
based on representability of injective envelopes of simple functors and real-
izability of injective modules.

Throughout we fix an additive category C with split idempotents. If K is a
ring then we denote by Mod-K the category of right K-modules. Left
K-modules are treated as right Kop-modules, where Kop is the opposite ring of
K.

2.1. INJECTIVE ENVELOPES OF SIMPLE MODULES AND FUNCTORS

We fix an object T in C and we denote by KT :¼ EndCðTÞ the endomorphism
ring of T. Then for any additive functor F : Cop ! Ab, the abelian group
FðTÞ carries a natural left KT-module structure as follows: 8q 2 KT and
8x 2 FðTÞ, q ? x :¼ FðqÞðxÞ. In particular for any object C in C; CðT;CÞ is a
left KT-module with left KT-action: q ? a :¼ q � a, 8q 2 KT and 8a 2 CðT;CÞ.
Then we have an additive functor
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HT : C �!Mod-Kop
T ; HTðCÞ ¼ CðT;CÞ:

Letm be a maximal left ideal ofKT, let Sm be the simpleKT-moduleKT=m and
let l : Sm,!Im be the injective envelope of Sm in Mod-Kop

T . Also let X be a full
additive subcategory of C which is closed under direct summands and contains
T. It is easy to see that Xð�;TÞm is a maximal subfunctor of Xð�;TÞ, where:

Xð�;TÞmðCÞ :¼ fa 2 XðC;TÞ j 8b 2 XðT;CÞ : b � a 2 mg:

Hence the quotient ST;m :¼ Xð�;TÞ=Xð�;TÞm : Xop ! Ab is a simple functor
with the property that ST;mðTÞ ¼ Sm. For convenience from now on we set:

H_T;m :¼ HomKT
½HTð�Þ; Im� : Cop �! Ab:

In the sequel we denote by MaxlðKÞ, resp. MaxrðKÞ, the set of maximal left,
resp. right, ideals of a ring K, and by IsoðXÞ the isoclass of objects of a
category X . An additive functor F : Xop ! Ab is called finitely presented if
there exists an exact sequence Xð�;X1Þ ! Xð�;X0Þ ! F! 0 where the Xi

are in X . If X is skeletally small. i.e. IsoðXÞ is a set, then we denote by Mod-
X , resp. mod-X , the category of contravariant additive, resp. finitely pre-
sented, functors Xop ! Ab.

PROPOSITION 2.1. Let X be a skeletally small full subcategory of C con-
taining T.

(i) For any functor F 2Mod-X , there exists an isomorphism:

w : HomKT
FðTÞ; Imð Þ �!ffi ½F;H_T;m�:

In particular we have an isomorphism: ½H_T;m;H_T;m� �!
ffi

EndKðImÞ and the
functor H_T;m has local endomorphism ring.

(ii) The functor H_T;m is an injective object in Mod-X . Moreover the functorQ
T2IsoðXÞ

Q
m2MaxlðKTÞH

_
T;m is an injective cogenerator in Mod-X .

(iii) There exists an injective envelope in the abelian category Mod-X :
/ : ST;m �! H_T;m ¼ HomKT

½HTð�Þ; Im�:

Proof. (i) Assume first that F is finitely presented and let
Xð�;X1Þ ! Xð�;X0Þ ! F! 0 be a finite presentation of F. By Yoneda’s
Lemma we have an exact sequence 0! ½F;H_T;m� ! H_T;mðX0Þ ! H_T;mðX1Þ.
On the other hand the exact sequence XðT;X1Þ ! XðT;X0Þ ! FðTÞ ! 0 of
left KT-modules, induces an exact sequence 0! HomKT

ðFðTÞ; Im� !
H_T;mðX0Þ ! H_T;mðX1Þ. Hence ½F;H_T;m� ffi HomKT

ðFðTÞ; Im�. If F is an arbi-
trary additive functor, we write F as a filtered colimit of finitely presented
functors: F ¼ lim�!Fi. Then we have isomorphisms:

½F;H_T;m� ¼ ½ lim�!Fi;H
_
T;m�!

ffi
lim �½Fi;H

_
T;m�!

ffi
lim �HomKT

ðFiðTÞ; ImÞ!
ffi

APOSTOLOS BELIGIANNIS4



HomKT
ðlim�!FiðTÞ; ImÞ ¼ HomKT

ðFðTÞ; ImÞ:

Setting F ¼ H_T;m and using that HTðTÞ ¼ KT, we obtain isomorphisms:

½H_T;m;H_T;m�!
ffi
HomKT

ðHomKT
ðHTðTÞ; ImÞ; ImÞ!

ffi
EndKT

ðImÞ:
Finally EndKT

ðImÞ is local since Im is the injective envelope of a simple KT-
module.

(ii) Let 0! F1 ! F2 ! F3 ! 0 be a short exact sequence in Mod-X . Then
we have a short exact sequence 0! F1ðTÞ ! F2ðTÞ ! F3ðTÞ ! 0 in Mod-
Kop

T . Since Im is injective, we have a short exact sequence
0! HomKT

ðF3ðTÞ; ImÞ ! HomKT
ðF2ðTÞ; ImÞ ! HomKT

ðF1ðTÞ; ImÞ ! 0 in
Ab. But by (i) the last sequence is isomorphic to
0! ½F3;H

_
T;m� ! ½F2;H

_
T;m� ! ½F1;H

_
T;m� ! 0. Hence H_T;m is an injective

functor. Now if ½F;H_T;m� ¼ 0 for any object T in X and any maximal left ideal
m of KT, we have by (i) that FðTÞ ¼ 0 for any T 2 X . Hence F ¼ 0.

(iii) Choosing F ¼ ST;m in part (i), we have isomorphisms:

½ST;m;H
_
T;m�!HomKT

ðST;mðTÞ; ImÞ!HomKT
ðSm; ImÞ:

Since HomKT
ðSm; ImÞ 6¼ 0, there exists a non-zero morphism / : ST;m!H_T;m

which is an injective envelope since H_T;m is injective with local endomorphism
ring. h

For later reference we describe explicitly the injective envelope
/ : ST;m � H_T;m. Let l : Sm,!Im be the injective envelope of Sm in Mod-Kop

T .
Then for any object X 2 X , any element x 2 ST;mðXÞ and any morphism
y : T! X, the morphism /X : ST;mðXÞ�H_T;mðXÞ acts as follows:
/XðxÞðyÞ ¼ lðexTðyÞÞ, where ex : Xð�;XÞ ! ST;m is the unique morphism such
that exXð1XÞ ¼ x.

2.2. REPRESENTABILITY OF FUNCTORS AND CONSTRUCTION OF MORPHISMS

It will be crucial in the sequel to have conditions ensuring that the functor
H_T;m is representable in C. In this subsection we discuss briefly some conse-
quences of this fact which allow us to construct morphisms in C.

Let I be a left KT-module and consider the functor:

IH
_
T :¼ HomKT

½HTð�Þ; I� : Cop �! Ab:
From now on we assume that IH

_
T is representable with representing object

DIðTÞ which we call the I-dual object of T. Hence we have a natural iso-
morphism:

x : Cð�;DIðTÞÞ!ffi IH
_
T ¼ HomKT

½HTð�Þ; I�:
For any morphism a : A! DIðTÞ in C we have the following commutative
diagram:
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CðDIðTÞ;DIðTÞÞ ���!x
DIðTÞ

HomKT
½HTðDIðTÞÞ; I�

a�

??y HTðaÞ�

??y
CðA;DIðTÞÞ ���!xA

HomKT
½HTðAÞ; I�

ð1Þ

where a� ¼ Cða;DIðTÞÞ and HTðaÞ� ¼ HomKT
½HTðaÞ; I�. It follows from (1)

that HTðaÞ � xDIðTÞð1DIðTÞÞ ¼ xAðaÞ. In the following we collect some prop-
erties of the map xDIðTÞð1DIðTÞÞ : HTðDIðTÞÞ ! I which will be useful later.

LEMMA 2.2.

(1) The map xDIðTÞð1DIðTÞÞ : HTðDIðTÞÞ ! I is invertible.
(2) The canonical map Cð�;DIðTÞÞ ! HomKT

½HTð�Þ;HTðDIðTÞÞ� is invert-
ible.

(3) There exists an isomorphism of rings: EndCðDIðTÞÞ ffi EndKT
ðIÞ.

Proof. Using the commutativity of diagram (1), an easy calculation shows
that: xTðaÞð1TÞ ¼ xDIðTÞð1DIðTÞÞðaÞ, for any map a : T! DIðTÞ in C.
This implies that xDIðTÞð1DIðTÞÞ ¼ xT � w, where w is the canonical isomor-

phism HomKT
½HTðTÞ; I�!

ffi
I, w : q 7! qð1TÞ. In particular xDIðTÞð1DIðTÞÞ is

invertible. Then for any map a : A! DIðTÞ in C, we have
HTðaÞ ¼ xDIðTÞð1DIðTÞÞ

�1ðxAðaÞÞ. Therefore the canonical map a 7!HTðaÞ is
equal to the composition xA � x�1DIðTÞð1DIðTÞÞ and consequently it is invertible.

The last assertion follows from the isomorphisms: EndCðDIðTÞÞ!ffi

HomKT
½HTðDIðTÞÞ; I� !ffi HomKT

ðI; IÞ ¼ EndKT
ðIÞ. (

Now let I ¼ Im be the injective envelope of the simple left KT-module
Sm :¼ KT=m, where m is a maximal left ideal of KT.

DEFINITION 2.3. If the functor

H_T;m ¼ HomKT
½HTð�Þ; Im� : Cop �! Ab

is representable, then the representing object of H_T;m is denoted by DmðTÞ, i.e.
DmðTÞ ¼ DImðTÞ, and, by abuse of language, is called the m-dual object of T
in C with respect to the maximal left ideal m. In this case we denote always by

x : Cð�;DmðTÞÞ!
ffi
H_T;m the associated natural isomorphism.

Remark 2.4. In the sequel when we consider the functor H_T;m we implic-
itly assume without further mentioning that an object T is given in C with
endomorphism ring KT, m is a maximal ideal of KT and Im is the injective
envelope of the simple left KT-module Sm :¼ ST;mðTÞ, where ST;m is the
simple functor Cð�;TÞ=Cð�;TÞm.
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Assume now that the m-dual object DmðTÞ of T exists. Consider the com-
position e � l : KT ¼ HTðTÞ� Sm� Im, where e : KT � Sm is the canonical
projection and l : Sm� Im is the injective envelope of Sm, and we set

h :¼ x�1T ðe � lÞ : T �! DmðTÞ:
We now summarize some basic properties of h which will be useful later.

LEMMA 2.5.

(1) The morphism h is non-zero and for any morphism a : DmðTÞ ! C in C
which is not a split monomorphism; it holds: h � a ¼ 0.

(2) The map HTðhÞ : HTðTÞ ! HTðDmðTÞÞ has image ImHTðhÞ ¼ Sm and the
inclusion ImHTðhÞ ,!HTðDmðTÞÞ is an injective envelope of Sm.

(3) The map xDmðTÞð1DmðTÞÞ : HTðDmðTÞÞ ! Im is invertible and induces a ring

isomorphism EndCðDmðTÞÞ!
ffi
EndKT

ðImÞ: In particular EndCðDmðTÞÞ is
local.

(4) The pairing CðT;AÞ � CðA;DmðTÞÞ ! Im; ðf; gÞ 7! x�1ðf � gÞð1TÞ is non-
degenerate.

Proof. (1) By construction h 6¼ 0. Let a : DmðTÞ ! C be a morphism in C
which is not a split monomorphism. If HTðaÞ : HTðDmðTÞÞ ! HTðCÞ is a

monomorphism, then HTðaÞ splits since HTðDmðTÞÞ!
ffi
Im is injective. Then by

using part (2) of Lemma 2.2 we see easily that a splits and this is not the case.
Since ImHTðhÞ ¼ Sm, this implies that HTðhÞ � HTðaÞ ¼ 0 and therefore
h � a ¼ 0. Parts (2), (3) and (4) follow directly from part (1) and Lemma
2.2. h

There is a useful connection between existence of m-dual objects and
existence of (co)generating sets. Recall that a set of objects X in C is a
generating, resp. cogenerating, set, in C, if CðT;CÞ ¼ 0, resp. CðC;TÞ ¼ 0,
8T 2 X , implies C ¼ 0.

COROLLARY 2.6. Assume that C contains a set of objects X with the
property that for any object T in X and any maximal left ideal m of KT, the
functor H_T;m : C ! Ab is representable. Then we have the following.

(i) The set fH_T;m j T 2 X ;m 2MaxlðKTÞg is a cogenerating set of indecom-
posable injectives in the module category Mod-X .

(ii) The set of objects X is a generating set in C if and only if the set of objects
{DmðTÞjT 2 X ;m 2MaxlðKTÞg is a cogenerating set in C.

2.3. REALIZABILITY OF INJECTIVES

Let as before T be an object in C. If I is an injective left KT-module,
then the above results suggest that there should be a connection between
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representability of the functor IH
_
T and realizability of the KT-module I in the

sense of the following definition.

DEFINITION 2.7. Let E be an object in C and I a left KT-module. We say
that I is T-realizable by E if the following conditions hold.

(i) There exists an isomorphism HTðEÞ ¼ CðT;EÞ ffi I.
(ii) The canonical map Cð�;EÞ ! HomKT

�
HTð�Þ;HTðEÞÞ is surjective.

(iii) The canonical map CðE;EÞ ! HomKT

�
HTðEÞ;HTðEÞÞ is injective.

In this case we say that the object E is a T-realization of I.

In the triangulated case we have the following connection between rep-
resentability of functors and realizability of injective modules.

PROPOSITION 2.8. Let C be a triangulated category and let T be an object
of C. If I is an injective left KT-module; then the following statements are
equivalent.

(i) The left KT-module I is T-realizable.
(ii) The functor IH

_
T :¼ HomKT

½HTð�Þ; I� : Cop ! Ab is representable.

Proof. Part (ii) ) (i) follows from Lemma 2.2. Assume that I is T-real-
izable and let E be a T-realization of I. If a : C! E is a morphism in C such
that HTðaÞ ¼ 0, then for any morphism q : T! C in C we have: q � a ¼ 0.
Let b : E! D be the cofiber of a. Since HTðaÞ ¼ 0, it follows that
HTðbÞ : HTðEÞ ! HTðDÞ is a monomorphism. Since the left KT-module
HTðEÞ ffi I is injective, there exists a map ed : HTðDÞ ! HTðEÞ such that
HTðbÞ � ed ¼ 1HTðEÞ. By condition (ii) of Definition 2.7, we have ed ¼ HTðdÞ for
some morphism d : D! E, and then by condition (iii) we have b � d ¼ 1E.
Hence b is split monic and therefore a ¼ 0. We infer that the canonical map
Cð�;EÞ ! HomKT

ðHTð�Þ;HTðEÞ
�
is invertible. Composing this natural iso-

morphism with the natural isomorphism induced by the isomorphism

HTðEÞ!
ffi
I, we get an isomorphism Cð�;EÞ!ffi HomKT

ðHTð�Þ; IÞ. h

COROLLARY 2.9. Let C be a triangulated category. Let T be an object in C
with endomorphism ring KT and let m be a maximal left ideal of KT. Then the
functor H_T;m ¼ HomKT

½HTð�Þ; Im� is representable; that is the m-dual object
DmðTÞ exists; if and only if the injective envelope Im of the simple module KT=m
is T-realizable.

3. Representability of Functors and Auslander–Reiten Triangles

Our aim in this section is to prove some general existence results
for Auslander–Reiten triangles in a sufficiently general triangulated cate-
gory. The basic tool is the construction of morphisms arising from the
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representability of the injective envelopes of the simple contravariant
functors.

Let C be an additive category. We recall from [2] that a morphism
f : B! C is called right almost split in C if f is not a split epimorphism and
any morphism a : E! C which is not a split epimorphism factors through f.
It is easy to see that the target of a right almost split morphism has local
endomorphism ring, see [7]. A morphism f : B! C in C is called right min-
imal [10] if any endomorphism a : B! B such that a � f ¼ f, is an auto-
morphism. A minimal right almost split morphism is a right minimal right
almost split morphism. The notions of left almost split, left minimal and
minimal left almost splitmorphisms are defined dually. Recall from [7] that an

exact sequence ðEÞ : 0! E!g A!f T! 0 in an abelian category, or more
generally in an exact category in the sense of Quillen [73], is called an
Auslander–Reiten sequence, or AR-sequence for short, or almost split
sequence, if f is right almost split and g is left almost split. We refer to [4,7]
and the more accessible [13] for basic information on Auslander–Reiten
sequences and the decisive role they play in representation theory.

From now on we assume that C is a triangulated category with suspen-
sion functor R. The following important concept was introduced by Happel
[35] in order to develop Auslander–Reiten theory in triangulated categories.

DEFINITION 3.1. A triangle ðTÞ : A!g B!f C!h RA in C is called an Aus-
lander–Reiten triangle, AR-triangle for short, if g is left almost split and f is
right almost split. In this case we use the following notations: sþðCÞ ¼ A and
s�ðAÞ ¼ C and we call sþ; s� the Auslander–Reiten operators.

In what follows we need the following useful characterizations of
AR-triangles.

LEMMA 3.2. [1, Theorem 2.4], [35, Section 3] For a triangle ðTÞ as above,
the following statements are equivalent.

(i) ðTÞ is an AR-triangle.
(ii) g is minimal left almost split.
(iii) f is minimal right almost split.
(iv) g is left almost split and EndðCÞ is local.
(v) f is left almost split and EndðAÞ is local.
It is easy to see that an AR-triangle is uniquely determined up to

isomorphism by its end terms, in the following sense. If
ðTiÞ : Ai ! Bi ! Ci ! RðAiÞ are AR-triangles, i ¼ 1; 2, then A1 ffi A2 iff
C1 ffi C2 iff the triangles ðTiÞ are isomorphic.

DEFINITION 3.3. [36]. C has right, resp. left, AR-triangles, if for any object
C, resp. A, with local endomorphism ring, there exists an AR-triangle
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A!g B!f C!h RðAÞ in C. And C has AR-triangles, if C has left and right
AR-triangles.

Let T be an object in C with endomorphism ring KT ¼ EndCðTÞ. As in
section 2 we have the functors HT : C !Mod-Kop

T , HTðCÞ ¼ CðT;CÞ, and
H_T;m :¼ HomKT

½HTð�Þ; Im� : Cop ! Ab, where m is a maximal left ideal of KT

and Im is the injective envelope of the simple left KT-module Sm :¼ KT=m.
The following basic result shows that existence of AR-triangles in C is

related to representability of the indecomposable injective functors H_T;m.
Note that representability of H_T;m is equivalent to the existence of the m-dual
object DmðTÞ of T. First recall that an additive category is called a Krull-
Schmidt category if any of its objects is a finite coproduct of objects with local
endomorphism ring.

THEOREM 3.4. If the functor H_T;m is representable; then we have the fol-
lowing.

(i) DmðTÞ is the source of a left almost split morphism in C.
(ii) The m-dual object DmðTÞ of T is the source of an AR-triangle in C provided

that one of the following conditions hold:
(a) C is a Krull-Schmidt category.
(b) T has local endomorphism ring.

Proof. (i) Let h : T! DmðTÞ be the morphism constructed in Section 2

and let T!h DmðTÞ!
g
A! RðTÞ be a triangle in C. By Lemma 2.5, g is not

a split monomorphism and any morphism a : DmðTÞ ! B which is not a
split monomorphism factors through g. This shows that g is left almost
split.

(ii) If KT is local, then the assertion follows from part (i) and Lemma 3.2.
If C is Krull–Schmidt, then it is well-known that there exists a decomposition
A ¼ A1 � A2 such that g ¼ ðg1; 0Þ : DmðTÞ ! A1 � A2 and g1 : DmðTÞ ! A1

is left minimal, see [60, Proposition 1.2]. Clearly g1 is minimal left almost

split, so any triangle DmðTÞ!
g1
A1 ! T1 ! RDmðTÞ is an AR-triangle in C, by

Lemma 3.2. h

COROLLARY 3.5. Let C be a triangulated category and let T be an object in
C with local endomorphism ring KT. If the functor

H_T;m :¼ HomKT
½HTð�Þ; Im� : Cop ! Ab

is representable; then there exists an AR-triangle R�1DmðTÞ ! A! T! E in
C, where DmðTÞ is the representing object of the functor H_T;m.

The above result raises the question if, conversely, the existence of an
AR-triangle R�1E! A! T! E in C implies the representability of the
functor H_T;m. We devote the rest of this section to an analysis of this ques-
tion. We begin with the following preliminary result which shows that
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the morphism T! E above satisfies some special properties which will be
needed later.

LEMMA 3.6. Let R�1E!g A!f T!h E be an AR-triangle in C.
(i)The canonical map Cð�;EÞ ! HomKT

ðHTð�Þ;HTðEÞÞ is injective.
(ii)Sm ¼ KT � h ¼ ImHTðhÞ ¼ SocHTðEÞ.
(iii) There are essential inclusions Sm ,!HTðEÞ ,! Im.
(iv) The module HTðEÞ is injective if and only if HTðEÞ ¼ Im.

Proof. We prove only part (i) leaving the easy proof of the other parts
to the reader. Let a : C! E be a morphism in C such that HTðaÞ ¼ 0. Then
q � a ¼ 0 for any morphism q : T! C. If a 6¼ 0, then the cofiber b : E! D
of a is not a split monomorphism. Since RðgÞ is left almost split, b factors
through RðgÞ. This implies that h � b ¼ 0. Hence there exists q : T! C
such that q � a ¼ h. Since q � a ¼ 0, it follows that h ¼ 0 and this is
impossible. Hence a ¼ 0 and the map CðC;EÞ ! HomKT

ðHTðCÞ;HTðEÞÞ is
injective. h

We are interested in finding sufficient conditions ensuring that the
canonical maps in Lemma 3.6 are invertible and also when the module
HTðEÞ is injective. First recall from [10] that a subcategory X of an
additive category C is called contravariantly finite if for any object C in C
there exists a morphism fC : XC ! C with XC in X such that any mor-
phism X! C with X in X factors through fC. In this case fC is called a
right X-approximation of C. The dual notions are covariantly finite and left
approximation, and X is called functorially finite if X is both contravari-
antly and covariantly finite. We denote by add(X ) the full subcategory of
C consisting of all direct summands of finite direct sums of objects from
X . An additive category C is R-linear over a commutative ring R, if
CðA;BÞ is an R-module, 8 A;B 2 C, and the composition of morphisms is
R-bilinear.

LEMMA 3.7. Let C be an R-linear category over a commutative ring R and let
T be an object in C. Then the following are equivalent:

(i) addðTÞ is contravariantly finite in C.
(ii) For any object C in C, the left KT-module CðT;CÞ is finitely generated.
(iii) For any C in C, the R-module CðT;CÞ is finitely generated.

If (i) holds, then the functor HT induces an equivalence between addðTÞ and the
category PKT

of finitely generated projective KT-modules, and the canonical
map CðX;CÞ ! HomKT

ðHTðXÞ;HTðEÞÞ is invertible, 8X 2 addðTÞ, 8E 2 C.

Proof. The equivalences follow from Proposition 1.9 of [8]. The final
assertion is standard and its proof is left to the reader. h
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Recall that a module X over a ring K is called FP-injective if
Ext1KðF;XÞ ¼ 0 for any finitely presented module F. Note that K is left No-
etherian if and only if any left FP-injective module is injective.

LEMMA 3.8. Let R�1E! A! T! E be an AR-triangle in C. If addðTÞ is
contravariantly finite in C, then the left KT-module HTðEÞ is FP-injective and
the canonical map Cð�;EÞ ! HomKT

ðHTð�Þ;HTðEÞÞ is invertible. In particu-
lar the ring EndKT

ðHTðEÞÞ is local.

Proof. By Lemma 3.6 it suffices to show that any map ea : HTðCÞ ! HTðEÞ
is of the form HTðaÞ for some morphism a : C! E. Since addðTÞ is con-

travariantly finite in C, there exists a triangle K!/ T0!
w
C! RðKÞ where

w : T0 ! C is a right addðTÞ-approximation of C. By Lemma 3.7 there exists
a morphism b : T0 ! E such that HTðwÞ � ea ¼ HTðbÞ. Consider the mor-
phism / � b : K! E. Then obviously HTð/ � bÞ ¼ 0. Then by Lemma 3.6 we
have / � b ¼ 0. Hence there exists a morphism a : C! E such that w � a ¼ b.
Then HTðwÞ � HTðaÞ ¼ HTðbÞ ¼ HTðwÞ � ea. Since HTðwÞ is an epimorphism,
we infer that HTðaÞ ¼ ea.

Now let F be a finitely presented left KT-module. By Lemma 3.7 a finite

presentation of F is of the form HTðT1Þ �!
HTðaÞ

HTðT0Þ ! F! 0, where
a : T1 ! T0 is a morphism between objects in addðTÞ. Let

C!r T1!
a
T0 ! RðCÞ be a triangle in C, and let K!s T2!

q
C!j RðKÞ be a

triangle in C where q : T2 ! C is a right addðTÞ-approximation of C. Then

we have an exact sequence HTðCÞ �!
HTðrÞ

HTðT1Þ �!
HTðaÞ

HTðT0Þ ! F! 0 in

Mod-Kop
T . Setting M :¼ KerHTðaÞ, we have an exact sequence

HTðT2Þ �!
HTðq�rÞ

HTðT1Þ �!
HTðaÞ

HTðT0Þ ! F! 0 which is the beginning of a pro-
jective resolution of F. Applying the functor HomKT

½�;HTðEÞ� and using that
the canonical map Cð�;EÞ ! HomKT

�
HTð�Þ;HTðEÞ

�
is invertible, we have a

complex ð�Þ : CðT0;EÞ �!
Cða;EÞ CðT1;EÞ �!

Cðq�r;EÞ CðT2;EÞ the homology of which

computes the extension Ext1KT
½F;HTðEÞ�. Let f : T1 ! E be a morphism in

KerCðq � r;EÞ. Then q � r � f ¼ 0, hence r � f ¼ j � n for a morphism
n : RðKÞ ! E. Then HTðr � fÞ ¼ HTðj � nÞ ¼ 0, since HTðjÞ ¼ 0. Therefore
HTðr � fÞ ¼ 0 and consequently r � f ¼ 0. It follows that f ¼ a � h for some
morphism h : T0 ! E. This implies that the complex ð�Þ is exact and there-
fore Ext1KT

½F;HTðEÞ� ¼ 0. h

As a consequence of Lemma 3.8 we have the following.

PROPOSITION 3.9. Let T be an object in C with local endomorphism ring
and assume that addðTÞ is contravariantly finite in C. Then the following are
equivalent.

APOSTOLOS BELIGIANNIS12



(i) There exists an AR-triangle R�1E! A! T! E in C and the left KT-
module HTðEÞ is injective.

(ii) The functor H_T;m :¼ HomKT
½HTð�Þ; Im� : Cop ! Ab is representable.

Proof. Part (ii)) (i) follows directly from Corollary 3.5 and Lemma 3.6.
If (i) holds, then, by Lemma 3.6, the left KT-module HTðEÞ is the injective
envelope Im of the simple KT-module Sm and by Lemma 3.8 the canonical
map Cð�;EÞ ! HomKT

ðHTð�Þ;HTðEÞÞ is invertible. We infer that Im is T-
realizable by the object E. Then by Proposition 2.8 we conclude that the
functor H_T;m is representable. h

Now we can prove the following result which, under a finiteness condition,
shows that the existence of an AR-triangle starting at an object T is equiv-
alent to the representability of the injective envelope of the simple functor
associated to T.

THEOREM 3.10. Let C be an R-linear triangulated category over a commu-
tative Noetherian ring R and let T be an object in C with local endomorphism
ring. If 8C 2 C the R-module CðT;CÞ is finitely generated; then the following
are equivalent:

(i) There exists an AR-triangle R�1E! A! T! E in C.
(ii) The functor H_T;m :¼ HomKT

½HTð�Þ; Im� : Cop ! Ab is representable.

If (i) holds, then we have isomorphisms: E ffi DmðTÞ and H_T;m ffi Cð�;EÞ.

Proof. The implication (ii) ) (i) follows by Proposition 3.9.
(i) ) (ii) By Lemma 3.7 it follows that addðTÞ is contravariantly finite in

C. Since CðT;TÞ is finitely generated as an R-module and R is Noetherian, the
local ring KT ¼ CðT;TÞ is Noetherian. Then the FP-injective left KT-module
HTðEÞ is injective and therefore the functor H_T;m is representable by Propo-
sition 3.9. h

Summarizing the above results we have the following.

THEOREM 3.11. Let C be a skeletally small R-linear triangulated Krull–
Schmidt category over a commutative Noetherian ring and assume that the
R-module CðA;BÞ is finite generated, for all objects A, B in C. Then the
following are equivalent:

(i) C has right AR-triangles.
(ii) The injective envelopes of the simple functors Cop ! Ab are representable.
(iii) Any simple contravariant functor Cop ! Ab is finitely presented.
(iv) For any object T in C with local endomorphism ring, the injective envelope

of the unique simple EndCðTÞ-module is T-realizable.
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Proof. By our previous results we have (i) , (iv) and (ii) ) (i). The
implication (i)) (ii) follows from Proposition 2.1, Theorem 3.10 and the fact
that, since C is Krull–Schmidt, any simple functor Cop ! Ab is of the form
ST;m where T has local endomorphism ring, see [2, Proposition 2.3]. If (ii)
holds, then ST;m is finitely presented as the image of a morphism between
representable functors. Finally if (iii) holds, then since C is Krull–Schmidt
and triangulated it follows from [28,29] that the category mod-C is an abelian
Frobenius category with injective envelopes which are therefore represent-
able. This clearly implies (ii). h

Remark 3.12. For any additive functor F : C ! Ab, the abelian group
FðTÞ carries a natural right KT-module structure by defining: x ? q :¼
FðqÞðxÞ, 8x 2 FðTÞ and 8q 2 KT. In particular we have the (co)homological
functors

HT : Cop !Mod-KT; HTðAÞ ¼ CðA;TÞ and
HT;n
^ :¼ HomKT

½HTð�Þ; In� : C ! Ab

where n is a maximal right ideal of KT and In is the injective envelope of the
simple right KT-module KT=n. Using the functors HT and HT;n

^ , all the results
of this and the previous section have their dual versions. We shall use freely
the dual versions leaving their proof to the reader. For later use we only
mention the following.

THEOREM 3.13. Let C be an R-linear triangulated category over a commu-
tative Noetherian ring R. Assume that for all objects A, C in C, the R-module
CðA;CÞ is finitely generated. Then the following are equivalent.

(i) C has AR-triangles.
(ii) The functors HT;n

^ and H_T;m are representable, in which case we have:

HT;n
^ ffi CðR�1s�ðTÞ;�Þ and H_T;m ffi Cð�;RsþðTÞÞ:

4. Auslander–Reiten Triangles, Dualizing Categories and Serre Functors

Our aim in this section is to study when a triangulated category admits
globally AR-triangles. We are also interested in having an internal descrip-
tion of the Auslander–Reiten translations. Working in the appropriate set-
ting, this is related to the existence of Serre functors and a certain dualizing
property of the category.

4.1. AR-TRIANGLES IN R-FINITE CATEGORIES

Throughout this section C denotes a skeletally small R-linear triangulated
category with split idempotents over a commutative ring R. There are several
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finiteness conditions one can impose on C. We are especially interested in case
C is finite over R in the following sense.

DEFINITION 4.1. We say that C is R-finite if one of the following condi-
tions hold:

(I) R is Noetherian and the R-module CðA;BÞ is of finite length, 8A;B 2 C.
(II) R is Artinian and the R-module CðA;BÞ is finitely generated,
8A;B 2 C.

(III) R is Noetherian complete local and the R-module CðA;BÞ is finitely
generated, 8A;B 2 C.

Let I be the minimal injective cogenerator of Mod-R and let D be the functor
HomRð�; IÞ : ðMod-RÞop !Mod-R. We denote by noethðRÞ ¼ mod-R, resp.
artðRÞ, the category of Noetherian, resp. Artinian, R-modules, and let
finðRÞ ¼ noethðRÞ \ artðRÞ be the category of finite length modules. It is well-
known that the functor D induces a duality D : finðRÞ ! finðRÞ in cases (I)
and (II), and a duality D : noethðRÞ ! artðRÞ in case (III), see [62] and
Sections I.4 and I.5 of the more comprehensive [4] for details.

Fromnowonweassume that theR-linear triangulated categoryC isR-finite.
If T is an object in C, then the endomorphism ring KT of T is a Noetherian

R-algebra (Artinian in case (II)) and DðKTÞ is an injective cogenerator of
Mod-KT. We denote by D the functor HomRð�; IÞ : ðMod-KTÞop!Mod-Kop

T .

Note that HomRð�; IÞ!
ffi
HomKT

ð�;HomRðK; IÞÞ ¼ HomKT
ð�;DðKTÞÞ as

functors : ðMod-KTÞop !Mod-Kop
T . Recall from Section 2 that for an object

T in C with local endomorphism ring KT and maximal ideal m, the functor

H_T;m ¼ HomKT
½CðT;�Þ; Im�, resp. HT;m

^ ¼ HomKT
½Cð�;TÞ; Im�, is the injective

envelope of the simple contravariant, resp. covariant, functor determined by

T and m.

LEMMA 4.2. The category C is Krull–Schmidt and for any object X 2 C, the
subcategory addðXÞ is functorially finite in C. Moreover for any indecompos-
able object T 2 C, there exist isomorphisms of functors:

H_T;m ffi DCðT;�Þ and HT;m
^ ffi DCð�;TÞ:

Proof. Since the endomorphism ring of any object of C is a Noetherian
R-algebra, by [4, Section I.5], it follows that C is Krull–Schmidt, and func-
torial finiteness of addðTÞ follows from Lemma 3.7. Since C is R-finite and the
R-module KT ¼ HomCðT;TÞ is finitely generated, it follows that the natural
map KT ! D2ðKTÞ is invertible. Consequently the injective cogenerator
DðKTÞ of KT is indecomposable. Then clearly DðKTÞ is isomorphic to
the minimal injective cogenerator Im and the assertion follows from the
isomorphisms (the proof that HT;m

^ ffi DCð�;TÞ is dual):
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H_T;m ¼ HomKT
½CðT;�Þ; Im� ffi HomKT

½CðT;�Þ;DðKTÞ� ffi

HomKT
½CðT;�Þ;HomRðKT; IÞ� ffi HomR½KT 	KT

CðT;�Þ; IÞ� ffi
HomR½CðT;�Þ; IÞ� ffi DCðT;�Þ: h

COROLLARY 4.3. Let C be a triangulated R-finite category over a com-
mutative ring R. Then C has AR-triangles iff for any indecomposable object
X 2 C, the functors DCðX;�Þ and DCð�;XÞ are representable. In this case we
have isomorphisms:

Cð�;RsþðXÞÞ ffi DCðX;�Þ ; CðR�1s�ðXÞ;�Þ ffi DCð�;XÞ:

4.2. DERIVED CATEGORIES

If A is an abelian category, we denote by DðAÞ, resp. DbðAÞ, the unbounded,
resp. bounded, derived category of A in the sense of Verdier [77]. Now let K
be an R-algebra over a commutative ring R. As before we denote by D the
functor HomRð�; IÞ : ðMod-RÞop !Mod-R, where I is the minimal injective
cogenerator of Mod-R. Similarly we denote by D any one of the total derived
functors RHomRð�; IÞ : DðMod-RÞop ! DðMod-RÞ and RHomRð�;DðKÞÞ :
DðMod-KÞop!DðMod-KopÞ. Notice that RHomRð�; IÞ!

ffi
RHomKð�;DðKÞÞ

as triangulated functors DðMod-KÞop ! DðMod-KopÞ. We denote by PK the
category of finitely generated projective K-modules and by HbðPKÞ the
bounded homotopy category of PK. Recall that a complex X of K-modules is
called perfect if X is quasi-isomorphic to a complex in HbðPKÞ. Fix a perfect
complex X in DðMod-KÞ. Then for any complex Y in DðMod-KÞ, there exist
natural isomorphisms in DðMod-KÞ:

RHomKðX;YÞ!
ffi

Y	L
K RHomKðX;KÞ; DRHomKðX;KÞ!

ffi
X	L

K DðKÞ

induced by the well-known isomorphisms HomKðP;AÞ!
ffi
A	K HomKðP;KÞ

and DHomKðP;KÞ!
ffi
P	K DðKÞ, where P 2 PK and A 2Mod-K. Applying

D to the first one and using the second we have isomorphisms:

DRHomKðX;YÞ!
ffi
RHomK½Y	L

K RHomKðX;KÞ;DðKÞ�!
ffi

RHomK½Y;RHomKðRHomKðX;KÞ;DðKÞÞ�!
ffi
RHomK½Y;DRHomKðX;KÞ�

!ffi RHomKðY;X	L
K DðKÞÞ

Applying H0 we get an isomorphism

DHomKðX;YÞ!
ffi
HomKðY;X	L

K DðKÞÞ: ðyÞ

The following observation gives an explicit description of the dual object
DmðXÞ.
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LEMMA 4.4. Let X be a perfect complex with local endomorphism ring. If the
R-module HomKðX;XÞ is finitely generated, then the following are equivalent.

(i) There exists an isomorphism DmðXÞ!
ffi
X	L

K DðKÞ in DðMod-KÞ.
(ii) The KX-module DðKXÞ is indecomposable.

Proof. If DðKXÞ is indecomposable, then using the isomorphism ðyÞ and
working as in Lemma 4.2 we obtain that DðKXÞ is isomorphic to Im and the

functors H_X;m and DHomKðX;�Þ are isomorphic. Therefore H_X;m is repre-

sentable in DðMod-KÞ, in particular the dual object DmðXÞ exists in

DðMod-KÞ, and we have isomorphisms: H_X;m!
ffi
HomK½�;X	L

K DðKÞ� and
DmðXÞ!

ffi
X	L

K DðKÞ. Conversely if (i) holds, then the isomorphism ðyÞ shows
that DðKXÞ ffi Im which is indecomposable. h

It is easy to see that condition (ii) above holds, if the bounded homotopy
category HbðPKÞ, which is isomorphic in DðMod-KÞ to the subcategory of
perfect complexes, is R-finite, for instance if K is an Artin R-algebra or a
Noetherian R-algebra over a commutative Noetherian complete local ring R.
Hence from Lemma 4.4 we deduce the following consequence (the complete
case is due to Krause [57]), referring to section 9 for a further discussion of
Auslander–Reiten theory in derived categories.

COROLLARY 4.5. Let K be a Noetherian R-algebra over a commutative
Noetherian ring R, and assume that either K is Artinian or else R is complete
and local. Then for any indecomposable perfect complex X in DðMod-KÞ, there
exists an AR-triangle

X	L
K DðKÞ½�1� �! A �! X �! X	L

K DðKÞ

in DðMod-KÞ. Moreover sþðXÞ ¼ X	L
K DðKÞ½�1� lies in the full subcategory

Db
artðMod-KÞ of DbðMod-KÞ consisting of all complexes with Artinian coho-

mology.

4.3. DUALIZING CATEGORIES AND SERRE FUNCTORS

If U is one of the subcategories noethðRÞ; artðRÞ or finðRÞ of Mod-R, we
denote by ½Cop;U�, resp. ½C;U�, the category of contravariant, resp. covariant,
additive functors C ! U. Then clearly the duality D induces a duality
D : ½Cop; finðRÞ� ! ½C; finðRÞ� in cases (I) and (II), and a duality D : ½Cop;
noethðRÞ� ! ½C; artðRÞ� in case (III).

It is easy to see that the functors DCðX;�Þ, for X indecomposable in C,
form a cogenerating set R of indecomposable injectives in Mod-C. We say
that an additive functor F : Cop ! Ab is finitely copresented if F admits a
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copresentation 0! F! J0 ! J1 where the Ji are in addðRÞ. Equivalently
there exists an exact sequence 0! F! DCðX;�Þ ! DCðY;�Þ. We denote by
mod-_C the full subcategory of Mod-C consisting of finitely copresented
functors. The category mod-_Cop is defined similarly. It is easy to see that
mod-C;mod-_C 
 ½Cop; finðRÞ� and mod-Cop;mod-_Cop 
 ½C; finðRÞ� in cases
(I) and (II), and mod-C 
 ½Cop; noethðRÞ�, mod-Cop 
 ½C; noethðRÞ�, and
mod-_C 
 ½Cop; artðRÞ�, mod-_Cop 
 ½C; artðRÞ� in case (III). We are especially
interested in case the full subcategory of finitely copresented functors coin-
cides with the full subcategory of finitely presented ones. We have the fol-
lowing characterizations which follow easily from the definitions.

LEMMA 4.6. The following are equivalent.

(i)mod-_C 
 mod-C and mod-_Cop 
 mod-Cop.
(ii) mod-_C ¼ mod-C.
(iii) mod-_Cop ¼ mod-Cop.
(iv) The duality D induces a duality D : mod-C ! mod-Cop.
If (i) holds, then the R-module CðA;BÞ has finite length for all objects A;B in C.

The above result suggests the following definition which extends slightly
the notion of a dualizing variety introduced by Auslander–Reiten [6] in
connection with stable equivalence and existence of Auslander–Reiten
sequences for Artin algebras.

DEFINITION 4.7. An R-linear triangulated category C over a commutative
ringR is calleddualizing ifC isR-finite and satisfies the conditionsofLemma4.6.

Recall from [23] or [75] that an additive functor S : C ! C is a right Serre
functor for C provided that there exists a natural isomorphism of bifunctors

DCðA;BÞ!ffi CðB; SðAÞÞ. Left Serre functors are defined dually, and a Serre
functor is a left and right Serre functor. It is known that a Serre functor is
uniquely determinedup to isomorphismand it is a triangulated equivalence, see
[23, Proposition 3.3], [75, Lemma I.1.5]. The following result generalizes results
of Reiten and Van den Bergh [75, Proposition I.2.3].

PROPOSITION 4.8. Let C be a triangulated R-finite category over a com-
mutative ring R. Then the following are equivalent.

(i) C has right, resp. left, AR-triangles.
(ii) C admits a right, resp. left, Serre functor.
(iii) mod-_C 
 mod-C, resp. mod-_Cop 
 mod-Cop.

Proof. By Lemma 4.2, C is Krull–Schmidt and H_T;m!
ffi
DCðT;�Þ for any

indecomposable object T in C. Hence C has right AR-triangles iff DCðT;�Þ is
representable. Clearly this is equivalent to say that C has a right Serre

APOSTOLOS BELIGIANNIS18



functor. Assume now that S : C ! C is a right Serre functor for C. Then the
isomorphism DCðX;�Þ ! Cð�; SðXÞÞ shows that any finitely copresented
contravariant functor is finitely presented, i.e. mod-_C 
 mod-C. If this holds,
then for any indecomposable object T of C, the finitely copresented functor
DCðT;�Þ is finitely presented. Since DCðT;�Þ is an indecomposable injective
functor in mod-C and the latter is Frobenius, it follows that DCðT;�Þ ffi H_T;m
is representable. This implies that C has right AR-triangles by Theorem 3:11.
The case of left AR-triangles, left Serre functors and finitely copresented
covariant functors is similar. h

We have the following nice consequence which generalizes [75, Theorem
I.2.4].

THEOREM 4.9. Let C be a triangulated R-finite category over a commutative
ring R. Then the following are equivalent.

(i) C has AR-triangles.
(ii) C admits a Serre functor S.
(iii) C is dualizing.
If (i) holds, then for any indecomposable object T 2 C we have isomorphisms:

H_T;m ffi DCðT;�Þ ffi Cð�;SðTÞÞ ffi Cð�;RsþðTÞÞ;

HT;m
^ ffi DCð�;TÞ ffi CðS�1ðTÞ;�Þ ffi CðR�1s�ðTÞ;�Þ:

Let C be a triangulated R-finite category over a commutative ring R. For
any object X in C, the support of the functor Cð�;XÞ, resp. CðX;�Þ, is the full
subcategory of C consisting of all objects Y such that CðY;XÞ 6¼ 0, resp.
CðX;YÞ 6¼ 0, and is denoted by SuppCð�;XÞ, resp. SuppCðX;�Þ. Examples of
triangulated categories C satisfying the property that SuppCð�;XÞ or
SuppCðX;�Þ contains only finitely many indecomposable objects, include
stable categories modulo projectives of the form mod-T Z, where T Z is the
repetition of a locally bounded category T over a field, see [31, Section 8.3]. By
a result of Reiten [74, Proposition 7.1.5], such categories are dualizing.
Therefore we have the following consequence which gives an alternative proof
to a recent result of Xiao and Zhu [79, Proposition 1.3].

COROLLARY 4.10. If for any object X in C, one of the subcategories
SuppCð�;XÞ or SuppCðX;�Þ contains only finitely many indecomposable ob-
jects, then C has AR-triangles and admits a Serre functor.

There are examples of triangulated categories for which some positive
power of the suspension R is a Serre functor.

EXAMPLE 4.11. Let X be a connected compact complex analytic manifold,
resp. a non-singular projective variety. Then the derived category Db

cohðXÞ,
resp. DbðcohXÞ, of, resp. coherent, sheaves of OX-modules with coherent
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cohomology admits the Serre functor �	OX
xX½dimX�, see [24, Section 5].

Hence Db
cohðXÞ or DbðcohXÞ has AR-triangles and consequently X is Calabi–

Yau iff �½dimX� is a Serre functor.

4.4. STRONG GENERATORS

Throughout this subsection we fix a triangulated R-linear category C with
split idempotents over a commutative Noetherian ring R. If M is an
R-module, then we denote by dimRM its composition length. Following
Reiten and Van den Bergh [75] we say that C is Ext-finite ifP

n2Z dimR CðA;RnðBÞÞ <1 for all A;B in C. Recall that a cohomological
functor F : Cop !Mod-R is said to be of finite type provided thatP

n2Z dimR FRnðAÞ <1, for all A 2 C. We refer to Reiten and Van den
Bergh [75] for a classification of hereditary Noetherian abelian Ext-finite
k-categories A over a field k such that the bounded derived category DbðAÞ
admits a Serre functor (and therefore AR-triangles). Following Bondal and
Van den Bergh [24], we say that an object X in C is a strong generator of C
provided that there exists nP0 such that any object of C can be obtained
from X by taking finite direct sums, direct summands, shifts and at most
n� 1 cones.

THEOREM 4.12. Let C be a skeletally small Ext-finite R-linear triangulated
category over a commutative Noetherian ring R. If C admits a strong generator,
then C has AR-triangles, is dualizing and admits a Serre functor.

Proof. Clearly C is R-finite. Therefore for any object T in C with local
endomorphism ring, we have an isomorphism of functors H_T;m ffi DCðT;�Þ
and the functor DCðT;�Þ is of finite type. Since C admits a strong generator,
by a result of Bondal and Van den Bergh, see [24, Theorem 1.3], it follows
that the functor DCðT;�Þ, hence H_T;m, is representable. Then Corollary 3.5
implies that C has right AR-triangles. Dually we have an isomorphism of
functors HT;m

^ ffi DCð�;TÞ and DCð�;TÞ is of finite type. Clearly if X is a
strong generator for C, then X is a strong generator for Cop. Then as above,
DCð�;TÞ, hence HT;m

^ , is representable and then by the dual of Corollary 3.5
we infer that Cop admits right AR-triangles, or equivalently C admits left AR-
triangles. The remaining assertions follow from Theorem 4.9. h

COROLLARY 4.13. Let X be a smooth scheme over a field k. Then the
bounded derived category DbðcohXÞ of coherent sheaves on X has AR-triangles,
is dualizing and admits a Serre functor.

Proof. By [24, Theorem 3.1.4], the category DbðcohXÞ is Ext-finite, has
split idempotents and a strong generator. So the assertion follows from
Theorem 4.12. h
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EXAMPLE 4.14. Let K be an Artin algebra. We call a strong generator T of
Dbðmod-KÞ perfect, if T is a perfect complex. Then the following are
equivalent.

(i) gl.dim K <1.
(ii) Dbðmod-KÞ admits a strong perfect generator.

Indeed let gl. dimK ¼ n <1 and consider the proper class of triangles EðKÞ
in Dbðmod-KÞ generated be K in the sense of [18]. By [18, Proposition 12.34]
the relative global dimension of Dbðmod-KÞ with respect to EðKÞ is equal to
gl.dim K which is finite. Then by [18, Corollary 5.5] it follows that K is a
strong generator of Dbðmod-KÞ. Conversely if T is a strong perfect generator
of Dbðmod-KÞ, then clearly gl. dim K <1. By Theorem 4.12 we obtain as a
consequence the well-known result of Happel [35] that if gl. dim K <1, then
Dbðmod-KÞ has AR-triangles.

One can generalize this example as follows. Let A be an R-linear Artinian
abelian category with enough projectives over a commutative Artin ring R. If
A has finite global dimension and the set of isoclasses of simple objects of A
is finite, then DbðAÞ has strong generator and therefore has AR-triangles and
admits a Serre functor.

Theorem4.12 canbe generalized further as follows. LetE be aproper class of
triangles in C in the sense of [18].We refer to [18] formore details on the relative
homological algebra in C based on E; in particular we denote by E-gl. dim C the
relative global dimension of C with respect to E. The following result gives a
generalization of Theorem 4.12. The latter follows if we consider the proper
class in C induced, in the sense of [18, Example 2.3], by a strong generator.

THEOREM 4.15. Let C be a skeletally small Ext-finite R-linear triangulated
category with split idempotents over a commutative Noetherian ring R which is
equipped with a proper class of triangles E. If E-gl: dim C <1, then C has AR-
triangles, is dualizing and admits a Serre functor.

Proof. As in Theorem 4.12, C is R-finite and the functor H_T;m ffi DCðT;�Þ
is of finite type. Since E-gl: dim C :¼ n <1, by [18, Corollary 5.2,] it follows
that any object of C is obtained from PðEÞ, the category of relative E-pro-
jectives, by taking finite direct sums, direct summands, shifts and at most
n� 1 cones. By (a slight generalization of) [24, Lemma 2.4.2] it follows that
H_T;m is representable. Similarly HT;m

^ is representable. Therefore C has AR-
triangles by Theorem 3.13. h

We close this section with an application of the above results to the
derived category of a class of rings which are of interest in non-commutative
geometry. Let K ¼ �n�0Rn be a connected graded ring over a field k ¼ K0

and assume throughout that dimk ExttKðk; kÞ <1, 8t � 0. Let Gr Mod-K be
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the category of left graded K-modules, and let QGr Mod-K ¼ Gr Mod-K=
TorsðKÞ be the quotient in the sense of Gabriel [30], where TorsðKÞ is the
localizing subcategory of Gr Mod-K consisting of all torsion modules, where
a graded K-module M is called torsion, if for any a 2M, there exists tP0
such that mta ¼ 0, where m ¼ �nP1Rn is the graded maximal ideal of K.

Let DðQGr Mod-KÞ be the unbounded derived category of the Grot-
hendieck category QGr Mod-KÞ, and let DðQGr Mod-KÞb be the full sub-
category consisting of all compact objects (see the next section for the
definition) of DðQGr Mod-KÞ.

THEOREM 4.16. Let K be a connected graded ring as above satisfying the
following:

(i) gl: dim QGr Mod-K <1.

(ii) The functor lim�!HomKopðKop=Kop
�n;�Þ has finite cohomological dimension.

(iii) 8tP0, the spaces lim�!ExttKopðKop=Kop
�n;K

opÞ and lim�!ExttKðK=K�n;KÞ are
finite dimensional and both have right bounded grading.

Then the category DðQGr Mod-KÞb has AR-triangles.
IfK is left graded coherent, then the bounded derived categoryDbðGr mod-KÞ

of the category of finitely presented graded K-modules, has AR-triangles.

Proof. By [24, Theorems 4.2.12, 4.3.4] the imposed assumptions imply
that the categories DðQGr Mod-KÞb and Dbðgr mod-KÞ satisfy the conditions
of Theorem 4.12 and the assertion follows. (

5. Categories with Infinite Sums and Torsion Pairs

In this section we investigate the behavior of Auslander–Reiten triangles with
respect to torsion pairs in a triangulated category. Since torsion pairs arise
naturally in triangulated categories containing all small coproducts, we study
first existence of Auslander–Reiten triangles in this setting where Brown’s
Representability theorem, when available, provides the main tool for proving
representability of the injective envelope of a simple functor.

5.1. TRIANGULATED CATEGORIES WITH INFINITE SUMS.

From now on we fix a triangulated category C which has all small
coproducts. For a subcategory X of C we denote by AddðXÞ the full
subcategory of C consisting of all direct summands of all small coproducts
of objects from X . In the sequel we shall need the following infinite
analogue of Lemma 3.7, which is a special case of [18, Proposition 8.4,].
First recall that an object X in C is called compact if the functor
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CðX;�Þ : C ! Ab preserves all small coproducts. We denote by Cb the full
subcategory of C consisting of the compact objects. It is easy to see that
Cb is a full triangulated subcategory of C which is closed under direct
summands, that is, Cb is a thick subcategory of C. For a ring K, ProjðKÞ
denotes the category of projective K-modules.

LEMMA 5.1. [18]. For any object T in C, the full subcategory AddðTÞ is con-
travariantly finite in C. If T is compact, then the functor HT : C !Mod-Kop

T

induces an equivalence AddðTÞ!� ProjðKop
T Þ and the canonical map

CðX;CÞ ! HomKT
ðHTðXÞ;HTðCÞÞ is invertible for any X 2 AddðTÞ and C 2 C.

Following Neeman [66] we say that a triangulated category C with all
small coproducts satisfies Brown’s representability theorem if any cohomo-
logical functor F : Cop ! Ab which converts coproducts to products is rep-
resentable. The following basic result is essentially due to Krause [52,
Theorem 2.2].

THEOREM 5.2. Let C be a triangulated category satisfying Brown’s repre-
sentability theorem. Then for any compact object T in C with local endomor-
phism ring there exists an AR-triangle R�1E! A! T! E in C and the object
E is the m-dual object DmðTÞ of T where m is the maximal ideal of EndCðTÞ.

Proof. Since T is compact, the cohomological functor H_T;m : Cop ! Ab
takes coproducts to products and therefore it is representable. Then the
assertion follows from Corollary 3.5. (

Compactly generated triangulated categories form an important class of
triangulated categories satisfying Brown’s representability theorem. Recall
that C is compactly generated, if C has all small coproducts and admits a
generating set which is closed under suspensions and consists of compact
objects, see [64]. Compactly generated triangulated categories include the
following important examples.


 The unbounded derived category DðMod-KÞ of right K-modules over a
ring K. The compact objects are the perfect complexes, see e.g. [76, 6.3].

 The stable homotopy category HoðSpÞ of spectra. The compact objects are
the finite spectra, see [61].

 The unbounded derived category DðqcXÞ of quasi-coherent sheaves over a
quasi-compact separated scheme X. The complexes lying in the thick
subcategory of DðqcXÞ generated by powers of an ample line bundle form
the compact objects, see [64, Proposition 2.5].

 The stable module category Mod-K modulo projectives of a QF-ring K,
e.g. a group algebra kG of a finite group G, see [36]. Clearly the compact
objects are the finitely generated modules.
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Remark 5.3. More generally well-generated categories in the sense of
Neeman [66] or perfectly generated categories in the sense of Krause [54] are
examples of triangulated categories satisfying Brown’s representability the-
orem. Note that, by [65, Theorem 0.2], the unbounded derived category DðAÞ
of a Grothendieck category A is well-generated. Also if T is the stable ho-
motopy category of spectra and E is a spectrum, then the full subcategory of
E-acyclic spectra and the full subcategory of E-local spectra are well-gener-
ated, see [66, Appendix D]. If C denotes a triangulated category from the
above list, then by Theorem 5.2 it follows that any compact object T in C is
the source of an AR-triangle in C.

Remark 5.4. If T is an object of C with local endomorphism ring and if the
homological functor HT;n

^ : C ! Ab is representable, then, by Remark 3.12, T
appears as a source of an AR-triangle in C. If C is well-generated, then it
suffices to know that HT;n

^ preserves products, since by [66, Theorem 8.6.1]
any product preserving homological functor is representable over a well-
generated category.

For general, not necessarily compactly or well generated, triangulated
categories with all small coproducts we have the following existence result
for AR-triangles ending at compact objects. First recall that a thick
subcategory T of C is called localizing if T is closed under all small
coproducts.

THEOREM 5.5. Let C be a triangulated category with all small coproducts. If
T is an object in C with local endomorphism ring, then the following are
equivalent:

(i) T is compact and there is an AR-triangle R�1E! A! T! E in C.
(ii) The functor H_T;m :¼ HomKT

½HTð�Þ; Im� : Cop ! Ab is representable.

Proof. (ii)) (i) By Corollary 3.5 it suffices to show that T is compact. Let
E be the representing object of H_T;m in C. Let fCi j i 2 Ig be a set of objects in

C and let / : �i2IHTðCiÞ ! HTð�i2ICiÞ be the canonical map. Then the
composition

HomKT
½HTða

i2I
CiÞ; Im� ! HomKT

½a
i2I

HTðCiÞ; Im�

!ffi
Y
i2I

HomKT
½HTðCiÞ; Im�

is isomorphic to the canonical invertible map C
�
�i2ICi;EÞ !

Q
i2I CðCi;EÞ.

Hence the map HomKT
ð/; ImÞ is invertible in Mod-Kop

T . Since Im is an
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injective cogenerator in Mod-Kop
T we conclude that / is invertible, so T is

compact.
(i) ) (ii) By Lemma 3.6, the canonical map Cð�;EÞ!x HomKT

½HTð�Þ;
HTðEÞ� is injective. Using Lemma 5.1, the proof of Lemma 3.8 shows that x is
invertible. We show that the left KT-module HTðEÞ is injective. Let T be the
localizing subcategory of C generated by T, i.e. T is the smallest thick
subcategory of C which is closed under all small coproducts and contains
T. Then T is compactly generated by T and it is well known that the
inclusion T ,!C admits a right adjoint R : C ! T which preserves
coproducts, see [64, Theorems 4.1 and 5.1]. Since the functor
F 0T :¼ HomKT

½T ðT;�Þ; Im� : T op ! Ab is cohomological and sends coprod-
ucts to products, by Brown Representability there exists an object E 0 2 T
and a natural isomorphism T ð�;E 0Þ!ffi F 0T. Then by Corollary 3.5 it follows

that there exists an AR-triangle R�1E 0 !g
0

X!f
0

T!h
0
E 0 in T and we have an

isomorphism T ðT;E 0Þ!ffi Im by Proposition 2.8. Since f 0 is not split epic there
exists a morphism of triangles in C:

R�1E 0 ���!g0 X ���!f 0 T ���!h0 E 0

R�1ðaÞ
??y b

??y
��� a

??y
R�1E ���!g A ���!f T ���!h E

ð�Þ

Let RðEÞ!q E!s Y! RRðEÞ be a triangle in C where q is the coreflection of E
in T . Applying the functor CðT;�Þ to this triangle, we deduce an isomor-
phism T ðT;RðEÞÞ ¼ CðT;RðEÞÞffi CðT;EÞ. Since E 0 lies in T there exists a
unique morphism d : E 0 ! RðEÞ such that d � q ¼ a. If d is not split monic,
then since RðEÞ lies in T and Rðg 0Þ is left almost split, it follows that
h0 � d ¼ 0. Then h0 � d � q ¼ a ¼ 0, hence h ¼ 0 and this is impossible. We
infer that d is split monic. Hence RðEÞ ¼ E 0 � X 0 where X 0 lies in T since the
latter is closed under direct summands. Then we have isomorphisms of left

KT-modules: CðT;EÞ!ffi T ðT;RðEÞÞ ¼ T ðT;E 0Þ � T ðT;X 0Þ. By Lemma 3.6,

the injective envelope of CðT;EÞ is isomorphic to Im!
ffi T ðT;E 0Þ. This implies

that T ðT;X 0Þ ¼ 0. Hence HTðEÞ ¼ CðT;EÞ!
ffi T ðT;E 0Þ!ffi Im and we infer

that Im is realizable in C by the object E. Then by Proposition 2.8 we
have that the functor H_T;m is representable. h

Remark 5.6. By Theorem 5.5 it follows that for any compact object T in a
triangulated category C which admits infinite sums, there exists a relative
m-dual object DTmðTÞ of T which lies in the localizing subcategory T of C
generated by T and satisfies H_T;mð�Þ!

ffi T ðRð�Þ;DTmðTÞÞ, where R is the right
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adjoint of the inclusion T ,!C. It follows easily from this that if T appears as
a target of an AR-triangle in C, then RsþðTÞ ¼ sþT ðTÞ, where sþT denotes
Auslander–Reiten translation in T .

Now let X 
 C be a class of objects. We denote by ?X the left, resp. right,
orthogonal subcategory of C defined by ?X :¼ fA 2 C j CðA;XÞ ¼ 0;
8X 2 Xg, resp. X? :¼ fA 2 C j CðX;AÞ ¼ 0;8X 2 Xg.

COROLLARY 5.7. Let T be a compact object in C with local endomorphism
ring and let T be the localizing subcategory of C generated by T. If

ðTÞ : R�1ðEÞ!g A!f T!h E is a triangle in T , then the following are equivalent.

(i) ðTÞ is an AR-triangle in C.
(ii) ðTÞ is an AR-triangle in T and E lies in T ??.
In particular if sþT ðTÞ lies in T ??, for any compact object T in C with local
endomorphism ring, then C has right AR-triangles ending at compact objects.

Proof. (i)) (ii) Clearly ðTÞ is an AR-triangle in T . Since H_T;m ffi Cð�;EÞ
and H_T;mðYÞ ¼ 0, 8Y 2 T ?, it follows that CðY;EÞ ¼ 0, i.e. E lies in T ??.

(ii) ) (i) It suffices to show that any map a : C! T in C which is not a
split epimorphism factors through f. Let XC ! C! YC ! RðXCÞ be a tri-
angle in C where XC 2 T and YC 2 T ?. Then the composition XC ! C! T
factors through f since it is not a split epimorphism. Hence we have a mor-
phism of triangles:

XC ���! C ���!YC ���!RðXCÞ
b

??y a

??y c

??y RðbÞ
??y

A ���!f T ���!h E ���!�RðgÞ RðAÞ
By hypothesis the morphism c is zero and therefore a factors through f. (

5.2. AUSLANDER–REITEN TRIANGLES AND TORSION PAIRS

The above results suggest to study more closely the behavior of AR-triangles
with respect to torsion pairs in a triangulated category.

Recall from [22] that a pair ðX ;YÞ of full strict subcategories of C is called a
torsion pair in C, if: ðaÞ X and Y are closed under R and CðX;YÞ ¼ 0, 8X 2 X ,
8Y 2 Y, and ðbÞ for any object C in C there exists a triangle
XC ! C! YC ! RðXCÞ in C with XC 2 X and YC 2 Y. If ðX ;YÞ is a torsion
pair in C, then X and Y are thick subcategories of C, the assignment C! XC

gives a right adjoint RX : C ! X of the inclusion iX : X ,!C and the assign-
ment C! YC gives a left adjoint LY : C ! Y of the inclusion jY : Y ,!C. If iX ,
resp. jY , also admits a left adjoint, resp. a right adjoint, then the left adjoint of
iX is denoted by LX , resp. the right adjoint of jY is denoted by RY . A triple
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ðX ;Y;ZÞ of subcategories of C is called a torsion triple in C, if ðX ;YÞ and
ðY;ZÞ are torsion pairs; in this case X is triangle equivalent to Z, see [22,
Corollary I.2.9]. Note that the notion of torsion triple is equivalent to
recollement in the sense of [14]. Finally a torsion quadruple in C is a quadruple
ðW;X ;Y;ZÞ of subcategories of C such that ðW;X ;YÞ and ðX ;Y;ZÞ are
torsion triples. In this caseW, resp. X , is triangle equivalent to Y, resp. Z. For
more information on torsion pairs in triangulated categories we refer to [22].

LEMMA 5.8. Let C be Krull-Schmidt and let ðX ;YÞ be a torsion pair in C. If C
has right, resp. left, AR-triangles, then X , resp. Y, has right, resp. left,
AR-triangles.

Proof. If sCT! A! T! RðsCTÞ is an AR-triangle in C with T 2 X , then
clearly the composition XA ! A! T is right almost split in X . Since X is
Krull-Schmidt, by [1, Lemma 2.6], there exists a minimal right almost split
map X! T in X , hence sXT! X! T! RðsXTÞ is an AR-triangle in X .
The case for Y is similar. h

If there exists a torsion triple in C, then we have the following result which
gives a nice connection between the end terms of an AR-triangle.

LEMMA 5.9. If ðX ;Y;ZÞ is a torsion triple inC and ðTÞ : E!a A!b T!c RðEÞ is
an AR-triangle in C, then T 2 X if and only if E 2 Z. In particular if C is Krull–
Schmidt with AR-triangles, then all the categoriesX ,Y andZ haveAR-triangles.

If C admits a Serre functor S, then S induces a triangle equivalence X !� Z.

Proof. Assume that T lies in X and consider the morphism g : E! ZE. If
g is not split monic, then R�1ðcÞ � g factors through the fiber YE ! E of g.
Since CðT;YEÞ ¼ 0, it follows that R�1ðcÞ ¼ 0 and this is impossible. Hence g
is a split monic and this implies that E lies in Z. The converse is proved
similarly. Assume now that C is Krull–Schmidt with AR-triangles. Then by
Lemma 5.8 it follows that Y has AR-triangles, X has right AR-triangles
and Z has left AR-triangles. Since, by [22], X and Z are triangle equivalent,
both have AR-triangles. If S is a Serre functor in C, then the isomor-
phisms DCðX;YÞ ! CðY;SðXÞÞ and DCðY;ZÞ ! CðS�1ðZÞ;YÞ show that S :
X¡Z : S�1 are quasi-inverse triangle equivalences. (

EXAMPLE 5.10. If K is a self-injective Artin algebra and Y is a contrava-
riantly or covariantly finite resolving and coresolving subcategory of mod-K,
then by [22, Corollary VI.4.12] there exists a torsion triple ðX ;Y;ZÞ in the
stable category mod-K. So by Lemma 5.9 the subcategories X , Y and Z of
mod-K admit AR-triangles.

In case C is R-finite we have the following more precise result.

PROPOSITION 5.11. Let C be an R-finite triangulated category over a
commutative ring R. If ðX ;YÞ is a torsion pair in C, then we have the following.
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(i) If C has right AR-triangles, then X has right AR-triangles.
(ii) If C has left AR-triangles, then Y has left AR-triangles.
(iii) If C has AR-triangles, then the following are equivalent:

(a) X has left AR-triangles.
(b) Y has right AR-triangles.
(c) The inclusion X ,!C admits a left adjoint. Equivalently there exists a

torsion triple ðW;X ;YÞ in C.
(d) The inclusion Y ,!C admits a right adjoint. Equivalently there exists a

torsion triple ðX ;Y;ZÞ in C.
If (a) holds, then X and Y, and all their left or right iterated orthogonal
subcategories ðnÞ?X , X?ðnÞ and Y?ðnÞ, ðnÞ?Y have AR-triangles.

Proof. Since C is Krull–Schmidt, parts (i) and (ii) follow from Lemma 5.8.
(iii) Assume that C has AR-triangles. Then by Theorem 4.9, C admits a

Serre functor SC : C ! C. Let R : C ! X , resp. L : C ! Y, be the right, resp.
left, adjoint of the inclusion X ,!C, resp. Y ,!C.

(a) ) (c) ) (b) Since X has left AR-triangles, by (i), X has AR-
triangles and therefore X admits a Serre functor SX : X ! X . Then the
isomorphisms

CðC;XÞ!ffi D2CðC;XÞ!ffi DCðX;SCðCÞÞ!
ffi
DXðX;RSCðCÞÞ!

ffi XðS�1X RSCðCÞ;XÞ

show that the functor LX :¼ S�1X RSC : C ! X is a left adjoint of the inclusion
X ,!C. Then settingW :¼ ?X , we obtain a torsion triple ðW;X ;YÞ in C and
by Lemma 5.9 it follows that Y has right AR-triangles.

(b) ) (d) ) (a) As in the proof of (a) ) (c) it is easy to check that the
functor SYLS

�1
C : C ! Y is a right adjoint of the inclusion Y ,!C, where SY is

a Serre functor of Y. Then setting Z :¼ Y?, we obtain a torsion triple
ðX ;Y;ZÞ in C and therefore by Lemma 5.9 it follows that X has left
AR-triangles. (

By Proposition 5.11 if C has AR-triangles and ðX ;YÞ is a torsion pair in C,
then X and Y have AR-triangles iff there exists a torsion quadruple
ðW;X ;Y;ZÞ in C. Based on an idea of Bondal and Kapranov [23] we give a
converse.

THEOREM 5.12. Let C be an R-finite triangulated category over a com-
mutative ring R and let X and Y be thick subcategories of C. Assume that
CðX ;YÞ ¼ 0, X and Y are functorially finite in C and C is generated as a
triangulated category by X and Y. Then the following conditions are
equivalent.

(i) C has AR-triangles.
(ii) Both X and Y have AR-triangles.
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If (i) holds, then there exist torsion quadruples ðOnþ2;Onþ1;On;On�1Þ in C,
8n 2 Z, where O0 ¼ X and O�1 ¼ Y, and all the categories On have AR-
triangles.

Proof. Since C is Krull–Schmidt, by [22, Propositions I.2.6 and II.2.4],
there exists a torsion quadruple ð?X ;X ;Y;Y?Þ in C. Then part (i) ) (ii)
follows from Proposition 5.11. Assume now that X and Y have AR-triangles
and let SX : X ! X and SY : Y ! Y be their Serre functors. Also let
RX ; LX : C ! X be the right, left adjoint of the inclusion X ,!C and let
RY; LY : C ! Y be the right, left adjoint of the inclusion Y ,!C. Then we have
torsion triples ðW;X ;YÞ and ðX ;Y;ZÞ in C, whereW ¼ ?X and Z ¼ Y?. Let
LZ : C ! Z be the left adjoint of the inclusion Z ,!C. By Theorem 4.9, to
show that C has AR-triangles, it suffices to construct a Serre functor for C. To
this end we follow a construction due to Bondal and Kapranov [23, Theorem
2.10]. Let C be in C. Using adjointness and the existence of Serre functors we
have the following isomorphisms:

aC;� : DCðC;�ÞjX !
ffi
DXðLXðCÞ;�Þ!

ffi Xð�;SXLXðCÞÞ

bC;� : DCðC;�ÞjY !
ffi
DYðLYðCÞ;�Þ!

ffi Yð�;SYLYðCÞÞ
Ignoring the inclusion functors, consider the triangle in C

RYSXLXðCÞ!
g
SXLXðCÞ!

f
LZSXLXðCÞ!

h
RRYSXLXðCÞ

induced from the torsion pair ðY;ZÞ and let x be the composite morphism:

x : Y½RYSXLXðCÞ;SYLYðCÞ� ������!
b�1C;RYSX LX ðCÞ

DC½C;RYSXLXðCÞ� ����!DCðC;gÞ

DCðC; SYLYðCÞÞ �����!aC;SX LX ðCÞ X½SXLXðCÞ; SXLXðCÞ�:
We set q :¼ x�1ð1SXLX ðCÞÞ : RYSXLXðCÞ����!SYLYðCÞ and consider the tri-
angle

YðCÞ!s RYSXLXðCÞ!
q
SYLYðCÞ!

r
RYðCÞ

Then the composition s � g induces the following octahedron

YðCÞ ���!s RYSXLXðCÞ ���!q SYLYðCÞ ���!r RYðCÞ���� g

???y
???y

����
YðCÞ ���!s�g SXLXðCÞ ���! SCðCÞ ���! RYðCÞ???y

����
???y

???y
RYSXLXðCÞ ���! SXLXðCÞ ���! LZSXLXðCÞ ���! RRYSXLXðCÞ???y

RSYLYðCÞ
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We claim that the object SCðCÞ is the evaluation of a right Serre functor
SC : C ! C in C at C. Indeed let A be in C and consider the triangle (again
ignoring the inclusion functors) ðTAÞ : RXðAÞ ! A! LYðAÞ ! RRXðAÞ
induced by the torsion pair ðX ;YÞ. Applying to this triangle the functor
Cð�;SCðCÞÞ we have the exact sequence C½LYðAÞ;SCðCÞ� ! C½A;SCðCÞ� !
C½RXðAÞ; SCðCÞ�. Using that the object LZSXLXðCÞ lies in Z ¼ Y?, we have
isomorphisms:

C½LYðAÞ;SCðCÞ�!
ffi Y½LYðAÞ; SYLYðCÞ�!

ffi
DY½LYðCÞ; LYðAÞ�

!ffi DC½C; LYðAÞ�
Similarly since the object YðCÞ lies in Y ¼ X?, we have isomorphisms:

C½RXðAÞ;SCðCÞ�!
ffi X½RXðAÞ;SXLXðCÞ�!

ffi
DX½LXðCÞ;RXðAÞ�

!ffi DC½C;RXðAÞ�
Therefore we have an exact sequence DC½C; LYðAÞ� ! C½A;SCðCÞ� !
DC½C;RXðAÞ� which is easily seen to be isomorphic to the exact sequence
resulting by applying the functor DCðC;�Þ to the triangle ðTAÞ. It follows
that we have an isomorphism DCðC;AÞ ! CðA; SCðCÞÞ which is easily seen to
be functorial in both A and C, since all the involved constructions are
functorial. Therefore SC is a right Serre functor in C. Working as above with
the functor DCð�;CÞ we infer in a similar way that C admits a left Serre
functor and consequently C admits a Serre functor. Finally the last assertion
follows by repeated application of Proposition 5.11. (

5.3. TORSION PAIRS OF COMPACT OBJECTS

In Sections 8 and 9 we are interested in having criteria ensuring that the full
subcategory Cb of compact objects of a compactly generated triangulated
category C has AR-triangles. In this connection torsion pairs provide useful
information. We close this section studying the question of when a torsion
pair ðX ;YÞ in C restricts to a torsion pair ðXb;YbÞ in Cb. This is related to
certain finiteness conditions on the torsion pair ðX ;YÞ which will be useful
later in connection with representation embeddings and the Ziegler spectrum.

Recall from [54] that a triangulated category C is called perfectly gener-
ated, resp. cogenerated, if C has all small coproducts, resp. products, and
admits a generating, resp. cogenerating, set S such that for any countable set
of maps Ai ! Bi in C, the induced map CðS;�iAiÞ ! CðS;�iBiÞ, resp.
Cð
Q

i Bi;SÞ ! Cð
Q

i Ai;SÞ, is surjective provided that the maps CðS;AiÞ !
CðS;BiÞÞ, resp. CðBi;SÞ ! CðAi;SÞ, are surjective for all i. In this case S is
called a perfect generating, resp. cogenerating, set in C. By recent results of
Krause [54, Theorem A] it follows that perfectly generated categories satisfy
Brown’s Representability Theorem and perfectly cogenerated categories C
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satisfy Brown’s Representability Theorem for the Dual, i.e. product preserving
homological functors C ! Ab are representable. In the sequel we shall need
the following result which is due to Krause, see Proposition 10.1, Corollary
10.2 and their duals in [58].

LEMMA 5.13.

(1) If C is compactly generated, then C is perfectly (co)generated.
(2) A triangulated functor G : C ! D, where C is perfectly cogenerated, admits

a left adjoint iff G preserves all small products.
(3) A triangulated functor F : C ! D, where C is perfectly generated, admits a

right adjoint iff F preserves all small coproducts.

Now let C be a triangulated category with all small products and coproducts.
Recall from [22] that a torsion pair ðX ;YÞ in C is of finite type, resp. of cofinite
type, if Y is closed under coproducts, resp. X is closed under products.

PROPOSITION 5.14. Let ðX ;YÞ be a torsion pair in a triangulated category
C which admits all small products and coproducts. Then we have the following.

(i) If C is perfectly cogenerated, then: ðX ;YÞ is of cofinite type iff there exists
a torsion triple ðW;X ;YÞ in C. In this case X is perfectly cogenerated.
Moreover if C is compactly generated, then so is X .

(ii) If C is perfectly generated, then: ðX ;YÞ is of finite type iff there exists a
torsion triple ðX ;Y;ZÞ in C. In this case Y is perfectly generated.
Moreover if C is compactly generated, then so is Y.

(iii) If C is perfectly generated and cogenerated, then: ðX ;YÞ is of finite and
cofinite type iff there exists a torsion quadruple ðW;X ;Y;ZÞ in C. In this
case the categories W, X , Y, and Z are perfectly generated and cogener-
ated. Finally C is compactly generated iffW and X (and Y and Z) are so.

Proof. (i) Clearly the existence of a torsion triple ðW;X ;YÞ in C implies
that X is closed under products. Assume now that X is closed under products
and let U be a perfect cogenerating set in C. We claim that RXðUÞ is a perfect
cogenerating set in X , where RX : C ! X is the right adjoint of the inclusion
iX : X ,!C. Indeed if XðX;RXðUÞÞ ¼ 0, then by adjointness we have
CðiXðXÞ;UÞ ¼ 0 and therefore X ¼ 0. If Xi ! X0i is a countable set of maps in
X such that the induced maps XðX0i;RXðUÞÞ ! XðXi;RXðUÞÞ are surjective
for all i, then by adjointness so are the maps CðiXðX0iÞ;UÞ ! CðiXðXiÞ;UÞ.
Since C is perfectly cogenerated, the induced map Cð

Q
i iXðX0iÞ;UÞ !

Cð
Q

i iXðXiÞ;UÞ is surjective. Since X is closed under products in C, it follows
that iX preserves products and then using adjointness it follows that the last
map is isomorphic to Xð

Q
i X
0
i;RXðUÞÞ ! Xð

Q
i Xi;RXðUÞÞ hence it is sur-

jective. Hence RXðUÞ is a perfect cogenerating set in X and then by Lemma
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5.13 it follows that iX admits a left adjoint. By [22, Proposition I.2.3] this is
equivalent to the existence of a torsion pair ðW;XÞ in C, i.e. we have a torsion
triple ðW;X ;YÞ in C. Finally if C is compactly generated and ðW;X ;YÞ is a
torsion triple in C, then X is compactly generated by [22, Proposition IV.1.1].

(ii) is similar to (i) and (iii) follows by combining (i), (ii), [22, Corollary
IV.1.4] and using that for a torsion triple ðX ;Y;ZÞ in C, X and Z are triangle
equivalent. h

We call a torsion triple ðX ;Y;ZÞ in C perfect if the torsion pair ðX ;YÞ is of
cofinite type and the torsion pair ðY;ZÞ is of finite type. As a consequence of
Proposition 5.14 and [22, Proposition IV.1.11] we have the following result
which gives sufficient conditions for the existence of torsion pairs or triples in
the full subcategory of compact objects.

COROLLARY 5.15. Let ðX ;Y;ZÞ be a torsion triple in a compactly gener-
ated triangulated category C. Then we have the following.

(i) The torsion pair ðY;ZÞ is of finite type, i.e. Z is closed under coproducts in
C, iff there exists a torsion quadruple ðX ;Y;Z;UÞ in C, in which case the
torsion pair ðX ;YÞ restricts to a torsion pair ðXb;YbÞ in Cb.

(ii) The torsion pair ðX ;YÞ is of cofinite type, i.e. X is closed under products,
iff there exists a torsion quadruple ðW;X ;Y;ZÞ in C, in which case the
torsion pair ðW;XÞ in C restricts to a torsion pair ðWb;XbÞ in Cb.

(iii) The torsion triple ðX ;Y;ZÞ is perfect iff there exists a torsion quintuple
ðW;X ;Y;Z;UÞ in C, in which case the torsion triple ðW;X ;YÞ restricts to
a torsion triple ðWb;Xb;YbÞ in Cb.

(iv) If the torsion triple ðX ;Y;ZÞ is perfect, then there exists a torsion qua-
druple ðWb;Xb;Yb;ZbÞ in Cb iff the torsion pair ðZ;UÞ is of finite type.

Combining Corollary 5.15 and Theorem 5:12 we deduce the following.

COROLLARY 5.16. Let C be a compactly generated triangulated R-linear
category over a commutative ring R and assume that Cb is R-finite. If ðX ;Y;ZÞ
is a perfect torsion triple in C and Cb has AR-triangles, then both Xb and Yb

have AR-triangles. The converse holds provided that Z? is closed under co-
products in C.

6. Purity and the Ziegler Spectrum

In this section we first recall basic facts concerning purity, Brown Repre-
sentability, and the Ziegler spectrum of a compactly generated triangulated
category. For detailed information we refer to [18,51]. Next we isolate specific
subsets of the Ziegler spectrum which will be useful later in connection with
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Auslander-Reiten theory for compact objects, and we compare Ziegler
spectra of module and triangulated categories via various representation
embeddings. Finally we study briefly pure Auslander-Reiten triangles in a
Brown category.

Throughout this section C denotes a compactly generated triangulated
category. As already mentioned in Section 5, compactly generated triangu-
lated categories satisfy Brown’s representability theorem and therefore
cohomological functors Cop ! Ab taking coproducts to products are repre-
sentable. Therefore for any compact object T in C and any maximal left ideal
m of the endomorphism ring KT, the functor H_T;m :¼ HomKT

½HTð�Þ;
Im� : Cop ! Ab is representable, where Im is the injective envelope of the
simple left KT-module ST;mðTÞ :¼ KT=m and HT :¼ CðT;�Þ : C !Mod-Kop

T .
Hence the m-dual object DmðTÞ exists in C for any compact object T in C and
any maximal left ideal m of KT. In what follows it is useful to consider the
restricted Yoneda functor

H : C �!Mod-Cb; HðAÞ ¼ Cð�;AÞjCb :
Clearly the functor H is homological, preserves products and coproducts and
it is easy to see that its image is contained in the full subcategory of coho-
mological functors over Cb. Let ST;m 2Mod-Cb be the simple functor
Cbð�;TÞ=Cbð�;TÞm determined by T and m as in Section 2. Recall that, for a
ring K, MaxlðKÞ denotes the space of maximal left ideals of K. The above
construction suggests the following definition, referring to [41, Section 3] for
a related module theoretic version. We denote by IsoðCbÞ the set of isoclasses
of compact objects and by IndðCbÞ the set of isoclasses of compact objects
with local endomorphism ring.

DEFINITION 6.1. The maximal spectrum of C is the set of all m-dual
objects of the isoclass of compact objects:

MaxðCÞ :¼ fDmðTÞ 2 C jT 2 IsoðCbÞ and m 2MaxlðKTÞg
The reduced maximal spectrum MaxIndðCÞ of C is the subspace of MaxðCÞ
consisting of the m-dual objects of compact objects of C with local endo-
morphism ring. We call the objects in MaxðCÞ maximal points of C.

In the following we collect some consequences of our previous results.

PROPOSITION 6.2. Let T be a compact object in C.
(1) The m-dual object DmðTÞ has local endomorphism ring.
(2) There exists a triangle ðTÞ : R�1DmðTÞ ! A! T! DmðTÞ in C and the

morphism RðgTÞ : DmðTÞ ! RA is left almost split in C.
(3) The image of the morphism HðhTÞ : HðTÞ ! HðDmðTÞÞ in Mod-Cb is the

simple functor ST;m and the inclusion ST;m ,!HðDmðTÞÞ is an injective
envelope.
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(4) T has local endomorphism ring iff ðTÞ is an AR-triangle in C. Hence the
m-dual object DmðTÞ lies in MaxIndðCÞ iff T is the target of an AR-triangle
in C.

PROPOSITION 6.3. The set MaxðCÞ is a cogenerating set in C and the set
HðMaxðCÞÞ is a cogenerating set of indecomposable injective objects in Mod-Cb.
In particular any functor in Mod-Cb is a subobject of a product of objects from
HðMaxðCÞÞ.

6.1. PURITY

Recall from [18,51], that a triangle ðTÞ : A!g B!f C!h RðAÞ in C is called a
pure-triangle iff for any compact object X, the sequence 0! CðX;AÞ !
CðX;BÞ ! CðX;CÞ ! 0 is exact in Ab. An object T is called pure-projective,
resp. pure-injective, if for any pure triangle as above, the induced sequence
0! CðT;AÞ ! CðT;BÞ ! CðT;CÞ ! 0, resp. 0! CðC;TÞ ! CðB;TÞ !
CðA;TÞ ! 0, is exact in Ab. If ðTÞ is a pure-triangle, we call the morphism g a
pure-monomorphism, the morphism f a pure-epimorphism and the morphism h
phantom. The collection PhðCÞ of all phantom maps in C is a two sided ideal
of C closed under R and the class of pure-triangles is a proper class of
triangles in C in the sense of [18]. An object C in C is pure-projective, resp.
pure-injective, iff PhðC;�Þ ¼ 0, resp. Phð�;CÞ ¼ 0.

We denote by PProjðCÞ, resp. PInjðCÞ, the full subcategory of C con-
sisting of the pure-projective, resp. pure-injective, objects. We say that C has
enough pure-projective, resp. pure-injective, objects, if any object C in C is
included in a pure triangle K! P! C! RðKÞ, resp. C! I! L! RðCÞ,
where P is pure-projective, resp. I is pure-injective. A pure-injective envelope
of A 2 C is a left minimal pure-monomorphism g : A! E with E pure-
injective. Then C has enough pure-projectives and PProjðCÞ ¼ AddðCbÞ and
C has pure-injective envelopes and PInjðCÞ ¼ ProdðMaxðCÞÞ, where the
latter is the full subcategory of C consisting of direct summands of arbitrary
products of objects from MaxðCÞ. We refer to [18, Section 11] and [51,
Section 1] for details.

There is a nice interplay between the end terms of an AR-triangle. Notice
that the module theoretic analog of this interplay was first observed by
Herzog [39].

LEMMA 6.4. If ðTÞ is an AR-triangle, then the following are equivalent.

(i) The triangle ðTÞ is not pure.
(ii) The object C is compact.
(iii) The object A is pure-injective.

Proof. (i) ) (ii) Since ðTÞ is not pure, it follows that h is not phantom.
Hence there exists a compact object X and a morphism a : X! C which does
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not factor through f. This clearly implies that a is split epic, hence C is
compact.

(ii) ) (iii) Let b : B! A be non-zero phantom. Then its cofiber c is not
split mono, hence c factors through g. This implies that R�1ðhÞ factors
through b and therefore it is phantom. Then R�1ðhÞ ¼ 0 since R�1ðCÞ is
compact and this is not the case. It follows that b ¼ 0 and consequently there
are no non-zero phantom maps into A. Hence A is pure-injective.

(iii)) (i) ðTÞ is not pure since it does not splits and E is pure-injective.(

Remark 6.5. The previous result as well as large parts of the theory
that follows can be generalized to an arbitrary triangulated category
equipped with a proper class of triangles E with enough projectives in the
sense of [18].

The restricted Yoneda functor H : C !Mod-Cb plays an important role in
the study of purity in C and, as explained in [19], serves as an analog of the
functors Mod-ðmod-KopÞop  Mod-K!Mod-ðmod-KÞ defined by
A	K �jmod-Kop  A! HomKð�;AÞjmod-K which provide an indispensable

tool for the study of purity of modules. More precisely H identifies the pure-
projective objects of C with the projective functors of Mod-Cb and the pure-
injective objects of C with the injective functors of Mod-Cb. It follows that the
endomorphism ring of an indecomposable pure-injective object of C is local
and, by Proposition 6.3, any object of C admits a pure monomorphism into a
product of objects from the maximal spectrumMaxðCÞ of C. Further H reflects
isomorphisms and a triangle A! B! C ! RA in C is pure iff
0! HðAÞ ! HðBÞ ! HðCÞ ! 0 is exact in Mod-Cb. Note that since Cb is tri-
angulated, the cohomological functors fCbgop ! Ab coincide with the flat
functors. Finally any injective functor is flat and the category of flat functors is
closed under products inMod-Cb, see [18, 51] for more details. In particular we
shall need in the sequel the following consequence of [18, Proposition 4.19].

LEMMA 6.6. [18]

(i) For any pure-projective object P in C the canonical morphism
HP;� : CðP;�Þ ! HomðHðPÞ;Hð�ÞÞ is invertible. In particular if P is pure-
projective and HðfÞ : HðAÞ ! HðPÞ is split epic in Mod-Cb, then so is f.

(ii) For any pure-injective object E in C the canonical morphism H�;E : Cð�;EÞ
! HomðHð�Þ;HðEÞÞ is invertible. In particular if E is pure-injective and
HðgÞ : HðEÞ ! HðAÞ is split monic in Mod-Cb, then so is g.

6.2. THE ZIEGLER SPECTRUM

By [51], the family of isoclasses of indecomposable pure-injective objects of C
form a set, which is denoted by ZgðCÞ. Following [53], the set ZgðCÞ becomes
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a topological space, called the Ziegler spectrum of C, if we define a topology
T , the Ziegler-topology, as follows. Let U be a collection of maps between
compact objects. Then E 2 C is called U-injective, if for any / : X! Y in U,
any morphism a : X! E factors through /. The class of U-injective objects
of C is denoted by UU. The closed subsets of T are defined to be of the form
UU \ ZgðCÞ, where U is a collection of morphisms between compact objects.
We refer to the work of Garkusha-Prest [32] for a model-theoretic description
of the Ziegler topology using pp-formulas of a (multi-sorted) first order
language for C. The following remark gives a torsion theoretic description of
the Ziegler topology.

Remark 6.7. Let ðX ;YÞ be a torsion pair of finite type in C. Then, by
Proposition 5.14, the torsion pair ðX ;YÞ is part of a torsion triple ðX ;Y;ZÞ in
C and Y is compactly generated. More precisely if LY : C ! Y is the left
adjoint of the inclusion iY : Y ,!C and T is a set of compact generators of C,
then LYðT Þ is a set of compact generators for Y. It is not difficult to see that
iY induces a closed continuous map ZgðYÞ ,!ZgðCÞ, we refer to Theorem 6.13
below for a more general result. By a result of Krause [56] the map
ðX ;YÞ 7!ZgðCÞ \ Y ¼ ZgðYÞ gives a bijection between torsion pairs of finite
type in C and closed subsets of ZgðCÞ.

Clearly the suspension R induces an homeomorphism ZgðCÞ ! ZgðCÞ and
by the above results it follows that we have inclusions MaxIndðCÞ 

MaxðCÞ 
 ZgðCÞ and an injective map sþ : IndðCbÞ ! MaxIndðCÞ which sends a
compact object T with local endomorphism ring to its AR-translate
sþðTÞ ¼ R�1ðDmðTÞÞ.

The Ziegler spectrum ZgðKÞ of a ring K plays a fundamental role in the
analysis of the module category Mod-K. Recall that ZgðKÞ is the set of
isoclasses of indecomposable pure-injective K-modules equipped with the
Ziegler topology, introduced by Ziegler [80] in model-theoretic terms, having
as closed sets the subsets UU 
 ZgðKÞ, where U is a collection of maps
between finitely presented K-modules. We refer to the works of Prest
[68,71,72], Herzog [41] and Krause [53] for a comprehensive treatment of the
Ziegler spectrum of a module category. Here we discuss briefly the connec-
tions between the Ziegler spectrum of C and the Ziegler spectrum of the
endomorphism ring KT of a compact generator T of C, thus generalizing
recent results of Garkusha and Prest [32].

We assume throughout that T satisfies the Toda condition
CðT;RnðTÞÞ ¼ 0, 8n > 0. Then, by the results of [22, Chapter III], T induces a
t-structure in C in the sense of [14], with heart HðTÞ ¼ fA 2 C j CðT;RnðAÞÞ ¼
0; 8n 6¼ 0g, and the functor CðT;�Þ : HðTÞ !Mod-KT is an equivalence.
Usually we view this equivalence as an identification Mod-KT ¼ HðTÞ 
 C.
Clearly Mod-KT is closed under products and coproducts in C and we have
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cohomology functors Hn : C !Mod-KT, 8n 2 Z, see [14] or [22] for details. If
T, in addition, satisfies CðT;RnðTÞÞ ¼ 0, 8n < 0, so that T is a tilting object in
C, then T lies in the heart and it is easy to see that we have isomorphisms
Hn ffi CðT;Rnð�ÞÞ : C !Mod-KT, hence the functors H� preserve products
and coproducts. We have the following connection between the Ziegler
spectra ZgðKTÞ and ZgðCÞ which generalizes slightly, and is inspired by, a
recent result of Garkusha and Prest, see Theorem 7.3 in [32].

PROPOSITION 6.8. Let T be a compact generator of C with endomorphism
ring KT, and assume that CðT;RnðTÞÞ ¼ 0, 8n > 0. Then we have the following.

(1) For any pure-injective KT-module M, the object RnðMÞ is pure-injective in
C, 8n 2 Z. If T is a tilting object, then for any pure-injective object E in C,
the cohomology object HnðEÞ is pure-injective in Mod-KT, 8n 2 Z.

(2) The sets Un :¼ fRnðMÞjM 2 ZgðKTg and their disjoint union U ¼
F

n2Z Un

are closed subsets of ZgðCÞ.
(3) If C ¼ DðAÞ is the unbounded derived category of a Grothendieck category
A and T is a tilting object in DðAÞ such that KT is a right coherent ring with
finite weak global dimension, then the inclusion Mod-KT ,!DðAÞ induces
homeomorphisms ZgðKTÞ ! Un 
 ZgðDðAÞÞ.
Proof. (1) Using that in both Mod-KT and C an object X is pure-injective

iff for any index set I the summation map �IX! X factors through the
(pure-)mono �IX!

Q
I X, see [42, Theorem 7.1] and [51, Theorem 1.8], we

infer that any pure-injective KT-module is pure-injective in C. If T is a
tilting object, then the cohomology functors Hn preserve products and
coproducts and therefore send pure-injective objects in C to pure-injective
KT-modules.

(2) Fix n 2 Z and consider the set of morphisms Un ¼ fRmðTÞ !
0 jm 2 Z; m 6¼ ng in Cb. Then for any object RnðMÞ where M is an inde-
composable pure-injective KT-module, any morphism RmðTÞ ! RnðMÞ is
zero and therefore Un 
 UUn

. If E lies in UUn
, then CðRmðTÞ;EÞ ¼ 0, 8m 6¼ n.

This implies that R�nðEÞ lies in the heart and therefore E 2 Un. Hence
Un ¼ UUn

and therefore Un is a closed subset of ZgðCÞ. Let O :¼ ZgðCÞ n U.
Clearly E lies in O iff there exist (at least two) m; n 2 Z with m 6¼ n such that
CðT;RnðEÞÞ 6¼ 0 and CðT;RmðEÞÞ 6¼ 0, that is, iff E lies in Uc

n \ Uc
m. Hence

O ¼
S

m6¼nðUc
n \ Uc

mÞ is open and therefore
F

n2Z Un is closed in ZgðCÞ.
(3) By a result of Keller [48], the tilting object T induces a triangle

equivalence DðMod-KTÞ!
�
DðAÞ. Since KT is right coherent of finite weak

global dimension, it follows easily that any finitely presented KT-modules
becomes a compact object in DðMod-KTÞ, hence in DðAÞ. Using these facts
and the description of the Ziegler spectrum of a ring in [53], the assertion is
proved as in [32, Theorem 7.3]. (
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COROLLARY 6.9. Let A be a Grothendieck category and assume that DðAÞ
contains a tilting object T. If KT ¼ EndðTÞ is right hereditary, then
ZgðDðAÞÞ ¼

F
Z ZgðKTÞ.

Proof. By [63] for any complex A in DðMod-KTÞ we have
A ffia

n2Z HnðAÞ½�n�. Since KT is right coherent, the assertion follows from

Proposition 6.8. (

COROLLARY 6.10. Let C ¼ HoðSpÞ be the stable homotopy category of
spectra. Then for any pure-injective spectrum E, the stable homotopy group
p�ðEÞ is a pure-injective abelian group. Moreover Un :¼ fRnðMÞ j n 2 Zg andF

n2Z Un are closed subsets of ZgðHoðSpÞÞ, where M is one of the following (p
denotes a prime and we identify M with the corresponding Eilenberg-MacLane
spectrum):

(i) Q and one of the Prüfer groups Zðp1Þ.
(ii) The cyclic groups ZðpnÞ.
(iii) The p-adic completion bZðpÞ of Z.

Proof. It is well-known that the sphere spectrum S0 is a compact gener-
ator of HoðSpÞ satisfying the condition ½S0;RnðS0Þ� ¼ 0;8n > 0, and the heart
of the t-structure induced by S0 coincides with Ab, see [22, Section III.3], [61,
Theorem 6.1]. Then the assertion follows by Proposition 6.8 and the well-
known classification of indecomposable pure-injective abelian groups, see the
book of Kaplansky [45]. (

6.3. REPRESENTATION EMBEDDINGS AND THE ZIEGLER SPECTRUM

Let as before C be a compactly generated triangulated category. We have
seen in Remark 6.7 that if ðX ;YÞ is a torsion pair of finite type in C then
Y is compactly generated and the inclusion functor Y ! C preserves
products and coproducts. Such functors are special cases of representation
embeddings (defined below) which provide a natural tool for comparing
Ziegler spectra. Notice that a module theoretic variant of the notion of
representation embedding was first introduced by Prest, see [69].

DEFINITION 6.11. A triangulated functor G : C ! D between compactly
generated triangulated categories is called definable if G preserves products
and coproducts. A definable functor is called a representation embedding if G
reflects isomorphisms and preserves indecomposability.

We denote by FlatðCbÞ the full subcategory of Mod-Cb consisting of the
flat (= cohomological) functors fCbgop ! Ab. The category FlatðCbÞ is
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locally finitely presented with products in the sense of Crawley-Boevey [27]
and exactly definable in the sense of Krause [49]. A theory of purity for such
categories were developed in [27,49,71]. In particular one can define the
Ziegler spectrum of FlatðCbÞ as the set of indecomposable pure-injective
objects of FlatðCbÞ equipped with the Ziegler topology which is defined in a
similar way as the Ziegler topology of C, using that the compact objects of C
are the finitely presented objects in FlatðCbÞ. We refer to [71] and [49] for
more details. In the sequel we shall need the following result.

LEMMA 6.12. ([51], Proposition 2.6). If G : C ! D is a definable functor,
then G preserves pure-injective objects and admits a left adjoint F which pre-
serves compact objects. Moreover there exist an adjoint pair ðF �b ;F b

� Þ :
Mod-Db ¡Mod-Cb of colimit preserving exact functors which preserve flat
functors and make the following diagrams commutative (HC and HD are the
restricted Yoneda functors):

C ���!G D

HC

???y HD

???y
Mod-Cb ���!F b

�
Mod-Db

D ���!F C

HD

???y HC

???y
Mod-Db ���!F �b Mod-Cb

In particular there exists an adjoint pair ðF �b ;F b
� Þ : FlatðDbÞ¡FlatðCbÞ, where

F b
� preserves filtered colimits and products and F �b preserves finitely presented

objects.

Proof. By results of Neeman [64, Theorem 5.1] and [66, Theorem 8.6.1] it
follows that G admits a left adjoint F which preserves compact objects. Then
the existence of the above diagrams and the preservation of pure-injectives by
F is proved in [51, Proposition 2.6]. The last assertion follows as in [18,
Section 11.4]. (

After these preliminaries we can prove the following result which gener-
alizes a result of Prest, see [69, Theorem 7], and gives a connection between
the Ziegler spectra of categories related by a representation embedding.

THEOREM 6.13. A representation embedding G : C ! D induces a homeo-
morphic embedding of ZgðCÞ as a closed subset of ZgðDÞ.

Proof. By Lemma 6.12 it follows that G induces an injective function
g : ZgðCÞ ! ZgðDÞ, gðEÞ ¼ GðEÞ, and admits a left adjoint F : D ! C which
restricts to a functor F b : Db ! Cb. Let d : IdD ! GF be the unit and
e : FG! IdC the counit of the adjoint pair ðF;GÞ. Let W be a collection of
maps in Db, hence FðWÞ ¼ fFðwÞj/ 2 Wgis a collection of maps in Cb, and let
E be in g�1ðUWÞ, i.e. GðEÞ is in UW. Also let FðwÞ : FðXÞ ! FðYÞ be a map in
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FðWÞ. Since GðEÞ isW-injective, for any map a : FðXÞ ! E, there exists a map
q : Y! GðEÞ such that dX � GðaÞ ¼ w � q. Applying F and using adjointness,
we have: a ¼ FðdXÞ � eFðXÞ � a ¼ FðdXÞ � FGðaÞ � eE ¼ FðwÞ � FðqÞ � eE.
Hence a factors through FðwÞ and this shows that g�1ðUWÞ 
 UFðWÞ. Next let
E be in UFðWÞ and let w : X! Y be a map in W. Since E is FðWÞ-injective, for
any map b : X! GðEÞ, the composition FðaÞ � eE : FðXÞ ! E factors
through FðwÞ, say as Fð/Þ � r ¼ FðaÞ � eE. Applying G and using adjointness,
we have: b ¼ b � dGðEÞ � GðeEÞ ¼ dX � GFðbÞ � GðeEÞ ¼ dX � GFðwÞ � GðeEÞ ¼
w � dY � GðrÞ and this shows that b factors through w. Hence GðEÞ is
W-injective and therefore E lies in g�1ðUWÞ. Hence UFðWÞ 
 g�1ðUWÞ. Since
the closed subsets of ZgðCÞ, resp. ZgðDÞ, are of the form UU, resp. UW, where
U, resp. W, are collection of maps in Cb, resp. Db, we infer that g is contin-
uous. To show that g is closed we consider the adjoint pair
ðF �b ;F b

� Þ : FlatðDbÞ¡FlatðCbÞ from Lemma 6.12. Since the functor HC, resp.
HD, induces an equivalence between the full subcategories of pure-injective
objects of C, resp. D, and FlatðCbÞ, resp. FlatðDbÞ, it is easy to see that it
induces a map between the Ziegler spectra of C, resp. D, and FlatðCbÞ, resp.
FlatðDbÞ, which sends Ziegler closed subsets of C, resp. D, to Ziegler closed
subsets of FlatðCbÞ, resp. FlatðDbÞ, see [56, Section 7]. Let UU be a closed
subset of ZgðCÞ. Then HCðUUÞ is a closed subset of ZgðFlatðCbÞÞ. By
[49, Theorem 7.8] the subset Fb

�ðHCðUUÞÞ ¼ HDðGðUUÞÞ is closed in
ZgðFlatðDbÞÞ and therefore GðUUÞ is closed in ZgðDÞ. We infer that the map
g is closed. h

We close this subsection by pointing out some consequences.

COROLLARY 6.14. Let ðX ;YÞ be a torsion pair of finite, resp. cofinite, type
in C. Then the inclusion iY : Y ,!C, resp. iX : X ,!C, induces a closed homeo-
morphic embedding ZgðYÞ ! ZgðCÞ, resp. ZgðXÞ ! ZgðCÞ.

Proof. By Corollary 5.15, Y, resp. X , is compactly generated and the
inclusion iY, resp. iX , is a representation embedding. So the claim follows by
Theorem 6.13. (

EXAMPLE 6.15. Let T be a finitely presented module with finite projective
dimension over an Artin algebra K such that ExtnKðT;TÞ ¼ 0, 8nP1. If the
projective dimension ofT overC :¼ EndKðTÞ is finite, then by [22, Propositions
IV.1.11 and IV.3.5] there exists a perfect torsion pair ðX ;YÞ in DðMod-KÞ,
where X is triangle equivalent to DðMod-CÞ, so Corollary 6.14 applies.

Recall from [33] that a ring homomorphism K! C is called a homological
epimorphism if the canonical map C	K C! C is invertible and
TorKn ðC;CÞ ¼ 0, 8n � 1. The following result gives a derived version to a
result of Prest [70, Corollary 9].
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COROLLARY 6.16. If K! C is a homological epimorphism of rings, then
there exists a homeomorphic embedding of ZgðDðMod-CÞÞ as a closed subset of
ZgðDðMod-KÞÞ.

Proof. By [58, Theorem 14.5] the functor F :¼ �	L
K C : DðMod-KÞ !

DðMod-CÞ admits a coproduct preserving fully faithful right adjoint G.
Clearly G is a representation embedding and therefore the assertion follows
from Theorem 6.13. (

COROLLARY 6.17. Let p be a prime and let HoðSpÞ, resp. HoðSpÞp, be the
stable homotopy category of, resp. p-local, spectra. Then there exists a
homeomorphic embedding of ZgðHoðSpÞpÞ as a closed subset of ZgðHoðSpÞÞ.

Proof. By [61, Chapter 8] it follows that the inclusion HoðSpÞp 
 HoðSpÞ
is a representation embedding and the assertion follows from Theorem
6.13. (

6.4. PURE AND GHOST AUSLANDER–REITEN TRIANGLES IN BROWN

CATEGORIES

In this subsection we are interested in pure AR-triangles E! A! X! RE
in C. Then, by Lemma 6.4, X! RE is phantom, X is not compact and E is
not pure-injective. Recall that C is called a Brown category if the functor
H : C !Mod-Cb, whose strict image lies in the subcategory FlatðCbÞ of flat
functors, is full [18]. Note that, by [18, Theorem 11.18], for a Brown category
C, the composition of two phantom maps is zero and the functor
H : C ! FlatðCbÞ is surjective on objects. Clearly FlatðCbÞ is an exact sub-
category of Mod-Cb in the sense of Quillen [73], so that we can speak of
Auslander–Reiten sequences in FlatðCbÞ.
THEOREM 6.18. Let C be a Brown category. If ðTÞ : E!g A!f X!h RE is a
triangle in C, then the following are equivalent.

(i) E! A! X! RE is a pure AR-triangle in C.
(ii) 0! HðEÞ ! HðAÞ ! HðXÞ ! 0 is an AR-sequence in FlatðCbÞ.

Proof. (i)) (ii) Since the triangle ðTÞ is pure and the functor H is homo-
logical, full and reflects isomorphisms, the sequence HðTÞ : 0! HðEÞ !
HðAÞ ! HðXÞ ! 0 is exact and not split in FlatðCbÞ. Let ea : F! HðXÞ be non-
split epic in FlatðCbÞ. Since H is full and surjective on objects, it follows that
F ffi HðBÞ andHðaÞ ¼ ea, where a : B! X is amorphism in C. SinceHðaÞ is non-
split epic, the same is true for a.Hence a factors through f, and thenHðaÞ factors
through HðfÞ. We infer that HðfÞ is right almost split. Since C is Brown, the
endomorphism rings EndðHðEÞÞ and EndðHðXÞÞ are local as factor rings of the
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local endomorphism rings EndðEÞ and EndðXÞ. We conclude that HðTÞ is an
AR-sequence in FlatðCbÞ.

(ii) ) (i) Consider the AR-sequence 0! HðEÞ ! HðAÞ ! HðXÞ ! 0 in
FlatðCbÞ. Since g is pure-mono, the triangle ðTÞ is pure. For any object A in C,
the kernel of the ring epimorphism EndðAÞ ! EndðHðAÞÞ is the ideal PhðAÞ
of self-phantom maps of A. By [18], we have Ph2ðAÞ ¼ 0, in particular
PhðAÞ 
 JacðEndðAÞÞ. This implies that if EndðHðAÞ is local, then the same is
true for EndðAÞ. Consequently the endomorphism rings EndðEÞ and EndðXÞ
are local. Let a : B! X be a morphism in C which is non-split epic. If HðaÞ is
split epic, then there exists a morphism eb ¼ HðbÞ : HðXÞ ! HðBÞ such that
HðbÞ � HðaÞ ¼ 1HðXÞ. Since H reflects isomorphisms, we infer that a is split
epic and this is not the case. It follows that HðaÞ is non-split epic and
therefore there exists a morphism ec ¼ HðcÞ : HðBÞ ! HðAÞ such that
HðcÞ � HðfÞ ¼ HðaÞ. This implies that the morphism c � f� a : B! X is
phantom. Since h is phantom and the ideal of phantom maps is square zero,
we infer that ðc � f� aÞ � h ¼ a � h ¼ 0.Hence a factors through f and therefore
ðTÞ is a pure AR-triangle in C. (

COROLLARY 6.19. If C is Brown, then H : C !Mod-Cb induces a bijection

H : pARTðCÞ $ ARSðFlatðCbÞÞ

between the family pARTðCÞ of isoclasses of pure AR-triangles in C and the
family ARSðFlatðCbÞÞ of isoclasses of AR-sequences in the exact category
FlatðCbÞ. In particular if FlatðCbÞ admits an AR-sequence, then C admits a pure
AR-triangle.

The above results admit relative versions. Let S be a compact object in C
and let EðSÞ be the proper class of triangles in C generated by S in the sense of
[18]. That is a triangle A! B! C ! RðAÞ lies in EðSÞ if 0! CðR�ðSÞ;AÞ !
CðR�ðSÞ;BÞ ! CðR�ðSÞ;CÞ ! 0 is exact, where R�ðSÞ :¼ fRnðSÞjn 2 ZgÞ. We
call EðSÞ the class of ghost triangles in C with respect to S and recall from
[18, Lemma 8.1] that the ghost projective objects of C are the objects of
the full subcategory AddðR�ðSÞÞ. Then as in Propositions 6.2 it follows
that any non-ghost-projective compact object X in C with local endomor-
phism ring occurs as a target of a ghost AR-triangle in C, and any non-ghost-
injective pure-injective object E in C with local endomorphism ring such that
E is reduced maximal point in the Ziegler spectrum occurs as a source of a
ghost triangle in C. Let HS : C !Mod-R�ðSÞ, HSðAÞ ¼ Cð�;AÞjR�ðSÞ be the
induced homological functor. We say that C is ghost Brown with respect to S
if HS is full, see [18, Theorem 10.2] for other equivalent conditions. The
following is a ghost analogue of Theorem 6.18 and is proved in the same way,
using [18].
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THEOREM 6.20. Assume that C is a ghost Brown category with respect to the
compact object S. Then ImHS is closed under extensions in Mod-R�ðSÞ. If
E! A! X! RE is a triangle in C, then the following conditions are
equivalent.

(i) E! A! X! RE is a ghost AR-triangle in C.
(ii) 0! HSðEÞ ! HSðAÞ ! HSðXÞ ! 0 is an AR-sequence in the exact sub-

category ImHS of Mod-R�ðSÞ.
Since for a right hereditary ring K, the derived category DðMod-KÞ is

clearly ghost Brown with respect to K (see Section 12:5 in [18]), we have the
following.

COROLLARY 6.21. Let K be a right hereditary ring. If E! A! X! RE
is a triangle in DðMod-KÞ, then the following conditions are equivalent.

(i) E! A! X! RE is a ghost AR-triangle in DðMod-KÞ.
(ii) 0! HKðEÞ ! HKðAÞ ! HKðXÞ ! 0 is an AR-sequence in the exact

subcategory ImHK of
Q

ZMod-K.
(iii) There exists a unique n 2 Z such that 0! HnðEÞ ! HnðAÞ !HnðXÞ ! 0

is an AR-sequence in Mod-K.

Pure homological algebra in a compactly generated triangulated category
C is the analogue of the classical relative homological theory of purity in a
module category. In turn ghost homological algebra in C is an analogue of
the absolute homological theory in a module category, see [18, Subsections
12.4 and 12.5] and [21] for more details. Concerning Auslander-Reiten
theory these analogies raises some questions. We do not know if in C there
exists a pure or pure-ghost AR-triangle R�1ðEÞ ! A! T! E, equivalently
an AR-triangle such that T is not compact or E is not pure-injective. For
Brown categories Corollary 6:19 shows that the question is equivalent to the
existence of an AR-sequence in the category of flat functors. Also Corollary
6:19 raises the question, which we leave open, of the existence of a pure
AR-sequence in a module category.

Finally let HoðSpÞp be the stable homotopy category of p-local spectra
where p is a prime [61]. It is easy to see that if Freyd’s Generating Hypothesis
[28] fails in HoðSpÞp, then there exists a ghost AR-triangle in HoðSpÞp with
respect to the p-local sphere spectrum S0

p, ending at a finite p-local spectrum.

7. Maximal Points and Almost Split Morphisms

Throughout C denotes a compactly generated triangulated category. In this
section we are interested in finding sufficient conditions ensuring that a pure-
injective object in C with local endomorphism ring, is the source or target of a
(minimal) left or right almost split morphism or an Auslander-Reiten triangle
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in C, and to characterize the internal structure of these objects in terms of the
Ziegler spectrum. Our results here generalize analogous results from ring
theory, see [26] and [53].

We begin with the following result which generalizes module theoretic
results of Crawley-Boevey [26] and Krause [53] and characterizes the pure-
injective objects which occur as a source of a left almost split morphism in C.
The proof of the first four conditions is contained in [19, Theorem 7.9]. For
completeness we include a simpler proof. To prove the rest we follow ideas of
Krause [53].

THEOREM 7.1. If E is an object in C, then the following are equivalent.

(i) E is pure-injective and a source of a left almost split morphism in C.
(ii) E is a source of a left almost split morphism in C which is not pure-mono.
(iii) HðEÞ is the injective envelope in Mod-Cb of a simple functor.
(iv) E 2 MaxðCÞ, that is, there exists a compact object X, a maximal left ideal

m of EndCðXÞ, and an isomorphism E ffi DmðXÞ.
(v) E is pure-injective and if E is a direct summand of a product

Q
i2I Ei of

indecomposable objects in C, then there exists i 2 I such that: E ffi Ei.

(vi) E is pure-injective and if E is a direct summand of a product
Q

i2I Ei of
points in ZgðCÞ, then there exists i 2 I such that: E ffi Ei.

Proof. (i) , (ii) Part (i)) (ii) is trivial. If g : E! A is a left almost split
map which is not pure-mono and E is not pure-injective, then the pure-
injective envelope l : E! I of E is not split mono, hence there exists
q : A! I such that g � q ¼ l. Clearly g is pure-mono and this is not the case.
So E is pure-injective.

(ii) ) (iii) Let g : E! A be a left almost split morphism which is not
pure-mono, and let B!h E!g A!f RB be a triangle in C. Let
e � l : HðBÞ� S � HðEÞ be the canonical factorization of HðhÞ where
S ¼ ImHðhÞ. Since g is not pure-mono, it follows that HðhÞ 6¼ 0, hence S 6¼ 0.
We claim that S is a simple functor. To show this let a : S! F be a non-zero
map in Mod-Cb, and let m : F �HðIÞ be an injective envelope. Since HðIÞ
is injective, e � a � m is of the form HðqÞ where q : B! I. Then
HðR�1fÞ � HðqÞ ¼ 0, hence R�1f � q ¼ 0 as a phantom map into the pure-
injective object I. Therefore there exists a map r : E! I such that h � r ¼ q,
and it follows directly that l � HðrÞ ¼ a � m. If r is split mono, then a is a
monomorphism. Otherwise, since g is left almost split, there exists a map
s : A! I such that g � s ¼ r. This implies clearly that a ¼ 0 and this is not
the case. We infer that any non-zero map S! F is a monomorphism, i.e. S is
simple. Since E is pure-injective, the inclusion S ,!HðEÞ is an injective
envelope.
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(iii)) (iv) Since any simple functor over Cb is of the form SX;m where X is
compact and m is a maximal left ideal of EndCðXÞ and since, by Proposition
6:2, the injective envelope of SX;m is HðDmðXÞÞ, it follows that HðDmðXÞÞ is
isomorphic to HðEÞ. By Lemma 6:6 this implies that E ffi DmðXÞ, that is, E
lies in MaxðCÞ.

(iv) ) (v) ) (vi) If the m-dual object DmðXÞ is a direct summand ofQ
i2I Ei, then the injective envelope HðDmðXÞÞ of the simple functor SX;m is a

direct summand of Hð
Q

i2I EiÞ ¼
Q

i2IHðEiÞ. Hence ðSX;m;HðEiÞÞ 6¼ 0 for
some i 2 I. Consequently there exists a non-zero morphism
SX;m ! HðDmðXÞÞ !

Q
i2IHðEiÞ ! HðEiÞ which is necessarily a monomor-

phism. Since the inclusion SX;m ! HðDmðXÞÞ is essential it follows that
HðDmðXÞÞ ! HðEiÞ is a split monomorphism. Using Lemma 6:6 and the
indecomposability of Ei we infer that DmðXÞ ffi Ei.

(vi)) (i) By Proposition 6:3, E is a direct summand of a product of copies
of m-dual objects of compacts. Then by hypothesis E is isomorphic to some
DmðXÞ. Hence by Proposition 6:2, E is the source of a left almost split
morphism in C. h

The following consequence of Theorem 7:1 characterizes the points in
MaxIndðCÞ.

COROLLARY 7.2. For an object E in C the following conditions are
equivalent.

(i) E is pure-injective and there exists an AR-triangle E! A! X! RðEÞ.
(ii) E 2 MaxIndðCÞ, that is: E ffi R�1DmðXÞ where X is compact with local

endomorphism ring and m is a maximal left ideal of EndCðXÞ.
(iii) E is pure-injective and a source of a left almost split morphism in C, and

there exists a compact object X with EndCðXÞ local, such that CðX;EÞ 6¼ 0.
(iv) HðEÞ is the injective envelope of a simple functor S, and S admits a pro-

jective cover.

Proof. (i) , (ii) If E is pure-injective, then Lemma 6:4 implies that X is
compact. Therefore E ffi DmðR�1ðXÞÞ since the end terms of an AR-triangle
are uniquely determined up to isomorphism. The converse follows from
Proposition 6:2.

(ii) ) (iii) The proof is trivial since by construction we have
CðX;DmðXÞÞ 6¼ 0.

(iii)) (iv) By Theorem 7:1 the functor HðEÞ is the injective envelope of a
simple functor ST;m. Since CðX;EÞ 6¼ 0, we infer that ST;mðXÞ 6¼ 0. Then
clearly the induced non-zero morphism HðXÞ ! ST;m is a projective cover.

(iv) ) (i) Consider the composition HðTÞ!e S!l HðEÞ where e is a pro-
jective cover and l is an injective envelope of the simple functor S. Then
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clearly T has local endomorphism ring and if h : T! E is the unique
morphism with HðhÞ ¼ e � l, then the triangle R�1ðEÞ ! A! T! E is an
AR-triangle in C. (

COROLLARY 7.3. Let g : E! A be a left almost split morphism in C. If A is
pure-injective, then E is the source of an AR-triangle in C.

Proof. Follows as in Theorem 3:4 using that there exists a decomposition
ðg; 0Þ : E! A0 � A00 ¼ A of g such that g0 is left minimal, see [60, Corollary
1.3]. (

COROLLARY 7.4. If Cb is Krull–Schmidt, then the following are equivalent.

(i)E is a pure-injective source of a left almost split morphism in C.
(ii)E is a pure-injective source of a minimal left almost split morphism in C.
(iii) E is a pure-injective source of an AR-triangle in C.
(iv) E is a reduced maximal point, that is, E ffi DmðXÞ where X is an inde-

composable compact object and m is a maximal left ideal of EndCðXÞ.
Recall that we have an inclusion of spaces MaxIndðCÞ 
 MaxðCÞ. There

is an important class of categories for which we have an equality
MaxðCÞ ¼ MaxIndðCÞ.
LEMMA 7.5. If Cb is Krull-Schmidt, then MaxðCÞ ¼ MaxIndðCÞÞ. In particular
a point E 2 ZgðCÞ is maximal iff E is the source of an AR-triangle in C.

Proof. Let DmðXÞ 2 MaxðCÞ, where X is compact and m is a maximal left
ideal of EndCðXÞ. Then DmðXÞ is the injective envelope of the simple functor
SX;m. Since Cb is Krull-Schmidt, there exists a (unique) indecomposable direct
summand Y of X such that SX;mðYÞ 6¼ 0. By Yoneda’s Lemma, any non-zero
element of SX;mðYÞ induces an epimorphism e : HðYÞ�SX;m which is a
projective cover since EndðHðYÞÞ is local. Then KerðeÞ is the unique
maximal submodule HðYÞn of HðYÞ, where n is the unique maximal ideal of
EndCðYÞ. Hence SX;m ffi SY;n. Taking injective envelopes it follows that
DmðXÞ ffi DnðYÞ 2 MaxIndðCÞ. h

The module theoretic version of the following result was observed by
Herzog, see the discussion before Proposition 3.6 in [41].

PROPOSITION 7.6. MaxðC) is a dense subset of ZgðCÞ.
Proof. It suffices to show that for any closed set UU in ZgðC), where U is a

family of morphisms in Cb, the inclusion MaxðCÞ 
 UU implies that
UU ¼ ZgðCÞ. Let / : Z! Y be an arbitrary morphism in U and let F be the
kernel of Hð/Þ. Since any element of MaxðCÞ is /-injective, it follows directly
that ½F;HðDmðXÞÞ� ¼ 0, for any compact object X and any maximal left
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ideal m of EndCðXÞ. By Proposition 2:1 we have an isomorphism
½F;HðDmðXÞÞ� ffi HomKX

ðFðXÞ; ImÞ of left KX-modules. Fixing the compact
object X, it follows that HomKX

ðFðXÞ; ImÞ ¼ 0, for any maximal left ideal m
of KX and therefore FðXÞ ¼ 0. Since this happens for any compact object X,
it follows that F ¼ 0. Then obviously / is a split monomorphism, since HðZÞ
is injective in mod-Cb. It follows that U consists of split monomorphisms in Cb
and consequently UU ¼ ZgðCÞ. Hence MaxðCÞ is a dense subset. (

We recall that a point E of ZgðC) is called isolated, if fE g is open in Zg(C).
If O 
 ZgðCÞ, then O denotes the closure of O in the Ziegler topology. We
denote by Isol(C) the set of isolated points of the Ziegler spectrum Zg(C).
Since Max(C) is dense in Zg(C), we have the following consequence.

COROLLARY 7.7. IsolðCÞ 
 MaxðCÞ, that is: if E is an isolated point of ZgðCÞ,
then E ffi DmðXÞ, for some compact object X of C and a maximal left ideal m of
EndCðXÞ. In particular E is the source of a left almost split morphism in C.

COROLLARY 7.8. Let E ¼ DmðXÞ be a point in the maximal spectrum
Max(C). If the simple functor SX;m is finitely presented, then E is an isolated
point of Zg(C). In particular if all simple functors are finitely presented, then
MaxðCÞ ¼ IsolðCÞ.

Proof. Let l : SX;m�HðEÞ be an injective envelope, and let
HðZÞ ! HðXÞ ! SX;m ! 0 be a finite presentation of SX;m, where f : Z! X

is a map in Cb. Then we have a triangle Y!g Z!f X!h RY in Cb and a fac-
torization HðhÞ ¼ e � j : HðXÞ!e SX;m!

j
HðRðYÞÞ. We set U :¼ fRgg. Let

M 2 ZgðCÞnfEg and let a : RY!M be any map. If the composition
j � HðaÞ : SX;m ! HðMÞ is monic, then there exists a map HðqÞ : HðEÞ !
HðMÞ such that l � HðqÞ ¼ j � HðaÞ. Since l is essential, HðqÞ split monic and
this implies that HðEÞ ffi HðMÞ since HðEÞ and HðMÞ are indecomposable.
Then E ffiM and this is impossible. We infer that j � HðaÞ ¼ 0, and this
clearly implies that HðhÞ � HðaÞ ¼ 0, hence h � a ¼ 0. Therefore a factors
through RðgÞ. This shows that any point in ZgðCÞnfEg is U-injective, hence
ZgðCÞnfEg is closed in Zg(C). We infer that E is isolated. h

8. Auslander–Reiten Triangles with Compact End Terms and Finite Points

Let C be a compactly generated triangulated category. Our aim in this section
is to investigate when the full subcategory Cb of compact objects of C has (left
or right) AR-triangles in connection with the structure of the Ziegler spec-
trum. The connection between Auslander–Reiten theory and the Ziegler
spectrum in the setting of module categories was first observed by Mike Prest
who used a combination of representation and model theoretic methods, see
[68]. Later this fruitful connection was investigated further by Herzog [39,
41], Krause [53] and others.
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8.1. PURE-INJECTIVE ENVELOPES OF COMPACT OBJECTS

In the study of AR-theory in Cb, an important role is played by the structure
of pure-injective envelopes of compact object with local endomorphism ring.
We begin their study with the following two preliminary results, observed
independently with a different proof by Garkusha-Prest [32, Theorem 2.3],
which will be useful later. The module theoretic analogues are due to Prest,
see [68, x 11.3] and the Example in Herzog [41, p. 535].

LEMMA 8.1. For a compact object W, the following are equivalent:

(i) W has local endomorphism ring.
(ii) The pure-injective envelope EðWÞ of W is indecomposable.

Proof. (ii)) (i) If W!l EðWÞ!j B!n RðWÞ is a triangle where l is a pure-
injective envelope, then any map 0 6¼ a : W!W induces a morphism of
triangles:

W ����!l EðWÞ ����!j B ����!n RðWÞ
a

???y b

???y c

???y RðaÞ

???y
W ����!l EðWÞ ����!j B ����!n RðWÞ

Then EndðEðWÞÞ is local since indecomposable pure-injective objects have
local endomorphism ring. Hence b or 1EðWÞ � b is invertible. Assume first
that b is invertible and let b0 be its inverse. Then l ¼ l � b � b0 ¼ a � l � b0.
Since l is a pure-monomorphism, so is a and therefore any triangle
W!a W! Z! RðWÞ is pure. Since W is compact, so is Z and therefore
a � a0 ¼ 1W for some morphism a0 : W!W. Then the idempotent morphism
e :¼ a0 � a is embedded in a triangle

W ����!l EðWÞ ����!j B ����!n RðWÞ
e

???y q

???y r

???y RðaÞ

???y
W ����!l EðWÞ ����!j B ����!n RðWÞ

If q is in invertible with inverse q0, then l ¼ e � l � q0 and as above we infer
that e is a pure-monomorphism. This implies trivially that a is invertible. If
1EðWÞ � q is invertible, then l � ð1EðWÞ � qÞ ¼ ð1W � eÞ � l and then trivially
1W � e is a pure-monomorphism, which splits by the above argument.
Clearly this implies that e ¼ 0. Hence a0 � a ¼ 0) a ¼ 0 and this is
impossible, since by hypothesis a 6¼ 0. We deduce that if b is invertible, then
so is a. Similarly if 1EðWÞ � b is invertible, then so is 1W � a. We infer that
EndCðWÞ is local.
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(i)) (ii) Let EndðWÞ ffi EndðHðWÞÞ be local and let l : W! EðWÞ be the
pure-injective envelope of W. Since HðWÞ is injective in the Frobenius cate-
gory mod-Cb, it follows that HðWÞ is a uniform object in mod-Cb, hence any
of its non-zero finitely presented subobjects is indecomposable. Let
a : M ,!HðWÞ be a non-zero subobject in Mod-Cb, and assume that
M ¼M1 �M2. If both M1;M2 are non-zero, then there are non-zero mor-
phisms qi : HðXiÞ !Mi, where the Xi are compact. Since each Fi ¼ Imðqi � aÞ
is finitely presented, F1 � F2 is a finitely presented subobject of HðWÞ. Since
HðWÞ is uniform in mod-Cb, it follows that F1 � F2 is indecomposable, hence
F1 ¼ 0 or F2 ¼ 0 and this is impossible. Hence M1 ¼ 0 or M2 ¼ 0 and M is
indecomposable. This implies that HðWÞ is uniform in Mod-Cb and therefore
its injective envelope H(E(W)) is indecomposable. Hence the ring
EndðEðWÞÞ ffi EndðHðEðWÞÞÞ is local. h

COROLLARY 8.2. Let X be a compact object with local endomorphism ring.
If Y is compact, then EðXÞ ffi EðYÞ implies that X ffi Y. In particular the
operation E of taking pure-injective envelopes of compact objects, induces an
injective function

E : IndðCbÞ �! ZgðCÞ; X#EðXÞ

Proof. Let l : X! E and j : Y! E be pure-injective envelopes. By
Lemma 8:1 both rings EndðYÞ and EndðEÞ are local, hence HðEÞ is an
indecomposable injective functor, and the inclusions HðjÞ : HðXÞ ,!HðEÞ
and HðkÞ : HðYÞ ,!HðEÞ are injective envelopes. In particular F :=
HðXÞ \ HðYÞ 6¼ 0. Let Z be a compact object such that FðZÞ 6¼ 0, and let
q : HðZÞ ! F be a non-zero morphism. Then the image G of the composition
q � HðjÞ : HðZÞ ! HðXÞ is a finitely presented functor, and we have an
inclusion n : G ,! F which induces inclusions n � a : G ,! HðXÞ and
n � b : G ,! HðYÞ. Since the category mod-Cb is Frobenius, the projective
objects HðXÞ and HðYÞ in mod-Cb are injective. Hence the inclusions n � a and
n � b are injective envelopes of G in mod-Cb. Then HðXÞ ffi HðYÞ, hence
X ffi Y. (

8.2. EXISTENCE OF RIGHT AR-TRIANGLES IN Cb

The following basic result, which generalizes a ring theoretic result of
W. Zimmermann [81, Theorem 1], see also [57] for a recent related treatment,
gives necessary and sufficient conditions for the existence of an AR-triangle
in Cb starting at a compact object.
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THEOREM 8.3. For a compact object X in C the following are equivalent.

(i) There exists an AR-triangle W! Z! X! RðWÞ in Cb.
(ii) The object X has local endomorphism ring and the m-dual object DmðXÞ of

X is the pure-injective envelope of a compact object.
(iii) X has local endomorphism ring, the simple functor SX;m is finitely pre-

sented, and the subfunctor HðXÞm ,!HðXÞ admits a projective cover.

Proof. (i) ) (ii) Let W!a Z!b X!c RðWÞ be an AR-triangle in Cb and

let R�1DmðXÞ!
g
A!f X!h DmðXÞ be the AR-triangle in C ending at X. Since

b is not split epic and f is right almost split, there exists a morphism of
triangles:

W ����!a Z ����!b X ����!c RðWÞ

l

???y m

???y
���� RðlÞ

???y
R�1DmðXÞ ����!g A ����!f X ����!h DðXÞ

ð1Þ

Let W!l R�1DmðXÞ!
j
B!n RðWÞ be a triangle in C. We show that the

morphism n is phantom. Let T be an arbitary compact object and let
q : T! B be any morphism. By the Octahedral Axiom, there exists a mor-
phism of triangles:

W ����!l0
Y ����!j0

T ����!n0
RðWÞ���� r

???y q

???y
����

W ����!l R�1DmðXÞ ����!j B ����!n RðWÞ

ð2Þ

Since the objects W and T are compact, so is Y. If l0 is a split monic, then
n0 ¼ 0. It follows that q � n ¼ 0 and this implies that q factors through j.
Assume now that l0 is not a split monic. Since a is left almost split, l0 factors
through a. Hence there exists / : Z! Y such that l0 ¼ a � /. Then
l0 ¼ a � /) l0 � r ¼ a � / � r) l ¼ a � / � r ) l � g ¼ a � / � r � g )
a � m ¼ a � / � r � g. Hence m� / � r � g factors through b and therefore
m� / � r � g ¼ b � w for some map w : X! A. Then m � f� / � r � g � f =
b � w � f) b ¼ b � w � f. Since EndCðXÞ is local, w � f is invertible or
1X � w � f is invertible. However w � f cannot be invertible, since f is right
almost split. Hence 1X � w � f is invertible. Then b ¼ 0, hence c is a split
monic and therefore invertible since EndðXÞ and EndðWÞ are local. Conse-
quently Z ¼ 0 and the morphism RðWÞ ! 0 is left almost split. Since l0 is not
a split monomorphism, the same is true for Rðl0Þ : RðWÞ ! RðYÞ. Hence
Rðl0Þ factors through RðWÞ ! 0, i.e. l0 ¼ 0. Then diagram ð1Þ shows that
h ¼ 0 and this is impossible, since by construction we always have h 6¼ 0.

APOSTOLOS BELIGIANNIS50



Hence l0 is a split monomorphism. Then n0 ¼ 0 and from diagram ð2Þ we
have q � n ¼ 0. Since T was an arbitrary compact object, this shows that n is
pure-phantom. Equivalently l is pure-mono and then so is R�1ðlÞ. Since
DmðXÞ has local endomorphism ring, it follows that R�1ðlÞ :
R�1ðWÞ ! DmðXÞ is a pure-injective envelope.

(ii)) (iii) Let Z be compact and let j : HðZÞ�HðDmðXÞÞ be its injective
envelope. Then EndðZÞ is local by Lemma 8:1. Since l : SX;m�HðDmðXÞÞ is
an injective envelope, it follows that SX;m \ HðZÞ 6¼ 0, hence we have an

inclusion k : SX;m ,!HðZÞ. Let c : X! Z be the unique morphism in Cb such
that HðhÞ ¼ e � k and let ðTÞ : R�1ðZÞ ! Y!b X!c Z be a triangle in Cb.
Then SX;m ¼ ImðHðcÞÞ is finitely presented and therefore b is right almost
split and ImHðbÞ ¼ HðXÞm. Since EndðZÞ is local, ðTÞ is an AR-triangle in Cb,
hence f is right minimal. Then the projection HðYÞ�HðXÞm is a projective
cover.

(iii) ) (i) We have a minimal projective presentation HðYÞ ! HðXÞ !
SX;m ! 0 in mod-Cb and a triangle ðTÞ : W! Y! X! RW in Cb. By the
minimality of the presentation, Y! X is right minimal, hence minimal right
almost split, since SX;m is simple and EndðXÞ is local. So ðTÞ is an AR-
triangle in Cb. h

The above result suggests the following definition.

DEFINITION 8.4. The finite spectrum FinðCÞ of C is the set of pure-
injective envelopes of the isoclasses of compact objects with local endo-
morphism ring:

FinðCÞ :¼ EðXÞjX 2 IndðCbÞ
� �

:

We call the elements of Fin(C) finite points of C or Zg(C). Then Lemma 8:1
ensures that any finite point is a point of Zg(C), i.e. FinðCÞ 
 ZgðCÞ. The
following result, observed independently by Garkusha-Prest [32], shows that
if Cb is Krull-Schmidt then we have a good supply of finite points. We refer
the reader to Proposition 5:4 of Herzog’s paper [41] for the module theoretic
analogue.

PROPOSITION 8.5. If Cb is a Krull–Schmidt category, then Fin(C) is a dense
subset of Zg(C). In particular Fin(C) contains all isolated points.

Proof. Let UU be a closed subset such that FinðCÞ 
 UU and let / : Y! Z

be any morphism in U. Consider the exact sequence 0! F!j HðYÞ !Hð/ÞHðZÞ.
Since any finite point is /-injective, it follows that ½F;HðEðXÞÞ� ¼ 0, for any
indecomposable compact object X. If Y ¼ �n

i¼1Yi is an indecomposable
decomposition of Y, then Y ,! �n

i¼1 EðYiÞ is a pure-injective envelope and
HðYÞ ,! �n

i¼1 HðEðYiÞÞ is an injective envelope. Hence ½F;�n
i¼1HðEðYiÞÞ� ¼ 0

and consequently F ¼ 0. This implies that / is a split monomorphism.
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Therefore U consists of split monomorphisms and consequently UU ¼ ZgðCÞ.
Hence Fin(C) is dense subset of ZgðCÞ. (

Now we can prove the following basic result.

THEOREM 8.6. The following conditions are equivalent.

(i) Cb has right AR-triangles.
(ii) MaxIndðCÞ 
 FinðCÞ.
(iii) MaxIndðCÞ 
 IsolðCÞ.
If Cb is a Krull–Schmidt category with right AR-triangles, then:

MaxIndðCÞ ¼ MaxðCÞ ¼ IsolðCÞ 
 FinðCÞ:

Proof. That (i) is equivalent to (ii) is a direct consequence of Theorem 8.3.
(i)) (iii) Let DmðXÞ be a maximal point, where X has local endomorphism

ring. Since Cb has right AR-triangles, by Theorem 8:3 the simple functor SX;m is
finitely presented. Then by Corollary 7:8 we have that DmðXÞ is isolated.

(iii) ) (ii) Let X be a compact object with local endomorphism ring. By
hypothesis, R�1DmðXÞ is isolated. Hence there exists a morphism a : Z! Y
between compact objects, such that any morphism Z! E factors through a
for any point E 2 ZgðCÞnfR�1DmðXÞg, and there exists a morphism
b : Z! R�1DmðXÞ which does not factor through a. Let l : Z! EðZÞ be the
pure-injective envelope of Z. If EðZÞ 6ffi R�1DmðXÞ, then by construction
there exists a morphism q : Y! EðZÞ such that a � q ¼ l. Since l is pure-
mono and R�1DmðXÞ is pure-injective, there exists a morphism c : EðZÞ !
R�1DmðXÞ such that l � c ¼ b, hence a � q � c ¼ b and this is impossible by
the construction of b. Hence R�1DmðXÞ ffi EðZÞ is the pure-injective envelope
of the compact object Z.

The last assertion follows from Lemma 7:5 and Corollary 7:7. (

8.3. EXISTENCE OF LEFT ALMOST SPLIT MORPHISMS AND LEFT

AUSLANDER–REITEN TRIANGLES IN Cb

Now we turn our attention to the investigation of the existence of left almost
split morphisms and AR-triangles in Cb starting at compact objects, in con-
nection with the Ziegler spectrum and the injective envelopes of finitely
presented simple functors. We begin our analysis with the following result.

PROPOSITION 8.7. For a compact object W, the following are equivalent:

(i) W is the source of a (minimal) left almost split morphism in Cb.
(ii) H(W) is the injective envelope of a simple object S in mod-Cb (and S admits

a projective cover).
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In particular W is the source of an AR-triangle in Cb iff H(W) it is the injective
envelope of a simple object in mod-Cb which admits a projective cover.

Proof. (i) ) (ii) Let a : W! Y be a left almost split morphism in Cb and
consider the exact sequence 0! S!l HðWÞ ! HðYÞ in mod-Cb. Then S is
finitely presented and it suffices to show that S is a simple in the Frobenius
category mod-Cb, since HðWÞ is an injective object with local endomorphism
ring. If S ¼ 0, then HðaÞ is monic, which splits since H(W) is injective in mod-
Cb. Then a is a split monic and this is not true, since a is left almost split.
Hence S 6¼ 0. Let x : S! F be a morphism in mod-Cb. Then there exists a
monomorphism j : F �HðXÞ with X in Cb. Since H(X) is injective, there
exists HðqÞ : HðYÞ ! HðXÞ such that l � HðqÞ ¼ x � j. If q is not split mono,
then q factors through a and this implies that x ¼ 0. If q is split monic, then
x is a monic. This shows that S is a simple object in mod-Cb. Now if a is

minimal, it follows by Lemma 3:2 that W!a Y! X! RðWÞ is an AR-
triangle in Cb. Since S is a factor of HðR�1ðXÞÞ and X has local endomor-
phism ring, we infer that S admits a projective cover.

(ii) ) (i) Let HðZÞ ! HðXÞ!� S! 0 be a finite presentation of a finitely
presented simple functor S and let j : S�HðWÞ be an injective envelope.
Then � � j : HðXÞ ! HðWÞ is of the form HðcÞ, where c : X!W is a mor-

phism in Cb. If X!c W!a Y! RðXÞ is a triangle in Cb, then a is not a split
monomorphism since KerHðaÞ ¼ S. Let q : W! T be a morphism in Cb.
Since S is simple, the composition j � HðqÞ is zero or a monomorphism. If
j � HðqÞ is a monomorphism, then HðqÞ is a monomorphism, since j is
essential. This implies that q is a split monomorphism, since H(W) is injective.
Hence if q is not a split monomorphism, then j � HðqÞ ¼ 0 )
HðcÞ � HðqÞ ¼ 0) c � q ¼ 0) q factors through a. This shows that a is a
left almost split. If e : HðXÞ ! S is a projective cover, then EndðXÞ is local
and therefore W!a Y! RðXÞ ! RðWÞ is an AR-triangle in Cb. h

Nowwe can prove the following result which characterizes when a compact
object occurs as a source of a left almost split morphism or an AR-triangle in
Cb and generalizes a module theoretic result of Krause, see [53, Theorem 3.6].

THEOREM 8.8. Let EðWÞ be a finite point, that is, EðW Þ is the pure-injective
envelope of a non-zero compact object W. Then the following are equivalent.

(i) EðWÞ is the source of a (minimal ) left almost split morphism in C.
(ii) W is the source of a (minimal ) left almost split morphism in Cb.
If (i) holds, then E(W ) is isolated in ZgðCÞ. In particular W is the source of an
AR-triangle in Cb iff E(W ) is the source of an AR-triangle in C.

Proof. (i) ) (ii) By Theorems 7:1 and 8:3, E(W ) is isomorphic to some
m-dual object R�1ðDmðXÞÞ and there exists a morphism of triangles
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W ����!a Z ����!b X ����!c RðWÞ

m

???y n

???y
���� RðmÞ

???y
R�1DmðXÞ ����!g A ����!f X ����!h DmðXÞ

ð�Þ

where l is a pure-injective enveloped and g is left almost split in C. Since
ImHðR�1ðhÞÞ is the simple functor SR�1X;m and HðlÞ is a monic, we have
SR�1X;m \ HðWÞ 6¼ 0 and therefore there exists an inclusion j : SR�1X;m �

HðWÞ such that j � HðmÞ ¼ l where l is the inclusion SR�1X;m,!
HðR�1DmðXÞÞ. This implies that SR�1X;m ¼ HðR�1ðcÞÞ and therefore SR�1X;m is
finitely presented. Hence H(W ) is the injective envelope of a simple functor in
mod-Cb and therefore by Proposition 8:7,W is the source of a left almost split
morphism in Cb. Now if g is in addition left minimal, the lower triangle above
is an AR-triangle and therefore EndðXÞ is local. Then clearly the upper
triangle is an AR-triangle in Cb and a is minimal left almost split.

(ii)) (i) By Proposition 8:7, there exists a simple object S in mod-Cb and
an injective envelope j : S�HðWÞ in mod-Cb. Consider the pure-injective
envelope k : W! EðWÞ in C. Since HðkÞ : HðWÞ�HðEðWÞÞ is an injective
envelope, there exists a morphism m : S! HðWÞ such that m � HðkÞ ¼ j,
which is a monomorphism since S is simple in mod-Cb. Let a : S!M be a
non-zero morphism in Mod-Cb and let n : F! S be its kernel. If F 6¼ 0, then
there exists a non-zero morphism b : HðTÞ ! F for some compact T. Then
the map b � n : HðTÞ ! S is zero or an epic. Both cases are impossible since
both b and a are non-zero. Hence any non-zero morphism a : S!M in
Mod-Cb is zero or a monic and therefore S is simple in Mod-Cb. Then its
injective envelope is of the form HðDmðXÞÞ for some compact X. Hence
HðEðWÞÞ ffi HðDmðXÞÞ or equivalently EðWÞ ffi DmðXÞ. Hence the finite point
EðWÞ is maximal and then, by Theorem 7:1, EðWÞ is the source of a left
almost split morphism in C. Finally ifW is the source of a minimal left almost
split morphism in Cb, then diagram ð1Þ of Theorem 8:3 shows that EðWÞ is
the source of a minimal left almost split morphism in C.

Assume now that (i) holds. Then as before we have the diagram of tri-
angles ð�Þ, where a, resp. g, is a left almost split morphism in Cb, resp. C, and m
is a pure-injective envelope. Consider the Ziegler-closed set Ua and observe
that E is not in Ua, since otherwise R

�1ðhÞ ¼ R�1ðcÞ � m ¼ 0 and this is not the
case. Let M 2 ZgðCÞnfEg and let / : W!M be any morphism. Since M is
pure-injective and m is a pure-injective envelope, there exists w : E!M such
that m � w ¼ /. Since M is not isomorphic to E, w is not a split monic. Since g
is left almost split, there exists v : A!M such that g � v ¼ w. Then
m � g � v ¼ R�1ðcÞ � m � v ¼ /. Hence M 2 Ua and then ZgðCÞnfEg ¼ Ua. It
follows that fEg is open in the Ziegler topology, and therefore E is an iso-
lated point in Zg(C). (
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From Corollary 7.7 and Theorem 8.8, we deduce the following conse-
quence.

COROLLARY 8.9. Let EðWÞ a finite point in Zg(C), that is, EðWÞ is the
pure-injective envelope of a non-zero compact object W with local endomor-
phism ring. Then the following are equivalent:

(i) EðWÞ is isolated in Zg(C).
(ii) EðWÞ 2 MaxðCÞ.
(iii) EðWÞ is the source of a left almost split morphism in C.
(iv) W is the source of a left almost split morphism in Cb.

Summarizing what we proved so far in this subsection we have the fol-
lowing characterization of when a given compact object is the source of an
AR-triangle in Cb and when Cb has left AR-triangles.

THEOREM 8.10. If W is a compact object, then the following are equivalent.

(i) There exists an AR-triangle W! Y! X! RW in Cb.
(ii) The functor HðWÞ is an essential extension of a simple functor S and S

admits a projective cover.
(iii) The pure-injective envelope of W is the m-dual object DmðXÞ of a compact

object X with local endomorphism ring.

In particular Cb has left AR-triangles iff FinðCÞ 
 MaxIndðCÞ.

COROLLARY 8.11. If Cb is Krull-Schmidt, then the following are equivalent.

(i) Cb has left AR-triangles.
(ii) FinðCÞ 
 MaxðCÞ.
(iii) FinðCÞ 
 IsolðCÞ.
If (i) holds, then: FinðCÞ ¼ IsolðCÞ 
 MaxIndðCÞ ¼ MaxðCÞ.

Combining Theorem 8:6 and Corollary 8:11 we have the following result
which gives a characterization of the existence of AR-triangles in Cb in terms
of properties of m-dual objects of compact objects and the finite/maximal
spectrum.

THEOREM 8.12. The following conditions are equivalent.

(i) Cb has AR-triangles.
(ii) FinðCÞ ¼ MaxIndðCÞ.
(iii) The Auslander–Reiten operator sþ : IndðCbÞ ! MaxIndðCÞ given by

X 7! sþðXÞ ¼ R�1DmðXÞ induces a bijection sþ : IndðCbÞ ! FinðCÞ.
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If (i) holds, then we have equalities: FinðCÞ ¼ MaxIndðCÞ ¼ IsolðCÞ. If Cb is a
Krull–Schmidt category, then Cb has AR-triangles if and only if
FinðCÞ ¼ MaxðCÞ.

Remark 8.13. Let HoðSpÞ be the stable homotopy of spectra. Since
HoðSpÞ is compactly self-dual [61, Theorem 1.19], it follows that the full

subcategory HoðSpÞb of finite spectra has right AR-triangles iff HoðSpÞb has
left AR-triangles. It seems to be an interesting problem to characterize the
finite (p-local) spectra with local endomorphism ring which occur as a
source or target of an AR-triangle in HoðSpÞb. Note that the finite p-local
spectra form a Krull-Schmidt category. This problem is also related to the
validity of Freyd’s generating hypothesis (FGH) in stable homotopy theory:
if (FGH) holds, then MaxðHoðSpÞÞ 6
 FinðHoðSpÞÞ, see [52].

9. Compact Pure-Injective Objects, Derived categories and Gorenstein

Algebras

Throughout we fix a compactly generated triangulated category C. In this
section we study when a compact object in C is pure-injective. This is related to
the question of when an AR-triangle in the subcategory of compact objects
remains an AR-triangle in C. We present a variety of examples satisfying this
condition concentrating on derived categories where existence of AR-triangles
for perfect complexes, resp. bounded complexes of finitely generated modules,
is related to Gorensteinness, resp. non-singularity. In this way we give simple
proofs of generalizations of well-known results of Happel [37, 38], see also the
recent work of Krause [57]. Finally we give methods for constructing new
Gorenstein algebras from old ones.

9.1. WHEN COMPACT OBJECTS ARE PURE-INJECTIVE

From the results of the previous section it follows that AR-triangles in Cb
behave nicely when compact objects are pure-injective. This is related to the
question of when AR-triangles in Cb remain such in C. We begin our analysis
of when compact are pure-injective objects with the following preliminary
results.

LEMMA 9.1. Let (T): W! Z! X! RðWÞ be an AR-triangle in Cb. Then
the following are equivalent:

(i) (T) is an AR-triangle in C.
(ii) W is pure-injective.
(iii) The (pure mono-)morphism W! R�1DmðXÞ is invertible.
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Proof. Since X is compact, the implication (i)) (ii) follows from Lemma
6:4. If (ii) holds and ðTÞ is an AR-triangle in Cb, from the proof of Theorem
8:3 it follows that the canonically constructed morphism l : W! R�1DmðXÞ
is a pure-injective envelope. Then l is invertible, since W is pure-injective.
Finally if (iii) holds, then since an AR-triangle in C is uniquely determined up
to isomorphism by its end terms, it follows that the AR-triangle ðTÞ in Cb is
isomorphic to R�1DmðXÞ ! Z! X! DmðXÞ which is an AR-triangle in C.

(

COROLLARY 9.2. Consider the following statements:

(i) Any AR-triangle in Cb is an AR-triangle in C.
(ii) Any compact object in C with local endomorphism ring is pure-injective.

Then (ii) ) (i). If Cb has left AR-triangles, then (ii) and (i) are equivalent.
In particular if Cb is a Krull–Schmidt category with left AR-triangles, then
any compact object is pure-injective iff any AR-triangle in Cb is an AR-triangle
in C.

Proof. Assume that (ii) holds and let ðTÞ : W!a Z!b X!c RðWÞ be an
AR-triangle in Cb. Since W is compact with local endomorphism ring, by
hypothesis W is pure-injective, hence by Lemma 9:1 we infer that ðTÞ is an
AR-triangle in C. Assume now that Cb has left AR-triangles and let W be a
compact object with local endomorphism ring. Let ðTÞ be as above an AR-
triangle in Cb. By hypothesis ðTÞ is an AR-triangle in C. Then by Lemma
6:4 it follows that W is pure-injective. (

LEMMA 9.3. Let T be a full triangulated subcategory of C which contains the

compact objects and consists of pure-injective objects. If ðTÞ : R�1W!a Z!b

X!c W is a triangle in C with W 2 T , then the following are equivalent:

(i) ðTÞ is an AR-triangle in C.
(ii) ðTÞ is an AR-triangle in T .
If (ii) holds, then X is compact and W ffi DmðXÞ.

Proof. (i) ) (ii) Since W is pure-injective, by Lemma 6:4 it follows that
X is compact. Therefore ðTÞ lies in T and then it is an AR-triangle in
T . Conversely assume that ðTÞ is an AR-triangle in T . If X is not compact,
then the morphism c is pure. Since W is pure-injective it follows that c ¼ 0
and this is impossible. Hence X is compact. Let ðT 0Þ : R�1DmðXÞ !
A! X!h DmðXÞ be the induced AR-triangle in C. Then we have a morphism
of triangles
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R�1W ����! Y ����! X ����!c W???y
???y

���� j

???y
R�1DmðXÞ ����! A ����! X ����!h DmðXÞ

We claim that j is a pure monomorphism. Indeed let / : T!W be a mor-
phism in C where T is compact such that / � j ¼ 0. If / is not zero, then the
cofiber w : W! S of / factors through RðaÞ, since S lies in T . In particular
c � w ¼ 0. Hence w ¼ RðaÞ � s where s : RðYÞ ! S. Since / � j ¼ 0, there
exists n : DmðXÞ ! S such that w � n ¼ j. Then 0 ¼ c � w � n ¼ c � j ¼ h and
this is impossible. We infer that j is a pure monomorphism and therefore an
isomorphism since W is indecomposable pure-injective. This implies that the
triangles ðTÞ and ðT 0Þ are isomorphic and consequently ðTÞ is an AR-triangle
in C. (

COROLLARY 9.4. Let T be a full triangulated Krull–Schmidt subcategory
of C which contains the compact objects and consists of pure–injective objects. If
T has right AR-triangles, then T ¼ Cb. The converse holds provided that the
dual object of any compact object lies in T .

Proof. By Lemma 9:3 it follows that any indecomposable object in T is
compact and therefore the assertion follows from the fact T is Krull–
Schmidt. (

The above results suggest to look for conditions ensuring that a given
(compact) object is pure-injective. In this direction we have the following
result which will be useful later in connection with the finite type property.

PROPOSITION 9.5. If E is an object in C, then the following are equivalent.

(i) E is pure-injective.
(ii) ð�Þ lim �ð1ÞCðYi;EÞ ¼ 0, for any filtered system fYi j i 2 Ig in Cb.

Proof. Since E is pure-injective in C iff H(E) is injective in Mod-Cb, it
suffices to show that H(E) is injective iff the vanishing condition ð�Þ holds.
Since H(E) is flat = FP-injective functor, and since in a locally coherent
category an object is injective iff it is FP-injective and pure-injective, we have
that H(E) is injective iff HðEÞ is pure-injective. By a result of Jensen and
Simson, see [43, Corollary 1.3], it follows that H(E) is pure-injective iff for any
flat functor F we have: ExtnðF;HðEÞÞ ¼ 0;8nP1. Since the full subcategory
of flat functors contains the projectives and is closed under kernels of epi-
morphisms, hence under syzygies, we have that H(E) is pure-injective iff
Ext1ðF;HðEÞÞ ¼ 0, for any flat functor F. So let F 2Mod-Cb be a flat functor
and write F ¼ lim�!HðYiÞ as a filtered colimit of finitely generated projective
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functors, i.e. fYi j i 2 Ig is a filtered system of compact objects. Then we have
the following Roos spectral sequence Ep;q

2 ¼ lim �ðpÞExtqðHðYiÞ;HðEÞÞ ¼)
ExtnðF;HðEÞÞ which of course collapses giving isomorphisms, 8n � 0:

lim �ðnÞCðYi;EÞ ffi ExtnðF;HðEÞÞ. It follows that H(E) is pure-injective iff

lim �ð1ÞCðYi;EÞ ¼ 0. (

We recall from [59] that an object E in C is called endofinite provided that
the right EndCðEÞ-module CðX;EÞ has finite length for any compact object X

in C. Since lim �ð1Þ vanishes for filtered systems of finite length modules,

Proposition 9:5 admits the following well known consequence.

COROLLARY 9.6.[50]. Let E be an endofinite object in C. Then E is pure-
injective.

COROLLARY 9.7. Assume that C is R-linear over a commutative Noetherian
ring R. Let T be a full subcategory of C containing Cb. Then T consists of pure-
injective objects provided that one of the following conditions holds:

(i) R is a finite product of complete local rings and for all objects X;Y in T , the
R-module CðX;YÞ is finitely generated.

(ii) For all objects X;Y in T , the R-module CðX;YÞ is of finite length.

Moreover in case (ii), any object of T is endofinite.

Proof. By results of Gruson and Jensen [34] we have that in both cases
lim �ðnÞCðYi;XÞ ¼ 0; 8nP1, for any filtered system fYi j i 2 Ig of compact

objects and any object X in T . Then the first assertion follows from Prop-
osition 9:5. Now if (ii) holds, it follows that for any compact object X and
any object E in T , the R-module CðX;EÞ has finite length. Since EndCðEÞ is a
Noetherian R-algebra, this implies that CðX;EÞ has finite length as an
EndCðEÞ-module. Hence E is endofinite. (

Theabove result suggests naturally the followingdefinition.First recall from
Section 4 that a skeletally small R-linear triangulated category T over a
commutative ring R is called R-finite if one of the following conditions hold:

(I) R is Noetherian and the R-module T ðA;BÞ is of finite length, 8A;B 2 T .
(II) R is Artinian and the R-module T ðA;BÞ is finitely generated, 8A;B 2 T .
(III) R is Noetherian complete and local and the R-module T ðA;BÞ is finitely

generated, 8A;B 2 T .

DEFINITION 9.8. Let C be a compactly generated triangulated R-linear
category over a commutative ring R. We say that C is compactly R-finite if the
full subcategory Cb of compact objects is R-finite.
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COROLLARY 9.9. Let C be a compactly generated compactly R-finite
triangulated category over a commutative ring R. Then we have the following.

(i) Cb is a Krull-Schmidt category, any compact object is endofinite (hence
pure-injective), and any AR-triangle in Cb is an AR-triangle in C.

(ii) If T is a skeletally small full triangulated subcategory of C which is R-finite
and contains the compact objects, then the conclusions of (i) hold for T . In
addition T ¼ Cb provided that T has right AR-triangles.

Remark 9.10. Let T be as in Corollary 9:9. For instance we can choose T
to be the thick subcategory of C generated by the compact objects and the
maximal points of C. Following Orlov [67] we define the triangulated category
of singularities of T to be the Verdier quotient T =Cb and then T is called non-
singular if T =Cb ¼ 0. Corollary 9:9 shows that T is non-singular if T has
right AR-triangles. The converse holds if T contains all maximal points. This
happens for instance for the bounded derived category DbðcohXÞ of coherent
sheaves over a Noetherian scheme X which is of finite type over a field. Then
the above results show that X is non-singular iff DbðcohXÞ has AR-triangles.

EXAMPLE 9.11. Let K be a Noetherian R-algebra over a commutative
Noetherian ring and assume that K is Artinian or R is complete and local.
By Subsection 4:2, the unbounded derived category DðMod-KÞ is compactly
R-finite. Moreover it is not difficult to see that the bounded derived category
Dbðmod-KÞ is Krull–Schmidt and for any two complexes X and Y in
Dbðmod-KÞ, the R-module Dbðmod-KÞ½X;Y� is finitely generated. In partic-
ular Dbðmod-KÞ consists of pure-injective objects in DðMod-KÞ. If R is
Artinian, then any object of Dbðmod-KÞ is endofinite.

Since Dbðmod-KÞ contains the compact objects and consists of pure-in-
jectives, we define the triangulated category of singularities DsingðMod-KÞ of K
to be the Verdier quotient Dbðmod-KÞ=HbðPKÞ. Note that DsingðMod-KÞÞ is
triangle equivalent to the Spanier-Whitehead category of the stable category
mod-K modulo projectives, see [46] or [17, Corollary 3.9]. In Theorem 9:16
we shall show that K is non-singular, i.e. DsingðMod-KÞ ¼ 0, iff K is Artinian
of finite global dimension.

EXAMPLE 9.12. Let R be a finite dimensional differential graded algebra
(DGA) over a field k such that Ri ¼ 0 for i < 0, R0 ¼ k and R1 ¼ 0. Then, by
a result of Jørgensen [44, Lemma 3.6], the full subcategory DfðRÞ of the
unbounded derived category DðRÞ consisting of complexes with finite
dimensional cohomology, has finite-dimensional Hom-spaces. It follows that
DðRÞ is compactly k-finite and any complex in DfðRÞ is endofinite. For in-
stance one can take R to be the singular cochain DGA C�ðX; kÞ of a simply
connected topological space X over k with dimk H

�ðX; kÞ <1. We refer to
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[44] for an analysis of Auslander–Reiten theory in this context. In particular
in [44, Theorem 6.3] it is proved that DðC�ðX; kÞÞb has AR-triangles iff X
admits Poincaré duality over k, hence, iff DðC�ðX; kÞÞb admits a Serre
functor. It follows that in the Ziegler spectrum of DðC�ðX; kÞÞ, the finite
points (= indecomposable objects in the thick subcategory of DðC�ðX; kÞÞ
generated by C�ðX; kÞ) coincide with the maximal points, and any AR-tri-
angle in DðC�ðX; kÞÞb remains an AR-triangle in DðC�ðX; kÞÞ.

9.2. AUSLANDER–REITEN TRIANGLES AND GORENSTEIN RINGS

In this subsectionwe study existence of AR-triangles in the unbounded derived
category D(Mod-K), where K is a Noetherian R-algebra over a commutative
Noetherian ring R. We assume throughout that R is Artinian or complete and
local. If I is the minimal injective cogenerator of Mod-R, then, as in Section 4,
let D be any one of the duality functors HomRð�; IÞ : (Mod-R)op! ðMod-RÞ,
or RHomRð�; IÞ : D(Mod-R)op ! D(Mod-R), or RHomRð�; IÞ ¼
RHomKð�;DðKÞÞ : D(Mod-KÞop ! D(Mod-Kop).
We begin with the following preliminary result whose proof is identical with
the proof of Theorems 9:15 and 9:16 below and therefore we omit it.

PROPOSITION 9.13. Let R be a commutative complete local Noetherian
ring.

(i) HbðPRÞ has AR-triangles iff idR <1 and the Krull dimension of R is zero,
equivalently R is an Artinian Gorenstein ring.

(ii) Dbðmod-RÞ has AR-triangles iff R is regular Artinian.

We shall now see that the conclusions of Proposition 9:13 continue to hold
for Noetherian R-algebras. We begin with the following result. Notice that
the equivalence (i) , (ii) below extends slightly a result of Happel [38,
Theorem 3.4].

PROPOSITION 9.14. The following are equivalent:

(i) K is Artinian and idKK <1.
(ii) HbðPKÞ, resp. HbðPKopÞ, has right, resp. left, AR-triangles.
(iii) HbðPKÞ, resp. HbðPKopÞ, admits a right, resp. left, Serre functor.
(iv) Max(D(Mod-K)) 
 Fin(D(Mod-K)).
(v) Fin(D(Mod-Kop)) 
 Max(D(Mod-Kop)).

Proof. Since HbðPKÞ is R-finite, our previous results and the duality
HbðPKÞ ! HbðPKopÞ show that the last four statements are equivalent. If (i)
holds, then DðKÞK is compact in D(Mod-K), hence RHomKðDðKÞ;�Þ pre-
serves coproducts. By [64, Theorem 5.1] this implies that �	L

K DðKÞ pre-
serves compact objects. Since DmðXÞ ffi X	L

K DðKÞ for any perfect complex
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X, it follows that HbðPKÞ has right AR-triangles. Conversely if (ii) holds,

then let S be the right Serre functor of HbðPKÞ. Then the isomorphisms

HomKð�;X	L
K DðKÞÞ �ffi DHomKðX;�Þ�!

ffi
HomKð�; SðXÞÞ, for any perfect

complex X, show that DðKÞ is quasi-isomorphic to SðKÞ and S�!ffi

�	L
K DðKÞjHbðPKÞ. Since SðKÞ lies in H

bðPKÞ it follows that DðKÞ lies in mod-

K and pdDðKÞK <1. In other words, K is Artinian and idKK <1. h

The following consequence generalizes results of Happel [38], see also [57].

THEOREM 9.15. Let K be an Noetherian R-algebra over a commutative
Noetherian ring R, where R is complete local or Artinian. Then the following
are equivalent.

(i) K is an Artinian Gorenstein ring.
(ii) HbðPKÞ has AR-triangles; resp. HbðPKÞ is dualizing; resp. HbðPKÞ admits

a Serre functor.
(iii) �	L

K DðKÞ is a Serre functor in HbðPKÞ.
(iv) �	L

K DðKÞ : D(Mod-KÞ ! D(Mod-K) is a triangle equivalence.
(v) Max(D(Mod-K)) = Fin(D(Mod-K)).

Proof. Follows directly from Proposition 9.14 and the fact that a
coproduct preserving exact functor F between compactly generated triangu-
lated categories is an equivalence iff F restricts to an equivalence between the
full subcategories of compact objects, see for instance [47, Lemma 4.2]. h

Let Db
noeth(Mod-KÞ ¼ Db(mod-K), resp. Db

art(Mod-K), be the full subcat-

egory of Db(Mod-K) consisting of all complexes with Noetherian, resp. Ar-
tinian, cohomology. The equivalence (i) , (ii) below generalizes slightly
another basic result of Happel [37, Corollary 1.4] proved by different
methods.

THEOREM 9.16. Let K be a Noetherian R-algebra over a commutative
Noetherian complete local ring. Then the following are equivalent.

(i) K is Artinian and gl.dimK <1.
(ii) Db

noeth(Mod-KÞ has right AR-triangles.
(iii) Db

art(Mod-KÞ has left AR-triangles.
(iv) Db

noeth(Mod-K), resp. Db
art(Mod-KÞ, is a dualizing R-variety.

(v) Db
noeth(Mod-K), resp. Db

art(Mod-KÞ, admits a Serre functor.
(vi) IndðDb(mod-KÞÞ ¼ MaxðDðMod-KÞÞ.
(vii) K is Artinian and non-singular; i.e. DsingðMod-KÞ ¼ 0.

If (i) holds, then Db
noeth(Mod-KÞ ¼ Db

art(Mod-KÞ ¼ Db(mod-KÞ ¼ HbðPKÞ has
AR-triangles and admits a Serre functor which is given by �	L

K DðKÞ.
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Proof. (i) ) (ii), (iii) If (i) holds, then mod-K ¼ noethðKÞ ¼ artðKÞ and K
is Gorenstein. Then HbðPKÞ ¼ Db

noeth(Mod-KÞ ¼ Db
art(Mod-KÞ has AR-tri-

angles by Theorem 9.15. If (ii) holds, then since Db
noeth(Mod-KÞ is R-finite and

contains the compact objects, by Corollary 9:4 and Proposition 9:14, we have
that K is Artinian and HbðPKÞ ¼ Db

noeth(Mod-KÞ. Hence gl.dimK <1. The
remaining assertions follow from our previous results and the fact that the
functor D : D(Mod-KÞ ! D(Mod-KopÞ induces a duality Db

art(Mod-
KÞ ! Db

noeth(Mod-KopÞ and for any indecomposable perfect complex X we

have DmðXÞ ffi X	L
K DðKÞ 2 Db

art(Mod-KÞ. (

EXAMPLE 9.17. Let R be a DGA as in Example 9:12. Then DfðRÞ has
(right) AR-triangles iff R is non-singular, i.e. DfðRÞ ¼ DðRÞb, that is, any DG
R-module M with dimH�ðMÞ <1 is finitely built from R. This follows from
Corollary 9:4 since the dual object of any compact object lies in the image of
�	L

R DðRÞ.
EXAMPLE 9.18. Let 0! A! B ! C ! 0 be an exact sequence of trian-
gulated categories. Then it is not true that B has AR-triangles if A and C do
so. Indeed let K be a Gorenstein R-algebra of infinite global dimension. Then
we have a short exact sequence of R-finite triangulated categories
0! HbðPKÞ ! Db(mod-KÞ ! CMðKÞ ! 0, where CMðKÞ is the stable cat-
egory of Cohen-Macaulay modules which coincides with Dsing(Mod-KÞ, see
[17, Corollary 6.14]. Clearly bothHbðPKÞ and CMðKÞ have AR-triangles, but
this is not true for Db(mod-KÞ since gl.dimK ¼ 1.

9.3. CONSTRUCTIONS OF GORENSTEIN ALGEBRAS

Recall from [9] that anArtin algebraK is calledCohen-Macaulay provided that
there exists a finitely generated K-bimodule KxK, called dualizing bimodule,
such that the functor�	K x induces an equivalence between the subcategory
of K-modules with finite projective dimension and the subcategory of
K-modules with finite injective dimension. It is easy to see that Gorenstein
Artin algebras, in particular self-injective Artin algebras and Artin algebras of
finite global dimension, are Cohen-Macaulay, see [9] for more examples. For
the notion of trivial extension of rings used below we refer to [16].

COROLLARY 9.19. Let K be a Cohen-Macaulay Artin algebra with dual-
izing bimodule x and let C :¼ Knx be the trivial extension algebra of K by x.
Then the category HbðPKnxÞ has AR-triangles. Moreover if X is an indecom-
posable perfect complex in D(Mod-KÞÞ, then we have the following isomor-
phisms in D(Mod-C):

sþCðX	L
K CÞ!ffi DnðX	L

K CÞ½�1�!ffi RHomKðC;DmðXÞÞ½�1�

!ffi RHomKðC; sþKðXÞÞ:
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Proof. By [16, Corollary 4.14], the trivial extension of a Cohen-Macaulay
algebra by a dualizing bimodule is Gorenstein. So the assertions follow from
Theorem 9:15 and the fact that, by Corollary 4.5, sþ ¼ � 	L

K DðKÞ½�1� and
similarly for C. (

If R is a commutative Noetherian Cohen–Macaulay ring with dualizing
module x, then working as in Corollary 9:19 and using Proposition 9:13 we
have that HbðPRnxÞ has AR-triangles iff R is Artinian.

Now let C be a compactly generated triangulated category which admits a
compact generator T with endomorphism ring KT. If J is an injective
cogenerator of Mod-KT, then the J-dual object DJðTÞ is a pure-injective
cogenerator of C. A compact object P in C is called a Wakamatsu compact
object if the pure-injective cogenerator DJðTÞ of C lies in the localizing sub-
category of C generated by P. Finally we say that a DG-algebra C is
Gorenstein if DðCÞb has AR-triangles.

THEOREM 9.20. Let K be a Noetherian R-algebra and assume that either R
is Artinian or R is Noetherian, complete and local. Then the following are
equivalent.

(i) K is Artinian Gorenstein.
(ii) For any Wakamatsu perfect complex P, the DG-algebra C of endomor-

phisms of P is Gorenstein with Artinian cohomology.
(iii) For any perfect complex P, the DG-algebra C of endomorphisms of P is

Gorenstein with Artinian cohomology, provided that P is compact when
considered as an object in DðCÞ.

Proof. Clearly (ii), (iii)) (i) since the compact generator K is Wakamatsu
and satisfies the condition in (iii). Assume now that K is Artinian Gorenstein.
Then, by Theorem 9.15, the subcategory HbðPKÞ has AR-triangles and the
pure-injective cogenerator DðKÞ of D(Mod-KÞ is a compact generator. We
now fix a perfect complex P with DG endomorphism algebra C and let X be
the localizing subcategory of D(Mod-KÞ generated by P. By [22, Theorem
IV.2.1], X is the torsion class of a torsion triple ðX ;Y;ZÞ in D(Mod-KÞ and
Xb coincides with the thick subcategory of D(Mod-KÞ generated by P.
Moreover the functor �	L

C PK : DðCÞ ! D(Mod-KÞ is fully faithful and
induces a triangle equivalence �	L

C PK : DðCÞ�!� X which restricts to a
triangle equivalence �	L

C PK : DðCÞb�!� Xb. If the complex P is Wakama-
tsu, then DðKÞ lies in X . Since X is localizing and contains the compact
generator DðKÞ, we infer that X ¼ DðMod-KÞ. Therefore DðCÞb�!� Xb has
AR-triangles or equivalently it is dualizing. This implies that the cohomology
of C is Artinian. If the complex P is perfect in DðCÞ, then by a result of
Keller, see [22, Proposition IV.3.5], the functor �	L

C PK preserves products.
As in [22, Theorem 3.4], this implies that X is closed under products in
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D(Mod-KÞ. By Proposition 5.14 there exists a torsion quadruple ðW;X ;Y;ZÞ
in D(Mod-KÞ which restricts to a torsion triple ðWb;Xb;YbÞ inHbðPKÞ. Then
Lemma 5.9 implies that Xb has AR-triangles and as above we infer that C is
Gorenstein with Artinian cohomology. h

Let K be an Artin algebra and T a finitely generated K-module. We call T
a Wakamatsu module, if there exists an exact sequence
� � � ! T1 ! T0 ! DðKÞ ! 0 in mod-K, where each Ti lies in add(T ).
Examples of Wakamatsu modules include the so-called Wakamatsu
(co)tilting modules, see [22], [78]. Recall that the Yoneda Ext-algebra of a
finitely generated K-module T is defined by EðTÞ ¼ �nP0Ext

n
KðT;TÞ.

COROLLARY 9.21. The algebra K is Gorenstein iff for any Wakamatsu K-
module T of finite projective dimension, the Yoneda Ext-algebra EðTÞ of T is
Gorenstein.

Proof. It follows easily that T is a Wakamatsu perfect complex, see the
proof of Theorem IV.3.4 of [22]. Then the assertion follows from Theorem
9.20. (

COROLLARY 9.22. Let K be a Gorenstein Artin algebra and T a finitely
generated Ext-orthogonal K-module with endomorphism ring C such that
pdTK <1. If T is Wakamatsu or pdCT <1, then C is Gorenstein. In par-
ticular if gl.dimK <1, then EndKðTÞ is Gorenstein for any Wakamatsu Ext-
orthogonal K-module T.

We close this section with a construction of Gorenstein (DG-)algebras and
triangulated categories with AR-triangles starting from finitely generated
Cohen-Macaulay modules over an Artin algebra K. Recall from [9] that a
finitely generated K-module X is called Cohen-Macaulay if ExtnKðX;KÞ ¼ 0,

8n � 1, and there exists an exact sequence 0! X! P0 ! � � � !
Pn!f

n

Pnþ1 ! � � �, where the Pn are projective and ExttKðKerðf nÞ;KÞ ¼ 0,

8t � 1, 8nP0. Let U be a subcategory of mod-K. We denote by lim�!U the full

subcategory of Mod-K formed by the filtered colimits of modules from U. We
recall from [20] that a subcategory U of mod-K is called projectively thick if
ðaÞ U is closed under extensions and kernels of epimorphisms, ðbÞ U contains
the projectives, and ðcÞ U is closed under cokernels of maps g : X! Y such
that HomKðg;KÞ is surjective. Notice that, by [20], if U is a projectively thick
subcategory of mod-K consisting of Cohen-Macaulay modules, then U, resp.
lim�!U, is an exact Frobenius subcategory of mod-K, resp. Mod-K. Therefore

by [36], the stable categories U and lim�!U modulo projectives are triangu-

lated.
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THEOREM 9.23. Let K be an Artin algebra and let X be a projectively thick
subcategory of mod-K consisting of Cohen-Macaulay modules. If X is
contravariantly or covariantly finite in mod-K, then there exists a Gorenstein

DG-algebra C and a triangle equivalence lim�!X!
�
DðCÞ which induces a

triangle equivalence lim�!X!
�
DðCÞb.

Proof. It is proved in [20] that the stable category lim�!X is a compactly

generated triangulated category and ðlim�!XÞb ¼ X . Also, by [20], contra-

variant finiteness of X is equivalent to covariant finiteness. Now it is not
difficult to see that the right X -approximations XSðiÞ of the simple K-modules
fSð1Þ; . . . ;SðnÞg form a generating set of compact objects for lim�!X and

therefore by Theorem IV.2.2 of [22], lim�!X is triangle equivalent to the un-

bounded derived category DðCÞ, where C is the DG-algebra of endo-
morphims of the compact generator �n

i¼1XSðiÞ of lim�!X . Therefore X is

triangle equivalent to DðCÞb. Since X is functorially finite in mod-K, it

follows from [11, Theorem 2.4] that the exact category X has relative
AR-sequences. Clearly this implies that X has AR-triangles. Hence the
DG-algebra C is Gorenstein. (

Note that if K is Gorenstein, or more generally virtually Gorenstein in the
sense of [20], then we can choose X to be the full subcategory of Cohen-
Macaulay modules.

10. Categories Of Finite Type, Endofinite Objects and Auslander–Reiten

Triangles

In this section we study compactly generated triangulated categories enjoying
finiteness conditions which are of interest in representation theory, for in-
stance pure-semisimplicity or the finite type property, in connection with
Auslander–Reiten theory and the structure of the Ziegler spectrum.

Throughout C denotes a compactly generated triangulated category.

10.1. CATEGORIES OF FINITE TYPE AND AUSLANDER–REITEN TRIANGLES

Recall from [18] that C is called pure-semisimple if any pure triangle in C
splits. Equivalently any object of C is pure-projective, resp. pure-injective. It
is proved in [18, Section 9] that C is pure-semisimple iff the functor H : C !
Mod-Cb induces an equivalence C!� FlatðCbÞ iff the functor category Mod-Cb
is locally Noetherian, i.e. Mod-Cb admits a set of Noetherian generators.
Then C is of finite type if the category Mod-Cb is locally finite, i.e. admits a set
of generators of finite length.
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LEMMA 10.1. If C is pure-semisimple, then ZgðCÞ ¼ IndðCbÞ and the category
Cb is Krull–Schmidt with right AR-triangles which are AR-triangles in C.

Proof. By Theorem 9.3 of [18], Cb is Krull–Schmidt and any indecom-
posable object is compact. This implies that ZgðCÞ ¼ IndðCbÞ, hence Cb has
right AR-triangles. (

In general if C is pure-semisimple, then C is not necessarily of finite type,
see [18, Example 12.19] or Example 10.5 below. The following result, which
generalizes a result of Zimmermann-Huisgen [82, Theorem A0] from module
theory, shows that the missing item is the existence of left AR-triangles in Cb:
THEOREM 10.2. The following are equivalent:

(i) C is of finite type.
(ii) C is pure-semisimple and Cb has left AR-triangles.
(iii) C is pure-semisimple and any finite point is maximal.
(iv) C is pure-semisimple and any finite point is isolated.

Proof. (i) ) (ii) By Lemma 10.1, C is pure-semisimple and Cb is Krull–
Schmidt. Let W be an indecomposable compact object. Since C is of finite
type, the functor category Mod-Cb is locally finite and this implies that the
finitely generated projective functor H(Y) has a simple subfunctor S, see [2,
Theorem 2.10]. Then S admits a projective cover and by Theorem 8.10, W is
the source of an AR-triangle in Cb.

(ii)) (i) Since C is pure-semisimple, Mod-Cb is locally Noetherian and, by
[2, Theorem 2.10], it suffices to show that any non-zero functor M2Mod-Cb
has a simple subfunctor. Since M 6¼ 0, there exists a non-zero morphism
a : HðXÞ !M for some compact T, and we have an exact sequence
0! G! HðXÞ ! F! 0, where F ¼ ImðaÞ. Since Mod-Cb is locally No-
etherian, it follows that KerðaÞ is finitely generated and therefore F is finitely
presented. Since simple subfunctors of F are simple subfunctors of M, it
suffices to show that any finitely presented functor F contains a simple
subfunctor. Let l : F ,!HðEÞ be the injective envelope of F in Mod-Cb. Then
E is pure-injective and therefore E is compact since C is pure-semisimple. Let
Z be an indecomposable direct summand of E which admits a non-zero
morphism f : F! HðZÞ. Then Z is compact and therefore there exists an
AR-triangle Z!W! X! RðZÞ in Cb. Then H(Z) is the injective envelope
of a (finitely presented) simple functor S by Theorem 8.10. Hence H(E)
contains a simple subfunctor S which clearly is a simple subfunctor of F.

The equivalences (ii), (iii), (iv) follow from Corollary 8.11. (

COROLLARY 10.3. If C is of finite type, then Cb has AR-triangles.
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EXAMPLE 10.4. Let K be ring which is derived equivalent to a represen-
tation finite right hereditary ring, e.g. an Artin algebra which is derived
equivalent to the path algebra of Dynkin quiver. Then by [18, Corollary
12.16] the unbounded derived category D(Mod-KÞ is of finite type, so the
category of perfect complexes over K admits AR-triangles. The artinian case
also follows from the results of Happel [36].

The following example shows that there exists a compactly generated
(pure-semisimple) triangulated category C such that Cb is a Krull-Schmidt
category with right AR-triangles but with no left AR-triangles.

EXAMPLE 10.5. Consider @t, tP0, as a totally ordered set and let k be a
countable field. Let ½@t;Mod-k� be the category of k-linear representations of
@t, and let k@t be the k-linear category yielding an equivalence:

½@t;Mod-k�!� Mod-k@opt . If C :¼ DðMod-k@opt Þ is the unbounded derived

category of Mod-k@opt , then C is a pure-semisimple compactly generated
triangulated category which is not locally finite by Example 12.19 of [18].
Hence, by Theorem 10.2, Cb has right AR-triangles, but no left AR-triangles.
It follows that there exist compactly generated triangulated categories C with
the property that MaxðCÞ 
 FinðCÞ but FinðCÞ 6
 MaxðCÞ.

10.2. ENDOFINITE OBJECTS

Recall from Corollary 9.6 that endofinite objects provide an important class
of pure-injective objects of C. In this subsection we study the connections
between endofiniteness and the finite type property. Recall that an object G in
Mod-Cb, resp. FlatðCbÞ, is called endofinite if the right EndðGÞ-module ðF;GÞ
has finite length for any finitely presented object F in Mod-Cb, resp. FlatðCbÞ,
see [27]. We begin our discussion of endofinite objects with the following.

LEMMA 10.6. For an object E in C, the following are equivalent.

(i) E is endofinite in C.
(ii) HðEÞ is endofinite in Mod-Cb.
(iii) H(E) is endofinite in FlatðCbÞ.
The functor C!H Mod-Cb gives equivalences between the subcategories of en-
dofinite objects of C, endofinite objects of FlatðCbÞ and endofinite flat objects of
Mod-Cb.

Proof. Assume that E is endofinite. Then we have a ring isomorphism
EndCðEÞ ffi EndðHðEÞÞ since E is pure-injective. Let F be a finitely presented
functor over Cb and let HðYÞ ! HðXÞ ! F! 0 be a finite presentation of F.
Then we have the exact sequence 0! ½F;HðEÞ� ! CðX;EÞ ! CðY;EÞ of right
EndCðEÞ-modules. Endofiniteness of E implies that the right EndCðEÞ-
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modules CðX;EÞ and CðY;EÞ have finite length. Then obviously the right
EndCðEÞ-module ½F;HðEÞ� has finite length, so H(E) is endofinite in Mod-Cb.
Conversely if H(E) is endofinite in Mod-Cb, then H(E) is pure-injective. Since
HðEÞ is also flat, it follows that H(E) is injective. Thus E is pure-injective in C
and in particular the natural ring map EndCðEÞ ! EndðHðEÞÞ is invertible.
Since for any compact object X in C, the functor H(X) is finitely presented, it

follows that the right EndCðEÞ-module CðX;EÞ!ffi ½HðXÞ;HðEÞ� has finite
length. So E is endofinite in C. The proof of the equivalence (i) , (iii) is
similar and is left to the reader. The last assertion follows from the fact that
H induces an equivalence between the full subcategory of pure-injective
objects of C and the flat and pure-injective objects of Mod-Cb. (

As a direct consequence of Lemma 10:6, the results of the previous sec-
tions and the results of Prest [71, Proposition 2.11] and Krause in [53,
Proposition 6.17] we have the following corollary.

COROLLARY 10.7. Let E be an indecomposable endofinite object in C. Then
fEg is a closed point in Zg(C). In particular if any compact object is endofinite,
then Cb has left AR-triangles iff any indecomposable compact object is clopen in
Zg(C).

EXAMPLE 10.8. Let C be the stable homotopy category of p-local spectra,
where p is a prime, see [61, Chapter 8]. It is known that the Morava K-
theories KðnÞ, n � 0 are indecomposable endofinite objects in C, see [55].
Hence each KðnÞ is a closed point in the Ziegler spectrum of C.

There is a handy characterization of endofiniteness in terms of certain
quotient categories of Mod-Cb. Let E be an object in C and consider the
functor H(E) in Mod-Cb. Let SE be the full subcategory of mod-Cb consisting
of all functors F such that ½F;HðEÞ� ¼ 0. Let LE :¼ lim�!SE be the full sub-

category of Mod-Cb consisting of all functors G which can be written as a

filtered colimit of objects from SE. Since H(E) is flat it is easy to see that SE is
a Serre subcategory of mod-Cb and therefore LE is a localizing subcategory of
Mod-Cb. The following criterion follows from the results of Herzog [41,
Proposition 7.6] or Krause [50, Theorem 1.2].

LEMMA 10.9. The object E is endofinite in C iff Mod-Cb=LE is locally finite.

We are interested in having criteria ensuring that the maximal points of
the Ziegler spectrum are endofinite. In this connection we have the following.

LEMMA 10.10. Let X be a compact object with local endomorphism ring.
Then the m-dual object DmðXÞ is endofinite iff for any compact object Y in C,
the left KX-module CbðX;YÞ has finite length. In particular KX is left Artinian.
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Proof. We have isomorphisms CðY;DmðXÞÞ ffi HomKX
½CðX;YÞ; Im� and

EndKX
ðImÞ ffi EndCðDmðXÞÞ. Since Im is an injective cogenerator in Mod-Kop

X ,
it follows that DmðXÞ is endofinite iff the left KX-module CðX;YÞ has finite
length. (

COROLLARY 10.11. Let C be a compactly generated R-linear triangulated
category over a commutative Artin ring R. If Cb is compactly R-finite, then for
any indecomposable compact object X, the m-dual object DmðXÞ is endofinite
and fDmðXÞg is a closed subset of the Ziegler spectrum Zg(C). Moreover we
have the following.

(i) X is the target of an AR-triangle in Cb iff fDmðXÞg is clopen in Zg(C).
(ii) Cb has right AR-triangles iff fsþðXÞg is clopen in Zg(C), 8X 2 IndðCbÞ.
(iii) If Cb has AR-triangles, then any compact object is endofinite and the set

fXg is clopen in Zg(C) for any X 2 IndðCbÞ.
Proof. Since CðX;YÞ is finitely generated as an R-module and KX is an

Artin R-algebra, it follows that CðX;YÞ has finite length as a left KX-module.
Then the assertions follow from Lemma 10:10 and Corollary 10.7. Now the
proof of parts (i) and (ii) follow from Theorem 8.12 and the proof of part (iii)
follows from the fact that any compact object is of the form DmðXÞ. h

In the sequel we shall need the following result of Auslander [2, Theorem
2.12].

LEMMA 10.12. If Cb is Krull–Schmidt and E is in C, then HðEÞ has finite
length in Mod-Cb iff for any indecomposable compact object X, the left KX-
module CðX;EÞ has finite length and CðY;EÞ ¼ 0 for almost all indecomposable
compact objects Y.

Recall that an associative ring K is representation finite iff any left or right
K-module is endofinite, see [68], [83] or [53]. We have the following analogous
result which gives a connection between the finite type property and endo-
finiteness in compactly generated triangulated categories.

THEOREM 10.13. For a compactly generated triangulated category C the
following statements are equivalent.

(i) C is of finite type.
(ii) Any object of C is endofinite.
(iii) Any compact object of C is endofinite and for any compact object X in C we

have jSuppCbðX;�Þj <1.
(iv) Any compact object of C is endofinite and for any compact object X in C we

have jSuppCbð�;XÞj <1.

Proof. (i) ) (ii) Since C is of finite type, the category Mod-Cb is locally
finite. If E is an object in C, then Mod-Cb=LE is locally finite as a Gabriel
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quotient of the locally finite category Mod-Cb. Hence E is endofinite, by
Lemma 10.9.

(ii) ) (i) By Lemma 10.9, for any object C 2 C, the category Mod-Cb=LC
is locally finite. In particular the pure-injective cogenerator
E :¼

Q
fDmðXÞ j X 2 IsoðCbÞ; m 2MaxlðKXÞg of C is endofinite. Since H(E)

is an injective cogenerator in Mod-Cb, it follows that LE ¼ 0 and therefore
Mod-Cb is locally finite. Hence C is of finite type.

(i) , (iii), (iv) If C is of finite type then, by (ii), any compact object is
endofinite. By [18, Proposition 11.23], Mod-fCbgop is locally finite and
therefore jSuppCbðX;�Þj <1 by Lemma 10.12. Conversely if (iii) holds then
for any compact object X, the endomorphism ring EndCðXÞ is left Artinian.
This implies that Cb is Krull–Schmidt. Then by Lemma 10.12 and [18] we
infer that Mod-Cb is locally finite, so C is of finite type. The equivalence (i),
(iv) follows similarly. (

We have the following consequence which gives in particular a triangu-
lated analogue to a well-known module theoretic result of Auslander, see [3,
Theorem A0].

COROLLARY 10.14. Let C be an R-linear triangulated category over a
commutative Artin ring R. Then C is compactly R-finite iff Cb is Krull–Schmidt
and any maximal point DmðXÞ of C is endofinite. If this is the case, then the
following are equivalent.

(i) C is of finite type.
(ii) C is pure-semisimple.

Proof. If C is compactly R-finite, then Cb is Krull–Schmidt and then
Lemma 10.10 implies that any maximal point DmðXÞ of C is endofinite.
Conversely if this happens, by Lemma 10.10 the endomorphism ring KX of
any compact object X is left Artinian and therefore C is compactly R-finite.
Now let C be pure-semisimple and compactly R-finite. Then any compact
object is endofinite and any maximal point DmðXÞ is compact. Since, by [26,
Proposition 4.3], the class of endofinite objects is closed under products, the
pure-injective cogenerator of C is endofinite. This implies that Mod-Cb is
locally finite and consequently C is of finite type. (

11. Compactly Dual Pairs of Triangulated Categories

It is well-known that the dual of a compactly generated triangulated category
is never compactly generated, see [66, Appendix E]. However there are
important examples of pairs of compactly generated triangulated categories
such that the subcategories of compact objects are connected by an exact
duality. In this section we study such pairs in connection with the structure of
their Ziegler spectra and the behavior of Auslander–Reiten triangles.
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Throughout we fix a compactly generated triangulated category C. There
is a close connection between endofinite compact objects in C and the pure
global dimensions attached to C. Recall from [18] that the pure global
dimension p.gl.dimC of C is defined as the supremum of the projective
dimensions of the flat functors fCbgop ! Ab and the dual pure global
dimension p.gl.dimCop of C is defined to be the supremum of the projective
dimensions of the flat functors Cb ! Ab. By [18, Proposition 11.23], C is pure-
semisimple iff p.gl.dimC ¼ 0, and C is of finite type iff p.gl.dimCop ¼
0 ¼ p.gl.dimC. Note that p.gl.dimC is not the pure global dimension of Cop
since the latter is never compactly generated. However the definition of dual
pure global dimension is reasonable because of the following.

Remark 11.1. [18, Section 11.6] Let C and D be compactly generated
triangulated categories and assume that there exists an (exact) duality

fCbgop�!� Db. Then p.gl.dimCop ¼ p.gl.dimD. Instances of this situation are
the following.

(i) Let K be an associative ring. Then there is a duality between DðMod-KÞb
and DðMod-KopÞb which is induced by the duality between the catego-
ries of finitely generated projective left and right modules. We infer that
p.gl.dimDðMod-KÞop ¼ p:gl:dimDðMod-KopÞ.

(ii) Let HoðSpÞ be the stable homotopy category of spectra. Then Spanier–
Whitehead duality gives a self duality on the category of finite spectra
which is the full subcategory of compact objects of HoðSpÞ. In this case
p.gl.dimHoðSpÞop ¼ p.gl.dimHoðSpÞ which is equal to 1 by [18].

(iii) Let K be a QF-ring. Since the stable categories mod-Kop and mod-K are
dual, we infer that p:gl:dimðMod-KÞop ¼ p:gl:dimMod-Kop.

We have the following result which is a triangulated analogue of a module
theoretic result of Herzog, see [40, Theorem 2.3], proved via model theoretic
methods. First we recall that an object E in C is called R-pure-injective pro-
vided that any coproduct of copies of E is pure-injective.

THEOREM 11.2. If C has dual pure global dimension zero, then any compact
object of C is endofinite. Moreover Cb has left AR-triangles which are AR-
triangles in C and any compact object of C is R-pure-injective.

Proof. By [18, Proposition 11.23] the hypothesis implies that the category
Cb is Krull–Schmidt and the functor category Mod-Cb is locally Artinian. Let
X be a compact object. Since Mod-Cb is locally Artinian, it follows that the
functor HðXÞ is Artinian. Viewing HðXÞ as a finitely presented object in the
locally finitely presented category FlatðCbÞ, it follows that for any compact
object Y, the space CbðY;XÞ satisfies the descending chain condition for finite
matrix subgroups in the sense of [27]. Hence by [27, Theorem 3.5.1] we have
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that HðXÞ is R-pure-injective in FlatðCbÞ. This clearly implies that X is R-
pure-injective in C. Hence any compact object in C is R-pure-injective. By the
Krull–Schmidt property, to show that any compact object is endofinite it
suffices to show that this holds for any indecomposable compact object.
Hence we can assume that X is indecomposable. Then by the above obser-
vations, X is a point in the Ziegler spectrum. Since X is R-pure-injective, as in
[53, Proposition 6.17], it suffices to show that fXg is closed in ZgðCÞ. LetW be
indecomposable in Cb. Since Mod-Cb is locally Artinian, the functor HðWÞ is
Artinian and therefore HðXÞ contains a simple subfunctor S. Then Theorem

8.10 implies that there exists an AR-triangle W!/ Y! Z! RðWÞ in Cb.
Clearly any morphism W! X factors through / and consequently
fXg ¼ U/ is a closed point of ZgðCÞ. We infer that X is endofinite and it
remains to show that any AR-triangle in Cb remains an AR-triangle in C.
Since any compact object is pure-injective and Cb has left AR-triangles, this
follows from Corollary 9.2. (

Summarizing the above results we have the following direct consequences.

COROLLARY 11.3. Let p.gl.dim Cop ¼ 0 and let E be a point in ZgðCÞ. Then
E is compact iff fEg is clopen iff E is endofinite and a maximal point in ZgðCÞ.
COROLLARY 11.4. If C is compactly generated, then the following are
equivalent.

(i) C is of finite type.
(ii) p.gl.dimCop ¼ 0 and Cb has right AR-triangles.
(iii) p.gl.dimC ¼ 0 and Cb has left AR-triangles.
(iv) p.gl.dimCop ¼ 0 and for any indecomposable compact object X in C we

have: jSuppCbðX;�Þj <1 or jSuppCbð�;XÞj <1.

Formalizing Remark 11.1, we say that two compactly generated trian-
gulated categories C and D are compactly dual if there exists an (exact) duality

D : fCbgop!� Db. This notion gives a triangulated analogue to the well-known

duality mod-ðmod-KÞgop!� mod-ðmod-KopÞop, where K is a ring, discovered
by Auslander [12] and Gruson-Jensen [34]. Part (iv) of the next result, also
observed by Garkusha-Prest [32], gives a triangulated analogue to a result of
Herzog [41, Theorem 5.5].

THEOREM 11.5. Let ðD; CÞ be a pair of compactly dual compactly generated

triangulated categories and let D : fCbgop!� Db be an exact duality.

(i) Cb has right (left) AR-triangles iff Db has left (right) AR-triangles.
(ii) MaxIndðCÞ 
 FinðCÞ iff FinðDÞ 
 MaxIndðDÞ and FinðCÞ 
 MaxIndðCÞ iff

MaxIndðDÞ 
 FinðDÞ.
(iii) C is of finite type iff D is of finite type.
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(iv) The frames of open subsets of the Ziegler spectra ZgðCÞ and ZgðDÞ are
isomorphic.

(v) If D is pure semisimple, then the duality D induces a bijection

IndðCbÞ �! IsolðDÞ; X # DmðDðXÞÞ:
(vi) If D is pure semisimple, then any compact object in C is endofinite and any

isolated point, in particular any maximal point, in ZgðDÞ is endofinite.

Proof. Parts (i), (ii) and (iii) follow directly from our previous results and
part (iv) follows as in [41, Theorem 5.5] by using [55]. Assume now that D is
pure-semisimple. Then by Lemma 10.1 the category Db, hence also Cb, is
Krull–Schmidt.

(v) Let X be an indecomposable compact object in C. Then DðXÞ is an
indecomposable compact object in D. Let R�1DmðDðXÞÞ ! A! DðXÞ !
DmðDðXÞÞ be an AR-triangle in D. Since D is pure semisimple, any compact
object is pure injective and therefore the object DmðDðXÞÞ is compact and the
above triangle is an AR-triangle in Db. Then by Corollary 7.8, the object
DmðDðXÞÞ is isolated. Using the uniqueness of AR-triangles, we infer that the
map X 7! DmðDðXÞÞ is an injection. If E is an isolated point in ZgðDÞ, then by
Corollary 7:7 it follows that E is a maximal point, hence of the form DmðYÞ
for some indecomposable compact object Y in D. In turn Y ffi DðXÞ where X
is an indecomposable compact object in C. Hence E ffi DmðDðXÞÞ and
therefore the map X 7!DmðDðXÞÞ is a bijection.

(vi) The first part is Theorem 11:2. By part (v) it suffices to show that the
object DmðDðXÞÞ is endofinite, for any indecomposable compact object X in
C. Let Z be a compact object in D. Then we have isomorphisms

DðZ;DmðDðXÞÞÞ!
ffi ½DðDðXÞ;ZÞ; Im�!

ffi ½CðDðZÞ;XÞ; Im�
which show that the length of the right EndðDmðDðXÞÞ-module
DðZ;DmðDðXÞÞÞ is equal to the length of the right EndðImÞ-module
½CðDðZÞ;XÞ; Im� because EndðImÞ ffi EndðDmðDðXÞÞ. Since Im is an injective
cogenerator for the category of EndðXÞ-modules, it follows that the length of
the right EndðImÞ-module DðZ;DmðDðXÞÞÞ is equal to the length of the right
EndðXÞ-module CðDðZÞ;XÞ which is finite, since the object DðZÞ is compact
in C and the compact object X is endofinite. (

12. Auslander–Reiten Triangles and Grothendieck Groups

For Artin algebras there is an interesting relationship between AR-sequences
and Grothendieck groups in connection with the representation type which is
due to Auslander and Butler, see [13]. In this section we show that this
relationship holds more generally in a compactly generated triangulated
category.
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Recall that the Grothendieck group K0ðT Þ of a skeletally small triangu-
lated category T is defined to be the quotient of the free abelian group on the
set fðXÞjX 2 T g of isoclasses of objects of T modulo the subgroup generated
by all elements of the form ðXÞ � ðYÞ þ ðZÞ where X! Y! Z! RðXÞ is a
triangle in T . Let K0ðT ;�Þ be the Grothendieck group of the monoidal
category ðT ;�Þ and let ½X� be the isoclass of the object X in K0ðT Þ or
K0ðT ;�Þ. There is a natural surjection K0ðT ;�Þ ! K0ðT Þ which induces a
short exact sequence of abelian groups

0 �! DðT Þ �! K0ðT ;�Þ �! K0ðT Þ �! 0

Let artðT Þ be the set of all elements in K0ðT ;�Þ of the form ½X� � ½Y� þ ½Z�
where X! Y! Z! RðXÞ is an AR-triangle in T , and let ARTðT Þ be the
subgroup of K0ðT ;�Þ generated by artðT Þ. Note that if T is Krull–Schmidt,
then K0ðT ;�Þ is free on the set of isoclasses of indecomposable objects of T .

The following result generalizes the well-known characterization of rep-
resentation-finite Artin algebras in terms of Grothendieck groups, due to
Auslander-Butler, see [13, Theorem VI.4.3].

THEOREM 12.1 Let C be a compactly generated triangulated category: Then
for the following statements

(i) C is of finite type.
(ii) Cb is a Krull–Schmidt category with AR-triangles and DðCbÞ is generated by

the set artðCbÞ.
we have (i)) (ii). If C is compactly R-finite over a commutative ring R, then
(ii)) (i), ARTðCbÞ ¼ DðCbÞ and the set artðCbÞ is a free basis of DðCbÞ.

Proof. (i) ) (ii) Since C is of finite type, it follows that the functor cate-
gory Mod-Cb is locally finite and therefore mod-Cb is the full subcategory of
finite length objects. By Lemma 10:1 and Corollary 10:3, the category Cb is
Krull-Schmidt with AR-triangles. It suffices to show that any element

½X� � ½Y� þ ½Z� in K0ðCb;�Þ arising from a triangle X!g Y!f Z!h RðXÞ in Cb
is a finite sum of elements ½Xi� � ½Yi� þ ½Zi� arising from AR-triangles
Xi ! Yi ! Zi ! RðXiÞ in Cb. Consider the exact sequence 0! F!
HðXÞ !HðgÞHðYÞ !HðfÞHðZÞ ! F � ! 0 in mod-Cb. Then F ¼ CokerCbð�;R�1ðfÞÞ
and F� ¼ CokerCbð�; fÞ, in particular F ¼ F �R. Then the above exact se-
quence shows that in K0ðmod-CbÞ we have the relation:

½F� þ ½F �� ¼ ½HðXÞ� � ½HðYÞ� þ ½HðZÞ� ð1Þ

Since mod-Cb is a length category, the functors F and F � have finite length.
Hence in the Grothendieck group K0ðmod-CbÞ we have ½F� ¼

Pn
i¼1 ki½Si�

where Si is a simple functor in mod-Cb. Clearly if 0 
 F0 
 F1 

F2 
 � � � 
 Fn�1 
 Fn ¼ F is a composition series of F with composition
factors Si each with multiplicity ki, then 0 
 F0R

�1 
 F1R
�1 
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F2R
�1 
 � � � 
 Fn�1R

�1 
 FnR
�1 ¼ FR�1 ¼ F � is a composition series of F�

with composition factors SiR
�1 ¼ S�i each with multiplicity ki. Hence from

ð1Þ we obtain the relation

½F� þ ½F �� ¼
Xn
i¼1

kið½Si� þ ½S�i �Þ ð2Þ

Since the simple functor Si is finitely presented, there exists an AR-triangle
Xi ! Yi ! Zi ! RðXiÞ in Cb, which induces an exact sequence
0! Si ! HðXiÞ ! HðYiÞ ! HðZiÞ ! S�i ! 0 in mod-Cb. Hence we have the
relations

½Si� þ ½S�i � ¼ ½HðXiÞ� � ½HðYiÞ� þ ½HðZiÞ� ð3Þ
in K0ðmod-CbÞ and therefore from ð1Þ; ð2Þ and ð3Þ we obtain the relation

½HðXÞ� � ½HðYÞ� þ ½HðZÞ� ¼
Xn
i¼1

kið½HðXiÞ� � ½HðYiÞ� þ ½HðZiÞ�Þ ð4Þ

Since Cb is Krull–Schmidt, the canonical map K0ðCb;�Þ !
K0ðProjðmod-CbÞ;�Þ induced by H is invertible. By a result of Auslander–
Reiten, see [8, Proposition 4.1.2], it follows that the Cartan map
K0ðProjðmod-CbÞ;�Þ ! K0ðmod-CbÞ, hence the map K0ðCb;�Þ !
K0ðmod-CbÞ, ½X� 7! ½HðXÞ�, is a monomorphism. Then from ð4Þ we obtain the
following relation in K0ðCb;�Þ which proves the assertion:

½X� � ½Y� þ ½Z� ¼
Xn
i¼1

kið½Xi� � ½Yi� þ ½Zi�Þ ð5Þ

(ii) ) (i) If C is compactly R-finite and (ii) holds, then, by Lemma 4:6,
CbðX;YÞ has finite length over R, 8X;Y 2 Cb. Let F be the full subcategory of
mod-Cb consisting of all functors of finite length. By a result of Auslander–
Reiten [8, Proposition 1.3.1], the canonical map K0ðFÞ ! K0ðmod-CbÞ is a
monomorphism and it is invertible if and only if F ¼ mod-Cb. Hence to show
that C is of finite type, it suffices to show that the canonical map
K0ðFÞ ! K0ðmod-CbÞ is surjective. Let F ¼ KerCbð�; gÞ be in mod-Cb where
g : X! Y is a morphism in Cb and let X!g Y!f Z!h RðXÞ be a triangle in Cb.
Then as before we have ½F� þ ½F �� ¼ ½HðXÞ� � ½HðYÞ� þ ½HðZÞ� in K0 ðmod-CbÞ,
whereF� ¼ FR�1 ¼CokerCbð�; fÞ, and the element ½X�� ½Y� þ ½Z� inK0ðCb;�Þ
lies in DðCbÞ since it arises from a triangle in Cb. By hypothesis we can write
½X� � ½Y� þ ½Z� ¼

Pn
i¼1 kið½Xi� � ½Yi� þ ½Zi�Þwhere the element ½Xi�� ½Yi� þ ½Zi�

arises from AR-triangles Xi ! Yi ! Zi ! RðXiÞ in Cb. Then we have

½F� þ ½F�� ¼ HðXÞ� � ½HðYÞ� þ ½HðZÞ�

¼
Xn
i¼1

kið½HðXiÞ� � ½HðYiÞ� þ ½HðZiÞ�Þ
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in K0ðmod-CbÞ and as in ð3Þ, we have ½HðXiÞ� � ½HðYiÞ� þ ½HðZiÞ� ¼ ½Si� þ ½S�i �
for each i where Si and S�i are simple functors. Therefore ½F� þ ½F�� ¼ ½F� F��
lies in K0ðFÞ. Hence there exists a finitely presented functor G of finite length
such that ½F� F�� ¼ ½G�. It is well-known that this implies that there exist
short exact sequences 0! H0 ! H1 ! H00 ! 0 and 0! H0 ! H2 !
H00 ! 0 such that F� F� �H1 ffi G�H2. Since G�H2 lies in F , we infer
that F lies in F . Hence F ¼ mod-Cb and consequently Mod-Cb is locally
finite, i.e. C is of finite type.

The last assertion is proved as in [13, Section VI.4] using the bilinear form
< �;� >: K0ðCb;�Þ �K0ðCb;�Þ ! Z defined by < ½X�; ½Y� >¼ the length of
the R-module CbðX;YÞ, and is left to the reader. (

Remark 12.2. The proof of Theorem 12:1 shows that if T is a skeletally
small triangulated category such that the functor category Mod-T is locally
finite, then the elements ½X� � ½Y� þ ½Z� arising from AR-triangles in T ,
generate the kernel of the canonical epimorphism KðT ;�Þ ! K0ðT Þ. This
generalizes, and gives the converse to, a recent result of Xiao and Zhu, see
[79, Theorem 2.1].

COROLLARY 12.3. Let K be a Noetherian R-algebra where R is Artinian or
Noetherian complete and local. Then the following are equivalent.

(i) DðMod-KÞ is of finite type.
(ii) K is Artinian, gl. dim K <1 and artðHbðPKÞÞ is a free basis for the kernel

of the Cartan map K0ðHbðPKÞ;�Þ ! K0ðDbðmod-KÞÞ.
If (i) holds, then K is of representation finite and K0ðHbðPKÞ;�Þ ffi
ARTðHbðPKÞÞ � Zn, where n ¼ rankK0ðKÞ is the number of non-isomorphic
simple K-modules.

Proof. (i)) (ii) By [18, Corollary 12.16], K is representation finite and has
finite global dimension; in particularHbðPKÞ ¼ Dbðmod-KÞ. Then (ii) follows
from Theorem 12:1. The converse follows from Theorem 12:1 and Theorem
9.16. h

Remark 12.4. If K is a Gorenstein Artin algebra, then from Corollary 12:3
it follows that DðMod-KÞ is of finite type iff artðHbðPKÞÞ is a free basis for the
kernel DðHbðPKÞÞ of the Cartan map K0ðHbðPKÞ;�Þ ! K0ðDbðmod-KÞÞ.

Comments and Conjectures

Let C be a compactly generated triangulated category. We have seen in
Example 10:5 that MaxðCÞ 
 FinðCÞ does not necessarily implies that
FinðCÞ 
 MaxðCÞ. The counter example was the unbounded derived category
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of a ring with several objects. Clearly this compactly generated triangulated
category does not admits a single compact generator. The results of the
previous sections suggest the following.

PROBLEM. Let C :¼ DðMod-KÞ be the unbounded derived category of an
associative ring K, or more generally a triangulated category with infinite
sums and a compact generator, i.e. C is monogenic. Assume that
MaxðCÞ 
 FinðCÞ. Is it true that FinðCÞ 
 MaxðCÞ? If this is not case, then
under what conditions is it true?

The problem is related to the following open conjectures in representation
theory:

DPSC The Derived Pure Semisimple Conjecture: If DðMod-KÞ is pure-
semisimple, then DðMod-KÞ is of finite type.

PSC The Pure Semisimple Conjecture: Any pure-semisimple ring is of finite
representation type.

GSC The Gorenstein Symmetry Conjecture: Any Artin algebra K with
idKK <1, is Gorenstein, i.e. id KK <1.

Note that, by [18, Remark 12.18], DPSC implies PSC and that in the
situation of the conjectures DPSC and GSC, the maximal spectrum is con-
tained in the finite spectrum, by Lemma 10:1 and Proposition 9:14 respec-
tively. If the problem has a positive answer, then, by Theorems 9:15 and 10:2,
the maximal and the finite spectra coincide in both cases and this implies the
validity of the conjectures. Hence the problem can be considered as a gen-
eralized form of the three conjectures.
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