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ABSTRACT 

A general method for studying boundary value problems for linear and for integrable 

nonlinear partial differential equations in two dimensions was introduced in [3]. For 

linear equations in a convex polygon [2,4,5], this method: (a) Expresses the solution 

q(x,y) in the form of an integral (generalized inverse Fourier transform) in the 

complex k-plane involving a certain function q̂(k)  (generalized direct Fourier 

transform) which is defined as an integral along the boundary of the polygon, (b) 

Characterizes a generalized Dirichlet-to-Neumann map by analyzing the so-called 

global relation. For simple polygons and simple boundary conditions, this 

characterization is explicit. Here, we extend the above method to the case of elliptic 

partial differential equations in the exterior of a convex polygon and we illustrate the 

main ideas by studying the Laplace equation in the exterior of an equilateral triangle. 

Regarding (a), we show that whereas q̂(k)  is identical with that of the interior 

problem, the contour of integration in the complex k-plane appearing in the formula 

for q(x,y) depends on (x,y). Regarding (b), we show that the global relation is now 

replaced by a set of appropriate relations which in addition to the boundary values 

also involve certain additional unknown functions. In spite of this significant 

complication we show that for certain simple boundary conditions the exterior 

problem for the Laplace equation can be mapped to the solution of a Dirichlet 

problem formulated in the interior of a convex polygon formed by three sides. 

 

 

1. INTRODUCTION 
                                                 
(*) On leave from the University of Patras and ICE-HT/FORTH Greece 
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Constructing analytic solutions for Laplace’s equation in the exterior of a polygon is 

a long standing open problem in the theory of partial differential equations. On the 

other hand, a method for solving Laplace’s equation in the interior of a convex 

polygon was presented in [2]. This is a particular case of a general method for linear 

boundary value problems for open or closed convex polygons introduced by the third 

author in [3]. The basic elliptic equations in an equilateral triangle for a large class of 

boundary conditions were studied in [1]. In the above works convexity played a 

crucial role, and this is the reason for analyzing interior problems. In the present 

work we investigate the solution of an exterior problem. In order to elucidate the 

effects of non-convexity we restrict our analysis to the simple case of Laplace’s 

equation. 

We first show that the integral representation for the exterior solution, in addition to a 

change of sign which reflects the change of direction of the normal to the boundary, 

it differs from the analogous representation of the interior problem in the following 

important way: For the interior problem for a convex n-polygon, the integral 

representation involves the integrals of the n functions{ }n

j j 1
q̂ (k)

=
along n specific rays 

in the complex k-plane. For the exterior problem, the integral representation involves 

the same functions{ }n

j j 1
q̂ (k)

=
, but the rays of integration depend on (x,y). Actually the 

extensions of the sides of the polygon divide the plane into certain domains, and one 

of the rays of integration rotates by π as the point (x,y) moves into a neighboring 

domain. In other words, the exterior problem has a constant spectral form but a 

varying spectral representation. 

For example, in the integral representation of the exterior solution for an equilateral 

triangle, the three rays of integration rotate by π/3 as (x,y) moves successively in the 

six convex domains generated by the three sides of the triangle. Thus, the rays return 

to their original positions after (x,y) travels around the six domains. 

For a convex polygon the so-called Dirichlet-to-Neumann map is characterized by 

the global relation which is an equation coupling the Dirichlet and Neumann 

boundary values [5]. We show that for problems formulated in the exterior of a 

convex polygon the fundamental domain must be subdivided to an appropriate set of 

convex subdomains, and in each of these subdomains there exists an appropriate 

global relation. This construction introduces additional unknown functions which 
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makes the characterization of the Dirichlet-to-Neumann map more complicated. In 

spite of this significant complication we will show that if one prescribes the same 

function as Dirichlet boundary condition on each side of an equilateral triangle and if 

this function is symmetric with respect to the midpoint of the side, then the exterior 

problem can be mapped to the solution of a Dirichlet problem formulated in the 

interior of a convex polygon formed by three sides. On the other hand, the general 

Dirichlet problem gives rise to a matrix Riemann-Hilbert problem. 

In what follows, we will assume existence; however it is possible to eliminate this 

assumption. In fact, it turns out that the global relation is not only a necessary but 

also a sufficient condition for existence. Indeed, combining the global relation with 

the integral representation mentioned earlier one can prove that the question of 

existence of solution of a given boundary value problem can be reduced to the 

question of analyzing the global relation. This proof is not presented here, but it is 

similar with the proof of the analogous result for the interior problem given in [7]. 

The paper is organized as follows. In Section 2 the integral representation for the 

exterior of an n-polygon is derived. In Section 3 this general result is illustrated for 

the particular case of the exterior of an equilateral triangle. Section 4 constructs the 

global relation in the case that the same function is prescribed as Dirichlet boundary 

condition on each side of the triangle. Furthermore, it is shown that if this function is 

anti-symmetric with respect to the midpoint of the side, then the Dirichlet problem 

can be mapped to the solution of a Dirichlet problem formulated in the interior of a 

convex polygon formed by three sides.  

 

 

2. THE INTEGRAL REPRESENTATION 

Let 1 2 n n 1 1z , z ,..., z , z z+ =  be the n vertices of a bounded convex polygon Ω(i) in the 

complex plane. Denote by Ω(e) the domain exterior to Ω(i) and by (i)∂Ω  the boundary 

of Ω(i). 

 

Proposition 2.1 Suppose that the real-valued function q(x,y) is a harmonic function 

in Ω(e), which decays as x y+ →∞ and which is smooth on the boundary (i)∂Ω . 

Then the following relations are valid 
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(i )

(i)

(e)

0 , z1 q(z ) dz
q(z)2 i z z z , z .

z∂Ω

⎧ ∈Ω′ ′∂ ⎪= ⎨ ∂′ ′π ∂ − − ∈Ω⎪ ∂⎩
∫      (2.1) 

 
1 2

(i ) 2

ik (x x ) ik (y y )

1 22
1 2

q(z) 1 e q(z )dk dk dz ,
z (2 i) k ik z

′ ′− + −

∂Ω

⎡ ⎤ ′∂ ∂ ′= ⎢ ⎥ ′∂ π + ∂⎢ ⎥⎣ ⎦
∫ ∫∫

R

  (e)z∈Ω  (2.2) 

where z denotes the usual complex variable z x iy= + , and the integration is taken in 

the positive direction. 

 
Figure 2.1 

 

Proof. The equations  

 z x iy, z x iy= + = − , (2.3) 

imply 

 z x y z x y
1 1( i ), ( i )
2 2

∂ = ∂ − ∂ ∂ = ∂ + ∂ . (2.4) 

Hence, Laplace’s equation becomes 

 
2q(z, z) 0

z z
∂

=
∂ ∂

, (2.5) 

which shows that the function qz is analytic. Hence, using the fact that q decays at 

infinity, Cauchy’s theorem in the domain Ω(e) yields equation (2.1). 

In the Appendix, we prove the following identity 

 
( ) ( )1 2

2

ik x x ik y y

1 2
1 2

1 1 e dk dk .
z z 2 ik k

′ ′− + −

=
′− π −∫∫

R

 (2.6) 

2z  

jz  

1 n 1z z +=  

nz  

n 1z −  (i)Ω

j 2z +  j 1z +  

(e)Ω  

z x iy• = +  
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Replacing in equation (2.1b) ( )1 z z′−  by the RHS of equation (2.6) we find 

equation (2.2).                                                                                                        QED. 

 

It was shown in [6] that starting with representations of the type (2.2), it is possible to 

obtain Ehrenpreis-Palamodov type representations by integrating with respect to kN, 

where kN is the component of the vector 1 2(k , k )=k , normal to the boundary. Using 

this approach, we will prove the following result. 

 

Theorem 2.1. Under the assumptions of Proposition 2.1 the real-valued harmonic 

function q admits the following integral representation: 

 
j

n
ikz (e)

j
j 1 ˆ

q(z) 1 ˆe q (k)dk, z ,
z 2 l=

∂
= − ∈Ω

∂ π∑∫  (2.7) 

where the spectral functions { }n

j j 1
q̂ (k)

=
 are defined by 

 
j

j 1

z
ikz

j z
z

q̂ (k) e q (z)dz, j 1, 2,..., n,
+

−= =∫  (2.8) 

and the rays ĵ , j 1, 2,..., n=l  emanating from the origin are defined as follows: 

 
{
{

}
}

j
j j 1j N

j j
j j 1j N

arg k arg(z z ) ,k : x 0ˆ
arg k arg(z z ) ,k : x 0

l
l

l

−
+

+
+

⎧ = π− −= ∈ <⎪= ⎨ = − −= ∈ >⎪⎩
  (2.9) 

where j
Nx  is the outward to Ω(e) normal component of the vector ′−r r , with (e)∈Ωr  

and ′r  on the j-th side. Finally, 

 
0

z x iy

z

q(z )q(x, y) 2Re dz
z

= + ′∂ ′=
′∂∫ . (2.10) 

Proof. We introduce local coordinates on each side of the polygon in such a way that 

the normal N̂  is exterior to Ω(e), i.e. it points towards Ω(i), see Figure 2.2. The Frenet 

system on the j-th side is  

 j j 1

j j 1

z zˆ ˆ ˆ, i
z z

+

+

−
= =

−
T N T . (2.11) 

 

 

 

j 1z +  
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Figure 2.2 

 

We introduce the notations 

 1 2(k ,k ) , (x, y) , (x , y )′ ′ ′= = =k r r  (2.12) 

and we denote by T N(k ,k )  and T N(x , x )  the Frenet components of k and of ′−r r , 

respectively, i.e. 

 T N T N
ˆ ˆ ˆ ˆk k , x x′= + − = +k T N r r T N . (2.13) 

Hence, 

 1 2 T T N N 1 2 T Nk (x x ) k (y y ) k x k x , dk dk dk dk′ ′− + − = + = . (2.14) 

Let θ denote the argument of j j 1z z +− , then 

 i
1 2 T Nk ik e (k ik )θ+ = + . (2.15) 

Hence, in the local Frenet system equation (2.2) becomes 

 
j N N

2
j 1

z i(k x k x )n
i

2
j 1 Nz

q(z) 1 e q(z )e dz dk dk
z 4 k ik z

+

+
− θ

Ν
=

⎡ ⎤′∂ ∂ ′⎢ ⎥= −
′∂ π + ∂⎢ ⎥⎣ ⎦

∑ ∫∫ ∫
R

T T

T
T

. (2.16) 

Equation (2.13b) implies 

 N
ˆx ( )′= − ⋅r r N . (2.17) 

In order to evaluate the integrals in the expression (2.l6) we need to determine the 

sign of xn. Hence, for each side of the polygon we define the splitting 

θ 

N̂  T̂  

′r
′−r r  

r  

O 
jz  

(i)Ω

(e)Ω  
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{ }
{ }

(e)
j j

(e)
j j

ˆ( ) 0

ˆ( ) 0

+

−

′= ∈Ω − ⋅ >

′= ∈Ω − ⋅ <

r r r N

r r r N
   (2.18) 

where ′r  belongs to the j-side of the polygon. Note that since the polygon is convex, 

j
+  is always a half-plane minus the polygon, while j

−  is a full half-plane.  

 
 Figure 2.3 

 

Furthermore, 

 
( )
( )

j j

j j

/ 2, / 2 ,

/ 2,3 / 2 .

+ +

− −

∈ ⇒ θ ∈ −π π

∈ ⇒ θ ∈ π π

r

r
 (2.19) 

a) The case where j
−∈r . 

In this case Nx 0< , and integrating in the lower kN-half plane yields 

 
NN N k xik x

N
N

k 02 e ,e dk
k 0.k ik 0,

+∞ −

−∞

<⎧− π
= ⎨ >+ ⎩

∫
T

T

TT

 (2.20) 

Therefore,  

 
N N

N

2

i(k x k x )
ik (x ix )i i

2
N 0

1 e 1e dk dk e e dk
4 k ik 2

+∞+
− +− θ − θ

Ν− =
π + π∫∫ ∫

R

T T
T T

T T
T

. (2.21) 

Setting ik ke θ=T , and using 

 i
Nx ix (z z )e− θ′+ = −T  (2.22) 

we rewrite (2.21) as  

r ′−r r
′r
j 1z +  

′−r r

jN̂  
jz  

j
+θ  

j
−θ  

j
−  

j
+  

(i)Ω

(e)Ω  

r 
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i i ( )

i i ( )

e e
ik (z z ) ik(z z )

0e 0e

1 1e dk e dk
2 2

− θ π−θ

− θ π−θ

∞ ∞
′ ′− − −= −

π π∫ ∫ , (2.23) 

where the last equality is obtained by replacing k with ike π . 

Therefore,  

 
N N

2
j

i(k x k x )
i ik(z z )

2
N

1 e 1e dk dk e dk
4 k ik 2 −

+
′− θ −

Ν− = −
π + π∫∫ ∫

R l

T T

T
T

, (2.24) 

with 

 j j j 1{k arg k arg(z z )}−
+= ∈ = π− −l . (2.25) 

 

b) The case where (e)
j
+∈ ∩Ωr . 

In this case Nx 0> , and integrating in the upper kN-half plane yields  

 
N Nik x

N k x
N

k 00,e dk
k 0.2 e ,k ik

+∞

−
−∞

<⎧
= ⎨ >π+ ⎩

∫ T

T

TT
N

 (2.26) 

Therefore 

 
N N

N

2

i(k x k x )
ik (x ix )i i

2
N 0

1 e 1e dk dk e e dk
4 k ik 2

+∞+
+− θ − θ

Ν− = −
π + π∫∫ ∫

R

T T
T T

T T
T

. (2.27) 

Setting ik ke θ=T , and using 

 i
Nx ix (z z )e− θ′+ = −T , (2.28) 

we arrive at  

 
i

N

i

e
ik (x ix ) i ik(z z )

0 0e

1 1e e dk e dk
2 2

− θ

− θ

∞+∞
′+ − θ −− = −

π π∫ ∫T T
T . (2.29) 

Therefore,  

 
N N

2
j

i(k x k x )
i ik(z z )

2
N

1 e 1e dk dk e dk
4 k ik 2 +

+
′− θ −

Ν− = −
π + π∫∫ ∫

R l

T T

T
T

, (2.30) 

with 

 j j j 1{k arg k arg(z z )}+
+= ∈ = − −l . (2.31) 

Hence, the proof of the Theorem is completed.                                                     QED. 

Remark: Expressions (2.7) and (2.8) provide the generalized Fourier transform pair 

associated with Laplace’s equation in the exterior domain Ω(e). For a given point 
(e)

ĵz ,∈Ω l  can be fixed by studying the relative position of z with respect to the side: 
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The contours jl
−  (associated with the whole half-spaces), are exactly the same as the 

corresponding contours for the interior problem [1], whereas the contours jl
+  

(associated with the half-spaces that contain the polygon), are the opposite of jl
− . 

 

 

3. THE EQUILATERAL TRIANGLE 

Set  

 
2i
3 1 3e i .

2 2

π

α = = − +  (3.1) 

And let 

 1z
3

= −α ,        1z
3

= −α ,        3z
3

= −  , (3.2) 

be the vertices of the equilateral triangle of side , shown in Figure 3.1. The side jS  

is located opposite to the vertex jz , j 1, 2,3.=  

 
Figure 3.1 

 

On the sides 3 2 1S ,S ,S , the following parameterizations  

(e)Ω  

(i)Ω

1z
3

= − α  

T̂N̂  

N̂  

N̂  

T̂

2z
3

= − α  

3z
3

= −  

T̂  

3S  

 

2S  

1S  
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3

2

1

S : z(s) is
2 3

S : z(s) is
2 3

S : z(s) is
2 3

⎫
= + ⎪

⎪
⎪⎛ ⎞ ⎪= α + ⎬⎜ ⎟

⎝ ⎠ ⎪
⎪⎛ ⎞ ⎪= α +⎜ ⎟ ⎪⎝ ⎠ ⎭

      
2 2

s− ≤ ≤  , (3.3) 

imply 

3 z N

2 z N

1 z N

1S : ( i )
2
αS : ( i )
2
αS : ( i )
2

⎫∂ = − ∂ + ∂ ⎪
⎪
⎪∂ = − ∂ + ∂ ⎬
⎪
⎪∂ = − ∂ + ∂ ⎪⎭

T

T

T

                                                    (3.4) 

where N∂  and ∂T  denote normal and tangential differentiation along N̂ and T̂ . 

Let jq (s) and N∂ jq (s) denote the Dirichlet and Neumann values of the side jS , 

j=1,2,3, i.e.   

    
j

j(x,y) S
q(x, y) q (s),

∈
=  

jj
N N(x,y) S

q (x, y) q (s),
∈

=
2 2

s− ≤ ≤ ,    j=1, 2, 3.       (3.5) 

 

Then, the spectral functions jq̂ (k)  are defined by the following                                        

          
1

2

z
ikz

3 z 3 3
z

1q̂ (k) e q (z)dz iE( ik) (k) E( ik) (k)
2
[ ],−= = − − Ψ + − Φ∫                     (3.6) 

             
3

1

z
ikz

2 z 2 2
z

1q̂ (k) e q (z)dz iE( i k) ( k) E( i k) ( k)
2
[ ],−= = − − α Ψ α + − α Φ α∫          (3.7)   

             
2

3

z
ikz

1 z 1 1
z

1q̂ (k) e q (z)dz iE( i k) ( k) E( i k) ( k)
2
[ ],−= = − − α Ψ α + − α Φ α∫            (3.8) 

where 

                                          3 ,
k
2E(k)= e    ,∈Ck                                                   (3.9) 

}{ { }3 3

11
,j jΦ Ψ   denote the Dirichlet and Neumann integrals, 

                           
/ 2

ks
jj

/ 2

(k) e (s)ds, , j 1, 2,3,
−

Φ = ∈ =∫
i Cq k                           

(3.10) 

                           
j

/ 2
ks

Nj
/ 2

(k) e (s)ds, , j 1, 2,3,
−

Ψ = ∈ =∫ Cq k                          (3.11) 
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and dot denotes differentiation. 
Indeed, introducing local coordinates it follows that 

         
1

2

z
ikz

3 x y 3 3
z

ˆ2q (k) e ( i )q(x, y)dz iE( ik) (k) E( ik) (k)−= ∂ − ∂ = − − Ψ + − Φ∫ . (3.12) 

Similarly, the functions 2q̂ (k)  and 1q̂ (k)  can be obtained through rotations by 2
3
π  

and 4
3
π  respectively.  

The extensions of the three sides of the triangle partition the exterior of the triangle in 

the six regions denoted by 11 22 33 21 32 13R ,R ,R ,R ,R ,R , as in the Figure 3.2. 

 
Figure 3.2 

+
3l  

-
2l  

+
1l  

3l
+  

-
1l  

-
2l  

1z  

2z  

3z  
+
1l  

-
3l  -

2l  
-
1l  

+
2l  +

3l  

-
1l  +

2l  

-
3l  

+
2l  

-
3l  

+
1l  

11R  

22R  

21R  
33R  

13R  

32R  
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In summary, the integral representations for the exterior of the equilateral triangle 

depicted in Figure 3.1 is given by equation (2.7), where the spectral functions are 

defined by equations (3.6)-(3.11) and the appropriate rays (defined in (2.9)) in the 

particular domains are chosen as follows 

 

1 2 3 11

1 2 3 13

1 2 3 33
1 2 3

1 2 3 32

1 2 3 22

1 2 3 21

( , , ) , z R
( , , ) , z R
( , , ) , z Rˆ ˆ ˆ( , , )
( , , ) , z R
( , , ) , z R
( , , ) , z R .

l l l
l l l
l l l

l l l
l l l
l l l
l l l

− + −

+ + −

+ − −

+ − +

− − +

− + +

⎧ ∈
⎪ ∈⎪
⎪ ∈⎪= ⎨

∈⎪
⎪ ∈
⎪

∈⎪⎩

 (3.13) 

 
Remarks.  

1. As z moves from a region ijR  to the counterclockwise neighboring region, two of 

the rays ĵl  remain the same and the third one changes direction. As a consequence, 

the set of the three rays 1 2 3
ˆ ˆ ˆ( )l ,l ,l  advances by an angle / 3π  clockwise. Thus after z 

moves through all six regions, the three rays advance by an angle 6 / 3 2π = π , and 

they return to their starting position. 

2. Comparing with the interior problem, where the three rays jl  are symmetrically 

located, making an angle 2 / 3π  between each other, for the exterior problem the 

angles between the rays are always / 3, / 3π π  and 4 / 3π . 

 
 
 
4. THE GLOBAL RELATION 
 
Before deriving the set of global relations needed for the exterior of the triangle we 

first establish some symmetry relations. 

 

Proposition 4.1. Assume that there exists a unique function q(x, y)  which satisfies 

the Laplace equation in the exterior of an equilateral triangle, which decays to zero as 

| x | | y |+ →∞ , and which satisfies 

 jq (s) f (s) , j 1, 2,3 , s
2 2

= = − ≤ ≤   .                          (4.1) 

Then the function zQ(z) q (z)=  satisfies the symmetry relation 
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 (e)Q(z) Q( z), z= α α ∈Ω . (4.2) 

Furthermore, if f(s) is symmetric (even) or antisymmetric (odd) with respect to the 

midpoint of the side, then Q(z) satisfies the following additional relations 

 f ( s) f (s) Q(z) Q(z), and f ( s) f (s) Q(z) Q(z)− = ⇒ = − = − ⇒ = − . (4.3) 

Proof. Cauchy’s theorem implies 

 
31 2

2 1 3

zz z

z z z

1 Q( )Q(z) d
2 i z

⎡ ⎤ ζ
= − + + ζ⎢ ⎥

π ζ −⎢ ⎥⎣ ⎦
∫ ∫ ∫  (4.4) 

where 1 2 3z , z , z  are shown in Figure 3.1. On the side 3S , ζ (s) is given by the first of 

equations (3.3), thus d idsζ = . On the side 2S , ζ (s) is given by the second of 

equations (3.3), thus d i dsζ = α . Similarly for the side  1S  and hence equation (4.4) 

becomes 

 
( )( ) ( )( ) ( )( )/ 2

/ 2

Q s Q s Q s1Q(z) ds
2 (s) z (s) z (s) z−

⎛ ⎞τ α ατ α ατ
= − + +⎜ ⎟⎜ ⎟π τ − ατ − ατ −⎝ ⎠

∫  (4.5) 

with 

 (s) is, s
2 22 3

τ = + − ≤ ≤  (4.6) 

Replacing in equation (4.5) z byα z and multiplying the resulting equation by α  we 

find 

                
( )( ) ( )( ) ( )( )/ 2

/ 2

Q s Q s Q s1Q( z) ds
2 (s) z (s) z (s) z−

⎛ ⎞τ α ατ α ατ
α α = − + +⎜ ⎟⎜ ⎟π ατ − τ − ατ −⎝ ⎠

∫ .           (4.7) 

Equations (4.5) and (4.7) are consistent with equation (4.2), as well as with equation 

( ) ( )Q z Q z= α α which follows from equation (4.2) by replacing z with zα . 

If f (s) f ( s)= −  (the even symmetric case), then the reflection of the triangle with 

respect to the x-axis leads to the same geometry and boundary data and hence, due to 

uniqueness of the exterior Dirichlet problem solution, it follows that 

q(z, z) q(z, z)= .                                               (4.8) 

Differentiating with respect to z we obtain  

                                     z z z zq (z, z) q (z, z) q (z, z) q (z, z)= = =                               (4.9) 

where for the last equation we have used the fact that q is real. The first and the last 

equation imply 
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                                                          Q(z) Q(z)= .                                               (4.10) 

If f (s) f ( s)= − − (the odd symmetric case), reflection with respect to the x-axis yields 

a Dirichlet problem with opposite data. Then uniqueness of the solution and linearity 

imply 

q(z, z) q(z, z)= − .                                               (4.11) 

and hence 

                                                      Q(z) Q(z)= − .                                                 (4.12) 

                                                                                                                               QED. 

 

Proposition 4.1. Let the real function q(x,y) satisfy Laplace’s equation in the domain 
(e)Ω  exterior to the equilateral triangle depicted in Figure 3.1, and let the smooth 

function f(s) be the prescribed Dirichlet data on each side of the triangle. Assume that 

there exists a unique solution q(x,y) which has sufficient smoothness all the way to 

the boundary and which vanishes at infinity. Then, the unknown functions 

 
/ 2

ks
N

0

(k) e q (s)dsΨ = ∫ ,      ∈Ck , (4.13) 

 ks

0

G(k) e g s ds
3

+∞ ⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ ,        Re 0≤k , (4.14) 

 ks

0

H(k) e h s ds
2 3

+∞ ⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ ,      Re 0≤k , (4.15) 

are coupled with the known function 

   
/ 2

ks

0

F(k) e f (s)ds= ∫
i

,       ∈Ck , (4.16) 

by the global relation 

                     
k
2i (k) e G(i k) H( ik) F(k)Ψ + α + − = ,     arg k

3
π

−π ≤ ≤ −                   (4.17) 

where Nq  is the outward normal derivative of q on the boundary of the triangle and 

g, h are the following functions 

                            ( ) ( ) ( )ih(s) 2Q s , g s 2Q se , 0 sπ= = ∞< < .                 (4.18)    

 
Proof. Let D denote the domain depicted in Figure 4.1, where the boundary D∂  is 

determined by the following contour 
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 iD z s s R z Re 0
32 3

θ⎧ ⎫ ⎧ π⎫
∂ = = ≤ ≤ ∪ = ≤ θ ≤⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
 

  
i
3z se s R z is 0 s

23 2 3

π⎧ ⎫ ⎧ ⎫
∪ = ≤ ≤ ∪ = + ≤ ≤⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
.         (4.19) 

 

 
Figure 4.1 

 

Since q satisfies Laplace’s equation in D it follows that  

 ikz
z

D

e Q(z)dz 0, Q q−

∂

= =∫ . (4.20) 

For R finite, equation (4.20) is valid for every k∈ . However, as R →∞ , using the 

fact that  

                                                           0 arg z
3
π

≤ ≤ ,                                              (4.21) 

it follows that equation (4.20) is valid for k in the sector 

                                                      arg k
3
π

−π ≤ ≤ − .                                              (4.22) 

Equation (4.20) yields 

ii 3
R /3 / 3

i iiks ik Re i i ikse 3 3

0 R/ 2 3

e Q(s)ds e Q(Re )i Re d e Q(se )e ds
π

θ
π π π

− − θ θ −+ θ+∫ ∫ ∫  

0 ik is
2 3

/ 2

e Q is ids 0
2 3

⎛ ⎞− +⎜ ⎟
⎝ ⎠ ⎛ ⎞+ + =⎜ ⎟

⎝ ⎠∫ .                                                                      (4.23) 

y

2z  

1z  

3z  

2
 

3
−  

2 3
 

3
π  

D 

∂D 

R x 
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As R →∞  Jordan’s Lemma implies that the second integral in (4.23) vanishes. 

 

 

 

Using 

 
i i i3 3Q se Q s e Q(se )
π π

π⎛ ⎞ ⎛ ⎞
= α α = α⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                             (4.24) 

and 

 x y N
1 i 1Q is q (s) q (s) (q (s) i f (s))
2 2 22 3

⎛ ⎞+ = − = − +⎜ ⎟
⎝ ⎠

i
 (4.25) 

equation (4.23) becomes 

  

                                     
i
3

/ 3
iiks ikse i3

/ 2 3

e Q(s)ds e e Q(s e )ds
π∞ π

− − π

∞

+ α∫ ∫  

                                 
0 ik is

2 3
N

/ 2

1 e (q (s) i f (s))ids 0
2

⎛ ⎞− +⎜ ⎟
⎝ ⎠− + =∫

i
. (4.26) 

Let 

 
i

2Q(s) h(s) , s
2 3

2Q(se ) g(s), s
3

π

⎫= > ⎪⎪
⎬
⎪= >
⎪⎭

 (4.27) 

Then equation (4.26) becomes 

 
i
3

/ 2ik
ks ikse iks2 3

N
0 / 3 / 2 3

ie e (q (s) i f (s))ds e g(s)ds e h(s)ds 0
π+∞ +∞−

− −+ + + =∫ ∫ ∫
i

. (4.28) 

Inserting (4.13) - (4.16) in (4.28) we arrive at the global relation (4.17).             QED. 

 

Remark : According to the second of equations (4.27) the functions g, h assume real 

values in the even symmetric cases and imaginary values in the odd symmetric case. 

 

It turns out that the case of odd Dirichlet data leads to a problem formulated in the 

interior of a convex polygon formed by three sides.  
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Theorem 4.1. Let the real function q(x,y) satisfy Laplace’s equation in the domain 
(e)Ω exterior to the equilateral triangle depicted in Figure 3.1, and let the odd smooth 

function f(s) be the prescribed Dirichlet data on each side of the triangle. Then the 

Neumann values q (s)Ν  on each side of the triangle can be obtained by solving the 

Laplace equation in the domain Ω  depicted in Figure 4.2 with the contour 

, ,→∞ →∞1 1 2 2w z , z w  and with the following Dirichlet boundary conditions: 

                                      ( ) , 2 2= − ≤ ≤
i

Tq f s s on 3S                              (4.29) 

                                      0=Tq   on the sides  ( )1, 1z w   and   ( )2, 2z w .              (4.30) 

Proof.  The second of equations (4.3) applied on  3∞z= x, - < x< -  (see 
Figure 4.2) yields 
 Q(x) Q(x) 0+ = ,        3∞- < x< - . (4.31) 

Hence,  

 ( )xq 0,=x,0 3∞- < x< -  .   (4.32) 

 
Figure 4.2 

Therefore, the symmetry relations (4.2) and ( ) ( )Q z Q z= α α  imply that q 0=T  on 

the rays ( )→∞1 1z ,w  and ( )→∞2 2z ,w . That completes the proof of the theorem. 

1z  

3z  

2z  

3w →∞  

2w →∞  

1w →∞  

3
π  

q 0≡T  

( )q =
i

T f s  

q 0≡T  

q 0≡T  
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Remark: A technique for the numerical evaluation of the Dirichlet to Neumann map 

for the Laplace equation in the interior of a convex polygon is presented [8, 9]. Using 

this technique it is straightforward to evaluate the Neumann values  q (s)Ν  on the 

side 1 2z z  in terms of ( )
i
f s . 

 

 

APPENDIX  

We will show that 

 
1 2

2

ik x ik y

1 2
1 2

1 e 1dk dk
2 ik k x iy

+

=
π − +∫∫ . (A.1) 

We introduce the polar system ˆˆ,ρ φ  (see Figure A.1),  

 x cos , y sin= ρ φ = ρ φ . (A.2) 

 
 Figure A.1 

 

The vector k̂  has the coordinates (k1,k2) in the system ˆ ˆ,x y  and the coordinates 

I II(k , k )  in the system ˆˆ,ρ φ . The polar base vectors are 

 ˆ (cos ,sin )= φ φρ ,        ˆ ( sin ,cos )= − φ φφ .  (A.3) 

(k, k)

(x, y) (cos ,sin )= ρ φ φ  

φ  

(x, y)  

1 2(k , k )  

φ̂  
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Since ˆˆ,ρ φ  are obtained via a rotation of the Cartesian system by an angle +φ  we 

have that 

 1

2

k kcos sin
k ksin cos

Ι

ΙΙ

φ − φ⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥φ φ⎣ ⎦⎣ ⎦ ⎣ ⎦

. (A.4) 

Also, 

 1 2 Iik x ik y i k+ = ρ  (A.5) 

 i
1 2 I IIik ik (k ik )ie φ− = +  (A.6) 

which imply that  

 1 2 1 2 I II I IIdk dk dk dk (cos dk sin dk ) (sin dk cos dk )= ∧ = φ − φ ∧ φ + φ  

   2 2
I II II I I II I IIcos dk dk sin dk dk dk dk dk dk= φ ∧ − φ ∧ = ∧ = . (A.7) 

Formula (A.7) is a consequence of the fact that rotations leave the Lebesque measure 

invariant. 

Using (A.5), (A.6) and (A.7) we obtain 

 
1 2 I

2 2

ik x ik y i ki

1 2 I II
1 2 I II

1 e e edk dk dk dk
2 ik k 2 i k ik

+ ρ− φ

=
π − π +∫∫ ∫∫ . (A.8) 

Since 0ρ > , complex integration in the lower half plane implies 

 
Ii k

I
I II

e dk
k ik

+∞ ρ

−∞

=
+∫

IIk2 ie ,
i,

0,

ρ⎧ π
⎪ π⎨
⎪
⎩

      
II

II

II

k 0
k 0
k 0

<
=
>

. (A.9) 

Hence, from (A.8) we obtain 

 
2

i ki i i
t

I II 0

e e e e 1dk dk e dt
2 k ik x iy

Ι +∞ρ− φ − φ − φ
−

Ι ΙΙ = = =
π + ρ ρ +∫∫ ∫ . (A.10) 
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