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1. Introduction

Auslander and Reiten introduced in the early seventies almost split
sequences, now called Auslander—Reiten sequences, in the representation
theory of Artin algebras [5]. Since then Auslander—Reiten theory together
with its companion theory of purity of modules became an indispensable tool
for the structural analysis of a module category. On the other hand there is a
close relationship between purity and model theory of modules culminating
in the study of pure-injectivity in connection with the Ziegler spectrum of a
module category introduced by Ziegler [80] in model theoretic terms. This
fruitful relationship and interplay produced many important results in both
directions as documented in the book of Prest [68]. In this connection Prest in
the mid-eighties was the first who indicated a close relationship between
Auslander—Reiten theory and the structure of the Ziegler spectrum of a
module category, see [68]. Notice that Auslander—Reiten theory mainly
concerns the behavior of finitely generated modules whereas the Ziegler
spectrum controls the complexity of the whole module category. We refer to
the work of Prest [68], Herzog [41] and Krause [53] for comprehensive
treatments of the subject.
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Generalizing part of these developments Happel in the mid-cighties [36]
introduced triangulated categories in representation theory offering in this
way new invariants and classification limits in the study of representations.
One of the most successful developments in this setting is Happel’s extension
of Auslander—Reiten theory in the bounded derived category of an Artin
algebra. Since triangulated categories provide the natural setting for the
investigation of several homological or representation theoretic problems in
representation theory, algebraic geometry and algebraic topology (see for
instance Serre and Poincaré duality [23,44,75]), the above developments
provide strong motivation for the investigation of Auslander—Reiten theory
in more general triangulated categories, for instance those which may be of
interest in non-commutative geometry, in connection with suitably defined
notions of purity and the Ziegler spectrum.

On the other hand most of the triangulated categories which occur in
practice are compactly generated in the sense of Neeman [64], for instance the
stable homotopy category of spectra, the derived category of quasi-coherent
sheaves over a quasi-compact separated scheme, the derived category of
modules over a ring, and the stable module category of a modular group
algebra or more generally a quasi-Frobenius ring. In this framework a
concept of purity has been introduced by Krause [51] and the author [18], and
the first direct connections between purity, the Ziegler spectrum and Aus-
lander—Reiten theory were developed in [19,52].

Our main aim in this paper is to make a detailed systematic investigation
of Auslander—Reiten theory in, mainly compactly generated, triangulated
categories and to study the interplay and the connections with the theory of
purity and the Ziegler spectrum in the triangulated level. In analogy with
Auslander—Reiten theory in module categories, we study the connections
with Grothendieck groups, torsion pairs, representation embeddings, and
pure-semisimplicity or the finite type property. Since Auslander—Reiten
theory imposes several finiteness conditions, in the working setting of a
compactly generated triangulated category C, it behaves better when we
restrict our attention to suitable “finite”” objects. Therefore we are mainly
interested in constructing a satisfactory Auslander—Reiten theory in the full
subcategory of compact objects. In turn this theory gives valuable infor-
mation for the Ziegler spectrum which controls the behavior of C in a
certain sense.

Existence of Auslander—Reiten sequences or triangles is, of course, of
central importance in both the abelian and triangulated setting and is related
to the question of representability of functors and/or realizability of injective
modules, so it is crucial to have representability theorems, like Brown’s
representability, at our disposal. Working in suitable categories of finite
objects, global existence of Auslander—Reiten triangles gives a pleasant
behavior to the category and is related to existence of Serre functors and a
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certain non-singularity or Gorensteinness property expressed by some form
of duality.

The paper is divided roughly in three parts. We devote the first
part, consisting of Sections 2-5, to the study of global existence of
Auslander—Reiten triangles in various settings and we give the connections
with Serre functors, dualizing categories and torsion pairs. In the second
part, consisting of Sections 6-9, we concentrate on Auslander—Reiten theory
in a compactly generated category, we give the connections with purity, the
Ziegler spectrum and derived categories and we present methods for con-
structing categories with Auslander—Reiten triangles. The last part, consist-
ing of Sections 10-12, is devoted to the study of Auslander—Reiten theory in
connection with pure-semisimplicity and the finite type property, endofi-
niteness and Grothendieck groups. We refer to the text for the precise
statements of our results, noting that many of them are triangulated ana-
logues and extensions of well-known ring and module theoretic results
proved by different methods, so in this way the range of their applications is
widened.

CONVENTION. The composition of morphisms in a given category is
meant in the diagrammatic order: the composition of f: 4 — B with
g: B — Cis denoted by fog: A — C. Our additive categories admit finite
direct sums.

2. Realizability of Injectives and Construction of Morphisms

In this section we present a method for constructing morphisms with pre-
scribed properties in an additive category. The method, which will be
important later in connection with existence of Auslander—Reiten triangles, is
based on representability of injective envelopes of simple functors and real-
izability of injective modules.

Throughout we fix an additive category C with split idempotents. If A is a
ring then we denote by Mod-A the category of right A-modules. Left
A-modules are treated as right A°’-modules, where A°? is the opposite ring of
A.

2.1. INJECTIVE ENVELOPES OF SIMPLE MODULES AND FUNCTORS

We fix an object T in C and we denote by Ay := End¢(7) the endomorphism
ring of 7. Then for any additive functor F: C°® — Ab, the abelian group
F(T) carries a natural left A7-module structure as follows: Vp € Ay and
Vx € F(T), p*x := F(p)(x). In particular for any object C in C,C(7,C) is a
left Az-module with left Az-action: p x o := poa, Vp € Ar and Vo € C(T, C).
Then we have an additive functor
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HT :C— MOd-A%p, HT(C) = C(T, C)

Let m be a maximal left ideal of Ay, let Sy, be the simple Ar-module Az/m and
let pt : Sy Iy be the injective envelope of Sy, in Mod-A7P. Also let X be a full
additive subcategory of C which is closed under direct summands and contains
T. It is easy to see that X(—, T),, is a maximal subfunctor of X(—, T), where:

X(=,T1),,(C)={aecX(CT)|VpeX(TC): foacm}.

Hence the quotient Sy, := X(—, T)/X(—, T),, : X°® — Abisasimple functor
with the property that S7,,(7) = Sn. For convenience from now on we set:

H%m := Homy, [H7(—), I] : C°P — Ab.

In the sequel we denote by Max;(A), resp. Max,(A), the set of maximal left,
resp. right, ideals of a ring A, and by Iso(X) the isoclass of objects of a
category X. An additive functor F: X°P — Ab is called finitely presented if
there exists an exact sequence X(—, X;) — X(—, Xy) — F — 0 where the X;
are in X. If X is skeletally small. i.e. Iso(X) is a set, then we denote by Mod-
X, resp. mod-X, the category of contravariant additive, resp. finitely pre-
sented, functors X°P — Ab.

PROPOSITION 2.1. Let X be a skeletally small full subcategory of C con-
taining T.

(1) For any functor F € Mod-X, there exists an isomorphism:
% Hom/\T(F(T)va) — [F7 H\Z/",m]'

In particular we have an isomorphism: [Hy.,  H7 | ] = Endy (1) and the
functor H\;,m has local endomorphism ring.

(i) The functor H%m is an injective object in Mod-X. Moreover the functor
’ \/ . . . . .

HTGISO(X) HmeMax,(AT) Hy., is an injective cogenerator in Mod-X.

(iii) There exists an injective envelope in the abelian category Mod-X:

¢ . ST,m — H\]/",m = HOl’nA].[HT(—),Im].

Proof. (1) Assume first that F is finitely presented and let
X(—,X;) = X(—,Xy) — F— 0 be a finite presentation of F. By Yoneda’s
Lemma we have an exact sequence 0 — [F,Hy. ] — Hy. (Xo) — Hy, . (X1).
On the other hand the exact sequence X(T, X,) — X(T, Xo) — F(T) — 0 of
left Ar-modules, induces an exact sequence 0 — Homy, (F(T),I,] —
H7.(Xo) — Hy (X1). Hence [F,Hy ] = Homy, (F(T),Iy]. If F is an arbi-
trary additive functor, we write F as a filtered colimit of finitely presented
functors: F = 11_m> F;. Then we have isomorphisms:

L

[F,HY,] = [lim £, HY,, ] = lim [F;, H}. ] = lim Homa, (F/(T), I)
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HomAT(li_m> F(T), I,) = Homp,(F(T), Iy).
Setting F = H%m and using that Hy(7) = A7, we obtain isomorphisms:

[HY. ., HY.,.] — Homp, (Homu, (Hr(T), I), f) — Enda, ().

Finally Enda, (/) is local since I, is the injective envelope of a simple Az-
module.

(i1) Let 0 — F, — F, — F3 — 0 be a short exact sequence in Mod-X. Then
we have a short exact sequence 0 — Fi(7T) — F»(T) — F3(T) — 0 in Mod-
AF. Since I, is injective, we have a short exact sequence
0 — Homy,(F5(7T), L) — Homn, (F>(T), Iy) — Homa,(Fi(T), 1) — 0 in
Ab.  But by (i) the last sequence is isomorphic to
0 — [F5,H} ] — [F2,Hy, ) — [Fi,HY, ] — 0. Hence Hy, is an injective
functor. Now if [F,Hy.,.] = 0 for any object T'in X and any maximal left ideal
m of Az, we have by (i) that F(T) = 0 for any T € X. Hence F = 0.

(iii) Choosing F = St in part (i), we have isomorphisms:

[ST,HU H\I/",m] - HomAT(ST,m(T)a Im) - HOI’I’IAT(Sm, [m)-

Since Homp, (Sy, Iiy) # 0, there exists a non-zero morphism ¢ : St — H%m
which is an injective envelope since Hy. . is injective with local endomorphism

ring. U

For later reference we describe explicitly the injective envelope
¢ : Stm — Hy. Let i STy, be the injective envelope of Sy, in Mod-A7’.
Then for any object X € X, any element x € S7,,(X) and any morphism
y:T— X, the morphism ¢y:Srw(X)—Hy, (X) acts as follows:
dy(x)(») = w(xr(y)), where X : X(—, X) — St. is the unique morphism such
that .%)((1)() = X.

2.2. REPRESENTABILITY OF FUNCTORS AND CONSTRUCTION OF MORPHISMS

It will be crucial in the sequel to have conditions ensuring that the functor
HY. . is representable in C. In this subsection we discuss briefly some conse-
quénces of this fact which allow us to construct morphisms in C.

Let I be a left Ar-module and consider the functor:

HY := Homy [Hr (=), 1] : C® — Ab.
From now on we assume that ;HY. is representable with representing object
D!(T) which we call the I-dual object of T. Hence we have a natural iso-
morphism:

 : C(—,D/(T)) = H} = Homa, [Hr(—), 1].

For any morphism o : 4 — D/(T) in C we have the following commutative
diagram:
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Ppl(1)

C(DY(T),D!(T)) —— Homy, [H(D!(T)),1]

l Hr(a)*l (1)

C(4,D/(T)) 2% Homa,[Hr(4),1]
where o, = C(e,D'(T)) and Hz(x), = Homp, [Hr(), 1]. It follows from (1)
that Hy(a) o wpir(1py 7)) = w4(a). In the following we collect some prop-
erties of the map wp(p ( Ipiry) : H7(D/(T)) — I which will be useful later.

LEMMA 2.2.

(1) The map oy (1pir) Hy(D!(T)) — I is invertible.

(2) The canonical map C( D!(T)) — Homy, [Hr (=), Hr(D!(T))] is invert-
ible.

(3) There exists an isomorphism of rings: End¢(D!(T)) =2 Endy,(I).

Proof. Using the commutativity of diagram (1), an easy calculation shows
that: or(a)(17) = op7y(1pip)(2), for any map o:T— DY(T) in C.
This implies that w7 (1)) = w7 o, where  is the canonical isomor-
phism Hompy,[H7(7), 1] =R p— p(l7). In particular opip (1 qy) is
invertible. Then for any map «:A4—D/(T) in C, we have
Hr(o) = wmzm(lmz(T))_l(a)A( ). Therefore the canonical map o+ Hy(a) is
equal to the composition w 4 o a)D, T )(1D1(n) and consequently it is invertible.
The last assertion follows from the isomorphisms: Endq(D/(T))—

Homy, [H7(D'(T)), 1] = Homa, (1, 1) = Enda, (I). =

Now let /= I, be the injective envelope of the simple left A7-module
S := Ar/m, where m is a maximal left ideal of Ay.

DEFINITION 2.3. If the functor
H7. = Homy, [H7(=), In] : C°P — Ab

is representable, then the representing object of Hy.  is denoted by Dy, (7), i.e.
Dy (T) = D (T), and, by abuse of language, is called the m-dual object of T
in C with respect to the maximal left ideal m. In this case we denote always by

w: C(—,Dn(T)) = H%m the associated natural isomorphism.

Remark 2.4. In the sequel when we consider the functor HTm we implic-
itly assume without further mentioning that an object 7 is given in C with
endomorphism ring A7, m is a maximal ideal of Ay and I, is the injective
envelope of the simple left Ar-module Sy, := S7w(7T), where Sz, is the
simple functor C(—, T)/C(—,T),,-
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Assume now that the m-dual object Dy, (7)) of T exists. Consider the com-
position ¢o u: A7 = Hyp(T) — Sy, — Iy, where ¢ : Ay — S, is the canonical
projection and u : Sy, — I, is the injective envelope of S,,,, and we set

h=aw(sopn): T — Dy (7).
We now summarize some basic properties of /# which will be useful later.

LEMMA 2.5.

(1) The morphism h is non-zero and for any morphism o : Dy (T) — C in C
which is not a split monomorphism, it holds: ho o = 0.

(2) The map Hr(h) : Hp(T) — Hp(Dw(T)) has image ImHr(h) = Sy, and the
inclusion ImH7(h) — Hp (D (7)) is an injective envelope of Sy,.

(3) The map oy, (1y(1n,(r)) : Hr(Dw(T)) — Iy is invertible and induces a ring

isomorphism Endc(Dy(T)) — Enda,(Iiy). In particular Ende(Dy,(T)) is
local.

(4) The pairing C(T,A) x C(A, Dy (T)) — I, (f,€) — o~ (fog)(17) is non-
degenerate.

Proof. (1) By construction & # 0. Let o : D, (7) — C be a morphism in C
which is not a split monomorphism. If Hzy(a): Hr(Dyw (7)) — Hz(C) is a
monomorphism, then Hy (o) splits since Hz(IDy, (7)) = I, is injective. Then by
using part (2) of Lemma 2.2 we see easily that « splits and this is not the case.
Since ImH7(h) = Sy, this implies that Hp(h) o Hp(o) =0 and therefore
hoo=0. Parts (2), (3) and (4) follow directly from part (1) and Lemma
2.2. O

There is a useful connection between existence of m-dual objects and
existence of (co)generating sets. Recall that a set of objects X in C is a
generating, resp. cogenerating, set, in C, if C(T,C) =0, resp. C(C,T) =0,
VT € X, implies C = 0.

COROLLARY 2.6. Assume that C contains a set of objects X with the
property that for any object T in X and any maximal left ideal m of Ar, the
functor H%m : C — Ab is representable. Then we have the following.

(1) The set {H%m | T € X,m € Max,(Ar)} is a cogenerating set of indecom-
posable injectives in the module category Mod-X.

(ii) The set of objects X is a generating set in C if and only if the set of objects
{D(T)|T € X, m € Max,(Ar)} is a cogenerating set in C.

2.3. REALIZABILITY OF INJECTIVES

Let as before T be an object in C. If I is an injective left Ap-module,
then the above results suggest that there should be a connection between
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representability of the functor ;HY and realizability of the Ar-module 7 in the
sense of the following definition.

DEFINITION 2.7. Let E be an object in C and [ a left Ay-module. We say
that I is T-realizable by E if the following conditions hold.

(i) There exists an isomorphism Hy(E) = C(T,E) = I.
(ii) The canonical map C(—, E) — Homa, (Hr(—), H7(E)) is surjective.
(iii) The canonical map C(E, E) — Homy, (H7(E), Hr(E)) is injective.

In this case we say that the object E is a T-realization of I.

In the triangulated case we have the following connection between rep-
resentability of functors and realizability of injective modules.

PROPOSITION 2.8. Let C be a triangulated category and let T be an object
of C. If I is an injective left Ap-module, then the following statements are
equivalent.

(1) The left Ar-module I is T-realizable.
(ii) The functor (HY. := Homp, [Hr(=),1] : C°® — Ab is representable.

Proof. Part (i) = (i) follows from Lemma 2.2. Assume that [ is 7T-real-
izable and let E be a T-realization of 1. If « : C — E is a morphism in C such
that Hy(o) = 0, then for any morphism p: T — C in C we have: poa =0.
Let f: E— D be the cofiber of o. Since Hr(x) =0, it follows that
Hz(p) : Hr(E) — Hyp(D) is a monomorphism. Since the left Ar-module
Hr(E) =1 is injective, there exists a map o : Hp(D) — Hy(E) such that
Hz(B) o 6 = 1y,(r)- By condition (ii) of Definition 2.7, we have 6 = H(J) for
some morphism ¢ : D — E, and then by condition (iii) we have fo o = 1.
Hence f is split monic and therefore o = 0. We infer that the canonical map
C(—, E) — Homy, (Hz(—),H7(E)) is invertible. Composing this natural iso-
morphism with the natural isomorphism induced by the isomorphism

Hr(E) = 1, we get an isomorphism C(—,E) 5 Homy, (Hr(—), 1). 0

COROLLARY 2.9. Let C be a triangulated category. Let T be an object in C
with endomorphism ring A and let m be a maximal left ideal of Ar. Then the
Sunctor Hy. . = Homp, [Hr(—), L] is representable, that is the m-dual object
D (T) exists, if and only if the injective envelope I, of the simple module Ar/m
is T-realizable.

3. Representability of Functors and Auslander—Reiten Triangles

Our aim in this section is to prove some general existence results
for Auslander—Reiten triangles in a sufficiently general triangulated cate-
gory. The basic tool is the construction of morphisms arising from the
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representability of the injective envelopes of the simple contravariant
functors.

Let C be an additive category. We recall from [2] that a morphism
f: B — Cis called right almost split in C if fis not a split epimorphism and
any morphism o : £ — C which is not a split epimorphism factors through f.
It is easy to see that the target of a right almost split morphism has local
endomorphism ring, see [7]. A morphism f: B — C in C is called right min-
imal [10] if any endomorphism o : B — B such that oo f=f, is an auto-
morphism. A minimal right almost split morphism is a right minimal right
almost split morphism. The notions of left almost split, left minimal and
minimal left almost split morphisms are defined dually. Recall from [7] that an
exact sequence (E):0 — E4 AL T-0in an abelian category, or more
generally in an exact category in the sense of Quillen [73], is called an
Auslander—Reiten sequence, or AR-sequence for short, or almost split
sequence, if fis right almost split and g is left almost split. We refer to [4,7]
and the more accessible [13] for basic information on Auslander—Reiten
sequences and the decisive role they play in representation theory.

From now on we assume that C is a triangulated category with suspen-
sion functor X. The following important concept was introduced by Happel
[35] in order to develop Auslander—Reiten theory in triangulated categories.

DEFINITION 3.1. A triangle (T) : 45 BL L $4in Cis called an Aus-
lander—Reiten triangle, AR-triangle for short, if g is left almost split and f'is
right almost split. In this case we use the following notations: t*(C) = 4 and
77 (A) = C and we call t7, 1~ the Auslander—Reiten operators.

In what follows we need the following useful characterizations of
AR-triangles.

LEMMA 3.2. [1, Theorem 2.4], [35, Section 3] For a triangle (T) as above,
the following statements are equivalent.

(1) (7) is an AR-triangle.
(i1) g is minimal left almost split.
(i) f is minimal right almost split.
(iv) g is left almost split and End(C) is local.
(v) fis left almost split and End(A) is local.

It is easy to see that an AR-triangle is uniquely determined up to
isomorphism by its end terms, in the following sense. If
(T;): A — B; — C; — Z(A;) are AR-triangles, i = 1,2, then A4; = A4, iff
C) = (, iff the triangles (7)) are isomorphic.

DEFINITION 3.3.[36]. C has right, resp. left, AR-triangles, if for any object
C, resp. A, with local endomorphism ring, there exists an AR-triangle
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AiBLCLZ(A) in C. And C has AR-triangles, if C has left and right
AR-triangles.

Let 7 be an object in C with endomorphism ring A7 = End¢(7). As in
section 2 we have the functors Hr: C — Mod-A7?, Hy(C) =C(T, C), and
HY.,. :== Homy, [Hr(—=), L] : C°® — Ab, where m is a maximal left ideal of A7
and I,, is the injective envelope of the simple left Ar-module Sy, := Ar/m.

The following basic result shows that existence of AR-triangles in C is
related to representability of the indecomposable injective functors HY. .
Note that representability of H}. is equivalent to the existence of the m-dual
object D,,(T) of T. First recall that an additive category is called a Krull-
Schmidt category if any of its objects is a finite coproduct of objects with local
endomorphism ring.

THEOREM 3.4. If the functor H%m is representable, then we have the fol-
lowing. '

(1) Dy (T) is the source of a left almost split morphism in C.

(i) The m-dual object Dy, (T) of T is the source of an AR-triangle in C provided
that one of the following conditions hold:
(a) C is a Krull-Schmidt category.
(b) T has local endomorphism ring.

Proof. (1) Let h: T — Dy, (T) be the morphism constructed in Section 2

and let T2 Dy (T) L4 - 2(T) be a triangle in C. By Lemma 2.5, g is not
a split monomorphism and any morphism «: D,,(7) — B which is not a
split monomorphism factors through g. This shows that g is left almost
split.

(i1) If A7 is local, then the assertion follows from part (i) and Lemma 3.2.
If C is Krull-Schmidt, then it is well-known that there exists a decomposition
A= A, ® A, such that g = (g1,0) : D(7) — A ® A2 and g : Dy (7T) — 4,
is left minimal, see [60, Proposition 1.2]. Clearly g; is minimal left almost
split, so any triangle D,,,(7) 4 - T — 2Dy, (T) is an AR-triangle in C, by
Lemma 3.2. U

COROLLARY 3.5. Let C be a triangulated category and let T be an object in
C with local endomorphism ring Ar. If the functor

HVT7m := Homyp [H7r (=), L] : C°? — Ab
is representable, then there exists an AR-triangle Z*IJD)m(T )—A—T— Ein
C, where Dy, (T) is the representing object of the functor H\;’m.
The above result raises the question if, conversely, the existence of an
AR-triangle X"'E — 4 — T — E in C implies the representability of the

functor H7, . We devote the rest of this section to an analysis of this ques-
tion. We begin with the following preliminary result which shows that
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the morphism 7" — E above satisfies some special properties which will be
needed later.

LEMMA 3.6. Let S 'E5 4 ER T2 E be an AR-triangle in C.

(i) The canonical map C(—, E) — Homy,(Hz(—), Hr(E)) is injective.
(11) Sm = AT -h= ImHT(h) = SOCHT(E).
(iii) There are essential inclusions Sy, — Hp(E) — I,.
(iv) The module Hr(E) is injective if and only if Hp(E) = L.

Proof. We prove only part (i) leaving the easy proof of the other parts
to the reader. Let o : C — E be a morphism in C such that Hy(o) = 0. Then
p oo =0 for any morphism p : T — C. If « # 0, then the cofiber f: E— D
of « is not a split monomorphism. Since X(g) is left almost split, § factors
through X(g). This implies that o f =0. Hence there exists p: T — C
such that poa=~h. Since poa =0, it follows that 4~ =0 and this is
impossible. Hence o = 0 and the map C(C, E) — Homa,(H7(C),Hr(E)) is
injective. ]

We are interested in finding sufficient conditions ensuring that the
canonical maps in Lemma 3.6 are invertible and also when the module
H7(E) is injective. First recall from [10] that a subcategory X of an
additive category C is called contravariantly finite if for any object C in C
there exists a morphism f¢: X¢c — C with X¢ in X such that any mor-
phism X — C with X in X factors through fc. In this case f¢ is called a
right X-approximation of C. The dual notions are covariantly finite and left
approximation, and X is called functorially finite if X is both contravari-
antly and covariantly finite. We denote by add(X) the full subcategory of
C consisting of all direct summands of finite direct sums of objects from
X. An additive category C is R-linear over a commutative ring R, if
C(A4,B) is an R-module, ¥ 4, B € C, and the composition of morphisms is
R-bilinear.

LEMMA 3.7. Let C be an R-linear category over a commutative ring R and let
T be an object in C. Then the following are equivalent:

(i) add(T7) is contravariantly finite in C.
(il) For any object C in C, the left Ap-module C(T, C) is finitely generated.
(i) For any C in C, the R-module C(T, C) is finitely generated.

If (i) holds, then the functor Hr induces an equivalence between add(T) and the

category Pa, of finitely generated projective Ar-modules, and the canonical
map C(X,C) — Homy,(Hr(X),H7(E)) is invertible, VX € add(T), VE € C.

Proof. The equivalences follow from Proposition 1.9 of [8]. The final
assertion is standard and its proof is left to the reader. O
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Recall that a module X over a ring A is called FP-injective if
Exth (F, X) = 0 for any finitely presented module F. Note that A is left No-
etherian if and only if any left FP-injective module is injective.

LEMMA 3.8. Let X 'E — A — T — E be an AR-triangle in C. If add(T) is
contravariantly finite in C, then the left Ar-module Hy(E) is FP-injective and
the canonical map C(—, E) — Homy,(Hr(—),Hr(E)) is invertible. In particu-
lar the ring Enda, (Hp(E)) is local.

Proof. By Lemma 3.6 it suffices to show that any map o : Hy(C) — Hy(E)
is of the form Hy(a) for some morphism o : C — E. Since add(7) is con-

travariantly finite in C, there exists a triangle K A Toﬂ C — XZ(K) where
W : Ty — Cis a right add(7)-approximation of C. By Lemma 3.7 there exists
a morphism f: Ty — E such that Hy() oo = Hy(ff). Consider the mor-
phism ¢ o f : K — E. Then obviously Hy(¢ o f) = 0. Then by Lemma 3.6 we
have ¢ o f = 0. Hence there exists a morphism « : C — E such that jy o o = f.
Then Hz(y) o Hy(o) = Hr(f) = Hr(Y) o a. Since Hy(y) is an epimorphism,
we infer that Hy(a) = o.

Now let F be a finitely presented left Ay-module. By Lemma 3.7 a finite

presentation of F is of the form HT(Tl)Hﬁ)HT(TO)HFH 0, where

o:T) — Ty is a morphism between objects in add(7). Let

CZ Ty 5 Ty — 2(C) be a triangle in C, and let K5 T, 2 C5Z(K) be a

triangle in C where p : T, — C is a right add(7)-approximation of C. Then
H H

we have an exact sequence Hy(C) T—(JQHT(TI) ﬂ)HT(TO) — F—0 in

Mod-A7P.  Setting M :=KerHz(a), we have an exact sequence

Hr(T) gl Hr(T)) 7 H7(Ty)) — F — 0 which is the beginning of a pro-

jective resolution of F. Applying the functor Homy,[—, H7(E)] and using that
the canonical map C(—, E) — Homa, (H7(—), H7(E)) is invertible, we have a
C(a, C(poa, .
complex (x) : C(To, E) (—E>)C(T1,E) ([)—>E)C(T2,E) the homology of which
computes the extension Ext[l\T[F, Hr(E)]. Let {: T} — E be a morphism in

KerC(poa,E). Then pogo{=0, hence co{=xo¢ for a morphism
¢:%(K) — E. Then Hy(oo{) =Hy(ko &) =0, since Hy(x) = 0. Therefore
Hz(o o {) = 0 and consequently ¢ o { = 0. It follows that { = a0 0 for some
morphism 0 : Ty — E. This implies that the complex (x) is exact and there-
fore Ext}\T[F, H7r(E)] = 0. O

As a consequence of Lemma 3.8 we have the following.

PROPOSITION 3.9. Let T be an object in C with local endomorphism ring
and assume that add(T) is contravariantly finite in C. Then the following are
equivalent.
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(i) There exists an AR-triangle ¥ 'E — A — T — E in C and the left Ar-
module Hr(E) is injective.
(ii) The functor Hy. = Homa, [Hr(=), In] : C°P — Ab is representable.

Proof. Part (ii) = (i) follows directly from Corollary 3.5 and Lemma 3.6.
If (i) holds, then, by Lemma 3.6, the left Ay-module Hy(E) is the injective
envelope I, of the simple Ar-module S, and by Lemma 3.8 the canonical
map C(—, E) — Homa,(Hz(—),H7(E)) is invertible. We infer that 7, is 7-
realizable by the object E. Then by Proposition 2.8 we conclude that the
functor Hy.  is representable. O

Now we can prove the following result which, under a finiteness condition,
shows that the existence of an AR-triangle starting at an object T is equiv-
alent to the representability of the injective envelope of the simple functor
associated to T.

THEOREM 3.10. Let C be an R-linear triangulated category over a commu-
tative Noetherian ring R and let T be an object in C with local endomorphism
ring. If YC € C the R-module C(T, C) is finitely generated, then the following
are equivalent:

() There exists an AR-triangle ¥'E — A4 — T — E in C.
(i) The functor H%m := Homy, [Hy(—), I, : C°° — Ab is representable.

If (i) holds, then we have isomorphisms: E = D,,(T) and H%m ~(C(—, E).

Proof. The implication (ii) = (i) follows by Proposition 3.9.

(i) = (ii)) By Lemma 3.7 it follows that add(7) is contravariantly finite in
C. Since C(T, T) is finitely generated as an R-module and R is Noetherian, the
local ring A7 = C(T, T) is Noetherian. Then the FP-injective left Ay-module
Hr(E) is injective and therefore the functor Hy., is representable by Propo-

sition 3.9. O
Summarizing the above results we have the following.

THEOREM 3.11. Let C be a skeletally small R-linear triangulated Krull-
Schmidt category over a commutative Noetherian ring and assume that the
R-module C(A,B) is finite generated, for all objects A, B in C. Then the
following are equivalent:

(1) C has right AR-triangles.
(ii) The injective envelopes of the simple functors C°® — Ab are representable.
(ili) Any simple contravariant functor C°® — Ab is finitely presented.
(iv) For any object T in C with local endomorphism ring, the injective envelope
of the unique simple End¢(T)-module is T-realizable.
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Proof. By our previous results we have (i) < (iv) and (ii)) = (i). The
implication (i) = (ii) follows from Proposition 2.1, Theorem 3.10 and the fact
that, since C is Krull-Schmidt, any simple functor C°® — Ab is of the form
Stm where T has local endomorphism ring, see [2, Proposition 2.3]. If (ii)
holds, then S7,, is finitely presented as the image of a morphism between
representable functors. Finally if (iii) holds, then since C is Krull-Schmidt
and triangulated it follows from [28,29] that the category mod-C is an abelian
Frobenius category with injective envelopes which are therefore represent-
able. This clearly implies (ii). ]

Remark 3.12. For any additive functor F:C — Ab, the abelian group
F(T) carries a natural right Ap-module structure by defining: x* p :=
F(p)(x), Vx € F(T) and Vp € Ar. In particular we have the (co)homological
functors

HT . — Mod-Ar, H'(4) = C(4,T) and
H" == Homa, [H7 (=), 1"] : C — Ab
where n is a maximal right ideal of A7 and I" is the injective envelope of the
simple right A7-module Az/n. Using the functors H” and Hf’", all the results
of this and the previous section have their dual versions. We shall use freely

the dual versions leaving their proof to the reader. For later use we only
mention the following.

THEOREM 3.13. Let C be an R-linear triangulated category over a commu-
tative Noetherian ring R. Assume that for all objects A, C in C, the R-module
C(A4, C) is finitely generated. Then the following are equivalent.

(1) C has AR-triangles.

.. T . .
(ii) The functors H\," and HY. . are representable, in which case we have:

H/j\:n = C(zi Ti(T)v —) and H\Y/",m = C(-, ZTJF(T))

4. Auslander—Reiten Triangles, Dualizing Categories and Serre Functors

Our aim in this section is to study when a triangulated category admits
globally AR-triangles. We are also interested in having an internal descrip-
tion of the Auslander—Reiten translations. Working in the appropriate set-
ting, this is related to the existence of Serre functors and a certain dualizing
property of the category.

4.1. AR-TRIANGLES IN R-FINITE CATEGORIES

Throughout this section C denotes a skeletally small R-linear triangulated
category with split idempotents over a commutative ring R. There are several
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finiteness conditions one can impose on C. We are especially interested in case
C is finite over R in the following sense.

DEFINITION 4.1. We say that C is R-finite if one of the following condi-
tions hold:

(I) Ris Noetherian and the R-module C(4, B) is of finite length, VA, B € C.
(II) R is Artinian and the R-module C(A4,B) 1is finitely generated,
VA,B € C.
(III) R is Noetherian complete local and the R-module C(A4, B) is finitely
generated, VA4, B € C.

Let 7 be the minimal injective cogenerator of Mod-R and let D be the functor
Homg(—, 1) : (Mod-R)°® — Mod-R. We denote by noeth(R) = mod-R, resp.
art(R), the category of Noetherian, resp. Artinian, R-modules, and let
fin(R) = noeth(R) Nart(R) be the category of finite length modules. It is well-
known that the functor D induces a duality D : fin(R) — fin(R) in cases (I)
and (II), and a duality D : noeth(R) — art(R) in case (III), see [62] and
Sections 1.4 and 1.5 of the more comprehensive [4] for details.

From now on we assume that the R-linear triangulated category Cis R-finite.

If T'is an object in C, then the endomorphism ring A7 of T'is a Noetherian
R-algebra (Artinian in case (II)) and D(Ar) is an injective cogenerator of
Mod-Ar. We denote by D the functor Homg(—, /) : (Mod-A7)”* — Mod-A%.
Note that HomR(—,I)iHomAT(—,HomR(A,I)) = Homy,(—,D(Ar)) as

functors : (Mod-A7)®® — Mod-A7’. Recall from Section 2 that for an object
T in C with local endomorphism ring Ay and maximal ideal m, the functor
HY. = Homy, [C(T, =), I,u], resp. HI™ = Homy, [C(—, T), I™], is the injective
envelope of the simple contravariant, resp. covariant, functor determined by
T and m.

LEMMA 4.2. The category C is Krull-Schmidt and for any object X € C, the
subcategory add(X) is functorially finite in C. Moreover for any indecompos-
able object T € C, there exist isomorphisms of functors:

HY.,, = DC(T,—) and H{™ = DC(—, T).

Proof. Since the endomorphism ring of any object of C is a Noetherian
R-algebra, by [4, Section 1.5], it follows that C is Krull-Schmidt, and func-
torial finiteness of add(7) follows from Lemma 3.7. Since C is R-finite and the
R-module A7 = Home(7, T) is finitely generated, it follows that the natural
map A7 — Dz(Ar) is invertible. Consequently the injective cogenerator
D(Ar) of Ar is indecomposable. Then clearly D(Ar) is isomorphic to
the minimal injective cogenerator /[, and the assertion follows from the
isomorphisms (the proof that H.'™ = DC(—, T) is dual):
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H%m = Homy,[C(T, —), I\] =2 Homy,[C(T, —),D(Ar)] =
Homy, [C(T, —),Homg(A7, I)] =2 Homg[Ar @4, C(T,—), I)] =
Homg|[C(T,—),I)] = DC(T, —). O

COROLLARY 4.3. Let C be a triangulated R-finite category over a com-
mutative ring R. Then C has AR-triangles iff for any indecomposable object
X € C, the functors DC(X, —) and DC(—, X) are representable. In this case we
have isomorphisms.

C(—, 2" (X)) = DC(X,—), C(X~ 't (X),—) = DC(—, X).

4.2. DERIVED CATEGORIES

If A is an abelian category, we denote by D(A), resp. D?(A), the unbounded,
resp. bounded, derived category of A in the sense of Verdier [77]. Now let A
be an R-algebra over a commutative ring R. As before we denote by D the
functor Hompg(—, 1) : (Mod-R)°® — Mod-R, where I is the minimal injective
cogenerator of Mod-R. Similarly we denote by D any one of the total derived
functors RHomg(—, 1) : D(Mod-R)®” — D(Mod-R) and RHomg(—,D(A)) :
D(Mod-A)® — D(Mod-A). Notice that RHomg(—, /) — RHomx (—, D(A))
as triangulated functors D(Mod-A)°® — D(Mod-A°?). We denote by P, the
category of finitely generated projective A-modules and by H°(P,) the
bounded homotopy category of P,. Recall that a complex X of A-modules is
called perfect if X is quasi-isomorphic to a complex in H"(P,). Fix a perfect
complex X in D(Mod-A). Then for any complex Y in D(Mod-A), there exist
natural isomorphisms in D(Mod-A):

RHomy (X, Y) > Y ®@% RHoma(X,A), DRHom,(X,A)— X ®% D(A)

induced by the well-known isomorphisms Homy (P, 4) S 4@, Homy (P, A)
and DHomy (P, A) — P @A D(A), where P € P5 and 4 € Mod-A. Applying
D to the first one and using the second we have isomorphisms:

DRHom, (X, Y) = RHom,[Y ®% RHom, (X, A), D(A)] =
RHom,[Y, RHomy (RHoma (X, A), D(A))] = RHom,[Y, DRHomy (X, A)]
= RHom,(Y, X ®% D(A))
Applying H° we get an isomorphism
DHom, (X, Y) = Homa (Y, X @k D(A)). (1)

The following observation gives an explicit description of the dual object
Dy (X).
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LEMMA 4.4. Let X be a perfect complex with local endomorphism ring. If the
R-module Homy (X, X) is finitely generated, then the following are equivalent.

(1) There exists an isomorphism Dy, (X) =X ®@% D(A) in D(Mod-A).
(it) The Ax-module D(Ay) is indecomposable.

Proof. 1f D(Ay) is indecomposable, then using the isomorphism (1) and

working as in Lemma 4.2 we obtain that D(Ay) is isomorphic to 7, and the

functors Hy , and DHoma (X, —) are isomorphic. Therefore H} . is repre-

sentable in D(Mod-A), in particular the dual object Dy,(X) exists in
D(Mod-A), and we have isomorphisms: HX(’]niHomA[—,X@HK D(A)] and
Dy, (X) =X ®@% D(A). Conversely if (i) holds, then the isomorphism (1) shows
that D(Ay) = I, which is indecomposable. O

It is easy to see that condition (ii) above holds, if the bounded homotopy
category H®(P,), which is isomorphic in D(Mod-A) to the subcategory of
perfect complexes, is R-finite, for instance if A is an Artin R-algebra or a
Noetherian R-algebra over a commutative Noetherian complete local ring R.
Hence from Lemma 4.4 we deduce the following consequence (the complete
case is due to Krause [57]), referring to section 9 for a further discussion of
Auslander—Reiten theory in derived categories.

COROLLARY 4.5. Let A be a Noetherian R-algebra over a commutative
Noetherian ring R, and assume that either A is Artinian or else R is complete
and local. Then for any indecomposable perfect complex X in D(Mod-A), there
exists an AR-triangle

Xk DA)-1] — 4 — X — X% D(A)

in D(Mod-A). Moreover t7(X) = X ®% D(A)[—1] lies in the full subcategory
D°.(Mod-A) of D°(Mod-A) consisting of all complexes with Artinian coho-

mology.

4.3. DUALIZING CATEGORIES AND SERRE FUNCTORS

If U is one of the subcategories noeth(R),art(R) or fin(R) of Mod-R, we
denote by [C°P, U], resp. [C,U], the category of contravariant, resp. covariant,
additive functors C — U. Then clearly the duality D induces a duality
D : [C°P,fin(R)] — [C,fin(R)] in cases (I) and (II), and a duality D : [C°P,
noeth(R)] — [C,art(R)] in case (III).

It is easy to see that the functors DC(X, —), for X indecomposable in C,
form a cogenerating set R of indecomposable injectives in Mod-C. We say
that an additive functor F:C° — Ab is finitely copresented if F admits a
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copresentation 0 — F — Jy — J; where the J; are in add(R). Equivalently
there exists an exact sequence 0 — F — DC(X, —) — DC(Y, —). We denote by
mod-'C the full subcategory of Mod-C consisting of finitely copresented
functors. The category mod-'C® is defined similarly. It is easy to see that
mod-C,mod-"C C [C°P, fin(R)] and mod-C°", mod-'C C [C,fin(R)] in cases
(I) and (II), and mod-C C [C°?,noeth(R)], mod-C°® C [C,noeth(R)], and
mod-"C C [C°P, art(R)], mod-'C° C [C,art(R)] in case (III). We are especially
interested in case the full subcategory of finitely copresented functors coin-
cides with the full subcategory of finitely presented ones. We have the fol-
lowing characterizations which follow easily from the definitions.

LEMMA 4.6. The following are equivalent.

(i)mod-'C € mod-C and mod-"C°" C mod-C°".
(i) mod-"C = mod-C.
(i) mod-YC°P = mod-C°P.
(iv) The duality D induces a duality D : mod-C — mod-C°P.

If (i) holds, then the R-module C(A, B) has finite length for all objects A, B in C.

The above result suggests the following definition which extends slightly
the notion of a dualizing variety introduced by Auslander—Reiten [6] in
connection with stable equivalence and existence of Auslander—Reiten
sequences for Artin algebras.

DEFINITION 4.7. An R-linear triangulated category C over a commutative
ring Ris called dualizing if Cis R-finite and satisfies the conditions of Lemma 4.6.

Recall from [23] or [75] that an additive functor S : C — C is a right Serre
functor for C provided that there exists a natural isomorphism of bifunctors
DC(4, B) iC(B,S(A)). Left Serre functors are defined dually, and a Serre
functor is a left and right Serre functor. It is known that a Serre functor is
uniquely determined up toisomorphism and itis a triangulated equivalence, see
[23, Proposition 3.3], [75, Lemma I.1.5]. The following result generalizes results
of Reiten and Van den Bergh [75, Proposition 1.2.3].

PROPOSITION 4.8. Let C be a triangulated R-finite category over a com-
mutative ring R. Then the following are equivalent.

(1) C has right, resp. left, AR-triangles.
(i1) C admits a right, resp. left, Serre functor.
(iii) mod-"C C mod-C, resp. mod-'C° C mod-C°.

Proof. By Lemma 4.2, C is Krull-Schmidt and H\ﬁm 5 DC(T,—) for any
indecomposable object 7 in C. Hence C has right AR-triangles iff DC(T, —) is
representable. Clearly this is equivalent to say that C has a right Serre
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functor. Assume now that S : C — C is a right Serre functor for C. Then the
isomorphism DC(X,—) — C(—,S(X)) shows that any finitely copresented
contravariant functor is finitely presented, i.e. mod-'C C mod-C. If this holds,
then for any indecomposable object T of C, the finitely copresented functor
DC(T, —) is finitely presented. Since DC(7, —) is an indecomposable injective
functor in mod-C and the latter is Frobenius, it follows that DC(T, —) = Hy. |
is representable. This implies that C has right AR-triangles by Theorem 3.11.
The case of left AR-triangles, left Serre functors and finitely copresented
covariant functors is similar. O

We have the following nice consequence which generalizes [75, Theorem
1.2.4].

THEOREM 4.9. Let C be a triangulated R-finite category over a commutative
ring R. Then the following are equivalent.

(1) C has AR-triangles.
(i1) C admits a Serre functor S.
(iii) C is dualizing.
If (1) holds, then for any indecomposable object T € C we have isomorphisms:
H}m ~ DC(T,—) = C(—,S(T)) = C(—, (1)),

HI™ =~ DC(—, T) = (S~ (T),—) =2 C(Z"1 (1), -).

Let C be a triangulated R-finite category over a commutative ring R. For
any object X in C, the support of the functor C(—, X), resp. C(X, —), is the full
subcategory of C consisting of all objects Y such that C(Y,X) # 0, resp.
C(X,Y) # 0, and is denoted by SuppC(—, X), resp. SuppC(X, —). Examples of
triangulated categories C satisfying the property that SuppC(—,X) or
SuppC(X, —) contains only finitely many indecomposable objects, include
stable categories modulo projectives of the form mod-7%, where 77 is the
repetition of a locally bounded category 7 over a field, see [31, Section 8.3]. By
a result of Reiten [74, Proposition 7.1.5], such categories are dualizing.
Therefore we have the following consequence which gives an alternative proof
to a recent result of Xiao and Zhu [79, Proposition 1.3].

COROLLARY 4.10. If for any object X in C, one of the subcategories
SuppC(—, X) or SuppC(X, —) contains only finitely many indecomposable ob-
jects, then C has AR-triangles and admits a Serre functor.

There are examples of triangulated categories for which some positive
power of the suspension X is a Serre functor.

EXAMPLE 4.11. Let X be a connected compact complex analytic manifold,

resp. a non-singular projective variety. Then the derived category Dz’oh(X),

resp. Db(cth), of, resp. coherent, sheaves of Ox-modules with coherent
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cohomology admits the Serre functor — ®¢, wx[dim X], see [24, Section 5].
Hence DP, (X) or D°(cohX) has AR-triangles and consequently X is Calabi—

coh
Yau iff —[dimX] is a Serre functor.

4.4. STRONG GENERATORS

Throughout this subsection we fix a triangulated R-linear category C with
split idempotents over a commutative Noetherian ring R. If M is an
R-module, then we denote by dimg M its composition length. Following
Reiten and Van den Bergh [75] we say that C is Ext-finite if
Y nez dimg C(A4,X"(B)) < oo for all 4, B in C. Recall that a cohomological
functor F:C°® — Mod-R is said to be of finite type provided that
Y nez dimg FX"(A) < oo, for all 4 € C. We refer to Reiten and Van den
Bergh [75] for a classification of hereditary Noetherian abelian Ext-finite
k-categories A over a field k such that the bounded derived category D°(A)
admits a Serre functor (and therefore AR-triangles). Following Bondal and
Van den Bergh [24], we say that an object X in C is a strong generator of C
provided that there exists n>0 such that any object of C can be obtained
from X by taking finite direct sums, direct summands, shifts and at most
n — 1 cones.

THEOREM 4.12. Let C be a skeletally small Ext-finite R-linear triangulated
category over a commutative Noetherian ring R. If C admits a strong generator,
then C has AR-triangles, is dualizing and admits a Serre functor.

Proof. Clearly C is R-finite. Therefore for any object T in C with local
endomorphism ring, we have an isomorphism of functors Hy, = DC(T, —)
and the functor DC(T, —) is of finite type. Since C admits a strong generator,
by a result of Bondal and Van den Bergh, see [24, Theorem 1.3], it follows
that the functor DC(T, —), hence Hy.,, is representable. Then Corollary 3.5
implies that C has right AR-triangles. Dually we have an isomorphism of
functors H"™ = DC(—, T) and DC(—, T) is of finite type. Clearly if X is a
strong generator for C, then X is a strong generator for C°°. Then as above,
DC(—, T), hence H™, is representable and then by the dual of Corollary 3.5
we infer that C°P admits right AR-triangles, or equivalently C admits left AR-
triangles. The remaining assertions follow from Theorem 4.9. O

COROLLARY 4.13. Let X be a smooth scheme over a field k. Then the
bounded derived category DP(cohX) of coherent sheaves on X has AR-triangles,
is dualizing and admits a Serre functor.

Proof. By [24, Theorem 3.1.4], the category D?(cohX) is Ext-finite, has
split idempotents and a strong generator. So the assertion follows from
Theorem 4.12. O
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EXAMPLE 4.14. Let A be an Artin algebra. We call a strong generator T of
DP(mod-A) perfect, if T is a perfect complex. Then the following are
equivalent.

(1) gl.dim A < cc.
(ii) D®(mod-A) admits a strong perfect generator.

Indeed let gl. dimA = n < oo and consider the proper class of triangles £(A)
in Db(mod—A) generated be A in the sense of [18]. By [18, Proposition 12.34]
the relative global dimension of D°(mod-A) with respect to £(A) is equal to
gl.dim A which is finite. Then by [18, Corollary 5.5] it follows that A is a
strong generator of D°(mod-A). Conversely if T is a strong perfect generator
of D?(mod-A), then clearly gl. dim A < co. By Theorem 4.12 we obtain as a
consequence the well-known result of Happel [35] that if gl. dim A < oo, then
DP(mod-A) has AR-triangles.

One can generalize this example as follows. Let A be an R-linear Artinian
abelian category with enough projectives over a commutative Artin ring R. If
A has finite global dimension and the set of isoclasses of simple objects of A
is finite, then DP(A) has strong generator and therefore has AR-triangles and
admits a Serre functor.

Theorem 4.12 can be generalized further as follows. Let € be a proper class of
triangles in C in the sense of [18]. We refer to [18] for more details on the relative
homological algebra in C based on &; in particular we denote by £-gl. dim C the
relative global dimension of C with respect to £. The following result gives a
generalization of Theorem 4.12. The latter follows if we consider the proper
class in C induced, in the sense of [18, Example 2.3], by a strong generator.

THEOREM 4.15. Let C be a skeletally small Ext-finite R-linear triangulated
category with split idempotents over a commutative Noetherian ring R which is
equipped with a proper class of triangles £. If £-gl. dim C < oo, then C has AR-
triangles, is dualizing and admits a Serre functor.

Proof. As in Theorem 4.12, C is R-finite and the functor H}. | = DC(T, —)
is of finite type. Since £-gl. dim C := n < oo, by [18, Corollary 5.2,] it follows
that any object of C is obtained from P(£), the category of relative E-pro-
jectives, by taking finite direct sums, direct summands, shifts and at most
n — 1 cones. By (a slight generalization of) [24, Lemma 2.4.2] it follows that
H\fm is representable. Similarly Hf"m is representable. Therefore C has AR-
triangles by Theorem 3.13. O

We close this section with an application of the above results to the
derived category of a class of rings which are of interest in non-commutative
geometry. Let A = @,>0R, be a connected graded ring over a field k = Ay
and assume throughout that dim; Ext} (k, k) < oo, V¢ > 0. Let Gr Mod-A be
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the category of left graded A-modules, and let QGr Mod-A = Gr Mod-A/
Tors(A) be the quotient in the sense of Gabriel [30], where Tors(A) is the
localizing subcategory of Gr Mod-A consisting of all torsion modules, where
a graded A-module M is called torsion, if for any a € M, there exists >0
such that m’a = 0, where m = @, R, is the graded maximal ideal of A.

Let D(QGr Mod-A) be the unbounded derived category of the Grot-
hendieck category QGr Mod-A), and let D(QGr Mod-A)® be the full sub-
category consisting of all compact objects (see the next section for the
definition) of D(QGr Mod-A).

THEOREM 4.16. Let A be a connected graded ring as above satisfying the
following:

(i) gl. dim QGr Mod-A < oo.
(i) The functor ll_m> Homper (A /A, —) has finite cohomological dimension.
(iii) V>0, the spaces lim Extyo (A /AZ,, A7) and lim Ext, (A/Azn, A) are
finite dimensional and both have right bounded grading.

Then the category D(QGr Mod—A)b has AR-triangles.
If A is left graded coherent, then the bounded derived category D°(Gr mod-A)
of the category of finitely presented graded A-modules, has AR-triangles.

Proof. By [24, Theorems 4.2.12, 4.3.4] the imposed assumptions imply
that the categories D(QGr Mod-A)® and D°(gr mod-A) satisfy the conditions
of Theorem 4.12 and the assertion follows. ]

5. Categories with Infinite Sums and Torsion Pairs

In this section we investigate the behavior of Auslander—Reiten triangles with
respect to torsion pairs in a triangulated category. Since torsion pairs arise
naturally in triangulated categories containing all small coproducts, we study
first existence of Auslander—Reiten triangles in this setting where Brown’s
Representability theorem, when available, provides the main tool for proving
representability of the injective envelope of a simple functor.

5.1. TRIANGULATED CATEGORIES WITH INFINITE SUMS.

From now on we fix a triangulated category C which has all small
coproducts. For a subcategory X of C we denote by Add(X) the full
subcategory of C consisting of all direct summands of all small coproducts
of objects from X. In the sequel we shall need the following infinite
analogue of Lemma 3.7, which is a special case of [18, Proposition 8.4,].
First recall that an object X in C is called compact if the functor
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C(X,—) : C — Ab preserves all small coproducts. We denote by C® the full
subcategory of C consisting of the compact objects. It is easy to see that
C® is a full triangulated subcategory of C which is closed under direct
summands, that is, C® is a thick subcategory of C. For a ring A, Proj(A)
denotes the category of projective A-modules.

LEMMA 5.1. [18]. For any object T in C, the full subcategory Add(T) is con-
travariantly finite in C. If T is compact, then the functor Hr : C — Mod-AP
induces an  equivalence Add(T) > Proj(AY) and the canonical map
C(X,C) — Homp,(H7(X),Hr(C)) is invertible for any X € Add(T) and C € C.

Following Neeman [66] we say that a triangulated category C with all
small coproducts satisfies Brown’s representability theorem if any cohomo-
logical functor F: C°® — Ab which converts coproducts to products is rep-
resentable. The following basic result is essentially due to Krause [52,
Theorem 2.2].

THEOREM 5.2. Let C be a triangulated category satisfying Brown’s repre-
sentability theorem. Then for any compact object T in C with local endomor-
phism ring there exists an AR-triangle ¥ 'E — A — T — E in C and the object
E is the m-dual object Dy (T) of T where m is the maximal ideal of End¢(T).

Proof. Since T is compact, the cohomological functor Hy  :C® — Ab
takes coproducts to products and therefore it is representable. Then the
assertion follows from Corollary 3.5. ]

Compactly generated triangulated categories form an important class of
triangulated categories satisfying Brown’s representability theorem. Recall
that C is compactly generated, if C has all small coproducts and admits a
generating set which is closed under suspensions and consists of compact
objects, see [64]. Compactly generated triangulated categories include the
following important examples.

e The unbounded derived category D(Mod-A) of right A-modules over a
ring A. The compact objects are the perfect complexes, see e.g. [76, 6.3].

e The stable homotopy category Ho(Sp) of spectra. The compact objects are
the finite spectra, see [61].

e The unbounded derived category D(qcX) of quasi-coherent sheaves over a
quasi-compact separated scheme X. The complexes lying in the thick
subcategory of D(qcX) generated by powers of an ample line bundle form
the compact objects, see [64, Proposition 2.5].

e The stable module category Mod-A modulo projectives of a QF-ring A,
e.g. a group algebra kG of a finite group G, see [36]. Clearly the compact
objects are the finitely generated modules.
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Remark 5.3. More generally well-generated categories in the sense of
Neeman [66] or perfectly generated categories in the sense of Krause [54] are
examples of triangulated categories satisfying Brown’s representability the-
orem. Note that, by [65, Theorem 0.2], the unbounded derived category D(.A)
of a Grothendieck category A is well-generated. Also if 7 is the stable ho-
motopy category of spectra and FE is a spectrum, then the full subcategory of
E-acyclic spectra and the full subcategory of E-local spectra are well-gener-
ated, see [66, Appendix D]. If C denotes a triangulated category from the
above list, then by Theorem 5.2 it follows that any compact object 7 in C is
the source of an AR-triangle in C.

Remark 5.4. 1f T'is an object of C with local endomorphism ring and if the
homological functor H:’" : C — Ab is representable, then, by Remark 3.12, T
appears as a source of an AR-triangle in C. If C is well-generated, then it
suffices to know that Hf’” preserves products, since by [66, Theorem 8.6.1]
any product preserving homological functor is representable over a well-
generated category.

For general, not necessarily compactly or well generated, triangulated
categories with all small coproducts we have the following existence result
for AR-triangles ending at compact objects. First recall that a thick
subcategory 7 of C is called localizing if 7 is closed under all small
coproducts.

THEOREM 5.5. Let C be a triangulated category with all small coproducts. If
T is an object in C with local endomorphism ring, then the following are
equivalent:

() T is compact and there is an AR-triangle X'E — A — T — E in C.
(i) The functor HY. = Homy, [H7(=), L] : C°° — Ab is representable.
Tm T

Proof. (ii) = (i) By Corollary 3.5 it suffices to show that 7 is compact. Let
E be the representing object of HVT,m in C. Let {C;|i € I} be a set of objects in

C and let ¢ : ®ic/Hr(Ci) — Hp(®ie;C) be the canonical map. Then the
composition
Homa, [Hr((D Cv), fn] — Homa, [(DH7(Cy), 1]
iel icl
= [ Homa, [HF(Cy), £

icl
is isomorphic to the canonical invertible map C(®;e/Ci, E) — [[,c,C(Ci, E).
Hence the map Homa,(¢, 1) is invertible in Mod-A%’. Since I, is an
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injective cogenerator in Mod-A? we conclude that ¢ is invertible, so T is
compact.

(i) = (ii) By Lemma 3.6, the canonical map C(—, E) = Homa,[Hz(—),
H7(E)] is injective. Using Lemma 5.1, the proof of Lemma 3.8 shows that w is
invertible. We show that the left Ar-module H7(E) is injective. Let 7 be the
localizing subcategory of C generated by 7, i.e. 7 is the smallest thick
subcategory of C which is closed under all small coproducts and contains
T. Then T is compactly generated by 7 and it is well known that the
inclusion 7 —(C admits a right adjoint R:C — 7 which preserves
coproducts, see [64, Theorems 4.1 and 5.1]. Since the functor
Fl.:=Homy,[T(T,—), L] : T°* — Ab is cohomological and sends coprod-
ucts to products, by Brown Representability there exists an object E' € T

and a natural isomorphism 7 (—, E’) = F%.. Then by Corollary 3.5 it follows

that there exists an AR-triangle E_IE’iXL T]i/> E’ in T and we have an
isomorphism 7 (T, E’) — I, by Proposition 2.8. Since f” is not split epic there
exists a morphism of triangles in C:

Z—IE/ g/ f‘/ 1%

x LT E'
z”(a)l /?l H l (*)
s'g £, 4 L .7 ", F

Let R(E) & ES Y — ZR(E) be a triangle in C where p is the coreflection of £
in 7. Applying the functor C(7,—) to this triangle, we deduce an isomor-
phism 7(7,R(E)) = C(T,R(E))=C(T,E). Since E’ lies in 7 there exists a
unique morphism 6 : E/ — R(E) such that é o p = o. If ¢ is not split monic,
then since R(E) lies in 7 and X(g’) is left almost split, it follows that
NWoo=0. Then Yodop=0a=0, hence 7 =0 and this is impossible. We
infer that ¢ is split monic. Hence R(E) = E’ & X’ where X" lies in 7 since the
latter is closed under direct summands. Then we have isomorphisms of left

Ar-modules: C(T, E) = T(T,R(E)) = T(T,E') & T(T,X'). By Lemma 3.6,
the injective envelope of C(T, E) is isomorphic to I, =5 7 (T, E’). This implies

that T(T,X’) = 0. Hence Hy(E) = C(T,E) >T(T,E') > 1, and we infer
that 7, is realizable in C by the object E. Then by Proposition 2.8 we
have that the functor Hy  is representable. O

Remark 5.6. By Theorem 5.5 it follows that for any compact object T in a
triangulated category C which admits infinite sums, there exists a relative
m-dual object DZ(T) of T which lies in the localizing subcategory 7 of C

m

generated by T and satisfies Hy.  (—) = T(R(=),DZ(T)), where R is the right

m
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adjoint of the inclusion 7 — C. It follows easily from this that if 7" appears as
a target of an AR-triangle in C, then Rt (7) = 1;-(T), where 7} denotes
Auslander—Reiten translation in 7.

Now let X C C be a class of objects. We denote by X the left, resp. right,
orthogonal subcategory of C defined by *X:={4€C|C(4,X)=0,
VX € X}, resp. X+ :={4€C|C(X,4) =0,VX € X}.

COROLLARY 5.7. Let T be a compact object in C with local endomorphism
ring and let T be the localizing subcategory of C generated by T. If

(M:z (kS 4 L1t Eisa triangle in T , then the following are equivalent.

(i) (T) is an AR-triangle in C.
(i) (T) is an AR-triangle in T and E lies in T*+.

In particular if 13 (T) lies in T+, for any compact object T in C with local
endomorphism ring, then C has right AR-triangles ending at compact objects.

Proof. (i) = (ii) Clearly (T) is an AR-triangle in 7. Since H}.,, = C(—, E)
and HY. (Y) =0,VY € T+, it follows that C(Y,E) = 0, i.e. E lies in 7+

(ii) = (i) It suffices to show that any map « : C — T in C which is not a
split epimorphism factors through f. Let X¢ — C — Y¢ — Z(X¢) be a tri-
angle in C where X¢ € 7 and Y€ € T+, Then the composition X¢c — C — T
factors through f since it is not a split epimorphism. Hence we have a mor-
phism of triangles:

Xc C Y¢ 2(Xc¢)
/fl ” l ’*’l zm)l
4 Lo v

By hypothesis the morphism y is zero and therefore « factors through /. [

5.2. AUSLANDER-REITEN TRIANGLES AND TORSION PAIRS

The above results suggest to study more closely the behavior of AR-triangles
with respect to torsion pairs in a triangulated category.

Recall from [22] that a pair (&X', )) of full strict subcategories of C is called a
torsion pair in C, if: (a) X and ) are closed under £ and C(X, Y) =0, VX € X,
VYe€), and (f) for any object C in C there exists a triangle
Xc— C— Y¢ - X(X¢)in Cwith X¢c € X and Y© € Y. If (X,)) is a torsion
pair in C, then X and Y are thick subcategories of C, the assignment C — X¢
gives a right adjoint Ry : C — X of the inclusion iy : X — C and the assign-
ment C — Y© gives a left adjoint Ly : C — Y of the inclusion jy, : Y C. If ix,
resp. jy, also admits a left adjoint, resp. a right adjoint, then the left adjoint of
iy is denoted by Ly, resp. the right adjoint of j,, is denoted by Ry. A triple
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(X,), Z) of subcategories of C is called a torsion triple in C, if (X,)) and
(Y, Z) are torsion pairs; in this case X is triangle equivalent to Z, see [22,
Corollary 1.2.9]. Note that the notion of torsion triple is equivalent to
recollement in the sense of [14]. Finally a torsion quadruple in C is a quadruple
W, X, Y, Z) of subcategories of C such that (W, X,)) and (X,), Z) are
torsion triples. In this case W, resp. X, is triangle equivalent to ), resp. Z. For
more information on torsion pairs in triangulated categories we refer to [22].

LEMMA 5.8. Let C be Krull-Schmidt and let (X,)) be a torsion pair in C. If C
has right, resp. left, AR-triangles, then X, resp. Y, has right, resp. left,
AR-triangles.

Proof. If 1¢T — A — T — Z(1¢T) is an AR-triangle in C with T € X, then
clearly the composition X4 — 4 — T is right almost split in X. Since X is
Krull-Schmidt, by [1, Lemma 2.6], there exists a minimal right almost split
map X — T in X, hence 147 — X — T — Z(txT) is an AR-triangle in X.
The case for ) is similar. O

If there exists a torsion triple in C, then we have the following result which
gives a nice connection between the end terms of an AR-triangle.

LEMMA 5.9. If(X, Y, Z)isatorsion tripleinCand (T) : E— A LAY ARR X(E)is
an AR-triangle in C, then T € X if and only if E € Z. In particular if C is Krull-
Schmidt with A R-triangles, then all the categories X, Y and Z have AR-triangles.

If C admits a Serre functor S, then S induces a triangle equivalence X =z

Proof. Assume that T lies in X and consider the morphism g : E — ZZ. If
g is not split monic, then X7!(y) o g factors through the fiber Yz — E of g.
Since C(T, Yg) = 0, it follows that 7! (y) = 0 and this is impossible. Hence g
is a split monic and this implies that E lies in Z. The converse is proved
similarly. Assume now that C is Krull-Schmidt with AR-triangles. Then by
Lemma 5.8 it follows that ) has AR-triangles, X has right AR-triangles
and Z has left AR-triangles. Since, by [22], X and Z are triangle equivalent,
both have AR-triangles. If S is a Serre functor in C, then the isomor-
phisms DC(X, Y) — C(Y,S(X)) and DC(Y,Z) — C(S"'(Z), Y) show that S :
XsZ: S are quasi-inverse triangle equivalences. O

EXAMPLE 5.10. If A is a self-injective Artin algebra and ) is a contrava-
riantly or covariantly finite resolving and coresolving subcategory of mod-A,
then by [22, Corollary VI.4.12] there exists a torsion triple (X,), Z) in the
stable category mod-A. So by Lemma 5.9 the subcategories X, ) and Z of
mod-A admit AR-triangles.

In case C is R-finite we have the following more precise result.

PROPOSITION 5.11. Let C be an R-finite triangulated category over a
commutative ring R. If (X,Y) is a torsion pair in C, then we have the following.
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(1) If C has right AR-triangles, then X has right AR-triangles.
(1) If C has left AR-triangles, then Y has left AR-triangles.
(iii) If C has AR-triangles, then the following are equivalent:
(a) X has left AR-triangles.
(b) YV has right AR-triangles.
(¢) The inclusion X — C admits a left adjoint. Equivalently there exists a
torsion triple W, X,)) in C.
(d) The inclusion Y — C admits a right adjoint. Equivalently there exists a
torsion triple (X,Y, Z) in C.
If (a) holds, then X and Y, and all their left or right iterated orthogonal
subcategories WX, X L) and YO MLy haye AR-triangles.

Proof. Since C is Krull-Schmidt, parts (i) and (ii) follow from Lemma 5.8.

(iii) Assume that C has AR-triangles. Then by Theorem 4.9, C admits a
Serre functor S¢: C — C. Let R: C — X, resp. L : C — ), be the right, resp.
left, adjoint of the inclusion X — C, resp. Y — C.

(a) = (c) = (b) Since X has left AR-triangles, by (i), X has AR-
triangles and therefore X' admits a Serre functor Sy : X — X. Then the
isomorphisms

C(C,X)SDC(C,X) S DC(X,5¢(C)) =>DX(X,RSc(C)) = X(S3'RS¢(C), X)

show that the functor Ly := S:Yl RS¢ : C — X is a left adjoint of the inclusion
X — C. Then setting W := +X, we obtain a torsion triple (W, X,))) in C and
by Lemma 5.9 it follows that ) has right AR-triangles.

(b) = (d) = (a) As in the proof of (a) = (c) it is easy to check that the
functor SyLS(/Tl : C — Y 1is a right adjoint of the inclusion Y — C, where Sy is
a Serre functor of ). Then setting Z := Y+, we obtain a torsion triple
(X, ¥,2) in C and therefore by Lemma 5.9 it follows that X has left
AR-triangles. O

By Proposition 5.11 if C has AR-triangles and (X, )) is a torsion pair in C,
then X and Y have AR-triangles iff there exists a torsion quadruple
(W, X,), Z) in C. Based on an idea of Bondal and Kapranov [23] we give a
converse.

THEOREM 5.12. Let C be an R-finite triangulated category over a com-
mutative ring R and let X and Y be thick subcategories of C. Assume that
C(X,Y)=0, X and Y are functorially finite in C and C is generated as a
triangulated category by X and Y. Then the following conditions are
equivalent.

(1) C has AR-triangles.
(i1)) Both X and Y have AR-triangles.
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If (i) holds, then there exist torsion quadruples (Opi2,Oui1, Op, Oy_y) in C,
Vn € Z, where Oy =X and O_; =), and all the categories O, have AR-
triangles.

Proof. Since C is Krull-Schmidt, by [22, Propositions 1.2.6 and 11.2.4],
there exists a torsion quadruple (*X,X,),Y+) in C. Then part (i) = (ii)
follows from Proposition 5.11. Assume now that X and ) have AR-triangles
and let Sy : X — X and Sy:)Y — Y be their Serre functors. Also let
Ry,Ly : C — X be the right, left adjoint of the inclusion X —(C and let
Ry, Ly : C — Y be the right, left adjoint of the inclusion ) — C. Then we have
torsion triples W, X,Y) and (X, Y, Z) in C, where W = * X and Z = Y. Let
Lz : C — Z be the left adjoint of the inclusion Z < C. By Theorem 4.9, to
show that C has AR-triangles, it suffices to construct a Serre functor for C. To
this end we follow a construction due to Bondal and Kapranov [23, Theorem
2.10]. Let C be in C. Using adjointness and the existence of Serre functors we
have the following isomorphisms:

~

uc.- - DC(C, —)|y — DX(Lx(C), =) = X(~, SxLx(C))

e : DC(C, =)ly = DY(Ly(C), =) = V(= SyLy(C))
Ignoring the inclusion functors, consider the triangle in C
RySaLa(C) % Sala(C) L LsSala(C) L5 SRySxLa(C)
induced from the torsion pair (), Z) and let w be the composite morphism:

-1
ﬁ(?.RySXLX(C) DC(C.g)
_

o : Y[RySxLx(C),SyLy(C)] DC[C, RySxLx(C)] ——
%CSyLy(0)

DC(C, SyLy(C)) —49, ¥[SyLx(C), Sl (C)).

We set p := o (Is,14(c) : RySaLx(C)——SyLy(C) and consider the tri-
angle

Y(C) 5 RySxLa(C) 2 Syly(C) S 2Y(C)
Then the composition 7 o g induces the following octahedron
Y(C)  — RySala(C) —£= Syly(C) —Z=  =Y(C)

| | |

Y(C) = Spla(C) —  Se(C) ——  TY(C)

| |

RySxLa(C) ——  Syla(C) —— LzSyLa(C) —— ZRySxLx(C)

ZSyLy(C)
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We claim that the object S¢(C) is the evaluation of a right Serre functor
S¢:C— Cin C at C. Indeed let 4 be in C and consider the triangle (again
ignoring the inclusion functors) (74):Rx(4) — A4 — Ly(A4) — ZRy(4)
induced by the torsion pair (X,)). Applying to this triangle the functor
C(—,Sc(C)) we have the exact sequence C[Ly(A),Sc¢(C)] — C[A4,Sc(C)] —
C[Rx(A4),Sc(C)]. Using that the object LzSxyLx(C) lies in Z = Y+, we have
isomorphisms:

ClLy(4),5¢(C)] = VLy(4), SyLy(C)] = DY[Ly(C), Ly(A)]
= DC[C, Ly(A4)]
Similarly since the object Y(C) lies in ) = X+, we have isomorphisms:
C[Rx(4), Se(C)] = X[Rx(A), SxLa(C)] = DA[Lx(C), Ru(A)]
= DC[C,Ry(A)]

Therefore we have an exact sequence DC[C,Ly(A4)] — C[4,Sc¢(C)] —
DC[C,Rx(A)] which is easily seen to be isomorphic to the exact sequence
resulting by applying the functor DC(C, —) to the triangle (74). It follows
that we have an isomorphism DC(C, 4) — C(4,S¢(C)) which is easily seen to
be functorial in both 4 and C, since all the involved constructions are
functorial. Therefore S¢ is a right Serre functor in C. Working as above with
the functor DC(—, C) we infer in a similar way that C admits a left Serre
functor and consequently C admits a Serre functor. Finally the last assertion
follows by repeated application of Proposition 5.11. O

5.3. TORSION PAIRS OF COMPACT OBJECTS

In Sections 8 and 9 we are interested in having criteria ensuring that the full
subcategory C® of compact objects of a compactly generated triangulated
category C has AR-triangles. In this connection torsion pairs provide useful
information. We close this section studying the question of when a torsion
pair (X,)) in C restricts to a torsion pair (X®,)?) in C°. This is related to
certain finiteness conditions on the torsion pair (X',))) which will be useful
later in connection with representation embeddings and the Ziegler spectrum.

Recall from [54] that a triangulated category C is called perfectly gener-
ated, resp. cogenerated, if C has all small coproducts, resp. products, and
admits a generating, resp. cogenerating, set S such that for any countable set
of maps A; — B; in C, the induced map C(S,®;4;) — C(S,®;B;), resp.
C(II; Bi,S) — C(I]; 4, S), is surjective provided that the maps C(S, 4;) —
C(S, By)), resp. C(B;,S) — C(A4;,S), are surjective for all i. In this case S is
called a perfect generating, resp. cogenerating, set in C. By recent results of
Krause [54, Theorem A] it follows that perfectly generated categories satisfy
Brown’s Representability Theorem and perfectly cogenerated categories C
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satisfy Brown’s Representability Theorem for the Dual, i.e. product preserving
homological functors C — Ab are representable. In the sequel we shall need
the following result which is due to Krause, see Proposition 10.1, Corollary
10.2 and their duals in [58].

LEMMA 5.13.

(1) If C is compactly generated, then C is perfectly (co)generated.

(2) A triangulated functor G : C — D, where C is perfectly cogenerated, admits
a left adjoint iff G preserves all small products.

(3) A triangulated functor F : C — D, where C is perfectly generated, admits a
right adjoint iff F preserves all small coproducts.

Now let C be a triangulated category with all small products and coproducts.
Recall from [22] that a torsion pair (X, ) in C is of finite type, resp. of cofinite
type, if Y is closed under coproducts, resp. X is closed under products.

PROPOSITION 5.14. Let (X,)Y) be a torsion pair in a triangulated category
C which admits all small products and coproducts. Then we have the following.

(i) If C is perfectly cogenerated, then: (X,)) is of cofinite type iff there exists
a torsion triple (W, X,Y) in C. In this case X is perfectly cogenerated.
Moreover if C is compactly generated, then so is X.

(il) If C is perfectly generated, then: (X,)) is of finite type iff there exists a
torsion triple (X,),Z) in C. In this case ) is perfectly generated.
Moreover if C is compactly generated, then so is ).

(i) If C is perfectly generated and cogenerated, then: (X,)) is of finite and
cofinite type iff there exists a torsion quadruple (W, X, Y, Z) in C. In this
case the categories W, X, Y, and Z are perfectly generated and cogener-
ated. Finally C is compactly generated iff W and X (and Y and Z) are so.

Proof. (i) Clearly the existence of a torsion triple (W, X,)) in C implies
that X is closed under products. Assume now that X is closed under products
and let U be a perfect cogenerating set in C. We claim that Ry (U) is a perfect
cogenerating set in X', where Ry : C — X is the right adjoint of the inclusion
iv: X—C. Indeed if X(X,Rx(U)) =0, then by adjointness we have
C(ix(X), U) = 0 and therefore X = 0. If X; — X/ is a countable set of maps in
A such that the induced maps X'(X’, Ry(U)) — X(X;, Ry(U)) are surjective
for all 7, then by adjointness so are the maps C(ix(X}), U) — C(ix(X;), U).
Since C is perfectly cogenerated, the induced map C([[;ix(X}),U) —
C(I[;ix(X;), U) is surjective. Since X is closed under products in C, it follows
that iy preserves products and then using adjointness it follows that the last
map is isomorphic to X([[, X’ Rx(U)) — X([]; Xi,Rx(U)) hence it is sur-
jective. Hence Ry (U) is a perfect cogenerating set in X and then by Lemma
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5.13 it follows that iy admits a left adjoint. By [22, Proposition 1.2.3] this is
equivalent to the existence of a torsion pair (W, X) in C, i.e. we have a torsion
triple (W, X,)) in C. Finally if C is compactly generated and (W, X,)) is a
torsion triple in C, then X is compactly generated by [22, Proposition IV.1.1].

(ii) is similar to (i) and (iii) follows by combining (i), (ii), [22, Corollary
IV.1.4] and using that for a torsion triple (X, ), Z) in C, X and Z are triangle
equivalent. O

We call a torsion triple (X, Y, Z) in C perfect if the torsion pair (X, )) is of
cofinite type and the torsion pair (), Z) is of finite type. As a consequence of
Proposition 5.14 and [22, Proposition 1V.1.11] we have the following result
which gives sufficient conditions for the existence of torsion pairs or triples in
the full subcategory of compact objects.

COROLLARY 5.15. Let (X,Y, 2) be a torsion triple in a compactly gener-
ated triangulated category C. Then we have the following.

(i) The torsion pair (Y, Z) is of finite type, i.e. Z is closed under coproducts in
C, iff there exists a torsion quadruple (X,Y, Z,U) in C, in which case the
torsion pair (X,Y) restricts to a torsion pair (X°,Y°) in C°.

(i) The torsion pair (X,)) is of cofinite type, i.e. X is closed under products,
iff there exists a torsion quadruple W, X,Y, Z) in C, in which case the
torsion pair (W, X) in C restricts to a torsion pair WW®, X®) in C°.

(i) The torsion triple (X,), Z) is perfect iff there exists a torsion quintuple
W, X, Y, Z,U) in C, in which case the torsion triple (W, X, ) restricts to
a torsion triple WW°, X, J°) in C°.

(iv) If the torsion triple (X,)), Z) is perfect, then there exists a torsion qua-
druple WP, X2, ), 2°) in C° iff the torsion pair (Z,U) is of finite type.

Combining Corollary 5.15 and Theorem 5.12 we deduce the following.

COROLLARY 5.16. Let C be a compactly generated triangulated R-linear
category over a commutative ring R and assume that C° is R-finite. If (X, ), 2)
is a perfect torsion triple in C and C® has AR-triangles, then both X° and )°
have AR-triangles. The converse holds provided that Z* is closed under co-
products in C.

6. Purity and the Ziegler Spectrum

In this section we first recall basic facts concerning purity, Brown Repre-
sentability, and the Ziegler spectrum of a compactly generated triangulated
category. For detailed information we refer to [18,51]. Next we isolate specific
subsets of the Ziegler spectrum which will be useful later in connection with
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Auslander-Reiten theory for compact objects, and we compare Ziegler
spectra of module and triangulated categories via various representation
embeddings. Finally we study briefly pure Auslander-Reiten triangles in a
Brown category.

Throughout this section C denotes a compactly generated triangulated
category. As already mentioned in Section 5, compactly generated triangu-
lated categories satisfy Brown’s representability theorem and therefore
cohomological functors C°° — Ab taking coproducts to products are repre-
sentable. Therefore for any compact object 7 in C and any maximal left ideal
m of the endomorphism ring Az, the functor H}m := Homy, [Hr(—),
L] : C°° — Ab is representable, where I, is the injective envelope of the
simple left A7-module Sz, (7T) := Ar/m and Hy :=C(T,—) : C — Mod-A%.
Hence the m-dual object D,,,(7) exists in C for any compact object 7 in C and
any maximal left ideal m of Az. In what follows it is useful to consider the
restricted Yoneda functor

H:C — Mod-C°, H(A) =C(—, A)|x.

Clearly the functor H is homological, preserves products and coproducts and
it is easy to see that its image is contained in the full subcategory of coho-
mological functors over C°. Let Stm € Mod-C® be the simple functor
C*(—,T)/C°(—, T),, determined by 7 and m as in Section 2. Recall that, for a
ring A, Max;(A) denotes the space of maximal left ideals of A. The above
construction suggests the following definition, referring to [41, Section 3] for
a related module theoretic version. We denote by Iso(CP) the set of isoclasses
of compact objects and by Ind(Cb) the set of isoclasses of compact objects
with local endomorphism ring.

DEFINITION 6.1. The maximal spectrum of C is the set of all m-dual
objects of the isoclass of compact objects:
Max(C) := {D(T) € C| T € Iso(C") and m € Max;(Ar)}

The reduced maximal spectrum Max,q(C) of C is the subspace of Max(C)
consisting of the m-dual objects of compact objects of C with local endo-
morphism ring. We call the objects in Max(C) maximal points of C.

In the following we collect some consequences of our previous results.
PROPOSITION 6.2. Let T be a compact object in C.

(1) The m-dual object Dy (T) has local endomorphism ring.

(2) There exists a triangle (T) : 27 'Dy(T) — A — T — Dy (T) in C and the
morphism 2(g7) : Dw(T) — X4 is left almost split in C.

(3) The image of the morphism H(hr) : H(T) — H(D,,(T)) in Mod-C® is the
simple functor St and the inclusion St — H(Dw(T)) is an injective
envelope.
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(4) T has local endomorphism ring iff (T) is an AR-triangle in C. Hence the
m-dual object Dy, (T) lies in Maxng(C) iff T is the target of an AR-triangle
in C.

PROPOSITION 6.3. The set Max(C) is a cogenerating set in C and the set
H(Max(C)) is a cogenerating set of indecomposable injective objects in Mod-CP.
In particular any functor in Mod-C® is a subobject of a product of objects from
H(Max(C)).

6.1. PURITY

Recall from [18,51], that a triangle (T) : 4 L RN 2(A) in C is called a
pure-triangle iff for any compact object X, the sequence 0 — C(X,4) —
C(X,B) — C(X,C) — 0 is exact in .Ab. An object T is called pure-projective,
resp. pure-injective, if for any pure triangle as above, the induced sequence
0—C(T,4A) — C(T,B) — C(T,C) — 0, resp. 0—C(C,T)—C(B,T)—
C(A,T) — 0,1is exactin Ab. If (T) is a pure-triangle, we call the morphism g a
pure-monomorphism, the morphism f a pure-epimorphism and the morphism 4
phantom. The collection Ph(C) of all phantom maps in C is a two sided ideal
of C closed under X and the class of pure-triangles is a proper class of
triangles in C in the sense of [18]. An object C in C is pure-projective, resp.
pure-injective, iff Ph(C,—) = 0, resp. Ph(—, C) = 0.

We denote by PProj(C), resp. PInj(C), the full subcategory of C con-
sisting of the pure-projective, resp. pure-injective, objects. We say that C has
enough pure-projective, resp. pure-injective, objects, if any object C in C is
included in a pure triangle K — P — C — X(K), resp. C — [ — L — X2(C),
where P is pure-projective, resp. [ is pure-injective. A pure-injective envelope
of 4 €C is a left minimal pure-monomorphism g: 4 — E with E pure-
injective. Then C has enough pure-projectives and PProj(C) = Add(C") and
C has pure-injective envelopes and PInj(C) = Prod(Max(C)), where the
latter is the full subcategory of C consisting of direct summands of arbitrary
products of objects from Max(C). We refer to [18, Section 11] and [51,
Section 1] for details.

There is a nice interplay between the end terms of an AR-triangle. Notice
that the module theoretic analog of this interplay was first observed by
Herzog [39].

LEMMA 6.4. If (T) is an AR-triangle, then the following are equivalent.

(i) The triangle (T) is not pure.
(i1) The object C is compact.
(iii) The object A is pure-injective.

Proof. (1) = (ii) Since (T) is not pure, it follows that / is not phantom.
Hence there exists a compact object X and a morphism o« : X — C which does
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not factor through f. This clearly implies that « is split epic, hence C is
compact.

(i1) = (ii1) Let f: B — A4 be non-zero phantom. Then its cofiber 7y is not
split mono, hence y factors through g. This implies that ~!(/) factors
through f and therefore it is phantom. Then X7'(h) =0 since = !(C) is
compact and this is not the case. It follows that § = 0 and consequently there
are no non-zero phantom maps into 4. Hence A is pure-injective.

(i) = (i) (T) is not pure since it does not splits and FE is pure-injective.[]

Remark 6.5. The previous result as well as large parts of the theory
that follows can be generalized to an arbitrary triangulated category
equipped with a proper class of triangles £ with enough projectives in the
sense of [18].

The restricted Yoneda functor H : C — Mod-C® plays an important role in
the study of purity in C and, as explained in [19], serves as an analog of the
functors  Mod-(mod-A°?)? « Mod-A — Mod-(mod-A)  defined by
A®A —|mod-pr — A — Homp(—, 4)|;04- Which provide an indispensable
tool for the study of purity of modules. More precisely H identifies the pure-
projective objects of C with the projective functors of Mod-C® and the pure-
injective objects of C with the injective functors of Mod-CP. It follows that the
endomorphism ring of an indecomposable pure-injective object of C is local
and, by Proposition 6.3, any object of C admits a pure monomorphism into a
product of objects from the maximal spectrum Max(C) of C. Further H reflects
isomorphisms and a triangle 4 —-B—C—XA4A in C is pure iff
0 — H(A) — H(B) — H(C) — 0 is exact in Mod-C®. Note that since C® is tri-
angulated, the cohomological functors {C°}°® — Ab coincide with the flat
functors. Finally any injective functor is flat and the category of flat functors is
closed under products in Mod-C?, see [18, 51] for more details. In particular we
shall need in the sequel the following consequence of [18, Proposition 4.19].

LEMMA 6.6. [18]

(1) For any pure-projective object P in C the canonical morphism
Hp_ : C(P,—) — Hom(H(P),H(—)) is invertible. In particular if P is pure-
projective and H(f) : H(A) — H(P) is split epic in Mod-C®, then so is f.

(ii) For any pure-injective object E in C the canonical morphism H_ g : C(—, E)
— Hom(H(—),H(E)) is invertible. In particular if E is pure-injective and
H(g) : H(E) — H(A) is split monic in Mod-C®, then so is g.

6.2. THE ZIEGLER SPECTRUM

By [51], the family of isoclasses of indecomposable pure-injective objects of C
form a set, which is denoted by Zg(C). Following [53], the set Zg(C) becomes
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a topological space, called the Ziegler spectrum of C, if we define a topology
T, the Ziegler-topology, as follows. Let ® be a collection of maps between
compact objects. Then E € C is called ®-injective, if for any ¢ : X — Y in @,
any morphism o : X — E factors through ¢. The class of ®-injective objects
of C is denoted by Ug. The closed subsets of 7 are defined to be of the form
Ugp NZg(C), where @ is a collection of morphisms between compact objects.
We refer to the work of Garkusha-Prest [32] for a model-theoretic description
of the Ziegler topology using pp-formulas of a (multi-sorted) first order
language for C. The following remark gives a torsion theoretic description of
the Ziegler topology.

Remark 6.7. Let (X,)) be a torsion pair of finite type in C. Then, by
Proposition 5.14, the torsion pair (X, )) is part of a torsion triple (X, ), Z) in
C and Y is compactly generated. More precisely if Ly :C — ) is the left
adjoint of the inclusion iy : Y—C and 7 is a set of compact generators of C,
then Ly(7) is a set of compact generators for Y. It is not difficult to see that
iy induces a closed continuous map Zg()) — Zg(C), we refer to Theorem 6.13
below for a more general result. By a result of Krause [56] the map
(X,))—Zg(C)NY = Zg(Y) gives a bijection between torsion pairs of finite
type in C and closed subsets of Zg(C).

Clearly the suspension X induces an homeomorphism Zg(C) — Zg(C) and
by the above results it follows that we have inclusions Maxg(C) C
Max(C) C Zg(C) and an injective map 7" : Ind(C®) — Maxinq(C) which sends a
compact object T with local endomorphism ring to its AR-translate
H(T) = T (D (7).

The Ziegler spectrum Zg(A) of a ring A plays a fundamental role in the
analysis of the module category Mod-A. Recall that Zg(A) is the set of
isoclasses of indecomposable pure-injective A-modules equipped with the
Ziegler topology, introduced by Ziegler [80] in model-theoretic terms, having
as closed sets the subsets Uy C Zg(A), where @ is a collection of maps
between finitely presented A-modules. We refer to the works of Prest
[68,71,72], Herzog [41] and Krause [53] for a comprehensive treatment of the
Ziegler spectrum of a module category. Here we discuss briefly the connec-
tions between the Ziegler spectrum of C and the Ziegler spectrum of the
endomorphism ring Ay of a compact generator 7 of C, thus generalizing
recent results of Garkusha and Prest [32].

We assume throughout that 7 satisfies the Toda condition
C(T,X"(T)) =0, ¥n > 0. Then, by the results of [22, Chapter III], 7'induces a
t-structure in C in the sense of [14], with heart H(7T) = {4 € C|C(T,X"(A)) =
0,vn # 0}, and the functor C(7,—): H(T) — Mod-Ar is an equivalence.
Usually we view this equivalence as an identification Mod-Ay = H(T) C C.
Clearly Mod-A7 is closed under products and coproducts in C and we have
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cohomology functors H" : C — Mod-Ar, Vn € Z, see [14] or [22] for details. If
T, in addition, satisfies C(7,X"(7T)) = 0, VYn < 0, so that T'is a tilting object in
C, then T lies in the heart and it is easy to see that we have isomorphisms
H" = C(T,Z"(—)) : C — Mod-Ar, hence the functors H* preserve products
and coproducts. We have the following connection between the Ziegler
spectra Zg(Ar) and Zg(C) which generalizes slightly, and is inspired by, a
recent result of Garkusha and Prest, see Theorem 7.3 in [32].

PROPOSITION 6.8. Let T be a compact generator of C with endomorphism
ring Ar, and assume that C(T,X"(T)) = 0, Vn > 0. Then we have the following.

(1) For any pure-injective Ar-module M, the object " (M) is pure-injective in
C,Vn € Z. If T is a tilting object, then for any pure-injective object E in C,
the cohomology object H"(E) is pure-injective in Mod-Ar, Vn € Z.

(2) The sets U, := {Z"(M)|M € Zg(Ar} and their disjoint union U = | |,., Uy,
are closed subsets of Zg(C).

(3) If C = D(A) is the unbounded derived category of a Grothendieck category
A and T'is a tilting object in D(A) such that At is a right coherent ring with
finite weak global dimension, then the inclusion Mod-Ar— D(A) induces
homeomorphisms Zg(Ar) — U, C Zg(D(A)).

Proof. (1) Using that in both Mod-A7 and C an object X is pure-injective
iff for any index set / the summation map ©;X — X factors through the
(pure-)mono @;X — [[,; X, see [42, Theorem 7.1] and [51, Theorem 1.8], we
infer that any pure-injective Ap-module is pure-injective in C. If T is a
tilting object, then the cohomology functors H” preserve products and
coproducts and therefore send pure-injective objects in C to pure-injective
Ar-modules.

(2) Fix n€Z and consider the set of morphisms ®, = {X"(7T) —
0|m € Z, m# n} in C°. Then for any object X"(M) where M is an inde-
composable pure-injective Ary-module, any morphism X"(7) — X"(M) is
zero and therefore U, C Ug,. If E lies in Ug,, then C(X"(T), E) = 0, Vm # n.
This implies that X7"(E) lies in the heart and therefore E € U,. Hence
U, = Uy, and therefore U, is a closed subset of Zg(C). Let O := Zg(C) \ U.
Clearly E lies in O iff there exist (at least two) m,n € Z with m # n such that
C(T,X"(E)) #0 and C(T,X"(E)) # 0, that is, iff E lies in U, NUS,. Hence

O = U,U, NU,,) is open and therefore | |, ., U, is closed in Zg(0).

(3) By a result of Keller [48], the tilting object T induces a triangle
equivalence D(Mod-A7) = D(A). Since Ar is right coherent of finite weak
global dimension, it follows easily that any finitely presented Ay-modules
becomes a compact object in D(Mod-A7), hence in D(.A). Using these facts
and the description of the Ziegler spectrum of a ring in [53], the assertion is
proved as in [32, Theorem 7.3]. O

ne
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COROLLARY 6.9. Let A be a Grothendieck category and assume that D(.A)
contains a tilting object T. If Ar=End(T) is right hereditary, then

Zg(D(A)) = |, Zeg(Ar).

Proof. By [63] for any complex A4 in D(Mod-Ar) we have
A=@,_, H'(4)[—n]. Since Az is right coherent, the assertion follows from

Proposition 6.8. L]

COROLLARY 6.10. Let C =Ho(Sp) be the stable homotopy category of
spectra. Then for any pure-injective spectrum E, the stable homotopy group
n.(E) is a pure-injective abelian group. Moreover U, :== {X"(M) |n € Z} and
| l,cz Un are closed subsets of Zg(Ho(Sp)), where M is one of the following (p
denotes a prime and we identify M with the corresponding Eilenberg-MacLane
spectrum):

(i) Q and one of the Priifer groups Z(p>).
(i) The cyclic groups Z(p").

(ii1) The p-adic completion Z,) of Z.

Proof. It is well-known that the sphere spectrum S° is a compact gener-
ator of Ho(Sp) satisfying the condition [S?, £"(S%)] = 0,Vn > 0, and the heart
of the ¢-structure induced by S° coincides with Ab, see [22, Section 111.3], [61,
Theorem 6.1]. Then the assertion follows by Proposition 6.8 and the well-
known classification of indecomposable pure-injective abelian groups, see the
book of Kaplansky [45]. O

6.3. REPRESENTATION EMBEDDINGS AND THE ZIEGLER SPECTRUM

Let as before C be a compactly generated triangulated category. We have
seen in Remark 6.7 that if (X)) is a torsion pair of finite type in C then
Y is compactly generated and the inclusion functor )Y — C preserves
products and coproducts. Such functors are special cases of representation
embeddings (defined below) which provide a natural tool for comparing
Ziegler spectra. Notice that a module theoretic variant of the notion of
representation embedding was first introduced by Prest, see [69].

DEFINITION 6.11. A triangulated functor G : C — D between compactly
generated triangulated categories is called definable if G preserves products
and coproducts. A definable functor is called a representation embedding if G
reflects isomorphisms and preserves indecomposability.

We denote by Flat(Cb) the full subcategory of Mod-C® consisting of the
flat (= cohomological) functors {C°}°® — Ab. The category Flat(C’) is
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locally finitely presented with products in the sense of Crawley-Boevey [27]
and exactly definable in the sense of Krause [49]. A theory of purity for such
categories were developed in [27,49,71]. In particular one can define the
Ziegler spectrum of Flat(Cb) as the set of indecomposable pure-injective
objects of Flat(C") equipped with the Ziegler topology which is defined in a
similar way as the Ziegler topology of C, using that the compact objects of C
are the finitely presented objects in Flat(C). We refer to [71] and [49] for
more details. In the sequel we shall need the following result.

LEMMA 6.12. ([51], Proposition 2.6). If G:C — D is a definable functor,
then G preserves pure-injective objects and admits a left adjoint F which pre-
serves compact objects. Moreover there exist an adjoint pair (F{,FP):
Mod-DP s Mod-C® of colimit preserving exact functors which preserve flat
functors and make the following diagrams commutative (He and Hp are the
restricted Yoneda functors):

c -“5. p £, ¢

Hcl Hnl HDJ{ HCJ/
b FP b b I b
Mod-C° —— Mod-D Mod-D°®° —— Mod-C

In particular there exists an adjoint pair (Fy, F?) : Flat(DP) & Flat(C®), where
FP preserves filtered colimits and products and F;' preserves finitely presented
objects.

Proof. By results of Neeman [64, Theorem 5.1] and [66, Theorem 8.6.1] it
follows that G admits a left adjoint F which preserves compact objects. Then
the existence of the above diagrams and the preservation of pure-injectives by
F is proved in [51, Proposition 2.6]. The last assertion follows as in [18,
Section 11.4]. ]

After these preliminaries we can prove the following result which gener-
alizes a result of Prest, see [69, Theorem 7], and gives a connection between
the Ziegler spectra of categories related by a representation embedding.

THEOREM 6.13. A representation embedding G : C — D induces a homeo-
morphic embedding of Zg(C) as a closed subset of Zg(D).

Proof. By Lemma 6.12 it follows that G induces an injective function
g:72g(C) — Zg(D), g(E) = G(E), and admits a left adjoint F: D — C which
restricts to a functor F®:D° — C° Let 6:1dp — GF be the unit and
¢ : FG — 1d¢ the counit of the adjoint pair (F,G). Let ¥ be a collection of
maps in D°, hence F(¥) = {F(\/)|¢ € W}is a collection of maps in C°, and let
Ebein g7!(Uy), i.e. G(E) is in Uy. Also let F(y) : F(X) — F(Y) be a map in
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F(P). Since G(E) is W-injective, for any map o : F(X) — E, there exists a map
p: Y — G(E) such that oy o G(a) = ¥ o p. Applying F and using adjointness,
we  have: o= F(dx)oepx) oo = F(dx)o FG(a) oex = F(if) o F(p) o &g.
Hence « factors through F() and this shows that g=' (Uy) C Upy). Next let
Ebein Upy) and let  : X — Y be a map in \¥. Since E is F('¥)-injective, for
any map f:X — G(E), the composition F(a)oeg: F(X) — E factors
through F(y), say as F(¢p) o 0 = F(a) o ¢g. Applying G and using adjointness,
we have: = fodgp o Gler) = ox o GF(P) o G(ep) = dx 0 GF() o G(eg) =
Y odyoG(o) and this shows that f factors through . Hence G(E) is
Y-injective and therefore E lies in g~'(Uy). Hence Ugy) € g~ (Uy). Since
the closed subsets of Zg(C), resp. Zg(D), are of the form Uy, resp. Uy, where
@, resp. ¥, are collection of maps in cb, resp. DP, we infer that g is contin-
uous. To show that g is closed we consider the adjoint pair
(F¢, F?) : Flat(DP) & Flat(C) from Lemma 6.12. Since the functor He, resp.
Hp, induces an equivalence between the full subcategories of pure-injective
objects of C, resp. D, and Flat(CP), resp. Flat(DP), it is easy to see that it
induces a map between the Ziegler spectra of C, resp. D, and F lat(Cb), resp.
Flat(Db), which sends Ziegler closed subsets of C, resp. D, to Ziegler closed
subsets of Flat(C®), resp. Flat(D), see [56, Section 7). Let Ug be a closed
subset of Zg(C). Then H¢(Ug) is a closed subset of Zg(Flat(C")). By
[49, Theorem 7.8] the subset F°(H¢(Ug)) = Hp(G(Ug)) is closed in
Zg(Flat(DP)) and therefore G(Uyg) is closed in Zg(D). We infer that the map
g is closed. ]

We close this subsection by pointing out some consequences.

COROLLARY 6.14. Let (X,)) be a torsion pair of finite, resp. cofinite, type
in C. Then the inclusion iy : Y —C, resp. iy : X —C, induces a closed homeo-
morphic embedding Zg(Y) — Zg(C), resp. Zg(X) — Zg(C).

Proof. By Corollary 5.15, ), resp. X, is compactly generated and the
inclusion iy, resp. iy, is a representation embedding. So the claim follows by
Theorem 6.13. (]

EXAMPLE 6.15. Let T be a finitely presented module with finite projective
dimension over an Artin algebra A such that Ext}(7,7) =0, Vn>1. If the
projective dimension of T'over I' := End, (7) is finite, then by [22, Propositions
IV.1.11 and 1V.3.5] there exists a perfect torsion pair (X,)) in D(Mod-A),
where X is triangle equivalent to D(Mod-I"), so Corollary 6.14 applies.

Recall from [33] that a ring homomorphism A — I is called a homological
epimorphism if the canonical map T'®x [ — ' is invertible and
Tor,’,‘(l“, I') =0, Vn > 1. The following result gives a derived version to a
result of Prest [70, Corollary 9].
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COROLLARY 6.16. If A — T is a homological epimorphism of rings, then
there exists a homeomorphic embedding of Zg(D(Mod-I')) as a closed subset of
Zg(D(Mod-A)).

Proof. By [58, Theorem 14.5] the functor F:= — ®% I': D(Mod-A) —
D(Mod-I") admits a coproduct preserving fully faithful right adjoint G.
Clearly G is a representation embedding and therefore the assertion follows
from Theorem 6.13. ]

COROLLARY 6.17. Let p be a prime and let Ho(Sp), resp. Ho(Sp),,, be the
stable homotopy category of, resp. p-local, spectra. Then there exists a
homeomorphic embedding of Zg(Ho(Sp)p) as a closed subset of Zg(Ho(Sp)).

Proof. By [61, Chapter 8] it follows that the inclusion Ho(Sp), € Ho(Sp)
is a representation embedding and the assertion follows from Theorem
6.13. ]

6.4. PURE AND GHOST AUSLANDER-REITEN TRIANGLES IN BROWN
CATEGORIES

In this subsection we are interested in pure AR-triangles £ — 4 — X — XE
in C. Then, by Lemma 6.4, X — ZFE is phantom, X is not compact and E is
not pure-injective. Recall that C is called a Brown category if the functor
H : C — Mod-C°, whose strict image lies in the subcategory Flat(Cb) of flat
functors, is full [18]. Note that, by [18, Theorem 11.18], for a Brown category
C, the composition of two phantom maps is zero and the functor
H:C— Flat(Cb) is surjective on objects. Clearly Flat(Cb) is an exact sub-
category of Mod-C? in the sense of Quillen [73], so that we can speak of
Auslander—Reiten sequences in Flat(CP).

THEOREM 6.18. Let C be a Brown category. If (T) : EL AL xtsEisa
triangle in C, then the following are equivalent.

(1) E—A4— X — XZEis a pure AR-triangle in C.
(i) 0 — H(E) — H(4) — H(X) — 0 is an AR-sequence in Flat(C®).

Proof. (1) = (ii) Since the triangle (T) is pure and the functor H is homo-
logical, full and reflects isomorphisms, the sequence H(T):0 — H(E) —
H(A4) — H(X) — 01is exact and not split in Flat(C®). Let & : F — H(X) be non-
split epic in Flat(Cb). Since H is full and surjective on objects, it follows that
F=~H(B)and H(a) = a, where o : B — XisamorphisminC. Since H(x) is non-
split epic, the same is true for o. Hence o factors through f, and then H(«) factors
through H(f). We infer that H(f) is right almost split. Since C is Brown, the
endomorphism rings End(H(E)) and End(H(X)) are local as factor rings of the
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local endomorphism rings End(E) and End(X). We conclude that H(T) is an
AR-sequence in Flat(C’).

(i) = (i) Consider the AR-sequence 0 — H(E) — H(4) — H(X) — 0 in
Flat(CP). Since g is pure-mono, the triangle (T) is pure. For any object 4 in C,
the kernel of the ring epimorphism End(A4) — End(H(A)) is the ideal Ph(4)
of self-phantom maps of 4. By [I8], we have Ph*(4) =0, in particular
Ph(A4) C Jac(End(A)). This implies that if End(H(4) is local, then the same is
true for End(A4). Consequently the endomorphism rings End(E) and End(X)
are local. Let o : B — X be a morphism in C which is non-split epic. If H(«) is
split epic, then there exists a morphism f = H(f) : H(X) — H(B) such that
H(B) o H(x) = 1n(x). Since H reflects isomorphisms, we infer that o« is split
epic and this is not the case. It follows that H(«) is non-split epic and
therefore there exists a morphism 7y = H(y):H(B) — H(A4) such that
H(y) o H(f) = H(a). This implies that the morphism yof—o:B— X is
phantom. Since / is phantom and the ideal of phantom maps is square zero,
weinfer that (yo f'— o) o h = oo h = 0. Hence o factors through fand therefore
(T)is apure AR-triangle in C. ]

COROLLARY 6.19. If C is Brown, then H : C — Mod-C® induces a bijection
H : pART(C) < ARS(Flat(C"))

between the family pART(C) of isoclasses of pure AR-triangles in C and the
family ARS(Flat(C")) of isoclasses of AR-sequences in the exact category
Flat(C®). In particular if Flat(C®) admits an AR-sequence, then C admits a pure
AR-triangle.

The above results admit relative versions. Let S be a compact object in C
and let £(S) be the proper class of triangles in C generated by S in the sense of
[18]. That is a triangle A — B — C — Z(A) lies in £(S) if 0 — C(X*(S), 4) —
C(Z*(S),B) — C(Z*(S), C) — 0 is exact, where Z*(S) := {Z"(S)|n € Z}). We
call £(S) the class of ghost triangles in C with respect to S and recall from
[18, Lemma 8.1] that the ghost projective objects of C are the objects of
the full subcategory Add(X*(S)). Then as in Propositions 6.2 it follows
that any non-ghost-projective compact object X in C with local endomor-
phism ring occurs as a target of a ghost AR-triangle in C, and any non-ghost-
injective pure-injective object £ in C with local endomorphism ring such that
E is reduced maximal point in the Ziegler spectrum occurs as a source of a
ghost triangle in C. Let Hg : C — Mod-Z*(S), Hs(A4) = C(—, 4)|s-(5) be the
induced homological functor. We say that C is ghost Brown with respect to S
if Hg is full, see [18, Theorem 10.2] for other equivalent conditions. The
following is a ghost analogue of Theorem 6.18 and is proved in the same way,
using [18].
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THEOREM 6.20. Assume that C is a ghost Brown category with respect to the
compact object S. Then ImHg is closed under extensions in Mod-Z*(S). If
EF—A— X—ZXZE is a triangle in C, then the following conditions are
equivalent.

(i) E— A4 — X — ZE is a ghost AR-triangle in C.
(i) 0 — Hs(E) — Hs(A4) — Hs(X) — 0 is an AR-sequence in the exact sub-
category ImHg of Mod-Z*(S).

Since for a right hereditary ring A, the derived category D(Mod-A) is
clearly ghost Brown with respect to A (see Section 12.5 in [18]), we have the
following.

COROLLARY 6.21. Let A be a right hereditary ring. If E — A — X — XF
is a triangle in D(Mod-A), then the following conditions are equivalent.

(1) E— A — X — ZE is a ghost AR-triangle in D(Mod-A).
(i) 0 — HA(E) — Hp(A) — HA(X) — 0 is an AR-sequence in the exact
subcategory ImHy of [, Mod-A.
(i) There exists a unique n € Z such that 0 — H"(E) — H"(4) — H"(X) — 0
is an AR-sequence in Mod-A.

Pure homological algebra in a compactly generated triangulated category
C is the analogue of the classical relative homological theory of purity in a
module category. In turn ghost homological algebra in C is an analogue of
the absolute homological theory in a module category, see [18, Subsections
12.4 and 12.5] and [21] for more details. Concerning Auslander-Reiten
theory these analogies raises some questions. We do not know if in C there
exists a pure or pure-ghost AR-triangle *~!(E) — 4 — T — E, equivalently
an AR-triangle such that T is not compact or E is not pure-injective. For
Brown categories Corollary 6.19 shows that the question is equivalent to the
existence of an AR-sequence in the category of flat functors. Also Corollary
6.19 raises the question, which we leave open, of the existence of a pure
AR-sequence in a module category.

Finally let Ho(Sp)p be the stable homotopy category of p-local spectra
where p is a prime [61]. It is easy to see that if Freyd’s Generating Hypothesis
[28] fails in Ho(Sp),, then there exists a ghost AR-triangle in Ho(Sp), with
respect to the p-local sphere spectrum Sg ending at a finite p-local spectrum.

7. Maximal Points and Almost Split Morphisms

Throughout C denotes a compactly generated triangulated category. In this
section we are interested in finding sufficient conditions ensuring that a pure-
injective object in C with local endomorphism ring, is the source or target of a
(minimal) left or right almost split morphism or an Auslander-Reiten triangle
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in C, and to characterize the internal structure of these objects in terms of the
Ziegler spectrum. Our results here generalize analogous results from ring
theory, see [26] and [53].

We begin with the following result which generalizes module theoretic
results of Crawley-Boevey [26] and Krause [53] and characterizes the pure-
injective objects which occur as a source of a left almost split morphism in C.
The proof of the first four conditions is contained in [19, Theorem 7.9]. For
completeness we include a simpler proof. To prove the rest we follow ideas of
Krause [53].

THEOREM 7.1. If E is an object in C, then the following are equivalent.

(1) E is pure-injective and a source of a left almost split morphism in C.

(i) E is a source of a left almost split morphism in C which is not pure-mono.

(iii) H(E) is the injective envelope in Mod-C® of a simple functor.

(iv) E € Max(C), that is, there exists a compact object X, a maximal left ideal
m of End¢(X), and an isomorphism E = D, (X).

(v) E is pure-injective and if E is a direct summand of a product |[,.; E; of
indecomposable objects in C, then there exists i € I such that: E = E;.

(Vi) E is pure-injective and if E is a direct summand of a product |[,.; Ei of
points in Zg(C), then there exists i € I such that: E = E,.

iel

Proof. (1) < (ii) Part (i) = (ii) is trivial. If g: E — A is a left almost split
map which is not pure-mono and E is not pure-injective, then the pure-
injective envelope p: E— I of E is not split mono, hence there exists
p : A — I'such that g o p = p. Clearly g is pure-mono and this is not the case.
So FE is pure-injective.

(i) = (i) Let g: E— 4 be a lefft almost split morphism which is not
pure-mono, and let B—F 5A45L3B be a triangle in C. Let
¢ou:H(B) - S— H(E) be the canonical factorization of H(/) where
S = ImH(#). Since g is not pure-mono, it follows that H(%) # 0, hence S # 0.
We claim that S is a simple functor. To show this let & : S — F be a non-zero
map in Mod-C®, and let v: F— H(I) be an injective envelope. Since H(J)
is injective, g¢ooov is of the form H(p) where p:B— I Then
H(Z"!'f) o H(p) =0, hence " !fop =0 as a phantom map into the pure-
injective object /. Therefore there exists a map ¢ : E — [ such that hoo = p,
and it follows directly that goH(o) = aov. If ¢ is split mono, then o is a
monomorphism. Otherwise, since g is left almost split, there exists a map
7: A — I such that g o 1 = ¢. This implies clearly that = 0 and this is not
the case. We infer that any non-zero map S — F'is a monomorphism, i.e. S'is
simple. Since E is pure-injective, the inclusion S< H(E) is an injective
envelope.
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(iii) = (iv) Since any simple functor over C° is of the form S ym Where X is
compact and m is a maximal left ideal of End¢(X) and since, by Proposition
6.2, the injective envelope of Sy, is H(D,, (X)), it follows that H(IDy,(X)) is
isomorphic to H(E). By Lemma 6.6 this implies that £ = D, (X), that is, E
lies in Max(C).

(iv) = (v) = (vi) If the m-dual object Dy (X) is a direct summand of
[Lic; Ei, then the injective envelope H(IDy,, (X)) of the simple functor Sy, is a
direct summand of H(J[., E;)) = [[,;H(E:). Hence (Syu,H(E;)) #0 for
some i€/l Consequently there exists a non-zero morphism
Sxm = HDw (X)) — [[,c;H(E;)) — H(E;) which is necessarily a monomor-
phism. Since the inclusion Sy, — H(D,,(X)) is essential it follows that
H(Dy (X)) — H(E;) is a split monomorphism. Using Lemma 6.6 and the
indecomposability of E; we infer that Dy, (X) = E;.

(vi) = (i) By Proposition 6.3, E is a direct summand of a product of copies
of m-dual objects of compacts. Then by hypothesis E is isomorphic to some
Dy (X). Hence by Proposition 6.2, E is the source of a left almost split
morphism in C. O

The following consequence of Theorem 7.1 characterizes the points in
M3X|nd (C)

COROLLARY 7.2. For an object E in C the following conditions are
equivalent.

(i) E is pure-injective and there exists an AR-triangle E — A — X — Z(E).
(ii) E € Maxng(C), that is: E = X7 'D,(X) where X is compact with local
endomorphism ring and w is a maximal left ideal of End¢(X).
(iii) E is pure-injective and a source of a left almost split morphism in C, and
there exists a compact object X with Endc(X) local, such that C(X, E) # 0.
(iv) H(E) is the injective envelope of a simple functor S, and S admits a pro-
Jective cover.

Proof. (1) < (ii) If E is pure-injective, then Lemma 6.4 implies that X is
compact. Therefore E = D, (27 '(X)) since the end terms of an AR-triangle
are uniquely determined up to isomorphism. The converse follows from
Proposition 6.2.

(i) = (i) The proof is trivial since by construction we have
C(X, Dy (X)) # 0.

(iii) = (iv) By Theorem 7.1 the functor H(E) is the injective envelope of a
simple functor S7,,. Since C(X, E) # 0, we infer that S7.,,(X) # 0. Then
clearly the induced non-zero morphism H(X) — Sz, is a projective cover.

(iv) = (i) Consider the composition H(T) L8548 H(E) where ¢ is a pro-
jective cover and p is an injective envelope of the simple functor S. Then



46 APOSTOLOS BELIGIANNIS

clearly T has local endomorphism ring and if 4: 7 — E is the unique
morphism with H(h) = ¢o , then the triangle Z~'(E) — 4 — T — E is an
AR-triangle in C. O

COROLLARY 7.3. Let g : E — A be aleft almost split morphism in C. If A is
pure-injective, then E is the source of an AR-triangle in C.

Proof. Follows as in Theorem 3.4 using that there exists a decomposition
(2,0): E— A" ® A" = 4 of g such that g’ is left minimal, see [60, Corollary
1.3]. O

COROLLARY 7.4. If C° is Krull-Schmidt, then the following are equivalent.

(1) E is a pure-injective source of a left almost split morphism in C.
(i1) E is a pure-injective source of a minimal left almost split morphism in C.
(iii) E is a pure-injective source of an AR-triangle in C.
(iv) E is a reduced maximal point, that is, E = D, (X) where X is an inde-
composable compact object and m is a maximal left ideal of End¢(X).

Recall that we have an inclusion of spaces Maxj,q(C) C Max(C). There

is an important class of categories for which we have an equality
Max(C) = Maxind(C).

LEMMA 7.5. If C° is Krull-Schmidt, then Max(C) = Maxing(C)). In particular
a point E € Zg(C) is maximal iff E is the source of an AR-triangle in C.

Proof. Let D, (X) € Max(C), where X is compact and m is a maximal left
ideal of End¢(X). Then Dy, (X) is the injective envelope of the simple functor
Sx.m. Since C is Krull-Schmidt, there exists a (unique) indecomposable direct
summand Y of X such that Sy,,(Y) # 0. By Yoneda’s Lemma, any non-zero
element of Sy, (Y) induces an epimorphism ¢: H(Y)— Sy,, which is a
projective cover since End(H(Y)) is local. Then Ker(e) is the unique
maximal submodule H(Y), of H(Y), where n is the unique maximal ideal of
End¢(Y). Hence Sy, = Syn. Taking injective envelopes it follows that
]D)m(X) %Dn(Y) S Maxmd(C). O

The module theoretic version of the following result was observed by
Herzog, see the discussion before Proposition 3.6 in [41].

PROPOSITION 7.6. Max(C) is a dense subset of Zg(C).

Proof. 1t suffices to show that for any closed set Ug in Zg(C), where @ is a
family of morphisms in CP, the inclusion Max(C) C Uy implies that
Ugp = Zg(C). Let ¢ : Z — Y be an arbitrary morphism in ® and let F be the
kernel of H(¢). Since any element of Max(C) is ¢-injective, it follows directly
that [F,H(D,,(X))] =0, for any compact object X and any maximal left
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ideal m of End¢(X). By Proposition 2.1 we have an isomorphism
[F,H(D\,(X))] =2 Homy, (F(X), I,,) of left Ay-modules. Fixing the compact
object X, it follows that Homy, (F(X), I;x) = 0, for any maximal left ideal m
of Ay and therefore F(X) = 0. Since this happens for any compact object X,
it follows that F = 0. Then obviously ¢ is a split monomorphism, since H(Z)
is injective in mod-CP. It follows that @ consists of split monomorphisms in C°
and consequently Uy = Zg(C). Hence Max(C) is a dense subset. O

We recall that a point E of Zg(C) is called isolated, if {E } is open in Zg(C).
If O C Zg(C), then O denotes the closure of O in the Ziegler topology. We
denote by Isol(C) the set of isolated points of the Ziegler spectrum Zg(C).
Since Max(C) is dense in Zg(C), we have the following consequence.

COROLLARY 7.7. Isol(C) C Max(C), that is: if E is an isolated point of Zg(C),
then E = D, (X), for some compact object X of C and a maximal left ideal m of
End¢(X). In particular E is the source of a left almost split morphism in C.

COROLLARY 7.8. Let E=0Dy(X) be a point in the maximal spectrum
Max(C). If the simple functor Sy, is finitely presented, then E is an isolated

point of Zg(C). In particular if all simple functors are finitely presented, then
Max(C) = Isol(C).

Proof. Let p:Syw—H(E) be an injective envelope, and let
H(Z) — H(X) — Sx.m — 0 be a finite presentation of Sy, where f: Z — X
is a map in C°. Then we have a triangle y4 7L x 2y in ¢® and a fac-
torization H(h) =eox : H(X) = Sym— H(Z(Y)). We set ®:={Zg}. Let
M e Zg(C)\{E} and let o:XY — M be any map. If the composition
ko H(x) : Sxy,;n — H(M) is monic, then there exists a map H(p) : H(E) —
H(M) such that u o H(p) = x o H(2). Since u is essential, H(p) split monic and
this implies that H(E) = H(M) since H(E) and H(M) are indecomposable.
Then E = M and this is impossible. We infer that x o H(a) =0, and this
clearly implies that H(%) o H(x) = 0, hence h oo = 0. Therefore « factors
through X(g). This shows that any point in Zg(C)\{E} is ®-injective, hence
Zg(C)\{E} is closed in Zg(C). We infer that E is isolated. O

8. Auslander—Reiten Triangles with Compact End Terms and Finite Points

Let C be a compactly generated triangulated category. Our aim in this section
is to investigate when the full subcategory C® of compact objects of C has (left
or right) AR-triangles in connection with the structure of the Ziegler spec-
trum. The connection between Auslander—Reiten theory and the Ziegler
spectrum in the setting of module categories was first observed by Mike Prest
who used a combination of representation and model theoretic methods, see
[68]. Later this fruitful connection was investigated further by Herzog [39,
41], Krause [53] and others.
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8.1. PURE-INJECTIVE ENVELOPES OF COMPACT OBJECTS

In the study of AR-theory in C°, an important role is played by the structure
of pure-injective envelopes of compact object with local endomorphism ring.
We begin their study with the following two preliminary results, observed
independently with a different proof by Garkusha-Prest [32, Theorem 2.3],
which will be useful later. The module theoretic analogues are due to Prest,
see [68, § 11.3] and the Example in Herzog [41, p. 535].

LEMMA 8.1. For a compact object W, the following are equivalent:
(1) W has local endomorphism ring.

(i1) The pure-injective envelope E(W) of W is indecomposable.

Proof. (ii)) = (1) If wL E(W) B X(W) is a triangle where p is a pure-
injective envelope, then any map 0 # « : W — W induces a morphism of
triangles:

u K 4

W E(W) B (W)
e
W L EW)— s B S (W)

Then End(E(W)) is local since indecomposable pure-injective objects have
local endomorphism ring. Hence f or 1gy) — B is invertible. Assume first
that f3 is invertible and let B’ be its inverse. Then u = pofof =aopuof.
Since u is a pure-monomorphism, so is o and therefore any triangle
WS W — Z — X(W) is pure. Since W is compact, so is Z and therefore
oo o = 1y for some morphism o : W — W. Then the idempotent morphism
e := o oo is embedded in a triangle

K

¢

w—L s E(w) B (W)
[ ] el
W EW) S B (W)

If p is in invertible with inverse p’, then u = e o po p’ and as above we infer
that e is a pure-monomorphism. This implies trivially that o is invertible. If
1gw) — p is invertible, then po (1gw) — p) = (1w — e) o u and then trivially
ly —e is a pure-monomorphism, which splits by the above argument.
Clearly this implies that e =0. Hence o’ ca=0=a=0 and this is
impossible, since by hypothesis o # 0. We deduce that if f is invertible, then
so is . Similarly if 1z, — B is invertible, then so is 1y — «. We infer that
End¢(W) is local.
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(i) = (ii) Let End(W) = End(H(W)) be local and let u : W — E(W) be the
pure-injective envelope of W. Since H(W) is injective in the Frobenius cate-
gory mod-C®, it follows that H(W) is a uniform object in mod-C®, hence any
of its non-zero finitely presented subobjects is indecomposable. Let
a: M<—H(W) be a non-zero subobject in Mod-C®, and assume that
M = M; & M,. If both M, M, are non-zero, then there are non-zero mor-
phisms p, : H(X;) — M, where the X; are compact. Since each F; = Im(p, o )
is finitely presented, F) @ F is a finitely presented subobject of H(W). Since
H(W) is uniform in mod-CP, it follows that F; & F, is indecomposable, hence
F; =0 or F, =0 and this is impossible. Hence M| =0 or M, =0 and M is
indecomposable. This implies that H( W) is uniform in Mod-C® and therefore
its injective envelope H(E(W)) is indecomposable. Hence the ring
End(E(W)) = End(H(E(W))) is local. O

COROLLARY 8.2. Let X be a compact object with local endomorphism ring.
If Y is compact, then E(X) = E(Y) implies that X = Y. In particular the
operation E of taking pure-injective envelopes of compact objects, induces an
injective function

E: Ind(C°) — Zg(C), X—E(X)

Proof. Let n: X — FE and k:Y — E be pure-injective envelopes. By
Lemma 8.1 both rings End(Y) and End(E) are local, hence H(E) is an
indecomposable injective functor, and the inclusions H(x) : H(X) — H(E)
and H(A) : H(Y)—H(E) are injective envelopes. In particular F :=
H(X)NH(Y) #0. Let Z be a compact object such that F(Z) # 0, and let
p : H(Z) — F be a non-zero morphism. Then the image G of the composition
poH(x):H(Z) — H(X) is a finitely presented functor, and we have an
inclusion ¢:G — F which induces inclusions fooa:G<— H(X) and
¢of:G— H(Y). Since the category mod-C® is Frobenius, the projective
objects H(X) and H(Y) in mod-C® are injective. Hence the inclusions ¢ o « and
¢o f are injective envelopes of G in mod-C®. Then H(X) 22 H(Y), hence
X==Y. ]

8.2. EXISTENCE OF RIGHT AR-TRIANGLES IN C°

The following basic result, which generalizes a ring theoretic result of
W. Zimmermann [81, Theorem 1], see also [57] for a recent related treatment,
gives necessary and sufficient conditions for the existence of an AR-triangle
in C° starting at a compact object.
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THEOREM 8.3. For a compact object X in C the following are equivalent.

() There exists an AR-triangle W — Z — X — (W) in C°.
(i) The object X has local endomorphism ring and the m-dual object Dy, (X) of
X is the pure-injective envelope of a compact object.
(i) X has local endomorphism ring, the simple functor Sy, is finitely pre-
sented, and the subfunctor H(X), — H(X) admits a projective cover.

m
Proof. (1) = (ii) Let WiZﬂXL X (W) be an AR-triangle in C® and
let =Dy (X) S 4 Lxh Dy (X) be the AR-triangle in C ending at X. Since

p is not split epic and f is right almost split, there exists a morphism of
triangles:

— (W)
R
X)

D (X) —5— 4

Let W5 S DL (X) S BSE(W) be a triangle in C. We show that the
morphism ¢ is phantom. Let 7 be an arbitary compact object and let
p : T — B be any morphism. By the Octahedral Axiom, there exists a mor-
phism of triangles:

K &

w1, Y T (W)
I I ®
w—L s »D.(x) —— B = X(W)

Since the objects W and T are compact, so is Y. If x’ is a split monic, then
& =0. It follows that po ¢ =0 and this implies that p factors through x.
Assume now that g is not a split monic. Since o is left almost split, ¢/ factors
through o. Hence there exists ¢:Z — Y such that y' = oo ¢. Then
W=o0o¢p=pooc=00poo=>pu=o00¢poc = uog =oao0¢pocog =
aov=nao¢pocgog. Hence v— ¢ ooog factors through f and therefore
v—¢oagog= Loy for some map : X — A. Then vof—¢pocgogof =
foyof=p=poyof Since Endc(X) is local, yof is invertible or
1y — o fis invertible. However s o f cannot be invertible, since f is right
almost split. Hence 1y — s o f is invertible. Then =0, hence 7y is a split
monic and therefore invertible since End(X) and End (W) are local. Conse-
quently Z = 0 and the morphism X(W) — 0 is left almost split. Since g is not
a split monomorphism, the same is true for X(y') : X(W) — Z(Y). Hence
¥(u') factors through (W) — 0, i.e. ¢ =0. Then diagram (1) shows that
h =0 and this is impossible, since by construction we always have & # 0.
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Hence ' is a split monomorphism. Then & = 0 and from diagram (2) we
have p o £ = 0. Since T was an arbitrary compact object, this shows that ¢ is
pure-phantom. Equivalently u is pure-mono and then so is £~ !(u). Since
Dy (X) has local endomorphism ring, it follows that X7'(p):
= Y(W) — D, (X) is a pure-injective envelope.

(ii) = (iii) Let Z be compact and let x : H(Z) »— H(ID,,(X)) be its injective
envelope. Then End(Z) is local by Lemma 8.1. Since p : Sx,n — H(Dy (X)) is
an injective envelope, it follows that Sy, NH(Z) # 0, hence we have an

inclusion 4 : Sy, < H(Z). Let y : X — Z be the unique morphism in C® such

that H(h) =eo A and let (T):X7'(Z) — YLxlzvea triangle in C°.
Then Sy,, = Im(H(y)) is finitely presented and therefore f is right almost
split and ImH(p) = H(X), .. Since End(Z) is local, (T) is an AR-triangle in C°,
hence f'is right minimal. Then the projection H(Y) — H(X), is a projective
cover.

(i) = (i) We have a minimal projective presentation H(Y) — H(X) —
Sym — 0 in mod-C® and a triangle (T): W—-Y—X—X2Win C°. By the
minimality of the presentation, ¥ — X is right minimal, hence minimal right
almost split, since Sy, is simple and End(X) is local. So (7) is an AR-
triangle in C°. O

The above result suggests the following definition.

DEFINITION 8.4. The finite spectrum Fin(C) of C is the set of pure-
injective envelopes of the isoclasses of compact objects with local endo-
morphism ring:
Fin(C) := {E(X)|X € Ind(C")}.

We call the elements of Fin(C) finite points of C or Zg(C). Then Lemma 8.1
ensures that any finite point is a point of Zg(C), i.e. Fin(C) C Zg(C). The
following result, observed independently by Garkusha-Prest [32], shows that
if C° is Krull-Schmidt then we have a good supply of finite points. We refer

the reader to Proposition 5.4 of Herzog’s paper [41] for the module theoretic
analogue.

PROPOSITION 8.5. If C° is a Krull-Schmidt category, then Fin(C) is a dense
subset of Zg(C). In particular Fin(C) contains all isolated points.

m

Proof. Let Ug be a closed subset such that Fin(C) C Ugpandlet¢: Y — Z

be any morphism in ®. Consider the exact sequence 0 — F— H(Y) e H(Z).
Since any finite point is ¢-injective, it follows that [F,H(E(X))] = 0, for any
indecomposable compact object X. If Y =@ Y; is an indecomposable
decomposition of Y, then Y— @, E(Y;) is a pure-injective envelope and
H(Y)— &, H(E(Y;)) is an injective envelope. Hence [F, ®” H(E(Y;))] =0
and consequently F = 0. This implies that ¢ is a split monomorphism.
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Therefore @ consists of split monomorphisms and consequently Uy = Zg(C).
Hence Fin(C) is dense subset of Zg(C). ]

Now we can prove the following basic result.

THEOREM 8.6. The following conditions are equivalent.

() C® has right AR-triangles.
(1)) Maxn¢(C) C Fin(C).
(1)) Maxjh4(C) C Isol(C).

If C° is a Krull-Schmidt category with right AR-triangles, then:
Maxq(C) = Max(C) = Isol(C) C Fin(C).

Proof. That (i) is equivalent to (ii) is a direct consequence of Theorem 8.3.

(1) = (iii) Let D, (X) be a maximal point, where X has local endomorphism
ring. Since C° has right AR-triangles, by Theorem 8.3 the simple functor S Y.m 18
finitely presented. Then by Corollary 7.8 we have that Dy, (X) is isolated.

(iii) = (ii) Let X be a compact object with local endomorphism ring. By
hypothesis, Z~'D,,,(X) is isolated. Hence there exists a morphism o : Z — Y
between compact objects, such that any morphism Z — E factors through «
for any point E € Zg(C)\{Z 'D,(X)}, and there exists a morphism
B : Z — X7'D,,(X) which does not factor through o. Let i : Z — E(Z) be the
pure-injective envelope of Z. If E(Z) % XD, (X), then by construction
there exists a morphism p : ¥ — E(Z) such that oo p = u. Since p is pure-
mono and X7 'D,,(X) is pure-injective, there exists a morphism y : E(Z) —
7D, (X) such that goy = f, hence a0 poy = f and this is impossible by
the construction of . Hence X', (X) = E(Z) is the pure-injective envelope
of the compact object Z.

The last assertion follows from Lemma 7.5 and Corollary 7.7. ]

8.3. EXISTENCE OF LEFT ALMOST SPLIT MORPHISMS AND LEFT
AUSLANDER-REITEN TRIANGLES IN ¢*

Now we turn our attention to the investigation of the existence of left almost
split morphisms and AR-triangles in C® starting at compact objects, in con-
nection with the Ziegler spectrum and the injective envelopes of finitely
presented simple functors. We begin our analysis with the following result.

PROPOSITION 8.7. For a compact object W, the following are equivalent:

() W is the source of a (minimal) left almost split morphism in C°.
(i) H(W) is the injective envelope of a simple object S in mod-C° (and S admits
a projective cover).
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In particular W is the source of an AR-triangle in C° iff H(W) it is the injective
envelope of a simple object in mod-C® which admits a projective cover.

Proof. (i) = (ii) Let o : W — Y be a left almost split morphism in C® and
consider the exact sequence 0 — S H(W) — H(Y) in mod-C®. Then S is
finitely presented and it suffices to show that S is a simple in the Frobenius
category mod-CP, since H(W) is an injective object with local endomorphism
ring. If S = 0, then H(«) is monic, which splits since H() is injective in mod-
CP. Then o is a split monic and this is not true, since « is left almost split.
Hence S # 0. Let w : S — F be a morphism in mod-C°. Then there exists a
monomorphism « : F— H(X) with X in CP. Since H(X) is injective, there
exists H(p) : H(Y) — H(X) such that po H(p) = w o k. If p is not split mono,
then p factors through o and this implies that «» = 0. If p is split monic, then
w is a monic. This shows that S is a simple object in mod-C°. Now if o is

minimal, it follows by Lemma 3.2 that W= Y — X — X(W) is an AR-
triangle in C°. Since S is a factor of H(Z~'(X)) and X has local endomor-
phism ring, we infer that S admits a projective cover.

(ii) = (i) Let H(Z) — H(X) S — 0 be a finite presentation of a finitely
presented simple functor S and let k : S—H(W) be an injective envelope.
Then eok : H(X) — H(W) is of the form H(y), where y: X — W is a mor-

phism in C°. If X5 W5 Y — (X) is a triangle in C°, then « is not a split
monomorphism since KerH(x) = S. Let p: W — T be a morphism in C°.
Since S is simple, the composition k o H(p) is zero or a monomorphism. If
ko H(p) is a monomorphism, then H(p) is a monomorphism, since x is
essential. This implies that p is a split monomorphism, since H(W) is injective.
Hence if p is not a split monomorphism, then xoH(p)=0 =
H(y) oH(p) =0 = y0p =0 = p factors through o. This shows that o is a
left almost split. If ¢ : H(X) — S is a projective cover, then End(X) is local
and therefore W= ¥ — X(X) — (W) is an AR-triangle in C°. O

Now we can prove the following result which characterizes when a compact
object occurs as a source of a left almost split morphism or an AR-triangle in
C® and generalizes a module theoretic result of Krause, see [53, Theorem 3.6].

THEOREM 8.8. Let E(W) be a finite point, that is, E(W) is the pure-injective
envelope of a non-zero compact object W. Then the following are equivalent.

(1) E(W) is the source of a (minimal) left almost split morphism in C.

(i) W is the source of a (minimal) left almost split morphism in C°.

If (i) holds, then E(W) is isolated in Zg(C). In particular W is the source of an
AR-triangle in C° iff EOW) is the source of an AR-triangle in C.

Proof. (1) = (ii) By Theorems 7.1 and 8.3, E(W) is isomorphic to some
m-dual object ~!(ID,,(X)) and there exists a morphism of triangles
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w 4 L 3(W)

F . x
[
Zlfl]l)m(X) = A ! x Dy (X)

where u is a pure-injective enveloped and g is left almost split in C. Since
ImH(Z!(h)) is the simple functor Sy 1y, and H(u) is a monic, we have
Sy-1xm MH(W) # 0 and therefore there exists an inclusion x: Sy1y, —
H(W) such that xoH(v)=pu where u is the inclusion Sy,
H(Z"'D,,(X)). This implies that Sy Y = H(Z7'(y)) and therefore Sy 1 X/7m is
finitely presented. Hence H(1¥) is the injective envelope of a simple functor in
mod-C® and therefore by Proposition 8.7, W is the source of a left almost split
morphism in C°. Now if g is in addition left minimal, the lower triangle above
is an AR-triangle and therefore End(X) is local. Then clearly the upper
triangle is an AR-triangle in C° and o is minimal left almost split.

(ii) = (i) By Proposition 8.7, there exists a simple object S in mod-C® and
an injective envelope « : S — H(W) in mod-C°. Consider the pure-injective
envelope 4 : W — E(W) in C. Since H(A) : H(W) — H(E(W)) is an injective
envelope, there exists a morphism v:S — H(W) such that voH(1) =k,
which is a monomorphism since S is simple in mod-C°. Let o: S — M be a
non-zero morphism in Mod-C® and let ¢ : F — S be its kernel. If F # 0, then
there exists a non-zero morphism f: H(T) — F for some compact 7. Then
the map fo ¢: H(T) — S is zero or an epic. Both cases are impossible since
both f and o are non-zero. Hence any non-zero morphism «: S — M in
Mod-C® is zero or a monic and therefore S is simple in Mod-C®. Then its
injective envelope is of the form H(D,, (X)) for some compact X. Hence
H(E(W)) = H(Dy, (X)) or equivalently E(W) = D,,(X). Hence the finite point
E(W) is maximal and then, by Theorem 7.1, E(W) is the source of a left
almost split morphism in C. Finally if W is the source of a minimal left almost
split morphism in C°, then diagram (1) of Theorem 8.3 shows that E(W) is
the source of a minimal left almost split morphism in C.

Assume now that (i) holds. Then as before we have the diagram of tri-
angles (), where o, resp. g, is a left almost split morphism in C®, resp. C, and v
is a pure-injective envelope. Consider the Ziegler-closed set U, and observe
that Eis not in U,, since otherwise Z~'(h) = Z7!(7) o v = 0 and this is not the
case. Let M € Zg(C)\{E} and let ¢ : W — M be any morphism. Since M is
pure-injective and v is a pure-injective envelope, there exists iy : £ — M such
that v oy = ¢. Since M is not isomorphic to E, i is not a split monic. Since g
is left almost split, there exists y: A — M such that goy=1. Then
vogoy=23X"!'(y)ovoy=¢. Hence M € U, and then Zg(C)\{E} = U,. It
follows that {E} is open in the Ziegler topology, and therefore E is an iso-
lated point in Zg(C). O
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From Corollary 7.7 and Theorem 8.8, we deduce the following conse-
quence.

COROLLARY 8.9. Let E(W) a finite point in Zg(C), that is, E(W) is the
pure-injective envelope of a non-zero compact object W with local endomor-
phism ring. Then the following are equivalent:

(1) E(W) is isolated in Zg(C).

(i) EW) € Max(C).
(iii) E(W) is the source of a left almost split morphism in C.
(iv) W is the source of a left almost split morphism in C°.

Summarizing what we proved so far in this subsection we have the fol-
lowing characterization of when a given compact object is the source of an
AR-triangle in C° and when C° has left AR-triangles.

THEOREM 8.10. If W is a compact object, then the following are equivalent.

(i) There exists an AR-triangle W — Y — X — W in C.
(i1) The functor H(W) is an essential extension of a simple functor S and S
admits a projective cover.
(iti) The pure-injective envelope of W is the m-dual object Dy, (X) of a compact
object X with local endomorphism ring.

In particular C° has left AR-triangles iff Fin(C) C Max;ng(C).

COROLLARY 8.11. IfC° is Krull-Schmidt, then the following are equivalent.

(i) C® has left AR-triangles.
(i) Fin(C) € Max(C).
(i) Fin(C) C Isol(C).

If (1) holds, then: Fin(C) = Isol(C) C Maxng(C) = Max(C).

Combining Theorem 8.6 and Corollary 8.11 we have the following result
which gives a characterization of the existence of AR-triangles in C° in terms
of properties of m-dual objects of compact objects and the finite/maximal
spectrum.

THEOREM 8.12. The following conditions are equivalent.
(i) C® has AR-triangles.
(i1) Fin(C) = Maxjn4(C).
(iii) The Auslander—Reiten operator t* :Ind(C°) — Maxng(C) given by
X 14 (X) = 27Dy (X) induces a bijection t* : Ind(C°) — Fin(C).
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If (i) holds, then we have equalities: Fin(C) = Maxnq(C) = Isol(C). If C° is a
Krull-Schmidt ~ category, then C° has AR-triangles if and only if
Fin(C) = Max(C).

Remark 8.13. Let Ho(Sp) be the stable homotopy of spectra. Since
Ho(Sp) is compactly self-dual [61, Theorem 1.19], it follows that the full

subcategory Ho(Sp)b of finite spectra has right AR-triangles iff Ho(Sp)b has
left AR-triangles. It seems to be an interesting problem to characterize the
finite (p-local) spectra with local endomorphism ring which occur as a
source or target of an AR-triangle in Ho(Sp)b. Note that the finite p-local
spectra form a Krull-Schmidt category. This problem is also related to the
validity of Freyd’s generating hypothesis (FGH) in stable homotopy theory:
if (FGH) holds, then Max(Ho(Sp)) € Fin(Ho(Sp)), see [52].

9. Compact Pure-Injective Objects, Derived categories and Gorenstein
Algebras

Throughout we fix a compactly generated triangulated category C. In this
section we study when a compact object in C is pure-injective. This is related to
the question of when an AR-triangle in the subcategory of compact objects
remains an AR-triangle in C. We present a variety of examples satisfying this
condition concentrating on derived categories where existence of AR-triangles
for perfect complexes, resp. bounded complexes of finitely generated modules,
is related to Gorensteinness, resp. non-singularity. In this way we give simple
proofs of generalizations of well-known results of Happel [37, 38], see also the
recent work of Krause [57]. Finally we give methods for constructing new
Gorenstein algebras from old ones.

9.1. WHEN COMPACT OBJECTS ARE PURE-INJECTIVE

From the results of the previous section it follows that AR-triangles in C°
behave nicely when compact objects are pure-injective. This is related to the
question of when AR-triangles in C® remain such in C. We begin our analysis
of when compact are pure-injective objects with the following preliminary
results.

LEMMA 9.1. Let (T): W — Z — X — X(W) be an AR-triangle in C°. Then
the following are equivalent:

(1) (T) is an AR-triangle in C.
(i1) W is pure-injective.
(iii) The (pure mono-)morphism W — X'y (X) is invertible.
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Proof. Since X is compact, the implication (i) = (ii) follows from Lemma
6.4. If (ii) holds and (7) is an AR-triangle in CP, from the proof of Theorem
8.3 it follows that the canonically constructed morphism u : W — 27D, (X)
is a pure-injective envelope. Then p is invertible, since W is pure-injective.
Finally if (iii) holds, then since an AR-triangle in C is uniquely determined up
to isomorphism by its end terms, it follows that the AR-triangle (7)) in C° is
isomorphic to 7', (X) — Z — X — D,,(X) which is an AR-triangle in C.

]

COROLLARY 9.2. Consider the following statements:

(1) Any AR-triangle in C® is an AR-triangle in C.
(i1) Any compact object in C with local endomorphism ring is pure-injective.

Then (ii) = (). If C° has left AR-triangles, then (i) and (i) are equivalent.
In particular if C° is a Krull-Schmidt category with left AR-triangles, then
any compact object is pure-injective iff any AR-triangle in C° is an AR-triangle

in C.

Proof. Assume that (i) holds and let (7): W= Z Lx2 2(W) be an
AR-triangle in C°. Since W is compact with local endomorphism ring, by
hypothesis W is pure-injective, hence by Lemma 9.1 we infer that (7) is an
AR-triangle in C. Assume now that C® has left AR-triangles and let W be a
compact object with local endomorphism ring. Let (7) be as above an AR-
triangle in C°. By hypothesis (T) is an AR-triangle in C. Then by Lemma
6.4 it follows that W is pure-injective. O

LEMMA 9.3. Let T be a full triangulated subcategory of C which contains the
compact objects and consists of pure-injective objects. If (T) : ™! W Zﬂ
XL Wisa triangle in C with W € T, then the following are equivalent:
(1) (7) is an AR-triangle in C.
(i) (7T) is an AR-triangle in T .
If (i) holds, then X is compact and W = Dy, (X).

Proof. (1) = (ii) Since W is pure-injective, by Lemma 6.4 it follows that
X is compact. Therefore (7)) lies in 7 and then it is an AR-triangle in
7. Conversely assume that (7) is an AR-triangle in 7. If X is not compact,

then the morphism y is pure. Since W is pure-injective it follows that y =0
and this is impossible. Hence X is compact. Let (77): X7 "Dy, (X) —

A—xD Dy (X) be the induced AR-triangle in C. Then we have a morphism
of triangles
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Zr/ I }T | T/
> 1Dy (X) A X " Dux)

We claim that x is a pure monomorphism. Indeed let ¢ : T — W be a mor-
phism in C where 7 is compact such that ¢ o k = 0. If ¢ is not zero, then the
cofiber y : W — S of ¢ factors through X(«), since S lies in 7. In particular
yoy =0. Hence y = X(a) ot where 7:X(Y) — S. Since ¢ ox =0, there
exists ¢ : Dy, (X) — Ssuch that yoé =x. Then0 =yoyoé =yox =hand
this is impossible. We infer that « is a pure monomorphism and therefore an
isomorphism since W is indecomposable pure-injective. This implies that the
triangles (7) and (7”) are isomorphic and consequently (7') is an AR-triangle
in C. O

COROLLARY 9.4. Let T be a full triangulated Krull-Schmidt subcategory
of C which contains the compact objects and consists of pure—injective objects. If
T has right AR-triangles, then T = C°. The converse holds provided that the
dual object of any compact object lies in T .

Proof. By Lemma 9.3 it follows that any indecomposable object in 7 is
compact and therefore the assertion follows from the fact 7 is Krull-
Schmidt. ]

The above results suggest to look for conditions ensuring that a given
(compact) object is pure-injective. In this direction we have the following
result which will be useful later in connection with the finite type property.

PROPOSITION 9.5. If E is an object in C, then the following are equivalent.

(1) E is pure-injective.
(i) (x) <li_m(l)C(Y,-,E) = 0, for any filtered system {Y;|i € I} in C°.

Proof. Since E is pure-injective in C iff H(E) is injective in Mod-C®, it
suffices to show that H(E) is injective iff the vanishing condition (x) holds.
Since H(E) is flat = FP-injective functor, and since in a locally coherent
category an object is injective iff it is FP-injective and pure-injective, we have
that H(E) is injective iff H(E) is pure-injective. By a result of Jensen and
Simson, see [43, Corollary 1.3], it follows that H(E) is pure-injective iff for any
flat functor F we have: Ext"(F,H(E)) = 0,¥n>1. Since the full subcategory
of flat functors contains the projectives and is closed under kernels of epi-
morphisms, hence under syzygies, we have that H(E) is pure-injective iff
Ext!(F,H(E)) = 0, for any flat functor F. So let F € Mod-C® be a flat functor
and write F = h_m) H(Y;) as a filtered colimit of finitely generated projective
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functors, i.e. {Y;|i € I} is a filtered system of compact objects. Then we have
the following Roos spectral sequence E5? = (Hﬂ(f’)Ext‘f(H( Y:),H(E)) =

Ext"(F,H(E)) which of course collapses giving isomorphisms, Vn > 0:
hﬁ(”)C(Yi,E) =~ Ext"(F,H(E)). It follows that H(E) is pure-injective iff
limWe(y;, E) = 0. O
—

We recall from [59] that an object E in C is called endofinite provided that
the right End¢(E)-module C(X, E) has finite length for any compact object X

in C. Since (h_m(l) vanishes for filtered systems of finite length modules,
Proposition 9.5 admits the following well known consequence.

COROLLARY 9.6.[50]. Let E be an endofinite object in C. Then E is pure-
injective.

COROLLARY 9.7. Assume that C is R-linear over a commutative Noetherian
ring R. Let T be a full subcategory of C containing C°. Then T consists of pure-
injective objects provided that one of the following conditions holds:

(1) R is a finite product of complete local rings and for all objects X, Y in T, the
R-module C(X,Y) is finitely generated.
(il) For all objects X, Y in T, the R-module C(X,Y) is of finite length.

Moreover in case (ii), any object of T is endofinite.

Proof. By results of Gruson and Jensen [34] we have that in both cases
hﬁ“”C(Y,-,X) =0,Vn>1, for any filtered system {Y;|i€ I} of compact
objects and any object X in 7. Then the first assertion follows from Prop-
osition 9.5. Now if (ii) holds, it follows that for any compact object X and
any object E in 7, the R-module C(X, E) has finite length. Since End¢(E) is a
Noetherian R-algebra, this implies that C(X, E) has finite length as an
End¢(E)-module. Hence E is endofinite. O

The above result suggests naturally the following definition. First recall from
Section 4 that a skeletally small R-linear triangulated category 7 over a
commutative ring R is called R-finite if one of the following conditions hold:

(I) Ris Noetherian and the R-module 7 (A4, B) is of finite length, VA, B € 7.

(IT) Ris Artinian and the R-module 7 (4, B) is finitely generated, VA, B € 7.

(IIT) R is Noetherian complete and local and the R-module 7 (4, B) is finitely
generated, VA, B € 7.

DEFINITION 9.8. Let C be a compactly generated triangulated R-linear
category over a commutative ring R. We say that C is compactly R-finite if the
full subcategory C® of compact objects is R-finite.
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COROLLARY 9.9. Let C be a compactly generated compactly R-finite
triangulated category over a commutative ring R. Then we have the following.

(i) C° is a Krull-Schmidt category, any compact object is endofinite (hence
pure-injective), and any AR-triangle in C° is an AR-triangle in C.

(i) If T is a skeletally small full triangulated subcategory of C which is R-finite
and contains the compact objects, then the conclusions of (1) hold for T . In
addition T = C° provided that T has right AR-triangles.

Remark 9.10. Let T be as in Corollary 9.9. For instance we can choose 7
to be the thick subcategory of C generated by the compact objects and the
maximal points of C. Following Orlov [67] we define the triangulated category
of singularities of T to be the Verdier quotient 7'/ C® and then 7 is called non-
singular if T/Cb = 0. Corollary 9.9 shows that 7 is non-singular if 7 has
right AR-triangles. The converse holds if 7" contains all maximal points. This
happens for instance for the bounded derived category D°(cohX) of coherent
sheaves over a Noetherian scheme X which is of finite type over a field. Then
the above results show that X is non-singular iff D°(cohX) has AR-triangles.

EXAMPLE 9.11. Let A be a Noetherian R-algebra over a commutative
Noetherian ring and assume that A is Artinian or R is complete and local.
By Subsection 4.2, the unbounded derived category D(Mod-A) is compactly
R-finite. Moreover it is not difficult to see that the bounded derived category
D®(mod-A) is Krull-Schmidt and for any two complexes X and Y in
DP(mod-A), the R-module D°(mod-A)[X, Y] is finitely generated. In partic-
ular DP(mod-A) consists of pure-injective objects in D(Mod-A). If R is
Artinian, then any object of D®(mod-A) is endofinite.

Since D®(mod-A) contains the compact objects and consists of pure-in-
jectives, we define the triangulated category of singularities Dsjng(Mod-A) of A
to be the Verdier quotient D°(mod-A)/H?(P,). Note that Dg,e(Mod-A)) is
triangle equivalent to the Spanier-Whitehead category of the stable category
mod-A modulo projectives, see [46] or [17, Corollary 3.9]. In Theorem 9.16
we shall show that A is non-singular, i.e. Dgjing(Mod-A) = 0, iff A is Artinian
of finite global dimension.

EXAMPLE 9.12. Let R be a finite dimensional differential graded algebra
(DGA) over a field k such that R = 0 for i < 0, R® = k and R! = 0. Then, by
a result of Jorgensen [44, Lemma 3.6], the full subcategory Df(R) of the
unbounded derived category D(R) consisting of complexes with finite
dimensional cohomology, has finite-dimensional Hom-spaces. It follows that
D(R) is compactly k-finite and any complex in Df(R) is endofinite. For in-
stance one can take R to be the singular cochain DGA C*(X; k) of a simply
connected topological space X over k with dim; H*(X; k) < co. We refer to
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[44] for an analysis of Auslander—Reiten theory in this context. In particular
in [44, Theorem 6.3] it is proved that D(C*(X;k))° has AR-triangles iff X
admits Poincaré duality over k, hence, iff D(C*(X;k))® admits a Serre
functor. It follows that in the Ziegler spectrum of D(C*(X;k)), the finite
points (= indecomposable objects in the thick subcategory of D(C*(X;k))
generated by C*(X;k)) coincide with the maximal points, and any AR-tri-
angle in D(C*(X; k))° remains an AR-triangle in D(C*(X;k)).

9.2. AUSLANDER-REITEN TRIANGLES AND GORENSTEIN RINGS

In this subsection we study existence of AR-triangles in the unbounded derived
category D(Mod-A), where A is a Noetherian R-algebra over a commutative
Noetherian ring R. We assume throughout that R is Artinian or complete and
local. If 7is the minimal injective cogenerator of Mod-R, then, as in Section 4,
let D be any one of the duality functors Homg(—, 7) : (Mod-R)°? — (Mod-R),
or RHomg(—,I): D(Mod-R)°®» — D(Mod-R), or RHomg(—,I) =
R Homy(—,D(A)) : D(Mod-A)°® — D(Mod-A°P).

We begin with the following preliminary result whose proof is identical with
the proof of Theorems 9.15 and 9.16 below and therefore we omit it.

PROPOSITION 9.13. Let R be a commutative complete local Noetherian
ring.

(i) H°(Pgr) has AR-triangles iff idR < co and the Krull dimension of R is zero,
equivalently R is an Artinian Gorenstein ring.
(ii) D*(mod-R) has AR-triangles iff R is regular Artinian.

We shall now see that the conclusions of Proposition 9.13 continue to hold
for Noetherian R-algebras. We begin with the following result. Notice that
the equivalence (i) < (ii) below extends slightly a result of Happel [38,
Theorem 3.4].

PROPOSITION 9.14. The following are equivalent:

(1) A is Artinian and idpA < oo.
(ii) HP(Pn), resp. HP(Paw), has right, resp. left, AR-triangles.
(iii) HO(Py), resp. H*(Pper), admits a right, resp. left, Serre functor.
(iv) Max(D(Mod-A)) C Fin(D(Mod-A)).
(v) Fin(D(Mod-A°P)) C Max(D(Mod-A®P)).

Proof. Since H®°(P,) is R-finite, our previous results and the duality
HP(Pa) — HP(Pax) show that the last four statements are equivalent. If (i)
holds, then D(A), is compact in D(Mod-A), hence RHoma(D(A), —) pre-

serves coproducts. By [64, Theorem 5.1] this implies that — ®@% D(A) pre-
serves compact objects. Since Dy, (X) = X ®@% D(A) for any perfect complex
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X, it follows that H°(P,) has right AR-triangles. Conversely if (i) holds,
then let S be the right Serre functor of H®(P,). Then the isomorphisms
Homy (—, X ®% D(A)) «— DHoma (X, —) — Homy (—, S(X)), for any perfect
complex X, show that D(A) is quasi-isomorphic to S(A) and S =
— ®% D(A)lyo(p,)- Since S(A) lies in H®(P,) it follows that D(A) lies in mod-
A and pdD(A), < oo. In other words, A is Artinian and idpA < oo. 0

The following consequence generalizes results of Happel [38], see also [57].

THEOREM 9.15. Let A be an Noetherian R-algebra over a commutative
Noetherian ring R, where R is complete local or Artinian. Then the following
are equivalent.

(1) A is an Artinian Gorenstein ring.
(ii) HP(Pa) has AR-triangles, resp. HP(Pa) is dualizing, resp. HP(Pa) admits
a Serre functor.
(iii) — ®% D(A) is a Serre functor in H°(Py).
(iv) — ®% D(A) : D(Mod-A) — D(Mod-A) is a triangle equivalence.
(v) Max(D(Mod-A)) = Fin(D(Mod-A)).

Proof. Follows directly from Proposition 9.14 and the fact that a
coproduct preserving exact functor F between compactly generated triangu-
lated categories is an equivalence iff F restricts to an equivalence between the
full subcategories of compact objects, see for instance [47, Lemma 4.2]. [

Let D? ., (Mod-A) = D°(mod-A), resp. D2, (Mod-A), be the full subcat-

egory of D°(Mod-A) consisting of all complexes with Noetherian, resp. Ar-
tinian, cohomology. The equivalence (i) < (ii) below generalizes slightly
another basic result of Happel [37, Corollary 1.4] proved by different
methods.

THEOREM 9.16. Let A be a Noetherian R-algebra over a commutative
Noetherian complete local ring. Then the following are equivalent.

(1) A is Artinian and gl.dimA < oo.
(i) DP..;,(Mod-A) has right AR-triangles.
(iii) Dgrt(Mod-A) has left AR-triangles.
(iv) Dboeth(Mod-A), resp. Dbrt(Mod-A), is a dualizing R-variety.
(v) Dgoeth(Mod-A), resp. D, ,(Mod-A), admits a Serre functor.
(vi) Ind(D°(mod-A)) = Max(D(Mod-A)).
(vil) A is Artinian and non-singular, i.e. Dsjns(Mod-A) = 0.
If (i) holds, then D°__, (Mod-A) = D? . (Mod-A) = D°(mod-A) = H®(Py) has

noet

AR-triangles and admits a Serre functor which is given by — @% D(A).
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Proof. (1) = (ii), (iii) If (i) holds, then mod-A = noeth(A) = art(A) and A
is Gorenstein. Then H°(P,) = D°..;,(Mod-A) = D? . (Mod-A) has AR-tri-
angles by Theorem 9.15. If (ii) holds, then since D°__., (Mod-A) is R-finite and
contains the compact objects, by Corollary 9.4 and Proposition 9.14, we have
that A is Artinian and H®(P,) = D?,_,,(Mod-A). Hence gl.dimA < cc. The
remaining assertions follow from our previous results and the fact that the
functor D : D(Mod-A) — D(Mod-A°) induces a duality DP (Mod-

A) — DP__. (Mod-A°P) and for any indecomposable perfect complex X we

noeth

have D, (X) = X ®% D(A) € D2 (Mod-A). O

EXAMPLE 9.17. Let R be a DGA as in Example 9.12. Then D'(R) has
(right) AR-triangles iff R is non-singular, i.e. D'(R) = D(R)b, that is, any DG
R-module M with dimH*(M) < oo is finitely built from R. This follows from
Corollary 9.4 since the dual object of any compact object lies in the image of

— @% D(R).

EXAMPLE 9.18. Let 0 - A — B — C — 0 be an exact sequence of trian-
gulated categories. Then it is not true that B has AR-triangles if A and C do
so. Indeed let A be a Gorenstein R-algebra of infinite global dimension. Then
we have a short exact sequence of R-finite triangulated categories
0 — H°(Pa) — DP(mod-A) — CM(A) — 0, where CM(A) is the stable cat-
egory of Cohen-Macaulay modules which coincides with Dgjng(Mod-A), see
[17, Corollary 6.14]. Clearly both H"(P,) and CM(A) have AR-triangles, but
this is not true for D°(mod-A) since gl.dimA = ooc.

9.3. CONSTRUCTIONS OF GORENSTEIN ALGEBRAS

Recall from [9] that an Artin algebra A is called Cohen-Macaulay provided that
there exists a finitely generated A-bimodule pawp, called dualizing bimodule,
such that the functor — ® w induces an equivalence between the subcategory
of A-modules with finite projective dimension and the subcategory of
A-modules with finite injective dimension. It is easy to see that Gorenstein
Artin algebras, in particular self-injective Artin algebras and Artin algebras of
finite global dimension, are Cohen-Macaulay, see [9] for more examples. For
the notion of trivial extension of rings used below we refer to [16].

COROLLARY 9.19. Let A be a Cohen-Macaulay Artin algebra with dual-
izing bimodule w and let T := Ax w be the trivial extension algebra of A by w.
Then the category H°(Paxe) has AR-triangles. Moreover if X is an indecom-
posable perfect complex in D(Mod-A)), then we have the following isomor-
phisms in D(Mod-I'):

(X &% T) S Dy (X @% T)[—1]

L

RHOH’IA(F, ]D)m (X)) [_ 1]
RHomy (T, 7£ (X)).

L
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Proof. By [16, Corollary 4.14], the trivial extension of a Cohen-Macaulay
algebra by a dualizing bimodule is Gorenstein. So the assertions follow from
Theorem 9.15 and the fact that, by Corollary 4.5, 77 = — ®% D(A)[-1] and
similarly for T ]

If R is a commutative Noetherian Cohen—Macaulay ring with dualizing
module w, then working as in Corollary 9.19 and using Proposition 9.13 we
have that H®(Pry.,) has AR-triangles iff R is Artinian.

Now let C be a compactly generated triangulated category which admits a
compact generator 7 with endomorphism ring A7. If J is an injective
cogenerator of Mod-Ar, then the J-dual object D/(T) is a pure-injective
cogenerator of C. A compact object P in C is called a Wakamatsu compact
object if the pure-injective cogenerator I/(T) of C lies in the localizing sub-
category of C generated by P. Finally we say that a DG-algebra I' is
Gorenstein if D(I')° has AR-triangles.

THEOREM 9.20. Let A be a Noetherian R-algebra and assume that either R
is Artinian or R is Noetherian, complete and local. Then the following are
equivalent.

(1) A is Artinian Gorenstein.
(i) For any Wakamatsu perfect complex P, the DG-algebra T of endomor-
phisms of P is Gorenstein with Artinian cohomology.
(iii) For any perfect complex P, the DG-algebra U of endomorphisms of P is
Gorenstein with Artinian cohomology, provided that P is compact when
considered as an object in D(I).

Proof. Clearly (ii), (iii) = (i) since the compact generator A is Wakamatsu
and satisfies the condition in (iii). Assume now that A is Artinian Gorenstein.
Then, by Theorem 9.15, the subcategory H®(Ps) has AR-triangles and the
pure-injective cogenerator D(A) of D(Mod-A) is a compact generator. We
now fix a perfect complex P with DG endomorphism algebra I" and let X be
the localizing subcategory of D(Mod-A) generated by P. By [22, Theorem
IV.2.1], X is the torsion class of a torsion triple (X, ), Z) in D(Mod-A) and
X" coincides with the thick subcategory of D(Mod-A) generated by P.
Moreover the functor — ®f Pa : D(I') — D(Mod-A) is fully faithful and
induces a triangle equivalence — ®i: Pp : D(I') — X which restricts to a
triangle equivalence — ®% Py : D(T')° — X b If the complex P is Wakama-
tsu, then D(A) lies in X. Since X' is localizing and contains the compact
generator D(A), we infer that X = D(Mod-A). Therefore D(I')® = X® has
AR-triangles or equivalently it is dualizing. This implies that the cohomology
of T' is Artinian. If the complex P is perfect in D(I"), then by a result of
Keller, see [22, Proposition 1V.3.5], the functor — ®% P, preserves products.
As in [22, Theorem 3.4], this implies that X is closed under products in
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D(Mod-A). By Proposition 5.14 there exists a torsion quadruple (W, X, ), Z)
in D(Mod-A) which restricts to a torsion triple (WW®, x*, )®) in H°(P,). Then
Lemma 5.9 implies that X® has AR-triangles and as above we infer that T is
Gorenstein with Artinian cohomology. ]

Let A be an Artin algebra and T a finitely generated A-module. We call T

a  Wakamatsu  module, if there exists an exact sequence

-+— Ty — Ty — D(A) - 0 in mod-A, where each 7; lies in add(7T).

Examples of Wakamatsu modules include the so-called Wakamatsu

(co)tilting modules, see [22], [78]. Recall that the Yoneda Ext-algebra of a
finitely generated A-module 7 is defined by E(T) = @,>0Ext) (7T, T).

COROLLARY 9.21. The algebra A is Gorenstein iff for any Wakamatsu A-
module T of finite projective dimension, the Yoneda Ext-algebra E(T) of T is
Gorenstein.

Proof. 1t follows easily that 7 is a Wakamatsu perfect complex, see the
proof of Theorem I1V.3.4 of [22]. Then the assertion follows from Theorem
9.20. ]

COROLLARY 9.22. Let A be a Gorenstein Artin algebra and T a finitely
generated Ext-orthogonal A-module with endomorphism ring T such that
pdTa < oo. If T is Wakamatsu or pdrT < oo, then U is Gorenstein. In par-
ticular if gl.dimA < oo, then Enda(T) is Gorenstein for any Wakamatsu Ext-
orthogonal A-module T.

We close this section with a construction of Gorenstein (DG-)algebras and
triangulated categories with AR-triangles starting from finitely generated
Cohen-Macaulay modules over an Artin algebra A. Recall from [9] that a
finitely generated A-module X is called Cohen-Macaulay if Ext}(X,A) =0,

Vn>1, and there exists an exact sequence 0 — X — P’ — ... —
prLloprt -, where the P" are projective and Ext}(Ker(f"),A) =0,
vVt > 1,Vn=0. Let U be a subcategory of mod-A. We denote by H_rn}L{ the full

subcategory of Mod-A formed by the filtered colimits of modules from /. We
recall from [20] that a subcategory U of mod-A is called projectively thick if
(o) U is closed under extensions and kernels of epimorphisms, (ff) U contains
the projectives, and (y) U is closed under cokernels of maps g : X — Y such
that Homy (g, A) is surjective. Notice that, by [20], if U is a projectively thick
subcategory of mod-A consisting of Cohen-Macaulay modules, then U, resp.
1i_m>Z/l, is an exact Frobenius subcategory of mod-A, resp. Mod-A. Therefore

by [36], the stable categories U and li_m)u modulo projectives are triangu-
lated.
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THEOREM 9.23. Let A be an Artin algebra and let X be a projectively thick
subcategory of mod-A consisting of Cohen-Macaulay modules. If X is
contravariantly or covariantly finite in mod-A, then there exists a Gorenstein

DG-algebra T and a triangle equivalence 1i_m>X i>D(l" ) which induces a

triangle equivalence lim X ZbpIm)®.

Proof. It is proved in [20] that the stable category 11_m> X is a compactly

generated triangulated category and (hﬂ X)b = X. Also, by [20], contra-

variant finiteness of X is equivalent to covariant finiteness. Now it is not
difficult to see that the right X-approximations X of the simple A-modules
{S(1),...,8(n)} form a generating set of compact objects for lim X and

therefore by Theorem 1V.2.2 of [22], h_m> X is triangle equivalent to the un-

bounded derived category D(I'), where I' is the DG-algebra of endo-
morphims of the compact generator @&}, Xg; of lim X. Therefore X is

triangle equivalent to D(F)b. Since X is functorially finite in mod-A, it

follows from [11, Theorem 2.4] that the exact category X has relative
AR-sequences. Clearly this implies that X has AR-triangles. Hence the
DGe-algebra I' is Gorenstein. O

Note that if A is Gorenstein, or more generally virtually Gorenstein in the
sense of [20], then we can choose X to be the full subcategory of Cohen-
Macaulay modules.

10. Categories Of Finite Type, Endofinite Objects and Auslander—Reiten
Triangles

In this section we study compactly generated triangulated categories enjoying
finiteness conditions which are of interest in representation theory, for in-
stance pure-semisimplicity or the finite type property, in connection with
Auslander—Reiten theory and the structure of the Ziegler spectrum.
Throughout C denotes a compactly generated triangulated category.

10.1. CATEGORIES OF FINITE TYPE AND AUSLANDER-REITEN TRIANGLES

Recall from [18] that C is called pure-semisimple if any pure triangle in C
splits. Equivalently any object of C is pure-projective, resp. pure-injective. It
is proved in [18, Section 9] that C is pure-semisimple iff the functor H: C —
Mod-C® induces an equivalence C — Flat(C’) iff the functor category Mod-C®
is locally Noetherian, i.e. Mod-C® admits a set of Noetherian generators.
Then C is of finite type if the category Mod-C® is locally finite, i.e. admits a set
of generators of finite length.
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LEMMA 10.1. IfC is pure-semisimple, then Zg(C) = Ind(C®) and the category
C® is Krull-Schmidt with right AR-triangles which are AR-triangles in C.

Proof. By Theorem 9.3 of [18], C° is Krull-Schmidt and any indecom-
posable object is compact. This implies that Zg(C) = Ind(C®), hence C® has
right AR-triangles. ]

In general if C is pure-semisimple, then C is not necessarily of finite type,
see [18, Example 12.19] or Example 10.5 below. The following result, which
generalizes a result of Zimmermann-Huisgen [82, Theorem A’] from module
theory, shows that the missing item is the existence of left AR-triangles in C°:

THEOREM 10.2. The following are equivalent:

(1) C is of finite type.

(i1) C is pure-semisimple and C® has left AR-triangles.
(iii) C is pure-semisimple and any finite point is maximal.
(iv) C is pure-semisimple and any finite point is isolated.

Proof. (i) = (ii) By Lemma 10.1, C is pure-semisimple and C° is Krull-
Schmidt. Let W be an indecomposable compact object. Since C is of finite
type, the functor category Mod-C is locally finite and this implies that the
finitely generated projective functor H(Y) has a simple subfunctor S, see [2,
Theorem 2.10]. Then S admits a projective cover and by Theorem 8.10, W is
the source of an AR-triangle in C°.

(ii) = (i) Since C is pure-semisimple, Mod-C® is locally Noetherian and, by
[2, Theorem 2.10], it suffices to show that any non-zero functor M € Mod-C®
has a simple subfunctor. Since M # 0, there exists a non-zero morphism
a:H(X) — M for some compact 7, and we have an exact sequence
0 — G — H(X) — F— 0, where F=1Im(«). Since Mod-C® is locally No-
etherian, it follows that Ker(«) is finitely generated and therefore F is finitely
presented. Since simple subfunctors of F are simple subfunctors of M, it
suffices to show that any finitely presented functor F contains a simple
subfunctor. Let y : F— H(E) be the injective envelope of F in Mod-C®. Then
FE is pure-injective and therefore E is compact since C is pure-semisimple. Let
Z be an indecomposable direct summand of E which admits a non-zero
morphism f: F — H(Z). Then Z is compact and therefore there exists an
AR-triangle Z — W — X — %(Z) in C°. Then H(Z) is the injective envelope
of a (finitely presented) simple functor S by Theorem 8.10. Hence H(E)
contains a simple subfunctor S which clearly is a simple subfunctor of F.

The equivalences (ii) < (iii) < (iv) follow from Corollary 8.11. O

COROLLARY 10.3. If C is of finite type, then C° has AR-triangles.
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EXAMPLE 10.4. Let A be ring which is derived equivalent to a represen-
tation finite right hereditary ring, e.g. an Artin algebra which is derived
equivalent to the path algebra of Dynkin quiver. Then by [18, Corollary
12.16] the unbounded derived category D(Mod-A) is of finite type, so the
category of perfect complexes over A admits AR-triangles. The artinian case
also follows from the results of Happel [36].

The following example shows that there exists a compactly generated
(pure-semisimple) triangulated category C such that C° is a Krull-Schmidt
category with right AR-triangles but with no left AR-triangles.

EXAMPLE 10.5. Consider X,, >0, as a totally ordered set and let k be a
countable field. Let [X,, Mod-k] be the category of k-linear representations of
N, and let kN, be the k-linear category yielding an equivalence:
[X,, Mod-k] = Mod-kR%P. If C := D(Mod-kR) is the unbounded derived
category of Mod-kR;P, then C is a pure-semisimple compactly generated
triangulated category which is not locally finite by Example 12.19 of [18].
Hence, by Theorem 10.2, C® has right AR-triangles, but no left AR-triangles.
It follows that there exist compactly generated triangulated categories C with
the property that Max(C) C Fin(C) but Fin(C) Z Max(C).

10.2. ENDOFINITE OBJECTS

Recall from Corollary 9.6 that endofinite objects provide an important class
of pure-injective objects of C. In this subsection we study the connections
between endofiniteness and the finite type property. Recall that an object G in
Mod-C®, resp. Flat(C®), is called endofinite if the right End(G)-module (F, G)
has finite length for any finitely presented object Fin Mod-C®, resp. Flat(Cb),
see [27]. We begin our discussion of endofinite objects with the following.

LEMMA 10.6. For an object E in C, the following are equivalent.

(1) E is endofinite in C.
(i) H(E) is endofinite in Mod-C®.
(iii) H(E) is endofinite in Flat(CP).

The functor C M Mod-c gives equivalences between the subcategories of en-
dofinite objects of C, endofinite objects of Flat(Cb) and endofinite flat objects of
Mod-C’.

Proof. Assume that E is endofinite. Then we have a ring isomorphism
End¢(E) = End(H(E)) since E is pure-injective. Let F be a finitely presented
functor over C° and let H(Y) — H(X) — F — 0 be a finite presentation of F.
Then we have the exact sequence 0 — [F,H(E)] — C(X, E) — C(Y, E) of right
End¢(E)-modules. Endofiniteness of E implies that the right Endc¢(E)-
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modules C(X, E) and C(Y, E) have finite length. Then obviously the right
Endc(E)-module [F, H(E)] has finite length, so H(E) is endofinite in Mod-C®.
Conversely if H(E) is endofinite in Mod-C®, then H(E) is pure-injective. Since
H(E) is also flat, it follows that H(E) is injective. Thus E is pure-injective in C
and in particular the natural ring map End¢(E) — End(H(E)) is invertible.
Since for any compact object X in C, the functor H(X) is finitely presented, it

follows that the right End¢(E)-module C(X, E)i[H(X),H(E)] has finite
length. So FE is endofinite in C. The proof of the equivalence (i) < (iii) is
similar and is left to the reader. The last assertion follows from the fact that
H induces an equivalence between the full subcategory of pure-injective
objects of C and the flat and pure-injective objects of Mod-CP. O

As a direct consequence of Lemma 10.6, the results of the previous sec-
tions and the results of Prest [71, Proposition 2.11] and Krause in [53,
Proposition 6.17] we have the following corollary.

COROLLARY 10.7. Let E be an indecomposable endofinite object in C. Then
{E} is a closed point in Zg(C). In particular if any compact object is endofinite,
then C° has left AR-triangles iff any indecomposable compact object is clopen in
Zg(C).

EXAMPLE 10.8. Let C be the stable homotopy category of p-local spectra,
where p is a prime, see [61, Chapter §8]. It is known that the Morava K-
theories K(n), n > 0 are indecomposable endofinite objects in C, see [55].
Hence each K(n) is a closed point in the Ziegler spectrum of C.

There is a handy characterization of endofiniteness in terms of certain
quotient categories of Mod-C°. Let E be an object in C and consider the
functor H(E) in Mod-C°. Let S be the full subcategory of mod-C® consisting
of all functors F such that [F,H(E)] =0. Let L := li_m>SE be the full sub-

category of Mod-C® consisting of all functors G which can be written as a

filtered colimit of objects from Sg. Since H(E) is flat it is easy to see that Sg is
a Serre subcategory of mod-C® and therefore £ is a localizing subcategory of
Mod-C°. The following criterion follows from the results of Herzog [41,
Proposition 7.6] or Krause [50, Theorem 1.2].

LEMMA 10.9. The object E is endofinite in C iﬁ’Mod—Cb/ﬁg is locally finite.

We are interested in having criteria ensuring that the maximal points of
the Ziegler spectrum are endofinite. In this connection we have the following.

LEMMA 10.10. Let X be a compact object with local endomorphism ring.
Then the m-dual object Dy, (X) is endofinite iff for any compact object Y in C,
the left Ay-module C°(X, Y) has finite length. In particular Ay is left Artinian.
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Proof. We have isomorphisms C(Y,D,, (X)) = Homa,[C(X, Y),],] and
Endp, (1) = End¢ (D (X)). Since 1y, is an injective cogenerator in Mod-AY,
it follows that D,,(X) is endofinite iff the left Ay-module C(X, Y) has finite
length. ]

COROLLARY 10.11. Let C be a compactly generated R-linear triangulated
category over a commutative Artin ring R. If C° is compactly R-finite, then for
any indecomposable compact object X, the m-dual object Dy, (X) is endofinite
and {Dw(X)} is a closed subset of the Ziegler spectrum Zg(C). Moreover we
have the following.

() X is the target of an AR-triangle in C° iff {Dw(X)} is clopen in Zg(C).
(i) C has right AR-triangles iff {t+(X)} is clopen in Zg(C), ¥X € Ind(C).
(iii) If C° has AR-triangles, then any compact object is endofinite and the set

{X} is clopen in Zg(C) for any X € Ind(CP).

Proof. Since C(X,Y) is finitely generated as an R-module and Ay is an
Artin R-algebra, it follows that C(X, Y) has finite length as a left Ay-module.
Then the assertions follow from Lemma 10.10 and Corollary 10.7. Now the
proof of parts (i) and (ii) follow from Theorem 8.12 and the proof of part (iii)
follows from the fact that any compact object is of the form D,,(X). ]

In the sequel we shall need the following result of Auslander [2, Theorem
2.12].

LEMMA 10.12. If C° is Krull-Schmidt and E is in C, then H(E) has finite
length in Mod-C° iff for any indecomposable compact object X, the left Ax-
module C(X, E) has finite length and C(Y, E) = 0 for almost all indecomposable
compact objects Y.

Recall that an associative ring A is representation finite iff any left or right
A-module is endofinite, see [68], [83] or [53]. We have the following analogous
result which gives a connection between the finite type property and endo-
finiteness in compactly generated triangulated categories.

THEOREM 10.13. For a compactly generated triangulated category C the
following statements are equivalent.

(1) C is of finite type.
(i) Any object of C is endofinite.
(iii) Any compact object of C is endofinite and for any compact object X in C we
have |SuppC®(X, —)| < oc.
(iv) Any compact object of C is endofinite and for any compact object X in C we
have |SuppC®(—, X)| < oc.

Proof. (i) = (ii) Since C is of finite type, the category Mod-C® is locally
finite. If E is an object in C, then Mod-C® /L is locally finite as a Gabriel
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quotient of the locally finite category Mod-C’. Hence E is endofinite, by
Lemma 10.9.

(i1) = (1) By Lemma 10.9, for any object C € C, the category Mod-Cb/.Cc
is locally finite. In particular the pure-injective cogenerator
E = [[{Dn(X) | X € Iso(C?), m € Max;(Ay)} of C is endofinite. Since H(E)
is an injective cogenerator in Mod-CP, it follows that £z = 0 and therefore
Mod-C" is locally finite. Hence C is of finite type.

(1) & (i), (iv) If C is of finite type then, by (ii), any compact object is
endofinite. By [18, Proposition 11.23], Mod-{C°}°" is locally finite and
therefore |SuppC®(X, —)| < oo by Lemma 10.12. Conversely if (iii) holds then
for any compact object X, the endomorphism ring End¢(X) is left Artinian.
This implies that C° is Krull-Schmidt. Then by Lemma 10.12 and [18] we
infer that Mod-C? is locally finite, so C is of finite type. The equivalence (i) <
(iv) follows similarly. ]

We have the following consequence which gives in particular a triangu-
lated analogue to a well-known module theoretic result of Auslander, see |3,
Theorem A’].

COROLLARY 10.14. Let C be an R-linear triangulated category over a
commutative Artin ring R. Then C is compactly R-finite gﬁ"Cb is Krull-Schmidt
and any maximal point Dy, (X) of C is endofinite. If this is the case, then the
following are equivalent.

(1) C is of finite type.
(i1) C is pure-semisimple.

Proof. If C is compactly R-finite, then C® is Krull-Schmidt and then
Lemma 10.10 implies that any maximal point D,,(X) of C is endofinite.
Conversely if this happens, by Lemma 10.10 the endomorphism ring Ay of
any compact object X is left Artinian and therefore C is compactly R-finite.
Now let C be pure-semisimple and compactly R-finite. Then any compact
object is endofinite and any maximal point Dy, (X) is compact. Since, by [26,
Proposition 4.3], the class of endofinite objects is closed under products, the
pure-injective cogenerator of C is endofinite. This implies that Mod-C® is
locally finite and consequently C is of finite type. O

11. Compactly Dual Pairs of Triangulated Categories

It is well-known that the dual of a compactly generated triangulated category
is never compactly generated, see [66, Appendix E]. However there are
important examples of pairs of compactly generated triangulated categories
such that the subcategories of compact objects are connected by an exact
duality. In this section we study such pairs in connection with the structure of
their Ziegler spectra and the behavior of Auslander—Reiten triangles.
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Throughout we fix a compactly generated triangulated category C. There
is a close connection between endofinite compact objects in C and the pure
global dimensions attached to C. Recall from [18] that the pure global
dimension p.gl.dimC of C is defined as the supremum of the projective
dimensions of the flat functors {C°}*® — Ab and the dual pure global
dimension p.gl.dimC®® of C is defined to be the supremum of the projective
dimensions of the flat functors C° — Ab. By [18, Proposition 11.23], C is pure-
semisimple iff p.gl.dimC =0, and C is of finite type iff p.gl.dimC®® =
0 = p.gl.dimC. Note that p.gl.dimC is not the pure global dimension of C°P
since the latter is never compactly generated. However the definition of dual
pure global dimension is reasonable because of the following.

Remark 11.1. [18, Section 11.6] Let C and D be compactly generated
triangulated categories and assume that there exists an (exact) duality

{C°}°? =, D° Then p.gl.dimC® = p.gl.dimD. Instances of this situation are
the following.

(1) Let A be an associative ring. Then there is a duality between D(Mod-A)b
and D(Mod-A"p)b which is induced by the duality between the catego-
ries of finitely generated projective left and right modules. We infer that
p.gl.dimD(Mod-A)°? = p.gl.dimD(Mod-A°P).

(i) Let Ho(Sp) be the stable homotopy category of spectra. Then Spanier—
Whitehead duality gives a self duality on the category of finite spectra
which is the full subcategory of compact objects of Ho(Sp). In this case
p.gl.dimHo(S8p)? = p.gl.dimHo(Sp) which is equal to 1 by [18].

(iii) Let A be a QF-ring. Since the stable categories mod-A°? and mod-A are
dual, we infer that p.gl.dim(Mod-A)°® = p.gl.dimMod-A°P.

We have the following result which is a triangulated analogue of a module
theoretic result of Herzog, see [40, Theorem 2.3], proved via model theoretic
methods. First we recall that an object E in C is called Z-pure-injective pro-
vided that any coproduct of copies of E is pure-injective.

THEOREM 11.2. If C has dual pure global dimension zero, then any compact
object of C is endofinite. Moreover C° has left AR-triangles which are AR-
triangles in C and any compact object of C is Z-pure-injective.

Proof. By [18, Proposition 11.23] the hypothesis implies that the category
C® is Krull-Schmidt and the functor category Mod-C® is locally Artinian. Let
X be a compact object. Since Mod-CP is locally Artinian, it follows that the
functor H(X) is Artinian. Viewing H(X) as a finitely presented object in the
locally finitely presented category Flat(Cb), it follows that for any compact
object Y, the space C°(Y, X ) satisfies the descending chain condition for finite
matrix subgroups in the sense of [27]. Hence by [27, Theorem 3.5.1] we have
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that H(X) is Z-pure-injective in Flat(C®). This clearly implies that X is X-
pure-injective in C. Hence any compact object in C is X-pure-injective. By the
Krull-Schmidt property, to show that any compact object is endofinite it
suffices to show that this holds for any indecomposable compact object.
Hence we can assume that X is indecomposable. Then by the above obser-
vations, X is a point in the Ziegler spectrum. Since X is X-pure-injective, as in
[53, Proposition 6.17], it suffices to show that { X} is closed in Zg(C). Let W be
indecomposable in C°. Since Mod-C? is locally Artinian, the functor H(W) is
Artinian and therefore H(X) contains a simple subfunctor S. Then Theorem
8.10 implies that there exists an AR-triangle why -z (W) in CP.
Clearly any morphism W — X factors through ¢ and consequently
{X} =U, is a closed point of Zg(C). We infer that X is endofinite and it
remains to show that any AR-triangle in C° remains an AR-triangle in C.
Since any compact object is pure-injective and C® has left AR-triangles, this
follows from Corollary 9.2. O

Summarizing the above results we have the following direct consequences.

COROLLARY 11.3. Let p.gl.dim C°® = 0 and let E be a point in Zg(C). Then
E is compact iff {E} is clopen iff E is endofinite and a maximal point in Zg(C).

COROLLARY 11.4. If C is compactly generated, then the following are
equivalent.

(1) C is of finite type.
(ii) p.gl.dimC® = 0 and C® has right AR-triangles.
(iii) p.gl.dimC = 0 and C® has left AR-triangles.
(iv) p.gl.dimC®® = 0 and for any indecomposable compact object X in C we
have: |SuppC®(X, —)| < oo or |[SuppC®(—, X)| < cc.

Formalizing Remark 11.1, we say that two compactly generated trian-
gulated categories C and D are compactly dual if there exists an (exact) duality
D: {Cb}°p Z Db This notion gives a triangulated analogue to the well-known
duality mod-(mod-A)}°" = mod-(mod-A°?)°?, where A is a ring, discovered
by Auslander [12] and Gruson-Jensen [34]. Part (iv) of the next result, also

observed by Garkusha-Prest [32], gives a triangulated analogue to a result of
Herzog [41, Theorem 5.5].

THEOREM 11.5. Let (D,C) be a pair of compactly dual compactly generated
triangulated categories and let D : {Cb}°p Z D" be an exact duality.
(i) C® has right (left) AR-triangles iff D° has left (right) AR-triangles.
(i) Maxjh¢(C) C Fin(C) iff Fin(D) C Maxn¢(D) and Fin(C) C Maxjnq(C) iff
Max|nd(D) g FIH(D)
(iii) C is of finite type iff D is of finite type.
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(iv) The frames of open subsets of the Ziegler spectra Zg(C) and Zg(D) are
isomorphic.

(v) If D is pure semisimple, then the duality D induces a bijection
Ind(C®) — Isol(D), X - D, (D(X)).

(vi) If D is pure semisimple, then any compact object in C is endofinite and any
isolated point, in particular any maximal point, in Zg(D) is endofinite.

Proof. Parts (1), (ii) and (iii) follow directly from our previous results and
part (iv) follows as in [41, Theorem 5.5] by using [55]. Assume now that D is
pure-semisimple. Then by Lemma 10.1 the category D°, hence also C°, is
Krull-Schmidt.

(v) Let X be an indecomposable compact object in C. Then D(X) is an
indecomposable compact object in D. Let X 'D,(D(X)) — 4 — D(X) —
D (D(X)) be an AR-triangle in D. Since D is pure semisimple, any compact
object is pure injective and therefore the object D,,,(D(X)) is compact and the
above triangle is an AR-triangle in D°. Then by Corollary 7.8, the object
Dy (D(X)) is isolated. Using the uniqueness of AR-triangles, we infer that the
map X — D, (D(X)) is an injection. If Eis an isolated point in Zg(D), then by
Corollary 7.7 it follows that E is a maximal point, hence of the form D,,(Y)
for some indecomposable compact object Y in D. In turn Y = D(X) where X
is an indecomposable compact object in C. Hence E = D,,(D(X)) and
therefore the map X+ D,,(D(X)) is a bijection.

(vi) The first part is Theorem 11.2. By part (v) it suffices to show that the
object D,,(D(X)) is endofinite, for any indecomposable compact object X in
C. Let Z be a compact object in D. Then we have isomorphisms

o o~

D(27 DnI(D(X))) ;[D(D(X)v Z)? Im] ;[C(D(Z)v X)? Im]
which show that the length of the right End(D),(D(X))-module
D(Z,D,(D(X))) is equal to the length of the right End(Z,)-module
[C(D(Z),X), I,] because End(/,,) = End(ID,(D(X)). Since 7,,, is an injective
cogenerator for the category of End(X)-modules, it follows that the length of
the right End(/,,)-module D(Z,D,,(D(X))) is equal to the length of the right
End(X)-module C(D(Z), X) which is finite, since the object D(Z) is compact
in C and the compact object X is endofinite. O

12. Auslander—Reiten Triangles and Grothendieck Groups

For Artin algebras there is an interesting relationship between AR-sequences
and Grothendieck groups in connection with the representation type which is
due to Auslander and Butler, see [13]. In this section we show that this
relationship holds more generally in a compactly generated triangulated
category.
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Recall that the Grothendieck group K((7') of a skeletally small triangu-
lated category 7 is defined to be the quotient of the free abelian group on the
set {(X)|X € T} of isoclasses of objects of 7 modulo the subgroup generated
by all elements of the form (X) — (Y) + (Z) where X - ¥ - Z — X(X) is a
triangle in 7. Let Ko(7,®) be the Grothendieck group of the monoidal
category (7,®) and let [X] be the isoclass of the object X in K¢(7) or
Ko(7,®). There is a natural surjection Ky(7,®) — K(7') which induces a
short exact sequence of abelian groups

0 — A(T) — Ko(7T,8) — Ko(7) —0
Let art(7) be the set of all elements in Ko(7',®) of the form [X] — [Y] + [Z]
where X — Y — Z — Z(X) is an AR-triangle in 7, and let ART(7") be the
subgroup of K((7', &) generated by art(7). Note that if 7 is Krull-Schmidt,
then Ko (7, @) is free on the set of isoclasses of indecomposable objects of 7.

The following result generalizes the well-known characterization of rep-
resentation-finite Artin algebras in terms of Grothendieck groups, due to
Auslander-Butler, see [13, Theorem VI1.4.3].

THEOREM 12.1 Let C be a compactly generated triangulated category. Then
for the following statements

(1) C is of finite type.

(i) C° is a Krull-Schmidt category with AR-triangles and A(Cb) is generated by
the set art(C®).

we have (1) = (ii). If C is compactly R-finite over a commutative ring R, then

(i) = (i), ART(C®) = A(C") and the set art(C®) is a free basis of A(C®).

Proof. (i) = (ii) Since C is of finite type, it follows that the functor cate-
gory Mod-CP is locally finite and therefore mod-C® is the full subcategory of
finite length objects. By Lemma 10.1 and Corollary 10.3, the category C® is
Krull-Schmidt with AR-triangles. It suffices to show that any element
[X] — [Y] + [Z] in Ko(CP, &) arising from a triangle X > vyLz2% Y(X) in C°
is a finite sum of elements [X;] —[Y;]+ [Z;] arising from AR-triangles
Xi—=Y —-Z —2(X;) in C°. Consider the exact sequence 0 — F —

H(X) ) H(Y) " H(Z) — F* — 0 in mod-C°. Then F = CokerC®(—,Z7(f))
and F* = CokerC’(—,f), in particular F = F*X. Then the above exact se-

quence shows that in Ko(mod-C®) we have the relation:
[F] + [F7] = [H(X)] = [H(Y)] + [H(Z)] (1)

Since mod-C® is a length category, the functors F and F* have finite length.
Hence in the Grothendieck group Ko(mod-C°) we have [F] = Y7 4[S]]
where S; is a simple functor in mod-CP. Clearly if 0C Fy C F| C
FKhC.--CF, | CF,=F is a composition series of F with composition
factors S; each with multiplicity A;, then 0C FX'Cc Rzl C
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Y !'Cc...CcF_ ' CFX'=Fr!=F*is a composition series of F*
with composition factors S;X~! = §¥ each with multiplicity /;. Hence from

(1) we obtain the relation

F+ (7] = 3 [+ [7) @
i=1
Since the simple functor S; is finitely presented, there exists an AR-triangle
Xi—=Y - Z —2(X;) in C°, which induces an exact sequence
0 — S; — H(X;) — H(Y:) — H(Z;) — S! — 0 in mod-C®. Hence we have the
relations

[Si] +[S7] = [H(XD)] = [H(Y)] + [H(Z))] (3)
in Ko(mod-C®) and therefore from (1), (2) and (3) we obtain the relation

[HX)] = [H(Y)] + [H(Z)] = Zn:ii([H(Xi)] — [H(Y)] + [H(Z)]) 4)

Since C° is Krull-Schmidt, the canonical map Ko(C® @) —
Ko(Proj(mod-C®), @) induced by H is invertible. By a result of Auslander—
Reiten, see [8, Proposition 4.1.2], it follows that the Cartan map
Ko(Proj(mod-C®), ®) — Ko(mod-C°), hence the map Ky(C® @) —
Ko(mod-C?), [X] — [H(X)], is a monomorphism. Then from (4) we obtain the
following relation in Ko(C, @) which proves the assertion:
X] =Y+ [Z] = ZM([X:'] - [Yi] +[Zi]) (5)
i—1
(i) = (1) If C is compactly R-finite and (ii) holds, then, by Lemma 4.6,
C°(X, Y) has finite length over R, VX, Y € C°. Let F be the full subcategory of
mod-C® consisting of all functors of finite length. By a result of Auslander—
Reiten [8, Proposition 1.3.1], the canonical map Ko(F) — Ko(mod-C®) is a
monomorphism and it is invertible if and only if F = mod-C°. Hence to show
that C is of finite type, it suffices to show that the canonical map
Ko(F) — Ko(mod-CP) is surjective. Let F = KerC®(—, g) be in mod-C® where
g: X — Yisamorphism in C° and let X 5 vyLz2% 2 (X) be a triangle in C°.
Then as before we have [F] + [F*] = [H(X)] — [H(Y)] + [H(Z)] in K, (mod-C?),
where F* = FX~! = CokerC®(—, ), and the element [X]— [Y] + [Z] in K, (C°, @)
lies in A(Cb) since it arises from a triangle in C°. By hypothesis we can write
[(X] = [Y]+ [Z2] =X, A([Xi] — [Yi] + [Zi]) where the element [X;]— [Yi] + [Z]]
arises from AR-triangles X; — Y; — Z; — Z(X;) in C°. Then we have

(] + [F] = HX)] = H(Y)] + [H(2)]

- Zn:ii([H(Xi)] — H(Y)] + [H(Z))
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in Ko(mod-C®) and as in (3), we have [H(X;)] — [H(Y)] + [H(Z)] = [S)] + [S}]
for each i where S; and S are simple functors. Therefore [F] + [F*] = [F & F'|
lies in Ko (F). Hence there exists a finitely presented functor G of finite length
such that [F@ F*] = [G]. It is well-known that this implies that there exist
short exact sequences 0 - H — H L — H' —0 and 0— H — H, —
H" — 0 such that F® F* ¢ Hy =~ G & H,. Since G @ H» lies in F, we infer
that F lies in F. Hence F = mod-C® and consequently Mod-C® is locally
finite, i.e. C is of finite type.

The last assertion is proved as in [13, Section VI1.4] using the bilinear form
< —,— > Ko(C°, @) xKo(C® @) — Z defined by < [X],[Y] >= the length of
the R-module C° (X,Y), and is left to the reader. O

Remark 12.2. The proof of Theorem 12.1 shows that if 7 is a skeletally
small triangulated category such that the functor category Mod-7 is locally
finite, then the elements [X] — [Y]+ [Z] arising from AR-triangles in 7,
generate the kernel of the canonical epimorphism K(7,®) — K¢(7'). This
generalizes, and gives the converse to, a recent result of Xiao and Zhu, see
[79, Theorem 2.1].

COROLLARY 12.3. Let A be a Noetherian R-algebra where R is Artinian or
Noetherian complete and local. Then the following are equivalent.

(i) D(Mod-A) is of finite type.
(ii) A is Artinian, gl. dim A < oo and art(HP(Py)) is a free basis for the kernel
of the Cartan map Ko(HP(Py),®) — Ko(DP(mod-A)).

If () holds, then A is of representation finite and Ko(HP(Pr),®) =
ART(H"(Py)) @ Z", where n = rankK(A) is the number of non-isomorphic
simple A-modules.

Proof. (i) = (ii) By [18, Corollary 12.16], A is representation finite and has
finite global dimension; in particular H®(P,) = D°(mod-A). Then (i) follows
from Theorem 12.1. The converse follows from Theorem 12.1 and Theorem
9.16. O

Remark 12.4. 1f A is a Gorenstein Artin algebra, then from Corollary 12.3
it follows that D(Mod-A) is of finite type iff art(HP(P,)) is a free basis for the
kernel A(H"(P,)) of the Cartan map Ko(H"(Py), ®) — Ko(DP(mod-A)).

Comments and Conjectures

Let C be a compactly generated triangulated category. We have seen in
Example 10.5 that Max(C) C Fin(C) does not necessarily implies that
Fin(C) € Max(C). The counter example was the unbounded derived category
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of a ring with several objects. Clearly this compactly generated triangulated
category does not admits a single compact generator. The results of the
previous sections suggest the following.

PROBLEM. Let C := D(Mod-A) be the unbounded derived category of an
associative ring A, or more generally a triangulated category with infinite
sums and a compact generator, i.e. C is monogenic. Assume that
Max(C) C Fin(C). Is it true that Fin(C) C Max(C)? If this is not case, then
under what conditions is it true?

The problem is related to the following open conjectures in representation
theory:

DPSC The Derived Pure Semisimple Conjecture: If D(Mod-A) is pure-
semisimple, then D(Mod-A) is of finite type.
PSC The Pure Semisimple Conjecture: Any pure-semisimple ring is of finite
representation type.
GSC The Gorenstein Symmetry Conjecture: Any Artin algebra A with
1dpA < o0, is Gorenstein, i.e. id Ay < oo.

Note that, by [18, Remark 12.18], DPSC implies PSC and that in the
situation of the conjectures DPSC and GSC, the maximal spectrum is con-
tained in the finite spectrum, by Lemma 10.1 and Proposition 9.14 respec-
tively. If the problem has a positive answer, then, by Theorems 9.15 and 10.2,
the maximal and the finite spectra coincide in both cases and this implies the
validity of the conjectures. Hence the problem can be considered as a gen-
eralized form of the three conjectures.
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