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Thompson and King (1 972) presented a closed form expres- 
sion for the number of different possible separation sequences 
arising when an n-component mixture is separated into pure 
products using sharp component separators with one input and 
two outputs. Subsequently, Shoaei and Sommerfeld (1986) 
pointed out that the number of sequences is the series of Catalan 
numbers (Alter, 1971), but they did not show how to derive the 
closed form formula. This paper will demonstrate that this may 
be done using a general mathematical technique-generating 
functions. 

The analysis is extended to combinatorics of sequences of 
sharp separators with more than two outputs. Finally expres- 
sions for the number of distinct separators will be derived. 

An underlying assumption throughout the paper is that the 
components in any stream are “sorted”; components appearing 
together will always appear in the same order. 

Sequences of Two-Output Sharp Separators 
A sharp two-output-component separator is a device where a 

subset of the feed components leave entirely in the separator’s 
top stream and the rest leave entirely in the other, the bottom 
stream. Thus, the remaining separation problem originating 
from the top stream will be totally independent of the one 
originating from the bottom stream. The different separation 
sequences may be represented as paths in a tree, as illustrated in 
Figure 1 for a four-component example. It is seen from the 
figure that this example involves five different paths; five 
alternative separation sequences are possible. 

The number of separation sequences may be defined recur- 
sively for the general case: a stream consisting of n components 
may be split in n - 1 different ways in one sharp two-output 
separator. For each of these alternative splits, the number of 
different separation sequences is equal to the number of separa- 
tion sequences originating from the separator’s top stream 
multiplied by the number of separation sequences originating 
from the separator’s bottom stream. A stream with only one 

component generates exactly one sequence, which consists of 
zero separators. 

With S, denoting the total number of distinct sequences of 
sharp two-output separators for a stream with n components, 
this recursive definition may be stated formally as in Eq. 1 and 
Figure 2. 

Thompson and King (1972) presented a closed form expres- 
sion for s,,: 

(2 - (n  - I ) ) !  
n! - (n - I ) !  s, = 

Generating Functions Used to Derive the 
Thompson and King Formula 

How can a general technique be applied to derive the 
Thompson and King formula? Suppose that a sequence of 
unknown numbers So, S,, S,, . . . , S,,, . . . is implicitly defined by 
a recurrence relation and that it is desired to find a closed form 
expression for the recurrence relation. One elegant method 
applicable to many problems in this class is the method of 
generating functions. The theory of generating functions is 
based on two mathematical properties of infinite power series: 

1. The infinite power series expansion of a given function is 
unique: if two alternative power series are expanded from the 
same function, then the two power series must be equivalent. 

2. Two infinite power series are equivalent if, and only if, the 
coefficients in any corresponding pair of terms in the two series 
are equivalent. 

The use of generating functions to derive the Thompson and 
King formulae which give the Catalan numbers is very often 
described in combinatorics textbooks (e.g., Townsend, 1987). To 
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Flgure 1. Sequences in a four-component sharp split 
separation system. 

illustrate the elegance of the method, some of the steps are 
described in the following. The generating function for Eq. 1 
may be expressed by the polynomial: 

where an arbitrary coefficient S,  is defined according to Eq. 1 as: 

S" = s, . S"-i + s2 ' Sn-2 + - * + S"-1 - Sl (4) 

Our goal is to find a closed form expression for this relation. 
This implies that we need to express g(x) as a simple function of 
x, not as an infinite polynomial. From the pattern in the definition 
of S, it may be seen that the square of g(x) gives a very similar 
pattern: 

g 2 ( x ) = ( s l . x + s 2 . x ~ + S j . x 3 + .  * * +S,.x"+* * ' )* 

= s, * SI * x2 + ( S ,  - S2 + S2 * s, )x3 

+ ( S ,  * s, + s2 - s2 + s, * S , )  x4 + * * * ( 5 )  

Using the recursive definition of the coefficients from Eq. 1 or 

Ik 

Figure 2. Two-output sharp split separation unit. 

4, this may be expressed as: 

which is identical to the infinite power series for g(x) minus the 
first-order term S, - x. S, is known, defined to be 1 in the 
recurrence relation (Eq. l), so that the closed form expression in 
the generating function with all unknown coefficients eliminated 
becomes: 

Solving for g(x) gives 

From Eq. 3, it follows that g(0) = 0, and this eliminates the 
solution with a plus in front of the square root. This function will 
need to be expanded to an infinite polynomial in x again, but 
now the coefficients in front of each term will be expressed only 
as a function of n-the power x is raised to in the term. Using 
Newton's extended binomial theorem for the (1 - 4 - x)"' term 
this gives: 

g(x) = 1/2 - 1/2 [( l,,) + ( 1;2) (-4 * x) 

This reveals the unknown coefficients, and only a rewrite of the 
expression remains: 

s, = (-1/2) * (l,,) (-4)" 

The result (Eq. 10) is the well-known Thompson and King 
formula. 

Shoaei and Sommerfeld (1986) refer to the history behind the 
sequence of numbers originating from the above formula, known 
as the Catalan number sequence, and they give credit to Euler 
for the discovery of the sequence. This is, however, probably not 
entirely correct. According to Cohen (1978), Euler was not the 
discoverer of the sequence, he was the first to find the closed 
form formula. The German mathematician, Johann Andreas 
von Segner (1704-1777). preceded Euler in the discovery of the 
recurrence formula, and thus also in the discovery of the number 
sequence it generates. 

Extension to Sequences of Sharp Separators with 
More than Two Outputs 

A separator may, both in principle and in practice, have more 
than two output streams. Side stream distillation columns and 
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distillation columns with side stream strippers or rectifiers are 
practical examples of this. It may therefore be useful to extend 
the analysis to sequences of sharp separators with two or three 
outputs. 

If any of the sharp separators in a sequence is allowed to have 
either two or three output streams, than a recurrence relation for 
the number of sequences may be derived using a similar 
argument as the one used to set up the recurrence relation in the 
two-output case. Now the recurrence relation must involve the 
sum of three-term products; and since two or three outputs are 
allowed, one “empty” output from a three-output separator will 
be legal, So = 1. Generalizing from the two-output case the 
recurrence relation becomes (Figure 3): 

“-1 n - k - 1  

The generating function for the number sequence generated by 
Eq. 11 may be shown to be the analytic real solution of the third 
degree equation 

Solving this equation for Ax) gives a function that seems to be 
too complex to be practically useful for determination of the 
unknown coefficients by expansion to a power series. It is 
therefore suggested that the number of two- or three-output 
sequences of sharp separators is most conveniently computed 
using the recurrence relation (Eq. 11). 

Number of Distinct Separators 
The previous sections derived expressions for the number of 

distinct sequences of sharp separators, while this section derives 
formulae for the number of distinct sharp separators. From 
Figure 1 it is seen that the four-component problem has five 
different sequences. Each of these have three separators, giving 
15 separators altogether. But not all of these are distinct, some 
of them are counted more than once. The formulae derived here 
count every distinct separator only once. 

The relation between the number of separators and the 
number of sequences may be illustrated as follows. Take the tree 
from Figure 1 and collapse all instances of the same separator 

Figure 3. Three-output sharp split separation unit. 

into one. This will transform the tree to a graph, as illustrated in 
Figure 4. The number of nodes in this graph will be the number 
of distinct separators for the problem. An expression for this 
number may be derived inductively. It is evident that there will 
be exactly one distinct sharp two-output separator for any 
binary mixture of components. To find an expression for the 
number of distinct separators for a mixture with any number n 
of components, it is first assumed that there already exists an 
unknown number of separators for a mixture of n - 1 compo- 
nents. If an expression may be found for the number of new 
distinct separators introduced when the nth component is added 
to this mixture, then the total number of distinct separators for 
any value of n greater than two may be obtained by simple 
summation. 

Addition of an nth component to an n-1 component mixture 
will introduce the following additional two-output separators as 
compared to the two-output separators present in the n - 1 
component case: 

n = 2  A 
B 
A A  

n = 3  B B B 
c c c  
A A A  

n = 4  B B B B B 
c c c e c c  
D D D D D D  
A A A A  
B B B B B B B  

n = 5  C e C C C C C C C 
D D D D D B D D D D  
E E E E E E E E E E  

- 

It is readily seen that if all the n components are present in the 
separator, one may choose among n - 1 locations for the split. 
Thus, the number of additional splits with all n components 
present is (“1’). But it is also possible that only n - rn 

ABC 

Figure 4. Separators In a four-component sharp spllt sop- 
aratlon system. 
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components are present, as long as the nth component is among 
these, with m ranging from 1 to n - 1. The total number of new 
splits introduced by addiiton of an nth component to an n - 1 
component mixture will thus be 

n - 1  n - 2  
E S ( n h = (  ) + (  ) +  - - +(:)=(;) (13) 

The total number of splits will naturally be the sum of additional 
splits introduced with each component added to the mixture, 
counting from two and up to n: 

which may also be expressed as 

n3 - n 
TS(n)2 = - 6 

The latter form, reported earlier for example by Lien (1988), is 
easier to compute than the former, but the former is more easily 
generalized to cases with more then two outputs. The procedure 
for calculation of the number of three-output separators is 
similar to that for two-output separators, with the only differ- 
ence that two different splits must be placed in n - 1 places. 

The number of extra splits when an nth component is added to 
an n - 1 component mixture is thus in the three-output case: 

n - 1  n - 2  
ES(n) ,  = ( ) + ( ) + - + (:)= (1) (16) 

This results in a total number of three-output separators equal 
to: 

which may also be expressed as 

n4 - 2n3 - n2 + 2n 
24 (18) TS(n),  = 

A generalization to the number of extra splits, if 2,3, . . . or r 
output streams are allowed, is trivial, since the number of 
two-output separators is independent of the number of three- 
output separators, 

ES(n),  = (3 + (:) + - . + (:) = 2 (“) (19) 
k = 2  k 

Table 1. Numbers of Sequences and Separators for Two- and 
Three- Output Streams 

Output Streams 

No. of No. of 
No. Sequences Separators 
of 

Comp. 2 20r 3 2 2 or 3 

2 1 1 1 1 
4 5 10 10 15 
6 42 154 35 70 
8 429 2,871 84 210 

10 4,862 59,345 165 495 

The total number of splits in this most general case is thus: 

n + l  n + l  
TS(n) ,=  ( ) + (  ) 

n +  1 n + l  

r +  1 

Table 1 illustrates the rapid growth rate of the number of 
sequences and separators for two- and three-output streams. 
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Notation 
ES(n),  = additional number of splits for n components and r output 

streams 
g(x) = generating function 

S, = number of sequences for n components 
TS(n), = total number of splits for n components and r output streams 
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