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1. Introduction

Abstract homotopy categories were introduced by E. Brown in the mid-sixties as
the proper framework for the study of the homotopy theory of CW-complexes. In
this setting, he proved in [18] his celebrated representability theorem, a variant of
which has recently found important applications in the stable module category of
a modular group algebra and more generally in compactly generated triangulated
categories, mainly through the work of Rickard [42] and Neeman [40]. Our main
purpose in this paper is to develop a theory of purity and a theory of existence
of almost split morphisms in an abstract homotopy category, using the Brown
representability theorem as a main catalyzing tool.

This aim is justified by the fact that abstract homotopy categories are om-
nipresent in representation theory. They include module categories, locally finitely
presented categories with products, compactly generated triangulated categories,
categories of projective modules, and stable categories modulo projectives over
left coherent and right perfect rings, categories of injective modules and stable
categories modulo injectives over right Morita rings, (stable) categories of Cohen–
Macaulay modules over Gorenstein rings, and many others. Abstract homotopy
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categories permit a unified treatment of many important phenomena occurring in
various forms in the above examples, for instance pure homological algebra and
its companion existence theory of almost split morphisms, two of the most fun-
damental concepts of modern representation theory. Our results which are stated
in the setting of an abstract homotopy category, generalize and prove, in a unified
conceptual way, most of the basic results concerning purity and almost split mor-
phisms which are known to be true in the setting of the above-mentioned, more
concrete and rather unrelated, examples. Moreover, we obtain many new results.
We note that our approach was inspired by the recent work of H. Krause [37] in the
triangulated case. The organization of the article is as follows.

In Section 2 and following [13], we recall some basic facts concerning homo-
topy colimits, abstract homotopy categories and Brown representability and we
present a large list of examples of algebraic and topological categories which are
abstract homotopy categories in a very natural way.

In Section 3, we introduce the class of homological compact objects in an ab-
stract homotopy category C. Roughly speaking, these are the objects which behave
well with respect to arbitrary coproducts and weak cokernels. Using Brown repre-
sentability, we associate to any homological compact object X and any maximal
left ideal m of EndC(X), the m-dual object Dm(X) of X, which has local endomor-
phism ring and, in a sense, has the dual properties of X. This construction turns out
to be fundamental, since it is the main tool for the proof of the main result of this
section, which asserts that the m-dual object Dm(X) of any homological compact
object X is the source of a left almost split morphism in C. Moreover, if C has
weak kernels, then any homological compact object with local endomorphism ring
is the target of a right almost split morphism in C.

In Section 4, we develop a theory of purity in an abstract homotopy category C,
which is based on a class of diagrams in C, called pure-sequences, defined using
a fixed subcategory X ⊆ C, called a Whitehead subcategory, which is part of the
structure of C. Using these sequences, we define pure-projective and pure-injective
objects in C. The main tools for the study of purity are the representation categories
L(C), D(C) of C. These are Grothendieck categories and, moreover, L(C) is a func-
tor category and D(C) is locally coherent, and there are connecting representation
functors S: C → L(C) and T: C → D(C), which reflect many important pure-
theoretic properties of C. Under reasonable conditions, we prove that C has enough
pure-projective objects and pure-injective envelopes and, moreover, the functor S
induces an equivalence between the pure-projective objects of C and the projec-
tive objects of L(C) and the functor T induces an equivalence between the pure-
injective objects of C and the injective objects of D(C). In particular, it follows that
any indecomposable pure-injective object in C has a local endomorphism ring.

The representation functors S, T are not fully faithful in general. The failure
of their fully faithfulness is measured by an ideal of morphisms in C, called the
ideal of phantom maps, studied in Section 5. The structure of the ideal of phantom
maps is strongly connected with the pure homological behavior of C. Indeed, in
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many cases C is phantomless iff C is pure-semisimple. We characterize the pure-
semisimplicity, the finite type property and the naturally defined Ziegler spectrum
of C, in terms of properties of the representation categories L(C), D(C), and we
present a variant of Auslander’s correspondence [5] in this setting, which gives a bi-
jective correspondence between Morita equivalence classes of representation-finite
rings and equivalence classes of special abstract homotopy categories of finite type.

In Section 6, we study another useful version of Brown representability in an
abstract homotopy category and its connection with flat approximations, the latter
connection being inspired by a recent result of H. Krause [36] in the triangulated
case. In most cases of interest, the representation functor S: C → L(C) has its
image in the full subcategory Flat(X) of flat contravariant functors from the White-
head subcategory X mentioned above, to the category of Abelian groups. We give
necessary (and in many cases sufficient) conditions such that S: C → Flat(X) is a
representation equivalence in the sense of Auslander [3], in terms of projective di-
mension of flat functors and flat approximations. This has important consequences
if C is triangulated, see [12, 21, 39, 41]. Moreover, we show that the image Im S of
S is functorially finite in the representation category L(C), and the image Im T of
T is functorially finite in the representation category D(C).

In Section 7, we apply the theory of the previous sections to the most important
examples of abstract homotopy categories, namely those of module categories,
locally finitely presented categories with products and compactly generated tri-
angulated categories. In all these examples, we recover, in a unified way, the main
results about purity and the existence of almost split morphisms, sequences and
triangles on these categories, proved by many authors following the fundamental
work of M. Auslander and I. Reiten [7]. This section also contains new results.
For instance, we prove that a pure-injective object in a compactly generated tri-
angulated category C, occurs as a source of a left almost split morphism in C
iff it is a dual object of a compact object. If the compact objects of C form a
Krull–Schmidt category, then we prove that a pure-injective object is the source of
an Auslander–Reiten triangle in C iff it is the dual object of an indecomposable
compact object.

A convention used in the paper is that we compose morphisms f : A → B,
g: B → C in a given category in the diagrammatic order, i.e. the composition of
f, g is denoted by f ◦g. There two exceptions: we use the usual anti-diagrammatic
order, when we compose functors and when we apply elements to morphisms in
concrete categories. Our additive categories admit finite direct sums.

2. Abstract Homotopy Categories and Brown Representability

2.1. WEAK AND HOMOTOPY COLIMITS

Let C be an additive category and let f : A → B be a morphism in C. We recall
that a weak cokernel of f is a morphism h: B → C such that f ◦ h = 0 and if
t : B → D is a morphism with f ◦ t = 0, then there exists a morphism α: C → D
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such that t = h◦α. Equivalently, the sequence of functors C(C,−)→ C(B,−)→
C(A,−) is exact. The dual notion is weak kernel. We say that a diagram A0

f0→
A1

f1→ A2 → · · · in C is a weak cokernel sequence if fi+1 is a weak cokernel of fi ,
for all i � 0.

Let I: I → C be a functor from a small category I . We use the notation

I(i) = Ai and I(i → j) := αij : Ai → Aj .

A weak colimit of the functor I is an object A in C together with morphisms
fi: Ai → A, which are compatible with the system {Ai, αij } in the sense that for
any arrow i → j in I , we have fi = αij ◦ fj , and if gi: Ai → B is another
compatible family, then there exists a (not necessarily unique) morphism ω: A→
B such that fi ◦ ω = gi , for all i ∈ I . Hence, a weak colimit of I, henceforth
denoted by w. lim−→ Ai , is defined as a genuine colimit except for the uniqueness

property. In particular a weak colimit is not uniquely determined.

2.2. ABSTRACT HOMOTOPY CATEGORIES AND BROWN REPRESENTABILITY

Fix an additive category C with coproducts and weak cokernels. Then it is easy
to see that C has weak colimits. We are especially interested in weak colimits of

towers of objects, where a tower in C is a diagram of the form A0
f0→ A1

f1→
A2 → · · ·. We call a weak colimit of a tower, a homotopy colimit and we denote
it by holim−−−→Ai . A homotopy colimit of the tower above can be computed as a

weak cokernel of the canonical morphism
⊕

i�0 Ai

1−f−→ ⊕
i�0 Ai , induced by the

morphisms (1Ai ,−fi): Ai → Ai ⊕ Ai+1 ↪→ ⊕
i�0 Ai . Hence, we have a weak

cokernel sequence
⊕
i�0

Ai

1−f−→
⊕
i�0

Ai −→ holim−−−→Ai.

DEFINITION 2.1. Let X ⊆ C be a full subcategory of C. A weak colimit
w.lim→ Ai in C is called X-minimal, if for any object X ∈ X the canonical mor-

phism

lim−→ C(X,Ai) −→ C(X,w.lim−→ Ai)

is an isomorphism. We say that X is a minimal subcategory if every tower A0 →
A1 → A2 → · · · in C has an X-minimal homotopy colimit.

To proceed further we need the following concept borrowed from topology.

DEFINITION 2.2. A full subcategory X ⊆ C is called a Whitehead subcate-
gory, if X is skeletally small and a morphism f : A → B in C is invertible if
C(X, f ): C(X,A)→ C(X,B) is invertible, for all X ∈ X.
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EXAMPLE 2.3. (α) Let C be the homotopy category of pointed connected CW-
complexes and let X ⊆ C be the full subcategory consisting of finite complexes.
Then by a well-known result of J. H. C. Whitehead, X is a Whitehead subcategory
of C. This is of course the origin of the terminology [26].
(β) Let C be a locally small additive category with filtered colimits and let X ⊆

C be a skeletally small full subcategory such that any object of C can be expressed
as a filtered colimit of objects from X. Then X is a Whitehead subcategory of C
[38].

If X is a Whitehead subcategory of C, then it is not difficult to see that any
two X-minimal weak colimits are isomorphic (noncanonically). Moreover if the
colimit exists in C, then it is isomorphic to the X-minimal weak colimit.

DEFINITION 2.4 ([13]). An abstract homotopy category is an additive category
which admits coproducts, weak cokernels and a minimal Whitehead subcategory.

Note that in general a minimal Whitehead subcategory X ⊆ C is not uniquely
determined. In many aspects the theory depends on the choice of X.

DEFINITION 2.5. An additive functor F : Cop → Ab is called half-exact iff
F sends a weak cokernel sequence A → B → C in C to an exact sequence
F(C) → F(B) → F(A) in Ab. An additive functor F : C → Ab is called
half-exact, if F sends a weak cokernel sequence as above to an exact sequence
F(A)→ F(B)→ F(C) in Ab.

For any object A ∈ C, the representable functor C(−, A): Cop → Ab is
half-exact and sends coproducts to products. The following fundamental Brown
representability theorem for abstract homotopy categories, asserts that the converse
is true. This result is of central importance in what follows.

THEOREM 2.6 (Brown) ([18, 26, 13]). Let C be an abstract homotopy category
and let F : Cop → Ab be an additive functor. Then the following are equivalent.

(α) F is representable;
(β) F is half-exact and sends coproducts to products.

Brown Representability has many consequences. First we note the following.

COROLLARY 2.7 ([13]). An abstract homotopy category has arbitrary products.

We recall that an object X in an additive category C is called compact, if the
functor C(X,−): C → Ab preserves all small coproducts. The full subcategory
of C consisting of all compact objects is denoted by Cb. A full subcategory X of
C is called a compact subcategory if X ⊆ Cb. A useful consequence of Brown
representability is the following adjoint functor theorem.
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THEOREM 2.8 ([13]). Let C be an abstract homotopy category and let F : C →
D be an additive functor to an additive category D . Then the following are equiv-
alent.

(α) F admits a right adjoint G: D → C;
(β) F preserves coproducts and weak cokernels.

In case G exists and C admits a compact minimal Whitehead subcategory X, then:
G preserves coproducts iff F preserves compact objects.

Recall that an object X in an additive category C is called finitely presented, if
the representable functor C(X,−): C → Ab commutes with filtered colimits. The
full subcategory of finitely presented objects of C is denoted by f.p(C). C is called
locally finitely presented [17], if C has filtered colimits, f.p(C) is skeletally small
and any object of C is a filtered colimit of finitely presented objects. If C is skele-
tally small, we denote by Mod(C) the category of additive functors Cop → Ab.
There is a well-defined tensor product functor −⊗C −: Mod(C)×Mod(Cop)→
Ab, which satisfies all the usual properties. A functor F in Mod(C) is called flat, if
F ⊗C−: Mod(Cop)→ Ab is exact. The full subcategory of Mod(C) consisting of
all flat functors is denoted by Flat(C). By [17], Flat(C) is locally finitely presented
and any locally finitely presented additive category arises in this way.

2.3. EXAMPLES

Although the primitive example of an abstract homotopy category in the non-
additive setting is the homotopy category of CW-complexes, there is a host of
interesting examples in the additive case.

(i) If� is a ring, then the category Mod(�) of right �-modules is an abstract ho-
motopy category with minimal Whitehead subcategory, the full subcategory
mod(�) of finitely presented modules, or the full subcategory P� of finitely
generated projective modules. More generally if C is skeletally small, then
the functor category Mod(C) is an abstract homotopy category.

(ii) Let F be a locally finitely presented additive category with products. Then
by [13], F is an abstract homotopy category with minimal Whitehead subcat-
egory f.p(F ). In particular for any skeletally small additive category C with
weak cokernels, Flat(C) is an abstract homotopy category.

(iii) Let C be a compactly generated triangulated category [40]. Then C is an
abstract homotopy category with minimal Whitehead subcategory, the full
subcategory Cb of compact objects [13]. More generally, let C be a right
triangulated category with coproducts and suspension functor which is a right
semi-equivalence in the sense of [2]. If Cb is skeletally small and for all
compact objects X of C, C(X,A) = 0 implies A = 0, then C is an abstract
homotopy category. We refer to Section 7 for nontriangulated examples.
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(iv) Let � be a left coherent and right perfect ring. Then the stable category
Mod(�) of right �-modules modulo projectives, is an abstract homotopy
category with minimal Whitehead subcategory, the stable category mod(�)
induced by the finitely presented modules. Similarly the category P� of pro-
jective modules is an abstract homotopy category with minimal Whitehead
subcategory, the full subcategory of finitely generated projective modules
[13].

(v) Let � be a right Morita ring, i.e. � is right Artinian and Mod(�) admits a
finitely generated injective cogenerator. Then the stable category Mod(�) of
right �-modules modulo injectives, is an abstract homotopy category with
minimal Whitehead subcategory, the stable category mod(�) induced by the
finitely generated modules. Similarly the category I� of injective right �-
modules is an abstract homotopy category with minimal Whitehead subcate-
gory, the full subcategory of finitely generated injective modules [13].

One can also add to this list the exactly definable categories and their definable
subcategories in the sense of [32]. By (iv) or (v), it follows that the stable category
modulo projectives of a quasi-Frobenius ring, is an abstract homotopy category.
Note that important examples of quasi-Frobenius rings are the group algebras of
finite groups. The example (iii) of a compactly generated triangulated category,
shows that we are supplied with many others abstract homotopy categories:

(vi) The stable homotopy category Ho(S) of spectra [39], is an abstract homo-
topy category with minimal Whitehead subcategory, the full subcategory
Ho(S)b of finite spectra.

(vii) The unbounded derived category D(�) of all right �-modules over a ring
�, is an abstract homotopy category with minimal Whitehead subcategory,
the full subcategory D(�)b of perfect complexes.

(viii) Let H be a commutative Hopf algebra over a field. Then the homotopy
category of complexes of injective comodules is an abstract homotopy cat-
egory with as minimal Whitehead subcategory the full subcategory induced
by the injective resolutions of the simple comodules [27]. If H is finite-
dimensional, then the stable category of comodules modulo injectives, is an
abstract homotopy category with minimal Whitehead subcategory, the stable
category induced by the finite dimensional comodules [27].

(ix) We recall [11] that a ring � is called right Gorenstein, if any projective right
module has finite injective dimension and any injective right module has fi-
nite projective dimension. Important examples of right (and left) Gorenstein
rings include all Noetherian rings of finite selfinjective dimension. The cat-
egory CM(�) of Cohen–Macaulay modules over �, consists of all modules

A such that A = Ker(f0), where · · · → P−1 → P 0 f0−→ P 1 → · · · is an
exact sequence of projective modules which remains exact if we apply to it
the functor (−, P ), for any projective module P . The dual definition of the
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category CoCM(�) of CoCohen–Macaulay modules using injectives, is left
to the reader.
If � is a left coherent and right perfect right Gorenstein ring, then the
projectively stable category CM(�) is an abstract homotopy category. If �
is a right Morita right Gorenstein ring, then the injectively stable category
CoCM(�) is an abstract homotopy category. We refer to [11, 13] for details.

Note that any category of the above list admits weak kernels, except possibly
in the example (ii) of a locally finitely presented category with products. In what
follows when we view a category of the above list as an abstract homotopy cate-
gory, we will assume tacitly that the choice of a minimal Whitehead subcategory
is as described above. We call this choice, the natural choice. If C is an abstract
homotopy category with X ⊆ C as a minimal Whitehead subcategory, then without
any loss of generality, we shall assume always that X is full additive and closed
under direct summands. If C admits cokernels, we may (and will) replace weak
cokernels by cokernels and homotopy or filtered weak colimits by genuine colimits.

3. Almost Split Morphisms

Throughout this section we fix an abstract homotopy category C and let X be a
fixed minimal Whitehead subcategory of C. In the sequel we follow ideas of M.
Auslander [4], W. Crawley-Boevey [17] and H. Krause [37].

3.1. DUAL OBJECTS

We fix throughout a compact object X ∈ C. We denote by �X := EndC(X) the
endomorphism ring of X. For any additive functor F : Cop → Ab, define a left
�X-module structure on the Abelian group F(X) as follows. If ρ ∈ �X and x ∈
F(X), then ρ � x := F(ρ)(x). In particular, C(X,A) is a left �X-module for any
object A ∈ C. Let m be a maximal left ideal of �X, let Sm(X) := �X/m be the
corresponding simple left�X-module and let Im be its injective envelope. Consider
the additive functor

HX := [C(X,−), Im]: Cop → Ab, HX(A) := Hom�X

(
C(X,A), Im).

Since X is compact, the functor HX sends coproducts to products. We want this
functor to be representable. For this purpose we introduce the following concept.

DEFINITION 3.1. A compact object X is called homological if the functor
C(X,−): C → Ab is half-exact. The full subcategory of C consisting of all
homological compact objects is denoted by H(Cb).
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It follows that if X ∈ H(Cb), then the functor HX is half-exact and converts
coproducts to products. Hence, by Brown representability, there exists an object
Dm(X) ∈ C, unique up to isomorphism, and a natural isomorphism:

ω: [C(X,−), Im]
∼=−→ C(−,Dm(X)).

From now on we assume that X ∈ H(Cb).

LEMMA 3.2. The object Dm(X) has a local endomorphism ring.
Proof. Using the isomorphism ω, we have:

EndC(Dm(X)) = [C(X,Dm(X)), Im] ∼= [[C(X,X), Im], Im] = End�X(Im).

Since it is the injective envelope of the simple left �X-module Sm(X), Im, hence
Dm(X), has a local endomorphism ring. ✷
DEFINITION 3.3. The object Dm(X) is called the m-dual object of X with
respect to the maximal left ideal m of �X.

Clearly, the class of m-dual objects of C corresponds bijectively with the dis-
joint union

⊔{Max(�X) |X ∈ Iso(H(Cb))}, where Max(�X) is the set of maxi-
mal left ideals of �X. Here Iso(Y) denotes the collection of isoclasses of objects
of Y ⊆ C.

Generalizing this construction, let ρ:  → �X be a ring morphism and let I be
an injective left  -module. As above, for any additive functor F : Cop → Ab, the
Abelian group F(X) admits, via the ring morphism ρ, a left  -module structure
and Brown representability implies that there exists an object DI (X) ∈ C, unique
up to isomorphism, equipped with a natural isomorphism:

ω: Hom [C(X,−), I ]
∼=−→ C(−,DI (X)).

We call DI (X) the I -dual object of X with respect to the injective  -module I .
The notation DI (X) ∈ C means that a homological compact object X in C is fixed
and I is an injective left  -module, where ρ:  → �X is a fixed ring morphism.
The isomorphism ω is a powerful tool for producing new interesting objects.

EXAMPLE 3.4. (i) Choose  = Z and I = Q/Z; in this case we use the notation
DQ/Z(X). For example if C = Mod(�), then for X = � and any right �-module
A, the above isomorphism reduces to: (A�,Q/Z) ∼= �(A,DQ/Z(�)).

(ii) Choose  = Z, let p be a prime integer and let I be the injective envelope
of the simple Z-module Z/(p), i.e. I is the Prüfer group Zp∞ . Then the above
isomorphism produces the p-dual object Dp(X), with endomorphism ring, the
commutative ring EndZ(Zp∞) of p-adic integers. Choosing I = Q, we have the
rational dual object DQ(X) of X, with endomorphism ring Q.

(iii) If Ho(S) is the stable homotopy category of spectra and X is a finite
spectrum, then DQ/Z(X) is the Brown–Comenetz dual of the Spanier–Whitehead
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dual of X [19]. The p-dual object Dp(X) is a p-local spectrum [39], for any
prime p. If Sn is the nth-suspension of the sphere spectrum S0, then let πn(A) :=
Ho(S)(Sn,A) be the stable homotopy groups of A. Then

(πn(A),Zp∞) ∼= Ho(S)(A,Dp(S
n)), (πn(A),Q) ∼= Ho(S)(A,DQ(S

n))

and

πn(DQ/Z(S
n)) = Q/Z, ∀n � 0.

We recall that an additive functor F : Cop → Ab is called finitely presented if
there exists an exact sequence of functors C(−, A) → C(−, B)→ F → 0. Let
mod(C) be the category of finitely presented contravariant additive functors. It is
well-known that mod(C) is Abelian iff C admits weak kernels, see [6].

LEMMA 3.5. If DI (X) is an I -dual object of X, then for every object F ∈
mod(C):

Hom (F (X), I )
∼=−→ [F,C(−,DI (X))].

If C has weak kernels, then C(−,DI (X)) is an injective object in mod(C).
Proof. Choose a presentation C(−, A) → C(−, B) → F → 0 of F . Then

C(X,A) → C(X,B) → F(X) → 0 is exact in Mod( op). Hence, the sequence
0 → [F(X), I ] → [C(X,B), I ] → [C(X,A), I ] is exact. Using the isomor-
phism ω, it follows that [F(X), I ] is isomorphic to the kernel of C(B,DI (X))→
C(A,DI (X)) which is isomorphic to [F,C(−,DI (X))]. If C has weak kernels,
then mod(C) is Abelian and the above isomorphisms show that C(−,DI (X)) is an
injective object in mod(C). ✷

We denote by S: C → Mod(X), the restricted Yoneda functor defined by
S(A) = C(−, A)|X. In particular S|X is the Yoneda embedding X ↪→ Mod(X).

LEMMA 3.6. For any F ∈ Mod(X) there exists an isomorphism:

Hom (F (X), I )
∼=−→ [F,S(DI (X))].

In particular, S(DI (X)) is an injective object in Mod(X).
Proof. First let F be finitely presented, and choose a presentation X(−, Y1)→

X(−, Y0)→ F → 0. By Yoneda’s lemma the exact sequence

0 → [F,S(DI (X))] → [X(−, Y0),S(DI (X))] → [X(−, Y1),S(DI (X))]
is isomorphic to the sequence

0 → [F,S(DI (X))] → C(Y0,DI (X))→ C(Y1,DI (X)).
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As in the proof of Lemma 3.5, the kernel of the last morphism is isomorphic via ω
to Hom (F (X), I ). Now let F ∈ Mod(X) be arbitrary. It is well known that F is
a filtered colimit lim−→ Fi of finitely presented functors. Then

Hom (F (X), I ) = Hom (lim−→ Fi(X), I ) = lim←− Hom (Fi(X), I )

∼= lim←−[Fi,S(DI (X))] ∼= [lim−→ Fi,S(DI (X))]
= [F,S(DI (X))].

The injectivity of S(DI (X)) in Mod(X) follows trivially from these isomor-
phisms. ✷
COROLLARY 3.7. For every object A ∈ C, the functor S induces a canonical
isomorphism

SA,DI (X): C(A,DI (X))
∼=−→ [S(A),S(DI (X))], f �→ S(f ).

Proof. Choosing F = S(A) in Lemma 3.6, we infer that we have an isomor-
phism Hom (C(X,A), I ) ∼= [S(A),S(DI (X))]. Clearly, the composite isomor-
phism

C(A,DI (X))
ω−1
X−→ Hom (C(X,A), I )→ [S(A),S(DI (X))]

coincides with SA,DI (X). ✷
If Y is a class of objects of C, then Add(Y), resp. add(Y), resp. Prod(Y),

denotes the full subcategory of C consisting of all direct summands of arbitrary
coproducts, resp. finite coproducts, resp. products, of objects of Y.

COROLLARY 3.8. If X ⊆ H(Cb), then DQ/Z(X) = {DQ/Z(X);X ∈ X} is a
‘coWhitehead’ subcategory of C, i.e. DQ/Z(X) is skeletally small and f : A→ B

is invertible in C iff C(f,DQ/Z(X)) is invertible, for all X ∈ X. Moreover E :=∏
X∈Iso(X) DQ/Z(X) is a cogenerator of C and S(E) is an injective cogenerator

of Mod(X).

For instance, if C = Mod(�) and X = P�, then we recover the well-known
fact that DQ/Z(�) = HomZ(�,Q/Z) is an injective cogenerator for Mod(�).

Assume from now on that the homological compact object X is in X and
consider a maximal left ideal m of �X. It is not difficult to see that defining

X(−, X)m(Y ) := {φ ∈ X(Y,X) | ∀X θ→ Y : θ ◦ φ ∈ m},
we obtain a right ideal in X, i.e. an additive subfunctor X(−, X)m ↪→ X(−, X).
The corresponding quotient functor is denoted by SX,m := X(−, X)/X(−, X)m.
By [4] the functor SX,m is simple and any simple functor in Mod(X) arises in this
way.



494 APOSTOLOS BELIGIANNIS

Consider the evaluation

ωX: [C(X,X), Im] = Hom�X(�X, Im)
∼=→ C(X,Dm(X))

of the isomorphism ω at X. Let π : �X � �X/m be the canonical projection
and let µ: �X/m � Im be the canonical inclusion. We denote the image of the
composition π ◦ µ under ωX by hX. Hence, hX: X→ Dm(X) is the morphism in
C defined by hX := ωX(π ◦ µ). Observe that by construction hX �= 0.

THEOREM 3.9. (i) The functor S(Dm(X)) ∈ Mod(X) is the injective envelope of
the simple functor SX,m.

(ii) If X ⊆ H(Cb) and E ∈ Mod(X) is the injective envelope of a simple
functor, then there exists X ∈ X and a maximal left ideal m of �X such that
E = S(Dm(X)).

Proof. (i) By Corollary 3.7, the objects Dm(X), S(Dm(X)) have isomorphic
endomorphism rings. Hence, by Lemma 3.2, the ring End(S(Dm(X))) is local.

Consider the morphism S(hX): S(X)→ S(Dm(X)) in Mod(X) and let κ: F →
S(X) be its kernel and G its image. We claim that G is the simple functor SX,m.
Indeed, since S(X) = X(−, X), it suffices to show that F = X(−, X)m. Let
α: A→ X be any morphism withA ∈ X. Then ω induces a commutative diagram:

HX(X)

HX(α)

ωX
C(X,Dm(X))

α∗

HX(A)
ωA

C(A,Dm(X)),

(†)

where α∗ = C(α,Dm(X)). Then α∗ωX(π◦µ) = α∗(hX) = α ◦hX = C(A, hX)(α).
On the other hand, HX(α)(π ◦ µ): C(X,A)→ Im is the map defined by
HX(α)(π ◦ µ)(θ) = π ◦ µ(θ ◦ α). Since ωA is invertible, by the commutativity
of the above diagram, we have α ∈ F(A) iff α ◦ hX = 0 iff for all θ : X → A,
we have π ◦ µ(θ ◦ α) = 0. Obviously this last condition holds iff θ ◦ α ∈ m.
Hence, F = X(−, X)m and G = Im S(hX) is the simple functor SX,m. Since
EndC(S(Dm(X))) is local, the inclusion SX,m ↪→ S(Dm(X)) is an injective enve-
lope.

(ii) Assume that E is the injective envelope of a simple functor S in Mod(X).
Then S is of the form SX,m for an object X ∈ X and a maximal left ideal m

of �X = EndC(X). Since X ⊆ H(Cb), we can perform the construction of the
m-dual object Dm(X) ofX with respect to m and then obviouslyE ∼= S(Dm(X)). ✷

3.2. ALMOST SPLIT MORPHISMS

We recall that a morphism f : B → C in a given additive category C is called
right almost split, if f is not a split epimorphism and any morphism g: A → C
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which is not a split epimorphism factors through f . The morphism f is called right
minimal, if any morphism α: B → B such that α ◦ f = f is an automorphism.
A right minimal right almost split morphism is called a minimal right almost split
morphism. The dual notions are left almost split morphism, left minimal morphism
and minimal left almost split morphism. We refer to [4] for details and more
information concerning these morphisms.

Our main result in this section is the following theorem.

THEOREM 3.10. Let 0 �= X ∈ H(Cb) and let �X = EndC(X) be its endomor-
phism ring. Then there exists an object Dm(X) in C with local endomorphism ring
and a nonzero morphism hX: X→ Dm(X) satisfying the following properties:

(i) Assume that the endomorphism ring �X is local.

(α) If α: A → X is a nonsplit epimorphism, then α ◦ hX = 0. Any weak
kernel fX: AX → X of hX in C is a right almost split morphism.

(β) If C has weak kernels, then the image SX of the morphism C(−, hX):
C(−, X) → C(−,Dm(X)) in the Abelian category mod(C) is a simple
functor and the projection C(−, X)→ SX is a projective cover.

(ii) (α) Assume that X ∈ X or �X is local and C admits weak kernels. If β:
Dm(X) → B is a nonsplit monomorphism, then hX ◦ β = 0. Any weak
cokernel gX: Dm(X)→ BX of hX in C is a left almost split morphism.

(β) If C has weak kernels, then the inclusion SX ↪→ C(−,Dm(X)) is an
injective envelope in mod(C).

Proof. Let m be a maximal left ideal of �X and consider the nonzero morphism
hX: X→ Dm(X) constructed in Subsection 3.1. If �X is local, it follows that m is
the unique maximal left ideal of �X, i.e. m = Jac(�X).

(i)(α) Let α: A → X be a morphism in C which is not a split epimorphism.
Consider the commutative diagram (†) in the proof of Theorem 3.9 above, where
α∗ = C(α,Dm(X)). Then we have α∗ωX(π ◦µ) = α∗(hX) = α ◦hX. On the other
hand, HX(α)(π ◦ µ): C(X,A) → Im is the map defined by HX(α)(π ◦ µ)(β) =
π ◦ µ(β ◦ α). The morphism β ◦ α is an element of the local ring �X. Since α
is nonsplit epic, it follows that β ◦ α is a noninvertible element of �X. Hence,
β ◦ α ∈ Jac(�X), or equivalently π(β ◦ α) = 0. Hence, HX(α)(π ◦ µ)(β) = 0.
Since β was arbitrary, it follows that HX(α)(π ◦ µ) = 0. By the commutativity of
the diagram (†), it follows that α ◦ hX = 0.

If fX: AX → X is a weak kernel of hX in C, then fX is nonsplit epic, since
hX �= 0. Let α: A → X be a nonsplit epic. Since α ◦ hX = 0, it follows that α
factors through fX. Hence, fX is a right almost split morphism.

(i) (β) Let κ: G ↪→ C(−, X) be the kernel of C(−, hX): C(−, X) →
C(−,Dm(X)) in mod(C). We claim that G is a proper maximal subfunctor
of C(−, X). Indeed, let i: F ↪→ C(−, X) be a proper subfunctor and let C(−,D)→
C(−, C) ε→ F → 0 be a presentation of F . Then, by the Yoneda lemma, the
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morphism ε ◦ i: C(−, C)→ C(−, X) is of the form C(−, α), where α: C → X.
Since F is a proper subfunctor of C(−, X), it follows easily that α is nonsplit
epic. Hence, by (i)(α), we have α ◦ hX = 0. Then C(−, α) ◦ C(−, hX) = 0
and this implies that i ◦ C(−, hX) = 0. Then i factors through κ and this means
that G contains F as a subfunctor. Hence, G is a maximal proper subfunctor of
C(−, X). Consequently, SX := Im C(−, hX) is a simple functor in mod(C) and
then obviously the projection C(−, X)→ SX is a projective cover.

(ii)(α) If X ∈ X, then by Theorem 3.9, S(Dm(X)) is the injective envelope
of the simple image SX,m of the morphism S(hX). Let β: Dm(X) → B be a
morphism in C which is not a split monomorphism. Then S(β) is not a monomor-
phism. Indeed otherwise S(β) will be a split monomorphism, since S(Dm(X)) is
injective. Using Corollary 3.7, it is easy to see that this implies that β is a split
monomorphism and this is not true. Hence, S(β) is not a monomorphism. Since
SX,m ↪→ S(Dm(X)) is an injective envelope, this implies that the composition
SX,m ↪→ S(Dm(X)) → S(B) is zero. Then S(hX) ◦ S(β) = 0. Since X ∈ X, it
follows that hX◦β = 0. If�X is local and C admits weak kernels, then the assertion
follows directly from the fact that C(−, hX) has simple image and C(−,Dm(X))

is injective in mod(C).
Let gX: Dm(X) → BX be a weak cokernel of hX in C. Then gX is not a split

monomorphism, since hX �= 0. If β: Dm(X) → B is not a split monomorphism,
then by the above arguments we have that hX ◦β = 0, hence β factors through gX.
This shows that gX is a left almost split morphism.

(ii)(β) Since Dm(X) has local endomorphism ring, it follows by Yoneda that the
functor C(−,Dm(X)) is an indecomposable injective object in mod(C). Hence, the
inclusion µ: SX ↪→ C(−,Dm(X)) is an injective envelope. ✷
COROLLARY 3.11. Let C be an abstract homotopy category with weak kernels.
Then for any object X ∈ H(Cb) with local endomorphism ring, there exists a
right almost split morphism fX: AX → X and a left almost split morphism
gX: Dm(X)→ BX.

COROLLARY 3.12. If C admits kernels and cokernels, then for any homological
compact object X with local endomorphism ring, there exists a minimal right al-
most split morphism AX → X and a minimal left almost split morphism Dm(X)→
BX.

Proof. Choose fX to be the kernel and gX to be the cokernel of hX. ✷
The next result relates the existence of almost split morphisms in C with prop-

erties of projective or injective functors in Mod(X).

THEOREM 3.13. Assume that C has weak kernels and X ⊆ H(Cb).

(i) If E is an object of C, then for the following statements:

(α) S(E) is the injective envelope of a simple functor in Mod(X);
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(β) E ∼= Dm(X), where X ∈ X and m is a maximal left ideal of �X;
(γ ) the functor S(E) is injective in Mod(X) and there exists a left almost

split morphism E → B in C,

we have (α) ⇔ (β) ⇒ (γ ). If, in addition, any injective object of Mod(X)

is in the image of S and if for injective objects S(I ),S(J ), the canonical
morphism C(I, J ) → (S(I ),S(J )) is surjective, then we have also (γ ) ⇒
(α).

(ii) If P is an object in C, then the following are equivalent:

(α) S(P ) is the projective cover of a simple functor in Mod(X);
(β) P ∈ X and P has a local endomorphism ring;
(γ ) The functor S(P ) is projective in Mod(X) and there exists a right almost

split morphism A→ P in C.

Proof. (i) By Theorem 3.9 we have (α) ⇔ (β) and by Theorem 3.10(ii)(α)
we have (β) ⇒ (γ ). Assume now that the additonal hypotheses are true and let
g: E → B be a left almost split morphism in C, where S(E) is an injective
functor. Consider the morphism S(g): S(E) → S(B) and let µ: S → S(E) be
its kernel. It suffices to show that S is a simple functor. Let α: S → G be any
morphism in Mod(X) and let ν: G→ E(G) be an injective envelope. Since E(G)
is injective, there exists a morphism σ : S(E)→ E(G) such that α ◦ν = µ◦σ . By
hypothesis, there exists an object I ∈ C such that S(I ) = E(G) and a morphism
σ ′: E → I such that S(σ ′) = σ . If σ is a split monomorphism, then obviously α
is a monomorphism. If σ is not a split monomorphism, then obviously the same is
true for σ ′. Since g is left almost split, there exists τ : B → I such that σ ′ = g ◦ τ .
Then σ = S(g)◦S(τ ) and this implies that µ◦σ = α ◦ν = 0. Then α = 0, since ν
is a monomorphism. Since any morphism α: S → G is zero or a monomorphism,
S is a simple functor.

(ii) We use tacitly the fact that since X is compact, the functor S induces an
equivalence between Add(X) and the category of projective objects in Mod(X)

[12]. (α) ⇒ (β) Since simple functors are finitely generated, it follows that S(P )
is finitely generated, i.e. P ∈ X. Then it is easy to see that EndC(P ) is local.
(β) ⇒ (γ ) This follows by Corollary 3.11. (γ ) ⇒ (α) Since P is the target of a
right almost split morphism, by [10], EndC(P ) is local. Since S(P ) is projective,
it is easy to see that S(P ) is finitely generated, i.e. P ∈ X. Then the projection
X(−, P ) → SP,m is a projective cover, where m is the unique maximal ideal of
EndC(P ). ✷

Our last result in this section indicates a useful factorization property.

COROLLARY 3.14. Let X ∈ H(Cb), let ρ:  → EndC(X) be a ring morphism

and let I be an injective cogenerator of Mod( op). If A
f→ B

g→ C
h→ D is a

weak cokernel sequence in C. Then any morphism X → B factors through f iff
any morphism C → DI (X) factors through h.
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Proof. Since X ∈ H(Cb), the sequence

C(X,A)
f∗→ C(X,B)

g∗→ C(X,C)
h∗→ C(X,D)

is exact in Mod( op), where f∗ = C(X, f ) and so on. Then any morphism X→ B

factors through f iff g∗ = 0. Since I is injective, using the isomorphism ω it fol-

lows that the sequence C(D,DI (X))
h∗−→ C(C,DI (X))

g∗−→ C(B,DI (X))
f ∗−→

C(A,DI (X)) is exact in Mod( op), where h∗ := C(h,DI (X)), and so on. Then
any morphism C → DI (X) factors through h iff g∗ = 0. But g∗ is isomorphic to
the morphism (g∗, I ). Since I is a cogenerator, we have g∗ = 0 iff g∗ = 0. ✷

4. Purity in Abstract Homotopy Categories

Throughout this section we fix an abstract homotopy category C with a fixed min-
imal Whitehead subcategory X ⊆ C. We assume always that X is compact, i.e.
X ⊆ Cb, and X has weak cokernels and the inclusion X ↪→ C preserves them.

4.1. PURITY

A sequence in C is a diagram (E): A
g→ B

f→ C such that g ◦ f = 0. A sequence
(E) is called pure if for any X ∈ X, the induced sequence 0 → C(X,A) →
C(X,B)→ C(X,C)→ 0 is exact in Ab. The class of pure sequences is denoted
by E . The terminology ‘pure’ will be justified in Section 7.

We call an object P ∈ C pure-projective, if for any pure-sequence A
g→ B

f→
C, the induced sequence

0 → C(P,A)→ C(P,B)→ C(P,C)→ 0

is exact in Ab. The full subcategory of C consisting of all pure-projectives is
denoted by P (E). We say that C has enough pure-projectives, if for every C ∈ C
there exists a pure-sequence A → P → C, with P ∈ P (E). Such a sequence is
called a pure-projective presentation of C. A pure-projective cover of C, is a right

minimal morphism f included in a pure-projective presentation A → P
f→ C

in C. We say that C has pure-projective covers, if any object of C admits a pure-
projective cover. We leave to the reader to formulate the dual notions concerning
pure-injectivity. The full subcategory of pure-injective objects is denoted by I(E).
Finally we call an abstract homotopy category C pure-semisimple, if any pure-
sequence A → B → C in C splits, i.e. if it is isomorphic to the sequence

A
(1A,0)−→ A⊕ C

t(0,1C)−→ C.

4.2. REPRESENTATION CATEGORIES

Since by definition X is skeletally small, we can consider the category Mod(X),
resp. Mod(Xop), of contravariant, resp. covariant, additive functors from X to Ab.
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We consider also the category mod(Xop) of finitely presented covariant functors
and we set B(X) := mod(Xop)op.

Since X has weak cokernels and split idempotents, it follows that B(X) is a
skeletally small Abelian category with enough injectives and any injective is of the
form Y(X), where Y: X ↪→ B(X) is the (covariant) Yoneda embedding. Consider
the category Flat(B(X)) of flat functors B(X)op → Ab and set:

L(C) := Mod(X) and D(C) := Flat(B(X)).

In other words D(C) is the conjugate category ̂Mod(Xop) of Mod(Xop) in the sense
of J. E. Roos [43]. We identify B(X)with the full subcategory of finitely presented
objects of D(C), via the embedding M �→ (−,M), and usually we view the objects
of B(X) as finitely presented functors X→ Ab.

We recall that a locally finitely presented Grothendieck category G is called
locally coherent, if the full subcategory f.p(G) of finitely presented objects of G
is Abelian. It follows that D(C) is locally coherent and can be identified with the
category of left exact functors B(X)op → Ab.

As in Section 3, let S: C → L(C) and let S(A) = C(−, A)|X be the re-
stricted Yoneda functor. Let i: Flat(B(X)) ↪→ Mod(B(X)) be the inclusion
functor. By a well-known result of Gabriel [23], i admits an exact left adjoint
3: Mod(B(X)) → Flat(B(X)). On the other hand the Yoneda embedding
Y: X ↪→ B(X) induces a fully faithful right exact functor Y!: Mod(X) ↪→
Mod(B(X)) which is a left adjoint (given by the Kan construction) of the induced
restriction functor Y∗: Mod(B(X)) → Mod(X), which is defined by Y∗(F ) =
FY. It is well known that Y! is defined as follows: Y!(F )(M) = F ⊗X

B(X)[M,Y(−)]. In particular, Y! preserves flatness, so it induces a fully faithful
functor Y!: Flat(X) → D(C). Then we have adjoint pairs (Y!,Y∗): L(C) →
Mod(B(X)) and (3, i): Mod(B(X))→ D(C). We denote by T: C → D(C) the
composite functor

T := 3Y!S: C
S−→ L(C)

Y!−→ Mod(B(X))
3−→ D(C).

We recall that an object M in a locally coherent category G is called FP-
injective, if Ext1

G(F,M) = 0, for any finitely presented object F ∈ G. The full
subcategory of FP-injective objects of G is denoted by FP Inj G. If A is a skeletally
small Abelian category, then Ex(Aop,Ab) denotes the category of exact functors
Aop → Ab.

The following result is basic in what follows.

LEMMA 4.1. The image of S lies in the full subcategory Flat L(C) of flat functors
of L(C) and the functor Y! induces an equivalence

Flat L(C)
≈→ Ex(B(X)op,Ab).

The functor T is isomorphic to Y!S and there is an identification

Ex(B(X)op,Ab) = FP Inj D(C).

In particular T induces a functor T: C → FP Inj D(C) ↪→ D(C).
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Proof. Since X has weak cokernels, it is easy to see [14] that a functor F ∈
Mod(X) is flat iff for any weak cokernel sequence X → Y → Z in X, the
sequence F(Z) → F(Y ) → F(X) is exact, i.e. F is half-exact. Then for all
A ∈ C, the functor S(A) = C(−, A)|X is flat since it is half-exact and X is
closed under weak cokernels in C. For a proof that the functor Y!: Flat L(C) →
Ex(B(X)op,Ab) is an equivalence we refer to [14]. Since Im S consists of flat
functors and Y! preserves flatness, from the definition of T it follows directly that
T is isomorphic to Y!S. The last assertion is well known. We include a proof for
completeness sake. If E: B(X)op → Ab is exact, then there exists a flat functor
F : Xop → Ab such that E = Y!(F ). Write F = lim−→ S(Xi) as a filtered col-

imit of representable functors over X. Since Y! commutes with filtered colimits,
E = lim−→ Y!S(Xi). By the definition of Y! it follows that Y!S(Xi) = (−,Y(Xi)),

which obviously is an FP-injective object in D(C). Then E is FP-injective, since by
[46] a filtered colimit of FP-injective objects in a locally coherent category is again
FP-injective. Conversely if E is FP-injective, let 0 → M1 → M2 → M3 → 0
be an exact sequence in B(X). By the construction of cokernels in D(C), see
[23], it follows that 0 → (−,M1) → (−,M2) → (−,M3) → 0 is exact in
D(C). Since E is FP-injective and the (−,Mi) are finitely presented, the sequence
0 → ((−,M3), E) → ((−,M2), E) → ((−,M1), E) → 0 is exact, so its
isomorphic copy 0 → E(M3) → E(M2) → E(M1) → 0 is exact, i.e. E is
exact. ✷

The following is a direct consequence of the above lemma.

COROLLARY 4.2. If 0 → F1 → F2 → F3 → 0 is an exact sequence of flat
functors in L(C), then the sequence 0 → Y!(F1) → Y!(F2) → Y!(F3) → 0 is
exact in D(C).

From now on we identify the functors T, Y!S: C → D(C).

Remark 4.3. For all A ∈ C, for all X ∈ X, and all M ∈ B(X):

T(A)(Y(X)) = S(A)⊗X [Y(X),Y(−)] = S(A)⊗X (X,−) ∼= C(X,A),

T(X)(M) = S(X)⊗X [M,Y(−)] = [M,Y(X)] = M(X).

Remark 4.4. It is easy to see that S preserves products. Using that X consists
of compact objects it follows that S preserves coproducts. Since Y! is a left adjoint,
it follows that T preserves coproducts. Since a product of FP-injective objects is
again FP-injective, it follows directly by Lemma 4.1 that T preserves products.

We call L(C),D(C), the representation categories of C, with respect to the
fixed Whitehead subcategory X. The categories L(C),D(C) are Grothendieck ab-
stract homotopy categories and together with the connecting representation func-
tors S: C → L(C), T: C → D(C), they are very useful for the study of purity
in C.
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Our aim in this section is, using the representation categories, to prove that an
abstract homotopy category C satisfying some additional conditions, has enough
pure-projectives and pure-injective envelopes. The usefullness of the representation
categories in the study of purity, emerges from the following result.

LEMMA 4.5. Let (E): A→ B → C be a sequence in C. Then (E) is pure iff the
sequence 0 → S(A)→ S(B)→ S(C)→ 0 is short exact in L(C) iff the sequence
0 → T(A)→ T(B)→ T(C)→ 0 is short exact in D(C).

Proof. The first assertion is clear. If (E) is pure, then 0 → S(A) → S(B) →
S(C) → 0 is an exact sequence of flat functors in L(C). Since T = Y!S, by
Corollary 4.2, the sequence 0 → T(A) → T(B) → T(C) → 0 is exact in
D(C). Conversely, if the last sequence is exact, then since its terms are FP-injective
objects and for all X ∈ X, the object T(X) = (−,Y(X)) is finitely presented, the
sequence

0 → (T(X),T(A))→ (T(X),T(B))→ (T(X),T(C))→ 0

is exact. Obviously this sequence is isomorphic to the sequence

0 → (S(X),S(A))→ (S(X),S(B))→ (S(X),S(C))→ 0,

or, equivalently, to the sequence

0 → C(X,A)→ C(X,B)→ C(X,C)→ 0.

Hence, the sequence (E) is pure. ✷
To proceed further in an efficient way we need to impose an axiom. First it is

convenient to introduce some terminology.

DEFINITION 4.6. A morphism g: B → C in C is called pure-epic, if S(f ) is an
epimorphism in L(C). A morphism f : A→ B in C is called pure-monic, if T(f )
is a monomorphism in D(C).

AXIOM 4.7. Any pure-epic B → C, resp. pure-monic A→ B, can be included
in a pure-sequence A→ B → C in C.

From now on, we assume throughout that Axiom 4.7 holds in C.

4.3. PURE-PROJECTIVES

The following result shows the existence of enough pure-projective objects in C
and describes their structure.

PROPOSITION 4.8. C has enough pure-projectives and P (E) = Add(X). More-
over, for all P ∈ P (E) and A ∈ C, the canonical morphism C(P,A) →
[S(P ),S(A)] is an isomorphism and the functor S: C → L(C) induces an equiva-

lence S: P (E)
≈→ Proj L(C).
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Proof. Clearly Add(X) ⊆ P (E). Let C be an object in C. Then the set of
morphisms IC := {X→ C | X ∈ Iso(X)} induces a morphism gC :

⊕
a∈IC Xa →

C. By construction the morphism C(X, gC) is an epimorphism for all X ∈ X;
equivalently S(gC) is an epimorphism and then gC is pure-epic. By Axiom 4.7,

there exists a pure-sequence A → ⊕
a∈IC Xa

gC→ C in C. Since
⊕

a∈IC Xa ∈
P (E), it follows that C has enough pure-projectives. If C ∈ P (E), then the above
pure-sequence splits, hence C ∈ Add(X) as a direct summand of

⊕
a∈IC Xa .

We conclude that P (E) = Add(X). Now let A ∈ C and X ∈ X. Then ob-
viously the canonical morphism SX,A: C(X,A) → [S(X),S(A)] is invertible.
Since S preserves coproducts, this isomorphism can be extended to an isomorphism
ST ,A: C(T ,A)→ [S(T ),S(A)], for any T being a coproduct of objects of X. From
this it follows that SP,A is an isomorphism for any P ∈ P (E) = Add(X). Finally,
since X is compact, it is trivial to see that the functor S: Add(X)→ Proj L(C) is
an equivalence [12] and the last assertion follows. ✷

We recall that a functor category Mod(Y) is called perfect, if any functor has a
projective cover, equivalently if any flat functor is projective.

COROLLARY 4.9. C is pure-semisimple iff any object of C has a pure-projective
cover iff the category L(C) is perfect. In this case the functor S induces an equiva-

lence S: C
≈→ Flat L(C) = Proj L(C).

Proof. If C is pure-semisimple then by Proposition 4.8, C = Add(X). By

[13], the functor category L(C) is perfect and S: C
≈→ Flat L(C) = Proj L(C)

is an equivalence. Trivially, C then has pure-projective covers. Conversely if C has

projective covers then for allA ∈ C, let B → P
f→ A be a sequence with f a pure-

projective cover. Using Proposition 4.8, we see easily that S(f ): S(P )→ S(A) is
a projective cover. It is well known that the only flat functors admitting projective
covers are the projective ones. Since S(A) is flat, S(A) is projective or equivalently
A is pure-projective. This implies that C is pure-semisimple. It remains to show
that C is pure-semisimple, if L(C) is perfect. But for all A ∈ C, S(A) is flat, hence
projective. It follows that A is pure-projective and then C is pure-semisimple. ✷

4.4. PURE-INJECTIVES

We would like to know under what conditions the abstract homotopy category C
admits pure-injective envelopes.

LEMMA 4.10. For all A ∈ C and for all I ∈ I(E), the canonical morphism
SA,I : C(A, I )→ L(C)[S(A),S(I )] is an isomorphism. In particular the functors
S: I(E)→ L(C) and T: I(E)→ D(C) are fully faithful.

Proof. Let A, I be in C with I be a pure-injective object. By Proposition 4.8,
we can choose pure-projective presentations B → P0 → A and C → P1 → B.
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Then we have an exact sequence S(P1)→ S(P0)→ S(A)→ 0 in L(C). Since I is
pure-injective, we have an exact sequence 0 → C(A, I )→ C(P0, I )→ C(P1, I )

and an exact sequence

0 → [S(A),S(I )] → [S(P0),S(I )] → [S(P1),S(I )].
Then we have the following exact commutative diagram:

0 C(A, I )

SA,I

C(P0, I )

SP0,I

C(P1, I )

SP1,I

0 [S(A),S(I )] [S(P0),S(I )] [S(P1),S(I )]
Since SP,A is invertible, for all P ∈ P (E), it follows directly that the canonical
morphism SA,I is invertible. Hence, S: I(E)→ L(C) is fully faithful. Since Y! is
fully faithful, it follows that the functor T = Y!S: I(E)→ D(C) is fully faithful. ✷

Viewing Flat L(C) as an abstract homotopy category with minimal Whitehead
subcategory Y(X), it follows easily that a sequence F1 → F2 → F3 in Flat L(C)
is pure iff the sequence 0 → F1 → F2 → F3 → 0 is exact in L(C).

PROPOSITION 4.11. Any injective object E in D(C) is of the form Y!(F ), where
F is a pure-injective object in Flat L(C).

Proof. Since E is FP-injective, by Lemma 4.1 there exists a flat functor F ∈
L(C) such that Y!(F ) = E. Let F1 � F2 � F3 be a pure sequence in Flat L(C).
By Corollary 4.2, Y!(F1) � Y!(F2) � Y!(F3) is a short exact sequence in D(C).
Since Y!(F ) is injective,

(Y!(F3),Y!(F )) � (Y!(F2),Y!(F )) � (Y!(F1),Y!(F ))

is a short exact sequence in Ab. Since Y! is fully faithful, the sequence (F3, F ) �
(F2, F ) � (F1, F ) is short exact. It follows that F is a pure-injective object in
Flat L(C). ✷
THEOREM 4.12. Assume that any pure-injective in Flat L(C) is of the form S(I ),
for some pure-injective I ∈ C. Then C has pure-injective envelopes and the functor

T: C → D(C) induces an equivalence: T: I(E) ≈−→ Inj D(C).
Proof. We show that T(I ) is injective in D(C) for any pure-injective I in C. Let

µ: T(I )→ E be the injective envelope of T(I ) in D(C). By Proposition 4.11, there
exists a pure-injective object F in Flat L(C), such that Y!(F ) = E. By hypothesis,
there exists a pure-injective object J ∈ C such that S(J ) = F . Since E = T(J ),
by Lemma 4.10 the morphism µ is of the form T(α), where α: I → J . Since T(α)
is monic, α is pure-monic. Since I is pure-injective in C, α is split monic. Then
obviously T(α) is invertible, so T(I ) is injective in D(C). The above argument also
shows that if E is an injective object of D(C), then E ∼= T(I ), for a pure-injective
object I in C. So by Lemma 4.10, T: I(E)→ Inj D(C) is an equivalence.
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Now let A be in C and let µ: T(A)→ T(I ) be an injective envelope in D(C).
Since µ is of the form T(f ), for a pure-monic f : A → I , by Axiom 4.7, there

exists a pure-sequence A
f→ I → C in C, which is a pure-injective copresentation

of A. If ρ: I → I is a morphism in C such that f ◦ ρ = f , then T(f ) ◦ T(ρ) =
T(f ). Since T(f ) = µ is an injective envelope, T(ρ) is an automorphism. Since
Y! is fully faithful, S(ρ) is an automorphism. Then ρ is an automorphism, since S
reflects isomorphisms. Hence, C has pure-injective envelopes. ✷

If X is a homological compact object, then choosing  = Z and I = Q/Z in
Subsection 3.1, it follows that the dual object DQ/Z(X) of X exists in C and there

exists a natural isomorphism ω: [C(X,−),Q/Z] ∼=−→ C(−,DQ/Z(X)).

THEOREM 4.13. Assume that X ⊆ H(Cb) and that Y! is exact on exact se-
quences in L(C) of the form

S(A)
S(f )−→ S(B)

S(g)−→ S(C).

Then we have the following:

(i) C has pure-injectives envelopes and I(E) = Prod(DQ/Z(X)).

(ii) T induces an equivalence T: I(E) ≈−→ Inj D(C).

Proof. The isomorphism ω above shows directly that any dual object of the form
DQ/Z(X) with X ∈ X, is pure-injective. In particular, Prod(DQ/Z(X)) ⊆ I(E).

Now let A ∈ C and consider the set of morphisms JA := {A → DQ/Z(X) |
X ∈ Iso(X)}. Since C as an abstract homotopy category, has products, the set
of morphisms JA induces a morphism fA: A → ∏

JA
DQ/Z(X) in C, with the

property that C(fA,DQ/Z(X)) is an epimorphism, for all X ∈ X. We set E :=∏
JA

DQ/Z(X). Then the morphism

[C(X, fA),Q/Z]: [C(X,E),Q/Z] → [C(X,A),Q/Z]
is isomorphic via ω to the morphism C(fA,DQ/Z(X)): C(E,DQ/Z(X)) →
C(A,DQ/Z(X)). Since C(fA,DQ/Z(X)) is an epimorphism and Q/Z is an injec-
tive cogenerator in Ab, it follows that for all X ∈ X the morphism C(X, fA):
C(X,A) → C(X,E) is a monomorphism. Hence, S(fA): S(A) → S(E) is a
monomorphism. By hypothesis, T(fA) is also a monomorphism. Then by Axiom
4.7, there exists a pure-sequence A → E → C in C, which is a pure-injective
copresentation of A. Hence, C has enough pure-injectives. If A is pure-injective,
then the morphism fA splits, hence A is a direct summand of E = ∏

JA
DQ/Z(X).

It follows that I(E) = Prod(DQ/Z(X)).
Let E be an injective object in D(C) and consider the functor F : Cop → Ab

defined by F(A) = (T(A),E). Since X ⊆ H(Cb), S sends a weak cokernel
sequence A→ B → C in C to the exact sequence S(A)→ S(B)→ S(C) in L(C).
By hypothesis on Y!, the sequence T(A) → T(B) → T(C) is exact in D(C) and
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since E is injective in D(C), the functor F is half-exact. Plainly F sends coproducts
to products, hence by Brown representability, there exists an isomorphism:

ξ : F = (T(−), E) ∼=−→ C(−, IE).
Since T sends pure-sequences in C to short exact sequences in D(C) and since E
is injective in D(C), it follows that IE is pure-injective. Then ξ|X: (T(−), E)|X∼= S(IE) and Y!(ξ|X): Y!(T(−), E)|X ∼= T(IE). It is not difficult to see that the
functor Y!(T(−), E)|X is isomorphic to the functor E. Hence, T(IE) ∼= E.

Next we show that T(I ) is injective in D(C), for any pure-injective object I in
C. Let α: T(I ) → E be the injective envelope of T(I ) in D(C). By the above
argument, there exists a pure-injective object IE such that T(IE) ∼= E. Since TA,IE

is invertible, for all A ∈ C, there exists a morphism f : I → IE such that T(f ) =
α. Since T(f ) is a monomorphism, there exists a pure-sequence I → IE → C

in C. Since I is pure-injective, this sequence splits and I is a direct summand
of IE. Then T(I ) is a direct summand of T(IE) = E, hence T(I ) is injective

in D(C). Then by Lemma 4.10, T induces an equivalence T: I(E) ≈→ Inj D(C).
The existence of pure-injective envelopes in C is proved in the same way as in
Theorem 4.12. ✷
COROLLARY 4.14. Let E be an object in C.
(1) If C satisfies the assumptions of Theorems 4.12 or 4.13 and E is indecom-

posable and pure-injective, then E has local endomorphism ring.
(2) If C satisfies the assumptions of Theorem 4.13 then for the statements:

(i) E ∼= Dm(X), where X ∈ X and m is a maximal left ideal of EndC(X);
(ii) E is pure-injective and there exists a left almost split morphism E → B in

C;
(iii) T(E) is the injective envelope of a simple functor in D(C).

we have (i)⇒ (ii)⇒ (iii).
Proof. (1) By hypothesis, T(E) is indecomposable injective in D(C) and

EndC(E) ∼= EndD(C)(T(E)). Then EndC(E) is local by [28]. (2) (i)⇒ (ii) Follows
from part (ii) of Theorem 3.10. (ii) ⇒ (iii) The proof is identical with the proof
of (β) ⇒ (γ ) in part (i) of Theorem 3.13, using that T: I(E) → Inj D(C) is an
equivalence. ✷
5. Phantomless Abstract Homotopy Categories, Categories of Finite Type

and Ziegler Spectra
Throughout this section we keep the setting, the assumptions and the notations
introduced in Section 4. In particular we assume that Axiom 4.7 holds.

5.1. PHANTOM MAPS

An important class of morphisms in an abstract homotopy category C is the class
of phantom morphisms, i.e. morphisms which are invisible in the representation
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categories L(C),D(C). In a sense their complexity measures how far is C from
being locally finitely presented. More precisely:

DEFINITION 5.1. A morphism f : B → C is called phantom, if C(X, f ) = 0,
for allX ∈ X. C is called phantomless, if there are no nonzero phantom morphisms
in C. Equivalently the functor S: C → L(C) or the functor T: C → D(C) is
faithful.

Let Ph(A,B) be the set of all phantom morphisms fromA toB. Plainly Ph(C) =⋃
A,B∈C Ph(A,B) concides with the kernel-ideal ker S := {f |S(f ) = 0} of S,

hence it is an ideal in C, i.e. Ph(−,−) is an additive subfunctor of C(−,−). Since
X is a Whitehead subcategory of C, it follows that S reflects isomorphisms. Hence,
Ph(C) is contained in the Jacobson radical of C. Observe that by Proposition 4.8
and Lemma 4.10, Ph(P,B) = 0 = Ph(A, I ), for all P ∈ P (E) and for all
I ∈ I(E). To study phantom morphisms it is useful to impose on C the following
axiom.

AXIOM 5.2. If K
g→ P

f→ A is a pure-projective presentation in C, then f is a
weak cokernel of g.

Note that this axiom holds in all the examples listed in Section 2. The next
lemma shows that the phantomless property of C forces S to be full.

LEMMA 5.3. Assume that Axiom 5.2 holds in C. If C is phantomless, then the
functor S: C → L(C) is full and any object of C is a filtered colimit of objects
of X.

Proof. Let K
g→ P

f→ A be a pure-projective presentation of A in C and let
h: A → C be a weak cokernel of f . Then h is phantom, hence h = 0. It follows
that f is an epimorphism. Since f is a weak cokernel of g, for any B ∈ C, we have
the following exact commutative diagram:

0 C(A,B)

SA,B

C(P,B)

SP,B

C(K,B)

SK,B

0 [S(A),S(B)] [S(P ),S(B)] [S(K),S(B)]
Since C is phantomless, SA,B,SK,B are monomorphisms and since P is pure-
projective, SP,B is invertible. A simple diagram chasing shows that SA,B is invert-
ible. Hence S is fully faithful. Now fix an object A ∈ C and consider the category
UA with objects, morphisms α: X → A with X ∈ X. A morphism in UA from
α: X1 → A to β: X2 → A is a morphism f : X1 → X2 such that f ◦β = α. Since
S is fully faithful, the inclusion X ↪→ C is dense in the sense of [45]. Then it is well
known that A is a colimit of the functor UA → C defined by sending α: X → A

to X. Using that X is closed under weak cokernels in C, it is not difficult to see
that the category UA is filtered. So any object of C is a filtered colimit of objects
of X. ✷
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PROPOSITION 5.4. The following are equivalent.

(i) C is a locally finitely presented category and f.p(C) = X;

(ii) the functor S induces an equivalence C
≈→ Flat L(C);

(iii) the functor T induces an equivalence C
≈→ FP Inj D(C);

(iv) C is phantomless, Axiom 5.2 holds and any functor I: I → X from a
skeletally small filtered category I , has an X-minimal weak colimit in C.

Proof. The implication (i) ⇒ (ii) is obvious and by Lemma 4.1 it directly fol-
lows that (ii) ⇔ (iii). (ii) ⇒ (iv) Clearly C is phantomless and Axiom 5.2 holds
in C. Moreover, any functor I: I → C admits a filtered colimit, which obviously
is an X-minimal weak colimit, since X consists of finitely presented objects.
(iv) ⇒ (i) Since C is phantomless by Lemma 5.3, S: C → L(C) is fully faith-
ful. Let F be a flat functor over X. Then F is a filtered colimit lim−→ S(Xi), where

Xi = I(i) and I: I → X is a functor from a skeletally small filtered category I .
By hypothesis, there exists in C an X-minimal weak colimit w.lim−→ Xi . Then plainly

S(w.lim−→ Xi) ∼= lim−→ S(Xi) = F and S: C → Flat L(C) is surjective on objects.

Hence S is an equivalence. ✷
Remark 5.5. If any morphism in C is a weak kernel, then any epimorphism in

C splits. Indeed, if f : B → C is an epimorphism and a weak kernel, then f is a
weak kernel of its weak cokernel which is zero. Then 1C factors through f , i.e. f
splits.

LEMMA 5.6. If any morphism in C is a weak kernel, then: Cb = f.p(C).
Proof. Let X be a compact object and let {Ai; i ∈ I } be a filtered system in C,

with filtered colimit lim−→ Ai , so we have an exact sequence

⊕
i→j

Ai

g→
⊕
i∈I

Ai

f→ lim−→ Ai → 0.

Since g is a weak kernel of f and since by Remark 5.5, f is a split epimorphism,
it follows that the sequence

C

(
X,

⊕
i→j

Ai

)
→ C

(
X,

⊕
i∈I

Ai

)
→ C(X, lim−→ Ai)→ 0

is exact. Since X is compact, it follows directly that the canonical morphism
lim−→ C(X,Ai) → C(X, lim−→ Ai) is invertible, hence X is finitely presented. The

converse is obvious. ✷
THEOREM 5.7. If any morphism in C is a weak kernel, then the following state-
ments are equivalent.
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(i) C is phantomless;
(ii) C is pure-semisimple;
(iii) C is a locally finitely presented category and X = Cb.

Proof. If C is phantomless, then for all A ∈ C choose a pure-epic f : P → A

with P pure-projective. Since any weak cokernel of f is phantom, it follows that
f is an epimorphism, which splits by Remark 5.5. Hence, A is pure-projective and
then C is pure-semisimple. If C is pure-semisimple, then by Corollary 4.8, C =
Add(X) is locally finitely presented. It is easy to see that Add(X)b = add(X).
Since by our general assumptions X is closed under direct summands, we infer that
Cb = X. If C is locally finitely presented and Cb = X, then by Lemma 5.6, X =
f.p(C). Then S: C → Flat L(C) is an equivalence, in particular C is phantomless. ✷

5.2. ABSTRACT HOMOTOPY CATEGORIES OF FINITE TYPE AND ZIEGLER

SPECTRA

We recall [23] that a Grothendieck category G is called locally Artinian, resp.
locally Noetherian, resp. locally finite, if G has a set of Artinian, resp. Noetherian,
resp. finite length, generators. Recall also that an additive category A is called a
Krull–Schmidt category if any object of A is a finite coproduct of indecomposable
objects and any indecomposable object has a local endomorphism ring. Finally,
recall that an Abelian category is called a length category if any of its objects has
finite length.

Proposition 5.4 and Gabriel’s theory [23], consult also [44], admit the following
corollary:

COROLLARY 5.8. C is pure-semisimple iff D(C) is locally Noetherian iff B(X)

is a Noetherian Abelian category iff the functor T induces an equivalence T: C
≈−→

Inj D(C) iff the functor S induces an equivalence S: C
≈−→ Proj L(C). If this is the

case, then X is a Krull–Schmidt category and any object of C is in a unique way a
coproduct of objects of X having a local endomorphism ring.

DEFINITION 5.9. An abstract homotopy category C is called of finite type iff its
representation category D(C) is locally finite.

PROPOSITION 5.10. The following are equivalent.

(i) C is of finite type;
(ii) B(X) is an Abelian length category;

(iii) the functor category Mod(Xop) is locally finite;
(iv) C is pure semisimple and B(X) is Artinian.

If X is Abelian with a finite number of nonisomorphic simple objects, then C is
of finite type iff X is a length category with a finite number of nonisomorphic
indecomposable objects.
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Proof. By Gabriel’s theory [23], D(C) is locally finite iff the category of fi-
nitely presented objects of D(C), which is equivalent to B(X), is Artinian and
Noetherian, hence (i) ⇔ (ii). The equivalence (i) ⇔ (iv) follows from Corol-
lary 5.8. Since B(X) = mod(Xop)op, the equivalence (ii) ⇔ (iii) follows. The
last assertion follows from the above equivalences and well-known results of M.
Auslander [5]. ✷

Recall from [14] that given a category K , there exists an Abelian category
A(K), the free Abelian category of K , and a functor F : K → A(K) such
that any functor K → U to an Abelian category U has an, essentially unique,
exact factorization through F . By [14], an Abelian category A is free iff A is an
Auslander category, i.e. if A has enough projectives and injectives and has global
dimension � 2 and dominant dimension � 2 in the sense that any projective P
admits an exact coresolution 0 → P → I0 → I1, where I0, I1 are projective-
injective objects. In this case A is the free Abelian category of the full subcategory
of projective-injective objects.

Recall that a ring � is called representation-finite if � is right Artinian and the
set of isoclasses of indecomposable finitely presented right�-modules is finite. Let
F be the collection of Morita equivalence classes of representation-finite rings and
let G be the collection of equivalence classes of abstract homotopy categories of
finite type with minimal Whitehead subcategory X, such that the Abelian category
B(X) is free with a finite number of nonisomorphic simple objects. The following
consequence of Proposition 5.10, is a variant of Auslander’s correspondence [5].

COROLLARY 5.11. The map χ : G → F defined by χ(C) = � is a bijection,
where � = EndC(Y ), Y = add(Y) and Y is the full subcategory of projective-
injective objects of B(X). The inverse map is given by ψ(�) = Mod(�).

Assume now that the hypotheses of Theorem 4.12 or Theorem 4.13 hold. Since
the functor T induces an equivalence between the pure-injectives of C and the
injectives of D(C), it follows that the isoclasses of indecomposable pure-injective
objects of C form a set, since it is well-known [23] that this is true for the isoclasses
of indecomposable injective objects in the locally coherent category D(C).

DEFINITION 5.12. The Ziegler spectrum Zsp(C) of C is defined to be the set of
isoclasses of indecomposable pure-injective objects of C.

Following [35] we equip the Ziegler spectrum with a topology in the following
way. Let : be a class of morphisms in X. An object I ∈ Zsp(C) is called :-
injective, if C(φ, I ): C(Y, I ) → C(X, I ) is an epimorphism for any φ: X → Y

in :. We denote by U: the subset of Zsp(C) consisting of all :-injectives. The
next result reduces the study of Zsp(C) to the study of spectra of more familiar
abstract homotopy categories, for which there exists already a rich theory. Its proof
is identical with the proof of the corresponding statement for module categories
[31, 35].
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COROLLARY 5.13. The subsets {U: | : is a class of morphisms in X} form
the closed sets of a topology in Zsp(C), the Ziegler topology of C, and there is a
bijection between the open sets of Zsp(C) and the Serre subcategories of B(X),
given by

O �−→{
M ∈ B(X) | {E ∈ Zsp(C) : D(C)(M,T(E)) �= 0} ⊆ O

}
.

The space Zsp(C) is homeomorphic with the Ziegler spectrum of the abstract
homotopy category Flat L(C) and with the spectrum [31] of the category D(C).

6. Representation Equivalences and Flat Approximations

Throughout this section we fix an abstract homotopy category C equipped with a
minimal compact Whitehead subcategory X ⊆ C closed under weak cokernels.
We assume throughout that C satisfies Axioms 4.7 and 5.2 of Sections 4, 5.

Although C is not necessarily equivalent to Flat L(C), there is another kind of
equivalence between these categories which is useful in many cases. Recall [3] that
a functor F : C → G is called a representation equivalence, if F is full, surjective
on objects and reflects isomorphisms. Since X is closed under weak cokernels
in C, by Lemma 4.1, we have Im S ⊆ Flat L(C). We would like to know under
what conditions the representation functor S: C → Flat L(C) is a representation
equivalence, so that C will be as close as possible to locally finitely presented, if it
is not phantomless. Another motivation for the study of this question comes from
algebraic topology. Since X is closed under weak cokernels in C, by [14], a functor
F : Xop → Ab is flat iff F is half-exact. Then S: C → Flat L(C) is a representation
equivalence iff any half-exact functor F : Xop → Ab is of the form S(C) and any
morphism F → G of half-exact functors is of the form S(α). Hence the question
above deals with the problem of ‘extending’ half-exact functors Xop → Ab to
half-exact (representable) functors Cop → Ab, thus it is related to another version
of the classical Adams–Brown representability [1, 18] a generalization of which in
the triangulated case is treated in detail in [12, 21, 22, 36, 39, 41].

6.1. FLAT APPROXIMATIONS

We assume that C has weak kernels and satisfies the assumptions of Theorem 4.12
or Theorem 4.13, so that C admits pure-injective envelopes and T: I(E) →
Inj D(C) is an equivalence. Recall that a full subcategory Y of an additive cate-
gory A is called contravariantly finite [8], if for any object A ∈ A, there exists a
morphism fA: YA → Awith YA ∈ Y, such that any morphism Y → Awith Y in Y
factors through fA. The dual notion is covariantly finite. If Y is both contravariantly
and covariantly finite, then it is called functorially finite.

THEOREM 6.1. Im S is functorially finite in L(C), i.e. any functor M ∈ L(C)
has a right Im S-approximation pM : S(A) → M and a left Im S-approximation
iM : M → S(B). Moreover, Im T is functorially finite in D(C).
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Proof. Let M be in L(C) and consider the functor Y!(M) ∈ D(C). Choose a
minimal injective presentation

0 → Y!(M)
µ′−→ T(I0)

f ′−→ T(I1)

of Y!(M) in D(C). By our assumptions, f ′ is of the form T(f ), where f : I0 →
I1 is a morphism in C. Since Y∗ is exact and Y∗Y! = IdL(C), we have an exact
sequence

0 → M
µ→ S(I0)

S(f )−→ S(I1),

where µ := Y∗(µ′). Let g: A → I0 be a weak kernel of f in C. Since S(g) ◦
S(f ) = 0, there exists a unique morphism pM : S(A) → M such that pM ◦ µ =
S(g). If α: S(B)→ M is a morphism in L(C), then by Lemma 4.10, the morphism
Y!(α) ◦ Y!(µ): T(B) → T(I0) is of the form T(h), where h: B → I0. Then
obviously T(h)◦T(f ) = 0. Hence, by Lemma 4.10, we have h◦f = 0. Since g is
a weak kernel of f in C, there exists a morphism γ : B → A such that γ ◦ g = h.
Then S(γ )◦S(g) = S(h). Since Y!(α)◦Y!(µ) = T(h) = Y!S(h) and Y! is faithful,
we have α ◦µ = S(h) = S(γ ) ◦ S(g). Then S(γ ) ◦pM ◦µ = S(γ ) ◦ S(g) = α ◦µ
and this implies that S(γ ) ◦ pM = α, since µ is a monomorphism. This shows that
pM is a right Im S-approximation. Hence, Im S is contravariantly finite in L(C).

Now let S(P1)
S(f )−→ S(P0)

ε→ M → 0 be the start of a projective resolution of

M and let P1
f→ P0

g→ A be a weak cokernel sequence in C. Then there exists
a unique morphism iM : M → S(A) such that ε ◦ iM = S(g). If h: M → S(B)
is a morphism in L(C), then S(f ) ◦ ε ◦ h = 0. Since P0 is pure-projective, the
morphism ε ◦ h is of the form S(τ ), where τ : P0 → B. Hence, S(f ) ◦ S(τ ) = 0
and then f ◦ τ = 0. Hence, there exists σ : A → B such that g ◦ σ = τ . Then
S(g) ◦ S(σ ) = S(τ )⇒ ε ◦ iM ◦ S(σ ) = ε ◦ h⇒ iM ◦ S(σ ) = h. Hence, iM is a left
Im S-approximation.

Using the adjoint pair (Y!,Y∗) and the contravariant finiteness of Im S it is easy
to see that Im T is contravariantly finite in D(C). Since T preserves products and
Im T consists of FP-injective objects, it follows that Im T is closed under products
and pure-subobjects, for the purity in D(C) induced by its finitely presented objects.
Then it follows by [35], that Im T is covariantly finite in D(C). ✷
COROLLARY 6.2. If S: C → Flat L(C), resp. T: C → FP Inj D(C), is surjective
on objects, then Flat L(C), resp. FP Inj D(C), is functorially finite in L(C), resp.
D(C).

COROLLARY 6.3. Let P be a skeletally small additive category with weak cok-
ernels. Then the category Flat(P ) is contravariantly finite in Mod(P ) iff Flat(P )

admits weak kernels. In particular if � is a left coherent ring, then the category
Flat(�) of flat right �-modules is contravariantly finite in Mod(�) iff Flat(�)
admits weak kernels.
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Proof. If Flat(P ) is contravariantly finite, then Flat(P ) has weak kernels by
[13]. Since P has weak cokernels, the category Flat(P ) is an abstract homotopy
category and as such satisfies the assumptions of Theorem 4.12. If in addition
Flat (P ) has weak kernels, then since in our case S is an equivalence, the con-
travariant finiteness of Flat (P ) follows from Corollary 6.2. The last assertion
follows from the well-known observation that the category P� of finitely generated
projective right �-modules has weak cokernels iff � is left coherent. ✷

6.2. REPRESENTATION EQUIVALENCES

The following result shows a connection between representation equivalences and
flat approximations, first observed by H. Krause [36] in case C is a compactly
generated triangulated category.

Let pM : S(A) → M be the right Im S-approximation and iM : M → S(B) be
the left Im S-approximation of M ∈ L(C), constructed in Theorem 6.1.

PROPOSITION 6.4. If for all functors M ∈ L(C), pM is right minimal or iM is
left minimal, then the functor S: C → Flat L(C) is a representation equivalence.

Proof. Let

S(P1)
S(f )−→ S(P0)

ε→ M → 0

be the start of a projective resolution of M, such that iM : M → S(A) is a minimal
left flat approximation of M, where g: P0 → A is a weak cokernel of f and
S(g) = ε ◦ iM . If M is flat, then obviously iM is invertible. Hence, S is surjective
on flat functors. If α: S(A) → S(A′) is a morphism, then by construction and
hypothesis, we can choose projective presentations

S(P1)
S(f )−→ S(P0)

S(g)−→ S(A)→ 0 and S(P ′1)
S(f ′)−→ S(P ′0)

S(g′)−→ S(A′)→ 0

such that g, resp. g′, is a weak cokernel of f , resp. f ′. Then α induces morphisms
γ : P1 → P ′1 and β: P0 → P ′0 such that γ ◦f ′ = f ◦β and S(β)◦S(g′) = S(g)◦α.
By the first relation, there exists δ such that g◦δ = β◦g′. Obviously then S(δ) = α,
hence S is full. Since S reflects isomorphisms, it is a representation equivalence.
The proof for pM is similar. ✷

Remark 6.5. H. Krause [36] proved that if C is a compactly generated triangu-
lated category and X = Cb, then the converse holds for pM : S(A) → M. The
corresponding result for the morphism iM is not true in general (even in the setting
of [36]). However, it is not difficult to see that it is true if any torsionless functor,
i.e. a subfunctor of a projective functor, has a projective cover.
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We define the pure-projective dimension p.p.dA of an object A ∈ C inductively
as follows. IfA is pure-projective, then p.p.dA = 0. If p.p.dA > 0, then p.p.dA �
n if there exists a pure sequence K → P → A in C such that p.p.dK < n and P
is pure-projective. Then define p.p.dA = n if p.p.dA � n and p.p.dA � n− 1. If
p.p.dA �= n, for all n � 0, then define p.p.dA = ∞. Finally define the pure-global
dimension p.gl.dim C of C by p.gl.dim C = sup{p.p.dA | A ∈ C}.

Remark 6.6. Since S reflects isomorphisms it is easy to see (compare [12]) that
p.d S(A) = p.p.dA for all A ∈ C. Hence,

p.gl.dim C � sup{p.dF | F ∈ Flat L(C)}.
We recall [44] that the weight w(X) of X is the cardinality of the disjoint union

of the sets C(X1, X2), where X1, X2 run over the isoclasses of objects of X. By
a result of Simson [44], if w(X) � ℵt for some t � 0, then sup{p.dF ; F ∈
Flat L(C)} � t + 1. Hence, in this case p.gl.dim C � t + 1. It follows that if X has
a countable skeleton, i.e. if w(X) � ℵ0, then p.gl.dim C � 1.

LEMMA 6.7. If p.p.dA � 1, then for all B ∈ C, the canonical morphism SA,B:
C(A,B) → [S(A),S(B)] is an epimorphism. Hence, the functor S is full if
p.gl.dim C � 1.

Proof. Let P1
g→ P0

f→ A be a pure sequence in C with P1, P0 pure-projective
and let B ∈ C. Since f is a weak cokernel of g, the sequence C(A,B) →
C(P0, B) → C(P1, B) is exact. Since the sequence 0 → [S(A),S(B)] →
[S(P0),S(B)] → [S(P1),S(B)] is exact and for i = 0, 1, the morphisms SPi,B :
C(Pi, B) → [S(Pi),S(B)], are invertible, it follows that SA,B : C(A,B) →
[S(A),S(B)] is an epimorphism. ✷
PROPOSITION 6.8. If any flat functor F in L(C) has projective dimension
p.dF � 1, then the functor S: C → Flat L(C) is a representation equivalence.

Proof. Since S reflects isomorphisms, and by Remark 6.6 and Lemma 6.7, S is
full, it remains to show that S is surjective on flat functors. Let F be a flat functor
and let 0 → R1 → R0 → F → 0 be a projective resolution of F in L(C). Then
the morphism R1 → R0 is of the form S(g): S(P1) → S(P0), for a morphism
g: P1 → P0 in C. Since Y! is exact on exact sequences of flat functors, it follows
that T(g) is a monomorphism, i.e. g is pure-monic. By Axiom 4.7, there exists a

pure sequence P1
g→ P0 → A in C. Then obviously S(A) ∼= F . ✷

COROLLARY 6.9. S: C → Flat L(C) is a representation equivalence, if
w(X) � ℵ0.

As a consequence we have the following result on flat approximations.

COROLLARY 6.10. If any flat functor F in L(C) has p.dF � 2 (e.g., if the weight
of X is of cardinality w(X) � ℵ1), then Flat L(C) is contravariantly finite in L(C).
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Proof. By Corollary 6.2, it suffices to show that S is surjective on flat functors.
Let

0 → S(P2)
S(f2)−→ S(P1)

S(f1)−→ S(P0)
S(f0)−→ F → 0

be a projective resolution of the flat functor F in L(C). Then the morphism f2 is

pure-monic, hence by Axiom 4.7, there exists a pure sequence P2
f2→ P1

g→ A

in C. Then S(A) ∼= Im (S(f1)). Since p.p.dA � 1, by Lemma 6.7 the inclusion
morphism S(A) ↪→ S(P0) comes from a morphism h: A → P0 and plainly h

is pure-monic, since the cokernel of S(h) is flat and Y! is exact on short exact

sequences of flat functors. By Axiom 4.7 there exists a pure-sequence A
h→ P0 →

B in C. Then obviously S(B) ∼= F . ✷
The converse of Proposition 6.8 is not true in general. For instance if C is a

locally finitely presented category with products, then S: C → Flat(f.p(C)) is
an equivalence but a flat functor over f.p(C) can be of arbitrary large projective
dimension. However the converse is true if in C any epimorphism splits and the
pure-projective presentations are closed under weak push-outs along phantom mor-

phisms, in the following sense. If K
g→ P

f→ A is a pure-projective presentation

of A and h: K
f→ B is a phantom morphism in C, then there exists a commutative

diagram:

K
g

h

P
f

γ

A

||

B
α

D
β

A

such that the lower sequence is pure and the left square is a weak push-out diagram,
i.e. the morphism t(γ, α): P⊕B → D is a weak cokernel of (g,−h): K → P⊕B.
Note that these conditions hold trivially if C is a triangulated category.

THEOREM 6.11. If any epimorphism in C splits and the pure-projective pre-
sentations are closed under weak push-outs along phantom morphisms, then the
functor S: C → Flat L(C) is a representation equivalence iff p.dF � 1, for all
F ∈ Flat L(C).

Proof. (⇒) Since any flat functor F is of the form S(A), by Remark 6.6 it
suffices to show that p.p.dA � 1 for all A ∈ C. Let

K
g→ P

f→ A and L
g′→ Q

f ′→ K

be pure-projective presentations and let h: K → B be a weak cokernel of f ′.
Consider the weak push-out of h, g, as in the above diagram. Since f ′ is pure-
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epic, h is a phantom morphism or equivalently S(h) = 0. Applying the functor
S to the diagram above, we have the following exact commutative diagram in
L(C):

0 S(K)

0

S(g)
S(P )

S(f )

S(γ )

S(A)

||

0

0 S(B)
S(α)

S(D)
S(β)

S(A) 0

Then there exists a morphism δ′: S(A) → S(D) such that S(f ) ◦ δ′ = S(γ ).
Since S is full, there exists δ: A → D such that S(δ) = δ′. It follows easily
that S(δ) ◦ S(β) = 1S(A). Since S reflects isomorphisms, we have that δ ◦ β is
invertible. Let ω: S(D)→ F be the cokernel of S(γ ). By the above diagram, there
exists a unique isomorphism ζ : S(B)→ F such that ζ = S(α) ◦ ω. Consider the
morphism ω ◦ ζ−1: S(D)→ S(B). By the fullness of S, there exists a morphism
φ: D→ B such that S(φ) = ω ◦ ζ−1. Then S(α) ◦S(φ) = S(α) ◦ω ◦ ζ−1 = 1S(B).
Since S reflects isomorphisms, we have that α ◦ φ is invertible. Now observe that
S(γ ) ◦ S(φ) = S(γ ) ◦ ω ◦ ζ−1 = 0. Hence, γ ◦ φ is phantom. Since P is pure-
projective it follows that γ ◦ φ = 0. Then h = h ◦ α ◦ φ = g ◦ γ ◦ φ = 0. This
implies that f ′ is an epimorphism since its weak cokernel is zero. By hypothesis
f ′ splits. Hence, K is pure-projective as a direct summand of Q. This implies that
p.p.dA � 1. ✷

Theorem 6.11, together with Corollary 6.9, generalizes the well-known result
of Brown [18] and Adams [1], see also [39], on the homotopy category of pointed
CW-complexes to the nonstable case and answers a question of Heller [26]. Since
the assumptions of Theorem 6.11 hold in triangulated categories, we recover the
generalizations of Adams–Brown representability theorem to triangulated cate-
gories studied in [12, 21, 41].

7. Applications

7.1. LOCALLY FINITELY PRESENTED CATEGORIES

Let F be a locally finitely presented additive category with products. We view F
as an abstract homotopy category with minimal Whitehead subcategory f.p(F ).
Clearly f.p(F ) is compact and closed under (weak) cokernels in F . Moreover,
it is not difficult to see that F satisfies Axiom 4.7 and the condition imposed
in Theorem 4.12. Then F is phantomless and the theory of Section 4 applied
to F recovers the theory of purity developed by Crawley-Boevey [17], and by
Gruson and Jensen [24], Simson [44] and others (see [28]), if in addition F is
Abelian. In particular, F has enough pure-projective objects and admits pure-
injective envelopes. Concerning almost split morphisms, we have the following
direct consequence of Theorem 3.10.
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THEOREM 7.1. Let X be a homological finitely presented object in F . Then the
m-dual object Dm(X) is pure-injective and there exists a left almost split morphism
gX: Dm(X)→ FX in F . If F has weak kernels and X has a local endomorphism
ring, then there exists a right almost split morphism fX: FX → X in F .

Theorem 7.1 and the results of Sections 3 and 4 can be applied to the locally
finitely presented category F of flat quasi-coherent sheaves for a nonsingular irre-
ducible curve/surface X over a field, where f.p(F ) is the category of vector bundles
over X [17]. Similar remarks are hold for categories of rational G-modules with
good filtrations over an algebraic group G [17]. Details are left to the interested
reader.

7.2. RIGHT TRIANGULATED CATEGORIES WITH A RIGHT SEMI-EQUIVALENCE

SUSPENSION FUNCTOR

Let C be a right triangulated [2] (or suspended [30]) category with suspension
functor C: C → C. Recall that C is called a right semi-equivalence [2], if C
is fully faithful and ImC is closed under extensions in the following sense: if
C(A) → X → C(C) → C2(A) is a triangle in C, then X = C(B) for some B
in C. The following are nontrivial examples of right triangulated categories with a
right semi-equivalence suspension functor, which are not necessarily triangulated.

EXAMPLE 7.2. (1) Let (C�0,C�0) be a t-structure in a triangulated category C.
Then C�0 is right triangulated with a right semi-equivalence suspension functor.

(2) Let C be an Abelian category with enough injectives and let I be the full
subcategory of injective objects of C. By [2], a full subcategory X/I of C/I is
right triangulated with right semi-equivalence suspension functor iff X is closed
under extensions, cokernels of monomorphisms and I ⊆ X ⊆ I⊥, where I⊥ :=
{A ∈ C | Extn(X,A) = 0, ∀X ∈ I , ∀n � 1}. For instance, we can take X = I⊥.

Throughout we fix a right triangulated category C with a right semi-equivalence
suspension functor C. We assume that C has coproducts and C preserves coprod-
ucts. By [2], the functor C(A,−): C → Ab is half-exact, for all A ∈ C. Hence,
H(Cb) = Cb and then by Lemma 3.11 of [13], we have the following consequence.

LEMMA 7.3. Any compact subcategory of C is minimal.

The above lemma and the adjoint functor theorem 2.8 admit the following.

COROLLARY 7.4. If C contains a compact Whitehead subcategory, then C is an
abstract homotopy category and the suspension functor C admits a right adjoint D.

From now on we assume that C contains a compact Whitehead subcategory X
and we view C as an abstract homotopy category. The following important class of
triangles was introduced by Happel [25], generalizing the fundamental notion of
an almost split sequence in an Abelian category, due to Auslander and Reiten [7].
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DEFINITION 7.5. A triangleA
g→ B

f→ C → C(A) in C is called an Auslander–
Reiten triangle, if g is left almost split and f is right almost split.

THEOREM 7.6. IfX is a compact object in C with local endomorphism ring, then
there exists an Auslander–Reiten triangle:

Dm(X)
gX−→ A

fX−→ C(X)
−C(hX)−→ CDm(X)

and an Auslander–Reiten triangle E→ B → X
hX−→ Dm(X), if Dm(X) ∈ ImC.

Proof. Consider the morphism hX: X → Dm(X) constructed in Theorem 3.10
and let

X
hX−→ Dm(X)

gX−→ A
fX−→ C(X)

be a triangle in C. By Theorem 3.10, gX is left almost split. SinceC is fully faithful,
EndC(C(X)) ∼= EndC(X) is local. Then by [2], fX is right almost split. Hence, the
triangle

(∗): Dm(X)
gX−→ A

fX−→ C(X)
−C(hX)−→ CDm(X)

is an Auslander–Reiten triangle. If Dm(X) ∈ ImC, let E ∈ C be such thatC(E) =
Dm(X). Since ImC is closed under extensions, A = C(B), for some B ∈ C.
Moreover,

EndC(E) ∼= EndC(C(E)) ∼= EndC(Dm(X))

is local. Then by [2], there exists a triangle

(†): E
α→ B

β→ X
hX−→ C(E)

in C and the morphism β is a weak kernel of hX. Hence, by Theorem 3.10, β is a
right almost split morphism. Then by [2], it follows that (†) is an Auslander–Reiten
triangle in C. ✷

Since any compact object in C is homological, Corollary 3.14 implies the fol-
lowing generalization of a result of H. Krause [37].

COROLLARY 7.7. Let X be a compact object in C, let ρ:  → �X := EndC(X)

be a ring morphism and let I be an injective left  -module. If A
f→ B

g→ C
h→

C(A) is a triangle in C, then there exist isomorphisms:

Hom�X [Coker C(X,C(f )), I ] ∼= Coker C(f,DDI (X)) ∼= Ker C(g,DI (X)).

If I is a cogenerator, then any morphism X → C factors through g iff any mor-
phism A → DDI (X) factors through f . In particular X ∈ X iff DI (X) is pure-
injective.
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It is not difficult to see that if C preserves pure monics, then a sequence A →
B → C in C is pure iff there exists a triangle A → B → C

h→ C(A) in C such
that 0 → C(X,A)→ C(X,B)→ C(X,C)→ 0 is exact, for all X ∈ X.

7.3. TRIANGULATED CATEGORIES

Let C be a triangulated category which admits all small coproducts. We assume that
C is compactly generated [40]. This means that C admits a set of compact objects
S such that if C(Cn(S),A) = 0, for all S ∈ S and n ∈ Z, then A = 0. By [13], this
is equivalent to say that the full subcategory Cb of compact objects is a (minimal)
Whitehead subcategory of C, i.e. C is an abstract homotopy category. The purity in
C based on the Whitehead subcategory Cb is denoted by E and coincides with (and
recovers) the theory of purity and phantom maps developed in [12, 20, 34, 39].

It is not difficult to see [14] that C enjoys the very useful property that the repre-
sentation categories of C coincide: D(C) = Mod(Cb) = L(C). Hence, Theorem 7.6
admits the following consequence, in which the existence of Auslander–Reiten
triangles and pure-injective envelopes is due to H. Krause.

THEOREM 7.8 ([37, 12, 34]). Let X be a compact object in C with local endo-
morphism ring. Then there exists an Auslander–Reiten triangle

C−1Dm(X)→ A→ X
hX→ Dm(X).

Moreover, C has enough pure-projectives, pure-injective envelopes and there exist
equivalences

P (E) ≈ Add(Cb) and I(E) ≈ Prod(DQ/Z(C
b)).

C is pure-semisimple iff C has pure-projective covers iff C is phantomless iff C is
locally finitely presented iff Mod(Cb) is locally Noetherian iff Mod(Cb) is perfect.

Let S: C → L(C) = Mod(Cb) be the restricted Yoneda functor, defined by
S(C) = C(−, C)|Cb. The following result characterizes the pure-injective objects
of C occurring as a source of a left almost split morphism in C and, under the
assumption that Cb is a Krull–Schmidt category, gives necessary and sufficient
conditions for the existence of Auslander–Reiten triangles in C starting at a pure-
injective object.

THEOREM 7.9. For an object E in C, the following are equivalent:

(i) E is pure-injective and there exists a left almost split morphism E → B in
C;

(ii) S(E) is the injective envelope of a simple functor;
(iii) E ∼= Dm(X), where X is compact and m is a maximal left ideal of EndC(X).

If Cb is a Krull–Schmidt category, then the above are also equivalent to:
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(iv) E is pure-injective and there exists an Auslander–Reiten triangle E→ B →
P → C(E) in C.

(v) E ∼= Dm(X), for an indecomposable compact object X and a maximal left
ideal m of EndC(X).

Proof. That the first three statements are equivalent is a direct consequence of
Theorems 3.10, 3.13 and 4.13, since the hypotheses imposed in these results hold
trivially in C. Assume that Cb is a Krull–Schmidt category. (i)⇒ (iv) By part (iii),
S(E) is the injective envelope of a simple functor, which by Section 3, is of the
form SX,m, where X ∈ Cb. Since Cb is Krull–Schmidt, we can choose X to be
indecomposable. By Theorem 3.9, the injective envelope of SX,m is isomorphic
to S(Dm(X)). Hence, S(Dm(X)) ∼= S(E) and this implies that E ∼= Dm(X). If
C−1(Dm(X)) → A → X → E is the Auslander–Reiten triangle of Theorem 7.8
ending at X, then E→ C(A)→ C(X)→ C(E) is the desired Auslander–Reiten

triangle starting at E. (iv) ⇒ (v) Let E
g→ B

f→ P
h→ C(E) be an Auslander–

Reiten triangle in C. If P is not compact, then any morphism α: X → P with
X ∈ Cb is not a split epimorphism, hence α factors through f . Then the triangle
is pure and since E is pure-injective, g is split monic and this is not true. Hence
P ∈ Cb and then by using (iii), we have an isomorphism E ∼= Dm(X), where
X = C(P ), since the end terms of an Auslander–Reiten triangle are uniquely
determined up to isomorphism [25]. The implication (v) ⇒ (iii) is trivial. ✷

We refer to [15] for necessary and sufficient conditions for the existence of
Auslander–Reiten triangles in Cb.

7.4. SPECTRA AND COMPLEXES

The results of Subsection 7.3 are directly applicable to the stable homotopy cate-
gory Ho(S) of spectra [39], where Ho(S)b is the full subcategory of finite spectra
and to the unbounded derived category D(�) of a ring �, where D(�)b is, up to
equivalence, the homotopy category Hb(P�) of perfect complexes, i.e. bounded
complexes with components finitely generated projective modules. For instance,
we have the following.

COROLLARY 7.10. (1) For any finite spectrum X with local endomorphism ring,
there exists an Auslander–Reiten triangle C−1Dm(X) → A → X → Dm(X)

in Ho(S). Moreover, for any finite spectrum X, the m-dual spectrum Dm(X) is
pure-injective and occurs as the source of an almost split morphism in Ho(S).

(2) For any perfect complex X• in D(�) with local endomorphism ring, there
exists an Auslander–Reiten triangle Dm(X

•)[−1] → A• → X• → Dm(X
•) in

D(�). Moreover, for any perfect complex X•, the m-dual complex Dm(X
•) is pure-

injective and occurs as the source of an almost split morphism in D(�).
(3) If Hb(P�) is a Krull–Schmidt category, then for a pure-injective complex

E• ∈ D(�), there exists an Auslander–Reiten triangle E• → A• → B• → E•[1]



520 APOSTOLOS BELIGIANNIS

in D(�) iff there exists an indecomposable perfect complex X•, such that E• =
Dm(X

•), in which case B• = X•[1].
It is easy to see Hb(P�) is Krull–Schmidt, if � is an Artin R-algebra. If I is

the injective envelope of R/Jac(R) and D = HomR(−, I ) is the usual duality of
Artin algebras, then for any perfect complex X• and any complex A• ∈ D(�), the
isomorphism ω of Subsection 3.1, reduces to the rather well-known isomorphism:
D(X•, A•) ∼= (A•,DI (X

•)), see [25]. It follows that DI (X
•) ∼= X• ⊗L

� D(�),
where−⊗L

�D(�): D(�)→ D(�) is the total left derived functor of the Nakayama
functor −⊗� D(�): Mod(�)→ Mod(�).

Since the endomorphism ring Z of the sphere spectrum S0 ∈ Ho(S)b is not
semiperfect, it follows that Ho(S)b is not a Krull–Schmidt category. However the
full subcategory Ho(S)bp of p-local finite spectra [39], where p is a prime, is a
Krull–Schmidt subcategory of the category Ho(S)p of p-local spectra, so one can
characterize the p-local pure-injective spectra occuring as a source of an Auslander–
Reiten triangle in the p-local category, along the lines of Theorem 7.9.

7.5. MODULE CATEGORIES

If  is an associative ring, then we view the category Mod( ) of right  -modules
as an abstract homotopy category with minimal Whitehead subcategory, the full
subcategory mod( ) of finitely presented modules. Obviously Mod( ) satisfies
the conditions imposed on Theorem 4.12. The representation categories

L( ) := L(Mod( )) = Mod(mod( ))

and

D( ) := D(Mod( )) = Mod(mod( op)op)

have been used for a long time as an indispensable tool for the study of purity
of modules. The description of the functor S is clear and it is easy to see that T
is isomorphic to the functor M �→ M ⊗ −: mod( op) → Ab. The theory of
purity developed in Section 4, applied to Mod( ) coincides and recovers the well-
known and extensively studied purity in the sense of Cohn. In particular the Ziegler
spectrum as defined in Section 5, coincides with the Ziegler spectrum defined by
Ziegler [47] and studied extensively by Krause [35] and others. Theorem 4.12 and
Corollary 5.8 recover the well-known result that Mod( ) has pure-injective en-
velopes and that  is right pure-semisimple iff Mod( ) has pure-projective covers
iff L( ) is perfect iff D( ) is locally Noetherian [44, 28]. Proposition 5.10 recovers
the well-known result that  is representation-finite iff D( ) is locally finite [5].

We recall the fundamental concept of an almost split sequence.

DEFINITION 7.11 ([7]). An exact sequence 0 → A
g→ B

f→ C → 0 is called
an almost split sequence, if f is right almost split and g is left almost split.
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We recall that the transpose Tr(X) of a finitely presented right  -module X is
defined by the exact sequence

Hom (P0,  )→ Hom (P1,  )→ Tr(X)→ 0

in mod( op), where P1 → P0 → X → 0 is a projective presentation of X in
mod( ). The following consequence of Theorem 3.10 is the original basic exis-
tence result of almost split morphisms and almost split sequences due to M. Aus-
lander and I. Reiten [4, 7]. We include a proof as a sample application of Brown
representability and the machinery of abstract homotopy categories. For part (β)
it is essential to work not in Mod( ) but in a more suitable abstract homotopy
category.

THEOREM 7.12 ([4]). (α) Let P be a projective  -module with local endomor-
phism ring. Then there exists a nonzero map hP : P → Dm(P ) in Mod( ), such
that Dm(P ) is an indecomposable injective module, Im(hP ) = Sm,P is a simple
module, the inclusion Rad(P ) = Ker(hP ) ↪→ P is minimal right almost split
and the projection Dm(P ) � Coker(hP ) = Dm(P )/Soc(Dm(P )) is minimal left
almost split.
(β) Let X be a nonprojective finitely presented module with local endomor-

phism ring. Then there exists a functor Dm(−, X): mod( )op → Ab, an isomor-
phism of functors

Dm(−, X)(?) ∼= Ext1
 [?,Hom�X(Tr(X), Im)]

and an almost split sequence:

0 → Hom�X [Tr(X), Im] → A→ X→ 0,

where �X = End(X) and m is a maximal ideal of �X . Further, Hom�X [Tr(X), I ]
is pure-injective in Mod( ). If  is an Artin algebra, then Hom�X [Tr(X), Im] ∼=
D Tr(X) and there exists an isomorphism of functors

Dm(−, X)(?) ∼= D Hom [X, ?] ∼= Ext1
 [?,D Tr(X)]: mod( )op −→ Ab,

where D Tr is the usual ‘dual of the transpose’ [7].
Proof. (α) Since P has local endomorphism ring, it follows that P is finitely

generated, in particular P is compact. Viewing Mod( ) as an Abelian abstract
homotopy category, with minimal Whitehead subcategory the full subcategory P 

of finitely generated projective modules, all the assertions are consequences of
Theorem 3.10.
(β) Let mod( ) be the stable category of finitely presented modules modulo

projectives. We view the category Mod(mod( )) of contravariant additive functors
mod( )op → Ab as an abstract homotopy category in which the functor (−, X) is
a homological compact projective object. Since �X := End(X) is a factor ring of
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End(X), it is a local ring with unique maximal ideal m. By Brown representability,
there exists a functor Dm(−, X) in Mod(mod( )) and a natural isomorphism

ω: Hom�X [((−, X), ?), Im]
∼=−→ [?,Dm(−, X)].

Then for any finitely presented  -module C, ω(−,C) induces isomorphisms:

Hom�X [((−, X), (−, C)), Im]∼= Hom�X [(X,C), Im]∼= [(−, C),Dm(−, X)] ∼= Dm(−, X)(C).
But it is well known [7] that we have isomorphisms (2):

Hom�X [(X,C), Im]∼= Hom�X [Tor 1 (Tr(X), C), Im]
∼= Ext1

 [C,Hom�X(Tr(X), Im)].
It follows that we have an isomorphism of functors

Dm(−, X)(?) ∼= Ext1
 [?,Hom�X(Tr(X), Im)]. (3)

By Yoneda’s lemma the morphism h(−,X): (−, X) → Dm(−, X) constructed in
Theorem 3.10 corresponds to an element E1 of Dm(−, X)(X). Under the isomor-
phism (3), E1 corresponds to an element E2 of Ext1

 [X,Hom�X(Tr(X), Im)]. Us-
ing the properties of h(−,X) in Theorem 3.10, it is trivial to check that E2 represents
an almost split sequence

0 → Hom�X [Tr(X), Im] → A→ X→ 0

in Mod( ).
Now let

(E): 0 → A
f→ B

g→ C → 0

be a pure-exact sequence in Mod( ). Then

(X, g): (X,B)→ (X,C)

is an epimorphism. This implies that

(X, g): (X,B)→ (X,C)

is an epimorphism, hence

[(X, g), Im]: [(X,C), Im] → [(X,B), Im]
is a monomorphism. The pure-exact sequence (E) induces a long exact sequence

0 → (C,Hom�X [Tr(X), Im])→ (B,Hom�X [Tr(X), Im])
f ∗−→ (A,Hom�X [Tr(X), Im])→ Ext1

 (C,Hom�X [Tr(X), Im])
g∗−→ Ext1

 (B,Hom�X [Tr(X), Im])→ · · · .
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Using isomorphism (2), we have that g∗ is isomorphic to the morphism
[(X, g), Im] which is a monomorphism; so f ∗ is an epimorphism. This shows that
any morphism A→ Hom�X [Tr(X), Im] factors through f , i.e. Hom�X [Tr(X), Im]
is pure-injective.

If  is an Artin algebra over a commutative Artin ring R, then we can choose
Im to be the injective envelope I of R/Jac(R). Then the functor D = HomR(−, I )
is the usual duality of Artin algebras. It follows directly from the construction that
there exists an isomorphism DI (−, X)(?) ∼= D Hom [X, ?] ∼= Ext1

 [?,D Tr(X)]. ✷
Using Corollary 3.14 and the isomorphisms of the proof of Theorem 7.12, we

have the following well-known basic result of M. Auslander.

COROLLARY 7.13 ([4]). Let X ∈ mod( ), let ρ: � → End (X) be a ring

morphism and let I be an injective �op-module. If 0 → A
f→ B

g→ C → 0 is a
short exact sequence in Mod( ), then there exists an isomorphism

Hom�[Coker(X, g), I ] ∼= Coker[f,Hom�(Tr(X), I )]
which is functorial with respect to short exact sequences. In particular, if the �op-
module I is an injective cogenerator, then every morphism X→ C factors through
g iff every morphism A→ Hom�(Tr(X), I ) factors through f .

Working stably as in Theorem 7.12, one can characterize along the lines of The-
orem 7.9 the pure-injective modules occurring as a source of a left split morphism,
see [16]. If mod( ) is a Krull–Schmidt category, one can characterize the pure-
injective noninjective modules occurring as a source of an almost split sequence,
see [33].

We leave it to the reader to apply the theory of Sections 3, 4, 5 to the other
examples of abstract homotopy categories listed in Section 2, for instance to stable
module categories (examples (iv), (v) of Section 2). See also the recent paper by
P. Jørgensen [29] for a discussion of phantom maps in the setting of stable cate-
gories. Finally, note that one can obtain the existence of almost split morphisms
and (relative) almost split sequences in a dualizing variety [9], and the existence
of Serre–Grothendieck duality for derived categories of quasi-coherent sheaves
over a smooth projective algebraic variety, using Brown representability and the
machinery of abstract homotopy categories. Details are left to the reader.

Added in Proof. Prof. D. Simson kindly informed the author that the first use
of Brown’s abstract homotopy categories in an algebraic context seems to be in
D. Simson and A. Tyc, Brown’s theorem for cohomology theories on categories of
chain complexes, Commentationes Math. 18 (1975), 285–296. In that paper various
categories of complexes of projective modules over a ring are proved to be abstract
homotopy categories, hence they satisfy the Brown representability theorem.
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