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Abstract In this paper, a psychologically-inspired bi-
nary cascade classification schema is proposed for speech

emotion recognition. Performance is enhanced because

commonly confused pairs of emotions are distinguish-

able from one another. Extracted features are related
to statistics of pitch, formants, and energy contours,

as well as spectrum, cepstrum, perceptual and tem-

poral features, autocorrelation, MPEG-7 descriptors,

Fujisaki’s model parameters, voice quality, jitter, and

shimmer. Selected features are fed as input to K near-
est neighborhood classifier and to support vector ma-

chines. Two kernels are tested for the latter: linear and

Gaussian radial basis function. The recently proposed

speaker-independent experimental protocol is tested on
the Berlin emotional speech database for each gender

separately. The best emotion recognition accuracy, achie-

ved by support vector machines with linear kernel, equals

87.7%, outperforming state-of-the-art approaches. Sta-

tistical analysis is first carried out with respect to the
classifiers’ error rates and then to evaluate the informa-

tion expressed by the classifiers’ confusion matrices.
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1 Introduction

Human behavior is a natural reference for artificial sys-
tems. Psychology and neurology suggest that emotions

are important in decision making, problem solving, cog-

nition, and intelligence. The vision of future computing

is human-centered [42], and should take affect into ac-
count [45]. Future computing will be characterized by

its ease of use and it should adapt automatically to the

users’ behavioural patterns. Within this context, emo-

tion recognition is considered to be a fundamental as-

pect for human-computer interaction (HCI). Emotion
recognition could provide users with improved services

by being adaptive to their emotions. For example, an

angry user should be appraised, a confused user might

be offered an alternative explanation by the computer,
whereas the system should also be capable to share the

happiness to corroborate the partnership between user

and system.

Vocal expression is a primary carrier of affective sig-
nals in human communication [40]. Today there is a

need to know not only what the user says, but also

how he/she says it [33]. The aim is to improve natural-

ness and efficiency of spoken human-machine interfaces

[14], through the exploitation of paralinguistic proper-
ties [65].

However, emotion recognition is a challenging task,

even for humans [13] [33], as is verified by the related

literature [8] [20] [25]. This can be attributed to a mul-
titude of reasons. To begin with, emotions are difficult

to define from a psychological point of view [33]. In

fact, emotions are ill-defined, possibly indeterminate,

and they exhibit fuzzy boundaries that cannot be di-
rectly measured [12]. There are ongoing debates about

how many emotion categories exist [33]. In addition,

there may be more than one perceived emotion in the
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same utterance. There is a lack of definite description

and agreement upon one set of basic universal emo-

tions [33]. For example, remorse is a combination of

sadness and disgust [20]. In addition, different emotions

can share similar properties. In [13], it is stated that
emotional signals are chaotic in nature whereas it is a

fact that researchers have not yet found a sufficient fea-

ture set to describe the emotional states efficiently [20].

It is also proven that each speaker expresses his/her
emotions in a different manner [20] and that the two

genders convey their emotions in profoundly different

ways [20] [40] [46] [60] [66]. Furthermore, the same lin-

guistic content may bear different emotional state.

Emotion recognition can find several applications.
For the case of intelligent assistance, emotion recogni-

tion can increase usability, user-friendliness, and coop-

erativeness by adapting dynamically to the emotional

state of the user [36]. This way the interaction is more
natural, simplified and accelerated. Another potential

application refers to call centres management. When a

customer experiences negative emotions the system can

either adjust to the customer needs or pass the control

to a human agent. It is proven that the emotion of an
automobile voice can affect the driver’s performance,

leading to less accidents [40]. Also, fatigue can be de-

tected in the driver’s voice and the driver can be alerted

[13]. Other examples of emotion aware systems include
support for people with disabilities, such as educational

software [8] for people with autism [29] or serious visual

impair. Alternative applications deal with emotion de-

tection in games and human-robot interaction. Surveil-

lance and detection of potentially hazardous events are
also possible applications of emotion recognition [41],

whereas voice mail refinement could be benefited, as

well [26]. Other possible applications include commer-

cial products, life-support systems, virtual guides, cus-
tomer service, lie detectors, conference room research,

emotional speech synthesis, art, entertainment etc.

Additionally, emotion recognition has found alter-

native uses in health care systems. For example, anger

and impatience is detected in a database of speech record-
ings derived during surgery operations [54]. Thus, in

the case of an angry or impatient surgeon a security

action can be carried out. Psychiatry may use emotion

recognition to attend patients with psychological prob-
lems, such as depression, deception or anxiety [17] [24].

Additional health science areas include behavioral sci-

ence and neuroscience [66] by the development of tools,

which are capable to improve the reliability of measure-

ments and accelerate the tedious and demanding task of
manually processing data on human affective behavior.

Our system exploits exclusively the audio channel.

It comprises 3 modules: feature extraction, feature se-

lection, and classification. The current paper begins

with a review of the related literature. Then, the first

contribution is presented, which is a psychologically-in-

spired binary cascade classification schema. The schema

adopts the mental dimensional descriptors of valence,
activation, and stance [16]. It decomposes the multi-

class emotion recognition problem into several binary

classification problems. The reason is that a feature

that presents a good discrimination ability for a set of
emotions may not present the same attribute for an al-

ternative set of emotions. Other advantages include bet-

ter separation of commonly confused emotional states,

easy adaptation to databases with diverse emotions,

and the possibility to choose the stop level of the schema.
A second contribution lies in the extraction of a large

pool of 2327 features from the Berlin emotional speech

database (EMODB). Several features, namely MPEG-7

descriptors, Teager energy operator on autocorrelation,
total loudness, and specific loudness sensation coeffi-

cients (SLSC), which all told amount to 602 novel fea-

tures, are proposed in this study for the first time to

the best of the authors knowledge within the context of

emotion recognition. The normalized extracted features
are fed as input to a forward feature selection algorithm

for each gender separately. Next, speaker-independent

experiments are carried out for each gender separately,

which constitutes the final contribution of the paper.
Speaker-independency is a new trend in the research

community and consequently a limited number of speaker-

independent contributions is available. Speaker-inde-

pendent systems are more robust and stable and they

demonstrate a better generalization ability than the
speaker-dependent ones. Furthermore, speaker-indepen-

dent systems are ideal when the number of speakers is

limited. As classifiers Support vector machines (SVMs)

as well as K nearest neighborhood (KNNs) are applied
and efficiency is presented by means of confusion matri-

ces as well as emotion recognition accuracy. Two differ-

ent kernel functions are tested for SVMs, namely linear

and Gaussian radial basis function. Performance anal-

ysis of KNN as well as SVM with Gaussian radial basis
function kernel under diverse parametrization is per-

formed. An amendment of the paper is related to the

statistical analysis of the experimental results. In par-

ticular, on the one hand the classifiers’ error rates are
compared, while on the other hand the confusion ma-

trices are ranked. The final advantage is the compari-

son with previous work that offers qualitative conclu-

sions and comparisons among the study presented in

this case-study and the most recent studies tested on
EMODB. Results indicate that the proposed approach

outperforms several state-of-the-art approaches, achiev-

ing an accuracy of 87.7%.
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The outline of the paper is as follows. Significant

contributions to the research field of emotional recog-

nition are presented in Section 2. The psychologically-

inspired binary cascade classification schema is intro-

duced and applied on EMODB in Section 3. In Sec-
tion 4, the extracted features are demonstrated and in

Section 5 the feature selection strategy is summarized.

In Section 6, the experimental protocol is described.

In the same Section experimental results are presented.
Some sets of alternative experiments are carried out and

the corresponding results are discussed. Next, a statis-

tical evaluation of the classifiers is carried out in order

to verify though strong statistical tests which classifier

is best performing for the task in question. A commen-
tary to facilitate comparisons with most recent studies

tested on the EMODB is provided in Section 7. Finally,

conclusions are drawn in Section 8.

2 Related work

Emotions are fleeting, gender-dependent, and hard to
distinguish. They exhibit substantial individual varia-

tions in expression and experience [21]. Emotion recog-

nition is such a challenging task that it is unlikely to

achieve perfect accuracy [12]. Even humans may have
difficulty describing how they feel, distinguishing be-

tween emotions or remembering how they felt only min-

utes earlier. A survey verifies the differences among hu-

man emotional perception [3], whereas a more detailed

study is available in [15]. For the latter case, 20 subjects
describe their perception of 6 emotions, namely happi-

ness, hot anger, neutral, interest, panic, and sadness

from the Emotional Prosody Speech and Transcripts

(EPST) corpus. An accuracy of 64.4% is achieved by
the humans with respect to the labels provided by the

EPST corpus. Happiness/interest, happiness/neutral,

interest/neutral, and neutral/sadness are the most con-

fusing pairs.

Concerning the vocal part of affective computing,

the most commonly used cues for emotion recognition

are pitch and intensity. A survey [66] verifies that speech

is an important communication device in human com-
munication. Authors claim that many studies indicate

that the human judgement agreement is typically higher

for facial expression modality than it is for vocal expres-

sion modality. The latter is verified in [12], where it is
also stated that audio emotion recognition is low-cost,

non-intrusive, and presents faster time resolution than

facial emotion recognition.

Furthermore, it is underlined that the research com-

munity makes an effort to make use of contextual infor-

mation, such as gender, to improve the performance of

emotion recognition. The importance of context infor-

mation is emphasized in [12]. In an additional survey it

is stated that besides features, also the applied classi-

fier plays a significant role in emotion recognition per-

formance [3]. For example, Gaussian mixture models
(GMMs) cannot model the temporal structure of the

data, whereas artificial neural networks classification

accuracy seems to be fairly low when compared to other

classifiers. On the contrary, SVMs appear to have global
optimality of the training algorithm as well as high-

performance data-dependent generalization bounds [3].

Finally, although the vast majority of previous works

exploit a speaker-dependent protocol, speaker-indepen-

dent experiments are one of the latest trends in the emo-

tion recognition field. Only a few researchers have con-
ducted speaker-independent experiments to date. Here,

we made a systematic effort to consider previous works

that exploit the speaker-independent scenario, although

they are quite sparse. By the term speaker-independent
we mean that the utterances that are included in the

test set come from one specific speaker, whose utter-

ances are not included in the training set. In other

words, it is not possible for the classifier to be tested on

utterances derived from the same speaker whose utter-
ances belong to the training set. In [3], an alternative

method for speaker-independency is proposed. In spe-

cific the authors mention that a speaker-independent

emotion recognition system could be implemented as
a combination of a speaker identification system fol-

lowed by a speaker-dependent emotion recognition sys-

tem. However, the latter prerequisites that the speaker

recognition system would ideally demonstrate an excel-

lent performance.

2.1 Milestone emotion recognition systems

Lee and Narayanan [33] present a case-study of de-

tecting negative and non-negative emotions using spo-

ken data from a call centre. The database is obtained

from users engaged in spoken dialogue with a machine
agent using a commercially-deployed call centre appli-

cation. The authors apply linear discriminant classi-

fiers (LDC) as well as KNN classifiers. The speech sig-

nal is analysed in fundamental frequency, energy, dura-

tion, and formant features. Then forward feature selec-
tion is applied followed by principal component anal-

ysis (PCA). Separate sets of experiments are carried

out for male and female subjects. Results are reported

for 10-fold cross-validation, making the experimental-
procedure speaker-dependent. Concerning exclusively

the audio channel, the lowest classification error is 17.85%

for males and 12.04% for females, when LDC is applied.
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Interest detection has been investigated in [51] [52].

In particular, three levels of interest are identified: the

first one includes disinterest, indifference, and neutral-

ity, the second interest, and the third one curiosity. The

authors record their own human conversations database,
which they name AVIC database, with a duration of

10.5 hours. The following acoustic features are extracted:

formants, pitch, frame energy, envelope, MFCC, harmo-

nics-to-noise ratio, jitter, and shimmer. Then deriva-
tion of speed and acceleration regression coefficients of

the aforementioned features takes place. Finally sta-

tistical functions are applied to the feature vector to

render it less dependent of the spoken phonetic con-

tent. SVMs with a polynomial kernel are used as classi-
fiers. Speaker-independent leave-one-speaker-out exper-

iments are conducted. Feature selection is performed by

sequential forward floating search at each iteration in-

dependently. A mean accuracy of 69.2% for all the three
levels of interest is reported, when the audio channel is

exploited exclusively.

2.2 Emotion recognition on EMODB

There is a number of recent contributions that imple-

ment emotion recognition on EMODB. In [65], the au-

thors propose a set of harmony features. They are based
on the psychoacoustic perception of pitch intervals and

apply the theory of chords from music. Harmony fea-

tures are derived from the pitch contour to charac-

terize the relationship between different pitches, such
as two-pitch intervals and chords involving more than

two pitches. Harmony features are used in conjunction

with energy, pitch, duration, formants, ZCR, and voice

quality features. 306 statistical values of the aforemen-

tioned features are computed. Sequential floating for-
ward selection identifies the 50 most informative fea-

tures, which are fed as input to a Bayesian classifier that

exploits GMMs. Speaker-independent experiments are

carried out. 6 emotional classes are considered, namely:
happiness, boredom, neutral, sadness, anger, and anx-

iety. In our approach a more exhaustive feature com-

putation is available although in both works statistical

values of features are computed and feature selection is

applied in order to retain a small number of features.
Nonetheless, in [65] disgust is dismissed.

The approach proposed in [48] combines selection

and hierarchical aggregation of features aiming to com-

bine short, medium, and long time scale features. Con-

sidering short time scale features, MFCCs, sones, and
linear predictive cepstral coefficients are used. Medium

time scale features are computed by spectro-temporal

box-filters, while long time scale features include phase,

sampling interval, moment, energy, and summary statis-

tics like mean value and quantiles. Next, GentleBoost is

used to simultaneously select the best performing fea-

tures and build the classifier. Speaker-independent ex-

periments are performed. In specific, 63 binary classi-
fiers are applied, each of which consists of 15 spectro-

temporal box-filters selected by the GentleBoost. Fi-

nally, multinomial ridge logistic regression is applied

to the continuous outputs of the 63 binary classifiers.
The idea of calculating various features along with their

corresponding statistics is also applied by the authors,

although the categorization of features is not the same

one. Moreover, the authors of this paper exploit fea-

ture selection and classification separately. Hierarchy is
also applied in both approaches. However, in [48] hi-

erarchical aggregation of features is tested whereas in

this approach the psychologically-inspired binary cas-

cade classification schema employs a hierarchy on emo-
tional descriptors.

Class-level spectral features for emotion recognition

are proposed in [6]. The authors define 3 phoneme type

classes: stressed vowels, unstressed vowels, and conso-

nants in the utterance. MFCC class-conditional means
and standard deviations for each class are aggregated

into one feature vector, by using the phoneme-level seg-

mentation of the utterance. The average duration of

the phoneme classes is appended to the feature vec-
tor. Moreover, 24 utterance level prosodic features are

computed. The aforementioned features are related to

statistics of fundamental frequency, first formant, voice

intensity, jitter, shimmer, and relative duration of voiced

segments. This results to a total of 261 features which
are fed as input to a linear SVM classifier. A speaker-

independent scenario is applied, whereas 6 emotional

classes are taken into account, namely: anger, anxiety,

disgust, happiness, sadness, and neutral. At a second set
of experiments, feature selection is applied. Inspired by

this approach, we performed sets of experiments with

and without feature selection, as well. In the approach

proposed by the authors of this paper, statistics of fun-

damental frequency, first formant, MFCCs, jitter, shim-
mer are among the the computed features. However, in

our case feature computation is exhaustive and it re-

sults a total number of 2327 extracted features.

An emotion recognizer that may operate jointly with

an automatic speech recognizer is examined by Pitter-
man et al. [46]. The feature vector comprises of MFCCs

(along with their first- and second-order differences), in-

tensity, and three formants, along with pitch and pitch

statistics, namely minimum, mean, maximum, devia-
tion and range. No feature selection technique is ap-

plied, while the HMMs are employed as classifiers to a

speaker-dependent protocol, contrary to our approach
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that applies feature selection and a speaker-independent

protocol. Also, speech recognition is not a prerequisite

in this work, whereas the stated set of features in [46]

is a subset of the feature vector computed by the au-

thors. However, in both cases the authors compute the
first- and second- differences of the features in order to

capture their temporal evolution.

The aim of the work by Altun and Polat [1] is to

improve the effectiveness of feature selection. 4 feature
selection algorithms are examined, namely sequential

forward selection, least square bound feature selection,

mutual information based feature selection, and R2W2.

4 emotional states are taken into consideration, in spe-

cific, anger, happiness, neutral, and sadness. 58 features
are extracted, 17 of which are prosodic, 5 correspond to

sub-band energies, 20 MFCCs, and 16 LPCs. The emo-

tion recognition problem is treated as a binary prob-

lem, which is also true for our approach. In particular,
2 frameworks are considered. The first framework is the

“one-vs-rest” framework. In this approach the problem

is to discriminate one emotional class from the rest (e.g.

anger vs rest). The second framework is the “one-vs-

one”. In this case features that discriminate one emo-
tional class from another one (e.g. anger vs happiness)

are selected. For both frameworks, feature selection is

applied for each sub-problem. 5 fold cross-validation is

applied, rendering the experimental procedure speaker-
dependent. SVMs with radial basis function kernels are

utilized as classifiers. In this work, we resort to forward

feature selection, since our aim is to improve classifica-

tion accuracy, rather than exclusively the effectiveness

of feature selection. It is true that we consider the addi-
tional emotional categories of disgust and anxiety. Ac-

cordingly, a different framework is applied, since each

utterance of the test set may be classified to any of the

seven emotional categories. However, SVM is among
the classifiers examined by the authors of this paper.

A neutral utterance is considered as the reference

and it is correlated with the rest of the utterances with

means of a cross-correlogram [13]. Five parameters are

extracted as features from each cross-correlogram, na-
med as peak value, instant at which peak occurs, cen-

troid, equivalent width and mean square abscissa. Next,

the parameters extracted from the cross-correlogram

are fed as input to SVMs with Gaussian radial basis

function kernel. Only the utterances derived from fe-
male speakers are considered. Speaker-dependent ex-

periments are carried out, applying 50% of the utter-

ances for training and the rest for testing, whereas no

feature selection takes place, since the number of fea-
tures is already restricted. Only 4 emotional states are

considered, namely: anger, happiness, sadness, and neu-

tral. In our work, we additionally consider boredom,

disgust, and anxiety. Inspired by the features proposed

in this paper, the authors decided to compute autocor-

relation features as well as Teager energy operator on

autocorrelation features along with their statistical val-

ues. A substantial difference of this work, is that for this
work both male and female utterances are considered,

either separately or combined. Additionally, the num-

ber of computed features by the authors of this paper

is substantially greater and as a result feature selection
is a prerequisite.

The importance of pitch contour is exhaustively ex-

amined in [11]. Contrary to our work, the authors of [11]

present a radically different approach, where just one

feature category, namely pitch is sophisticatedly anal-
ysed. In a first step, reference pitch models for neutral

speech are built. The neutral models are implemented

by univariate GMMs. Then, the pitch-related input fea-

tures are contrasted with the reference pitch models. In
a second step, an LDC is implemented to classify the

fitness measures. The fitness measures are the models

of each pitch feature, that is represented with a univari-

ate GMM. In essence, the fitness measure decides if the

input speech is neutral or emotional speech, depending
on whether it is similar to or different from the reference

model, respectively. Speaker-dependent normalization,

in specific pitch normalization and energy normaliza-

tion, is used to reduce speaker variability. Two distinct
sets of experiments are carried out: one at sentence level

and another at voiced segments level. Different feature

sets are selected for sentence and voiced segments level

by exploiting forward feature selection in conjunction

with logistic regression models. The sentence level ac-
curacy equals 80.9%, whereas the corresponding accu-

racy for the voiced segments level is 71.1%, when all the

seven emotional categories are considered. The authors

agree with the just-described approach that normaliza-
tion plays an essential role. The same is also true for

feature selection. Finally, forward feature selection, is

utilized in both papers.

Exploiting various feature categories is the aim of

[47]. In specific, raw time signal, energy, spectral fea-
tures, pitch, formants, MFCCs, cepstral features, voice

quality, durational pause-related features, and Zipf fea-

tures are fed as input to an SVM classifier. The recog-

nition rate for anger is 0.96, for boredom 0.72, for dis-

gust 0.71, for anxiety 0.81, for happiness 0.95, for neu-
tral 0.68 and for sadness 0.75. As a next step individ-

ual features are tested for their recognition efficiency.

Pitch, MFCCs, and formants are found to be those

with the best discrimination ability. When confined to
the aforementioned features, arousal equals 0.95 and

valence 0.86, when SVM is employed as a classifier,

whereas the corresponding rates diminish to 0.90 and
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0.79, respectively for the case of HMM. In [47] it is

stated that the framework for speech emotion recogni-

tion comprises of feature extraction, feature selection,

and classification. This approach is followed in the pre-

sented paper, as well. Also, the authors of this paper
would like to verify that pitch, MFCCs, and formants

seem to play a significant role for emotion recognition.

3 Psychologically-inspired binary cascade

classification schema

In this Section the EMODB database is briefly described

[10] and next the proposed psychologically-inspired bi-

nary cascade classification schema is presented. In EMODB
5 actors and another 5 actresses simulate 7 emotions.

10 utterances in German, which are used in everyday

communication, are uttered by each actor/actress. 5 ut-

terances are short, while the remaining 5 are long. The

emotional labels are: anger, boredom, disgust, anxiety,
happiness, sadness, and neutral. The audio format is

PCM, the recordings are mono-channel, the sampling

frequency is 16 KHz, and the audio samples are quan-

tized in 16 bit. The full database comprises approxi-
mately 30 minutes of speech. To ensure emotional qual-

ity, a perception test was implemented. In specific, 20

subjects were asked to identify the emotional state of

each utterance. Utterances whose emotion label is rec-

ognized correctly by at least 80% and possess natural-
ness higher than 60% are finally retained. This leads

to a consistent database containing 535 utterances, 233

of which are uttered by male speakers, whereas the re-

maining 302 ones are uttered by female speakers. EMODB
is annotated using ESPS/waves+. The main reason for

choosing EMODB is the fact that it is consistently an-

notated and publicly available. Thus, it is a popular

choice among researches, facilitating comparisons with

previous work, which can be found in Section 7. More-
over, it covers most of the archetypal emotions [16]:

happiness, sadness, fear, anger, surprise, and disgust.

Archetypal emotions are the most long-standing way

that emotion has been described by psychologists [66].
Finally, it is gender balanced.

Here, we propose a psychologically-inspired binary

cascade classification schema that applies dimensional

descriptions. Dimensional descriptions capture essential

properties of emotional states. They are actually an al-
ternative to the categorical description of human af-

fect. In specific, dimensional descriptions characterize

an emotional state in terms of a small number of latent

dimension, whereas categorical descriptions consider a
small number of discrete emotion categories. As stated

in [12] it is important for computer scientists to uti-

lize psychological emotion theories on their automatic

emotion recognition systems. For this work we consider

the dimensional descriptors [16], making our approach

psychologically founded. The first dimensional descrip-

tion is valence, also known as evaluation, a global mea-

sure of the pleasure associated with the emotional state,
ranging from negative to positive. The second dimen-

sional descriptor is activation, also known as arousal,

that is how dynamic the emotional state is. Activation

ranges from active to passive. The third dimensional
descriptor is stance. Stance specifies how approachable,

i.e. acceptable, the emotional state is. Positive values

correspond to the advance approach whereas negative

values correspond to the retreat approach.

The database is analysed into emotional categories
with means of a binary tree structure, as is demon-

strated in Figure 1. The total number of nodes is 2 ∗

7 − 1 = 13, where 7 is the number of emotional states

included in the root of the tree. Firstly, a distinction
between the non-negative valence and the negative va-

lence emotions is made. Non-negative valence emotions

include happiness and neutral, whereas negative valence

emotions consist of anger, boredom, disgust, anxiety,

and sadness. Secondly, a distinction between the non-
negative valence feelings is carried out, separating hap-

piness from the neutral state. Concerning negative va-

lence emotions, a first grouping is done along the ac-

tivation axis. Emotions with a negative activation are
separated from those with a positive one. Boredom and

sadness exhibit a negative activation, whereas anger,

disgust, and anxiety present a positive activation. Then,

boredom and sadness are separated. In the next step,

a distinction among the positive activation emotions is
carried out. Anger and anxiety belong to higher stance

emotions and consequently they are grouped together,

whereas disgust presents lower stance. In the final step,

the higher stance emotions, i.e. anger and anxiety are
separated.

Let us comment on the hierarchy of the emotional

descriptors. Valence is chosen for the first level, since

from a practical point of view it is fundamental to know

whether the expressed emotion is negative or not. For
example, it may be used to improve the quality of ser-

vice in automated call centres. Furthermore, by discrim-

inating negative from non-negative emotions, human-

computer interaction designers will be able to recog-

nize which parts of the interface are problematic, in the
sense that they evoke negative emotions. Other possi-

ble applications include games, educational software,

life- or in-car driver interfaces. At the second level, ac-

tivation is applied. The reason for this choice is that
when researchers limit themselves to a 2 dimensions

emotional space instead of a 3 dimensions one, then

this space is valence-activation [8] [14] [62]. Obviously,
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Fig. 1 The proposed psychologically-inspired binary cascade

classification schema for emotion recognition. Dimensional de-
scriptions of valence, activation, and stance establish psychologi-
cally consistency.

to achieve better discrimination performance, through

a finer filtering, stance is finally added to the dimen-
sional descriptors.

The proposed psychologically-inspired binary cas-

cade classification schema exhibits several advantages.

To begin with, a feature that presents a good discrimi-

nation ability for a set of emotions may not present the

same attribute for an alternative set of emotions. At the
same time emotional states that share similar features

can be grouped together. Thus, by confining the prob-

lem to a 2-class one, we manage to boost performance.

For example, in [20], the authors state that emotional
categories anger/happiness, neutral/boredom, and neu-

tral/sadness are commonly confused. The latter is veri-

fied in [47]. However, with the proposed psychologically-

inspired binary cascade classification schema the afore-

mentioned couples of emotions belong to different anal-
ysis levels, rendering the discrimination between them

more effective, as experimental results verify. Another

advantage is that one can stop to whichever level is suf-

ficient for the application. Thus, the proposed approach
general and scalable. For example, detection of negative

emotions, i.e. stopping to the 1st level, can be useful

as a strategy to improve the quality of service in auto-

mated call centres. A further advantage of the proposed

schema is that it can be easily adapted to additional
problems that deal with different emotional labels by

adding and/or removing emotional states, making the

system a practical and flexible one. Finally, by consider-

ing the initial groups of emotions rather than emotions
themselves, more utterances are available for the classi-

fier to be trained, handling this way the common prob-

lem of the limited number of samples. It should also be

mentioned that low-level attribute classifiers are more

robust to data sparseness problem.

4 Feature extraction

In this Section the extracted features studied in the

proposed approach are outlined. Researchers have not
yet found a sufficient feature set to reliably describe

emotional states [20] [66], which means that the prob-

lem of determination of the most informative features

for emotion recognition an open one issue [1]. Emo-

tion recognition performance can boost significantly if
appropriate and reliable features are extracted [1] [21]

[65]. Highly informative features may be more critical

to emotion recognition accuracy than the classifier itself

[1]. To face this challenge in this case-study we accu-
mulate a feature set as exhaustive as possible. Our aim

is two-fold. On the one hand, we attempt to compute a

multitude of features, aiming to capture as many infor-

mative features as possible. On the other hand, several

features are investigated here for the first time for the
emotion recognition task.

Table 1 Formant contour related features

indices features

1-4 Mean of the 1st, 2nd, 3rd, and 4th formant
5-8 Maximum of the 1st, 2nd, 3rd, and 4th formant
9-12 Minimum of the 1st, 2nd, 3rd, and 4th formant
13-16 Variance of the 1st, 2nd, 3rd, and 4th formant
17-20 Skewness of the 1st, 2nd, 3rd, and 4th formant
21-24 Interquartile range of the 1st, 2nd, 3rd, and 4th for-

mant
25-28 Range (i.e. maximum-minimum) of the 1st, 2nd,

3rd, and 4th formant
29-32 90th percentile of the 1st, 2nd, 3rd, and 4th formant

Several observations are made by the research com-
munity with respect to the correspondence among fea-

tures and emotional categories. Previous work [14] has

indicated that anger presents an increased pitch, happi-

ness demonstrates an increased intensity, whereas sad-
ness exhibits a decrease in high-frequency energy. Sad-

ness, anger, and fear exhibit the best recognition rates,

whereas disgust has the worst [12]. According to [39],

for the feature of pitch range it is true that anger, hap-

piness, and fear have a much wide pitch range, sadness
has a slightly narrower, whereas disgust has a slightly

wide one. Both pitch and energy for happiness and

anger are usually higher than sadness [25]. Fear and

anger present a high energy lever, whereas sadness demon-
strates a low one [50]. For anger and happiness the pitch

contour is higher and more variable than for sadness

[28]. Previous work [8], has indicated that the acoustic
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Table 2 Pitch contour related features

indices features

33-37 Maximum, minimum, mean, median, interquartile
range of pitch values [57]

38 Pitch existence in the utterance expressed in per-
centage (0-100%) [57]

39-42 Maximum, mean, median, interquartile range of du-
rations for the plateaux at minima [57]

43-45 Mean, median, interquartile range of pitch values
for the plateaux at minima [57]

46-50 Maximum, mean, median, interquartile range, up-
per limit (90%) of durations for the plateaux at
maxima [57]

51-53 Mean, median, interquartile range of pitch values
within the plateaux at maxima [57]

54-57 Maximum, mean, median, interquartile range of du-
rations of the rising slopes of pitch contours [57]

58-60 Mean, median, interquartile range of pitch values
within the rising slopes of pitch contours [57]

61-64 Maximum, mean, median, interquartile range of du-
rations of the falling slopes of pitch contours [57]

65-67 Mean, median, interquartile range of pitch values
within the falling slopes of pitch contours [57]

68-75 Maximum, minimum, mean, variance, median,
skewness, interquartile range, and 90th percentile
of pitch [7]

76-83 Maximum, minimum, mean, variance, median,
skewness, interquartile range, and 90th percentile
of first-order differences of pitch [7]

84-91 Maximum, minimum, mean, variance, median,
skewness, interquartile range, and 90th percentile
of second-order differences of pitch [7]

92 Number of frames, where pitch value could not be
determined [7]

features related to pitch, energy, and speaking rate are

not appropriate to model valence. For example there is

a tendency to confuse hot anger to happiness and inter-

est to sadness. According to [47] fear resembles sadness
having an almost downwards slope in the pitch contour,

whereas joy exhibits a rising slope. Anger, fear, happi-

ness, and surprise appear to share the same characteris-

tics with respect to the fundamental frequency [3]. Pitch
range, mean of fundamental frequency, mean intensity,

speech rate, and high-frequency energy appears to be

an index into arousal. Shorter pauses and inter-breath

stretches are indicative of higher activation. Fast speak-

ing rate, less high-frequency energy, low pitch and large
pitch range and longer vowel durations are related to

positive valence [21].

We extract features related to statistics of formant
contours (Table 1), pitch contours (Table 2), and energy

contours (Table 3). The method to estimate formants

relies on the linear prediction analysis [35], whereas

pitch is computed based on an autocorrelation method.
Statistics related to the distribution of energy into sev-

eral spectral bands (Table 4) as well as statistics of

the TEO-autocorrelation (Table 5) are also computed.

Table 3 Energy contour related features

indices features

93-97 Maximum, minimum, mean, median, in-
terquartile range of energy values [61]

98-101 Maximum, mean, median, interquartile range
of durations for the plateaux at minima [61]

102-104 Mean, median, interquartile range of energy
values for the plateaux at minima [61]

105-109 Maximum, mean, median, interquartile range,
upper limit (90%) of duration for the plateaux
at maxima [61]

110-112 Mean, median, interquartile range of energy
values within the plateaux at maxima [61]

113-116 Maximum, mean, median, interquartile range
of durations of the rising slopes of energy con-
tours [61]

117-119 Mean, median, interquartile range of energy
values within the rising slopes of energy con-
tours [61]

120-123 Maximum, mean, median, interquartile range
of durations of the falling slopes of energy con-
tours [61]

124-126 Mean, median, interquartile range of energy
values within the falling slopes of energy con-
tours [61]

127-134 Maximum, minimum, variance, mean, me-
dian, skewness, interquartile range, and 90th
percentile of first-order differences of energy
values [31]

135-142 Maximum, minimum, variance, mean, me-
dian, skewness, interquartile range, and 90th
percentile of second-order differences of energy
values [31]

143-144 Position of the first energy maxi-
mum/minimum [31]

145-149 Maximum, minimum, mean, median, variance
of the temporal distance between two succes-
sive energy maxima [31]

150-154 Maximum, minimum, mean, median, variance
of the temporal distance between two succes-
sive energy minima [31]

155-159 Maximum, minimum, mean, median, vari-
ance of the temporal distance between two
successive energy extrema (i.e. either maxi-
mum/minimum or minimum/maximum) [31]

160-161 Standard deviation of energy rising/falling en-
ergy slopes [31]

The latter is used to detect creaky voice. Furthermore,
features stemming from generic audio classification are

extracted, as is summarized in Table 6. Such features

include spectral, temporal, perceptual, short-time en-

ergy, and MPEG-7 standard descriptors [5]. Moreover,

motivated by the high speech emotion recognition accu-
racy reported in [67], when Fujisaki’s model parameters

[38] are considered, these features are also tested here,

as can be seen in Table 7. In addition, jitter and shim-

mer, are listed in Table 8. Statistics of the contours of
zero- crossing rate (ZCR), autocorrelation, and Spec-

trum Flux are summarized in Table 9. Linear predic-

tion filter coefficients (LPC)-related features are exhib-
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Table 4 Features related to the distribution of energy in several
frequency bands [61]

indices features

162-169 Energy below 250, 600, 1000, 1500, 2100, 2800,
3500, 3950 Hz

170-176 Energy in the frequency bands 250-600, 600-
1000, 1000-1500, 1500-2100, 2100-2800, 2800-
3500, 3500-3950 Hz

177-182 Energy in the frequency bands 250-1000, 600-
1500, 1000-2100, 1500-2800, 2100-3500, 2800-
3950 Hz

183-187 Energy in the frequency bands 250-1500, 600-
2100, 1000-2800, 1500-3500, 2100-3950 Hz

188-189 Energy ratio between the frequency bands
(3950-2100) and (2100-0) and between the fre-
quency bands (2100-1000) and (1000-0)

Table 5 Statistics of TEO-autocorrelation features [31]

indices parameter

190-197 TEO-autocorrelation
198-205 First-order differences of TEO-autocorrelation
206-213 Second-order differences of TEO-

autocorrelation

ited in Table 10, whereas perceptual linear predictive

(PLP)- and relative spectral perceptual linear predic-

tive (RASTA-PLP)-related ones in Table 11. For Ta-
bles 5-11 with the term statistics we refer to maxi-

mum, minimum, variance, mean, median, skewness, in-

terquartile range, and 90th percentile) of the respective

feature with this order. Statistics have proven to be less
sensitive to linguistic information [47].

First and second order differences are computed to
capture the features temporal evolution. Thus, a multi-

variate time series is obtained and a dynamic model is

feasible [51]. Statistical functions are used to summa-

rize features. Moreover, they reduce the dependency on
the spoken phonetic content [51] [52]. This way emotion

recognition accuracy is improved [48]. In particular, the

statistical functions which are computed to those fea-

tures that this is applicable are: maximum, minimum,

variance, mean, median, skewness, interquartile range,
and 90th percentile.

The pitch contour is one of the important proper-

ties of speech that is affected by the emotional modula-

tion [20] [25] [33] [43] [59], since emotional pitch mod-

ulation is triggered by the activation level of the sen-

tence [11]. Previous work [11] has indicated that fea-
tures such as mean, maximum, minimum, and range

describe the global aspects of pitch contour and are

more emotionally salient than features that describe

the pitch shape itself, like slope, curvature, and inflex-
ion. Energy, formants, voice quality, and spectral fea-

tures efficiency is already verified [15] [20] [25] [26] [30]

[33] [54]. Less frequently used are the LPCs, PLPs, and

Table 6 Statistics of generic audio classification features [5]

indices parameter

214-221 Short-term energy
222-229 Short-term energy first-order differences
230-237 Short-term energy second-order differences
238-245 Audio fundamental frequency
246-253 Audio fundamental frequency first-order dif-

ferences
254-261 Audio fundamental frequency second-order

differences
262-269 Total loudness
270-277 Total loudness first-order differences
278-285 Total loudness second-order differences
286-349 First 8 specific loudness sensation coefficients
350-413 First 8 specific loudness sensation coefficients

first-order differences
414-477 First 8 specific loudness sensation coefficients

second-order differences
478-485 AudioSpectrumCentroid
486-493 AudioSpectrumCentroid first-order differ-

ences
494-501 AudioSpectrumCentroid second-order differ-

ences
502-509 AudioSpectrumRolloff frequency
510-517 AudioSpectrumRolloff frequency first-order

differences
518-525 AudioSpectrumRolloff frequency second-order

differences
526-533 AudioSpectrumSpread
534-541 AudioSpectrumSpread first-order differences
542-549 AudioSpectrumSpread second-order differ-

ences
550-741 24-order MFCCs
742-933 24-order MFCCs first-order differences
934-1125 24-order MFCCs second-order differences
1126-1138 13 autocorrelation coefficients
1139 Log-attack time
1140 Temporal centroid
1141-1172 AudioSpectrumFlatness (4 coefficients)

1173-1204 AudioSpectrumFlatness first-order differences
1205-1236 AudioSpectrumFlatness second-order differ-

ences

RASTA-PLPs [44] [67]. MFCC effectiveness in proven

in [37] [49]. Jitter is also investigated in [59]. Shim-

mer is also investigated in [19]. MPEG-7 descriptors,
TEO-autocorrelation, total loudness, and SLSC are in-

vestigated in this study for the first time within the

context of emotion recognition to the best of the au-

thors’ knowledge. That comprises a set of 602 features.

The corresponding indexes are: {127-142,160,161,190-
213,262-549,1126-1397} and are noted in bold in Ta-

bles 1-11.

5 Selecting small feature sets

This Section focuses on selecting a small set of features

that would be late on fed as input to classifiers. How-

ever, before applying feature selection it is important to
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Table 7 Statistics of Fujisaki’s model parameters [38]

indices parameter

1237-1244 Fujisaki’s F0 contour
1245-1252 Fujisaki’s F0 contour first-order derivative
1253-1260 Fujisaki’s F0 contour second-order derivative
1261-1268 Fujisaki’s logarithmic F0 spline
1269-1276 Fujisaki’s logarithmic F0 spline first-order

derivative
1277-1284 Fujisaki’s logarithmic F0 spline second-order

derivative
1285-1292 Low-pass filter output contour
1293-1300 High-pass filter output contour
1301-1308 Accent component
1309-1316 Accent component first-order derivative
1317-1324 Accent component second-order derivative
1325-1332 Phrase component
1333-1340 Phrase component first-order derivative
1341-1348 Phrase component second-order derivative
1349-1356 Accent commands
1357-1364 Accent commands first-order derivative
1365-1372 Accent commands second-order derivative
1373-1380 Phrase commands
1381-1388 Phrase commands first-order derivative
1389-1396 Phrase commands second-order derivative
1397 Base frequency (single value parameter)

Table 8 Statistics of jitter, shimmer, and voice quality [7]

indices parameter

1398 Number of pulses
1399 Number of periods
1400 Mean period
1401 Standard deviation of period
1402 Fraction of locally unvoiced frames
1403 Number of voice breaks
1404 Degree of voice breaks
1405 Jitter local
1406 Jitter absolute
1407 Jitter relative average perturbation
1408 Jitter five-point period perturbation quotient
1409 Jitter average absolute difference between con-

secutive difference between consecutive periods
divided by the average period

1410 Shimmer local

1411 Shimmer average absolute base-10 logarithm of
the difference between the amplitudes of con-
secutive periods, multiplied by 20

1412 Shimmer three-point amplitude perturbation
quotient

1413 Shimmer five-point amplitude perturbation
quotient

1414 Shimmer eleven-point amplitude perturbation
quotient

1415 Shimmer average absolute difference between
consecutive difference between consecutive pe-
riods

1416 Mean autocorrelation
1417 Mean noise to harmonics ratio
1418 Mean harmonics to noise ratio

pre-process our features carefully in order to guarantee

Table 9 Statistics of ZCR, autocorrelation, and Spectrum Flux
[4]

indices parameter

1419-1426 ZCR
1427-1434 First-order differences of ZCR
1435-1442 Second-order differences of ZCR
1443-1450 autocorrelation (8 coefficients)
1451-1458 First-order differences of autocorrelation
1459-1466 Second-order differences of autocorrelation
1467-1474 Spectrum Flux
1475-1482 First-order differences of Spectrum Flux
1483-1490 Second-order differences of Spectrum Flux

Table 10 The first 16 LPCs, their first- and second-order differ-
ences, along with their statistics [27]

indices parameter

1491-1506 LPCs
1507-1521 First-order differences of LPCs
1522-1535 Second-order differences of LPCs
1536-1543 Statistics of LPCs
1544-1551 Statistics of first-order differences of LPCs
1552-1559 Statistics of second-order differences of LPCs

Table 11 Statistics of 16-order PLPs and 16-order RASTA-
PLPs [18]

indices parameter

1560-1687 PLPs
1688-1815 PLPs first-order differences
1816-1943 PLPs second-order differences
1944-2071 RASTA-PLPs
2072-2199 RASTA-PLPs first-order differences
2200-2327 RASTA-PLPs second-order differences

the quality of data. For that reason feature removal and

feature normalization are carried out.

5.1 Feature removal

Certain features have to be removed, because many
missing values are observed. For example, there are

specific pitch contours that do not have plateaux be-

low 45% of their maximum pitch value whereas other

features do not have first- and/or second-order differ-

ences. When more than 2% of the total number of fea-
ture values is missing, the corresponding feature is dis-

carded. For the EMODB, the indices of the discarded

features are {145-159, 243, 250, 251, 258, 259, 1238,

1280, 1326, 1361, 1363, 1364, 1369, 1371, 1372, 1374,
1377, 1379, 1380, 1385, 1387, 1388, 1393, 1395, 1396,

1468, 1491}. That is, finally, the remaining features are

2327-41=2286.
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5.2 Feature normalization

As a prerequisite to feature selection, normalization

takes place. Feature normalization improves the fea-

tures generalization ability [8] and guarantees that all

the features obtain the same scale [33] in order to en-

sure an equal contribution of each feature to the fea-
ture selection algorithm [60]. Moreover, normalization

helps to address the problem of outliers. All features are

subject to min-max normalization hereafter. Min-max

normalization is expected to boost performance, since
it preserves all original feature relationships and does

not introduce any bias in the features.

5.3 Feature selection

Feature selection presents several advantages. To be-

gin with, small feature subsets require less memory and

computations, whereas they also allow for a more accu-
rate statistical modeling, thus improving performance.

On the contrary, large feature sets may yield a pro-

hibitive computational time for classifier training. For

example, neural networks face difficulties, when they
are fed with extraordinary many features. Employing

large feature sets increases the risk of including fea-

tures with reduced discriminating power. Additionally,

feature selection eliminates irrelevant features, leading

to a reduction in the cost of acquisition of the data.
Furthermore, if all the features are employed, there is

the curse of dimensionality as well as the risk for over-

fitting. In addition, feature selection can boost perfor-

mance when the number of training utterances is not
sufficient or when a real-time problem needs to be han-

dled.

Context is a major factor in affective computing

[45], since the interpretation of human behavioral sig-

nals is context dependent [66]. Modern psychology sug-
gests that the emotion should be described in terms

of appraisal dimensions which give information about

the context in which the emotion is produced. Conse-

quently, an important related issue that should be ad-
dressed in emotion recognition is how one can make use

of information about the context of the emotional be-

havior. Here, we consider gender as one context param-

eter. It is widely accepted by the research community

that gender normalization should be applied [11], since
the two genders convey their emotions in profoundly

different ways [66]. For that reason many contributions

consider each gender separately [13] [60]. The reason is

that some features are gender-dependent [43], e.g. the
pitch [46]. It is well known that in general female speech

has higher pitch than male speech, due to the increase

in mass of a male’s vocal folds. Furthermore, smaller

vocal tract dimensions in women rather than in men

leads to the production of higher formant frequencies

for women. Another example is the speaking rate of

males that is lower than that of females while express-

ing anger or disgust [47]. So, in this case-study, feature
selection is applied separately for male and for female

subjects.

Feature selection is applied at every level of the
psychologically-inspired binary cascade classification sche-

ma, in order to allow refinement for the specific level

of the schema and consequently to boost performance.

That is, different features are expected to distinguish
negative from non-negative valence emotions to those

which distinguish between happiness and neutral state.

Also, a specific feature x that presents a good discrimi-

nation ability between a couple of emotional states set,

may not bear the same attribute for an alternative set.

Forward Feature Selection (FFS) strategy is used

in this case study which is simple, fast, effective and
widely accepted technique [22].Two classes are consid-

ered in each step, according to the proposed psycho-

logically-inspired binary cascade classification schema.

For example, when the emotions of negative valence are

separated from those with non-negative valence, the one
class consists of the features derived from utterances la-

beled as happiness and neutral and the second one of

those labeled as anger, boredom, disgust, anxiety, and

sadness.

Here, a total of 75 features are selected for each

emotion recognition sub-problem. We concluded to the

aforementioned number of features after experimental
evaluation. In specific, several numbers of features rang-

ing from 50 to 100 have been tested with respect to

emotion recognition accuracy of the first level of the

psychologically-inspired binary cascade classification sche-

ma, that is the recognition accuracy in discriminating
negative from non-negative valence emotions. We de-

cided to confine ourselves to a small number of features,

since the more complicated the classifier schema along

with an extended feature set creates concerns about
overfitting. Moreover, a small feature set renders the

system a fast, thus a practical one. 75 features were

found to have the best performance (emotion recogni-

tion accuracy equal to 97.0%) for the linear SVM. This

procure has been verified to be successful in [56]. For
reasons of homogeneity the same number of features is

retained for the remaining levels of the psychologically-

inspired binary cascade classification schema. We re-

sorted to linear SVM in this phase, because it needs
no parametrization and also because SVMs are ideal

for binary classification problems. The percentage dis-

tribution of selected feature sets along the emotional
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Table 12 Selected feature set (%) per gender and emotion group

{happiness,
neutral}
vs {anger,
boredom,
disgust,
anxiety,
sadness}

{happiness}
vs {neutral}

{boredom,
sadness}
vs {anger,
disgust,
anxiety}

{boredom}
vs {sadness}

{anger,
anxiety} vs
{disgust}

{anger} vs
{anxiety}

male female male female male female male female male female male female
formant contour 2.7 1.4 1.4 5.3 1.3 1.3 1.4 1.3 1.3 2.7 1.3 1.3
pitch contour 2.7 1.4 6.7 2.7 2.7 5.3 2.7 1.3 2.7 5.3 4.0 2.7
energy contour 0 4.0 0 2.7 0 4.0 2.7 0 4.0 0 1.3 2.7
energy distribution 0 0 0 0 0 0 0 1.3 1.3 2.7 1.3 1.3
TEO-autocorrelation 0 0 1.4 0 0 0 1.4 0 2.7 1.3 1.3 1.3
generic audio classification 52 58.4 45.3 50.7 42.7 26.7 46.6 53.3 50.7 42.7 58.7 44.0
Fujisaki model parameters 4.0 2.7 9.3 4.0 2.7 9.3 4.2 4.0 4.0 4.0 5.3 0
jitter & shimmer 1.4 0 1.4 0 1.4 4.0 2.7 0 0 1.3 0 1.3
ZCR, autocorrelation, Spectrum Flux 1.4 4.0 2.6 2.6 5.3 8 2.7 0 2.7 0 2.7 4.0
LPCs 1.4 1.4 2.6 8 6.6 10.7 0 2.8 0 1.3 1.3 1.3
PLPs 34.7 26.7 29.3 24 37.3 30.7 35.6 36.0 30.6 38.7 22.8 40.1

groups, as they appear in Figure 1, can be seen in Ta-
ble 12 for each gender separately.

6 Classification

In this Section the speaker-independent experimental

protocol is initially presented (subsection 6.1). Next,

classification results using eitherKNNs (subsection 6.2)
or SVMs (subsection 6.3) are computed. For the SVM

case two kernels are tested, namely the Gaussian radial

basis function and the linear kernel. In subsection 6.4

some sets of additional experiments are carried out in
order to quantify the efficiency improvement achieved

by the proposed contributions. Finally, strong statisti-

cal analysis of the results takes place in subsection 6.5.

6.1 Speaker-independent Experimental Protocol

The experimental protocol chosen includes conduction
of speaker-independent experiments. In order to mea-

sure speaker-independent emotion recognition rate, leave-

one-speaker-out evaluation is applied. That is, for each

gender separately, the classifier is trained 5 times, each
time leaving one speaker out of the training set and

then testing the performance on the left out speaker.

Final results are reported along the two genders.

Speaker-independent systems present several advan-

tages. They are able to handle efficiently an unknown

speaker. Thus, they are more robust and stable, and
demonstrate a better generalization ability than the

speaker-dependent ones, since they avoid classifier over-

fitting. In speaker-dependent experimentation it is pos-

sible that the classifier may learn special characteris-
tics of the specific speaker along with the emotional

attributes whereas in speaker-independent experiments

the classifier is forced to learn exclusively the emotional

attributes, decoupling in this way emotion recognition
from speaker recognition. As discussed in the following,

this is the reason why speaker-dependent experiments

are expected to demonstrate better emotion recogni-

tion accuracy when compared to speaker-independent
ones. In addition, speaker-independent models are use-

ful when there is not enough data to build a sufficient

and reliable model or when the training procedure is

not completed [53]. Furthermore, speaker-independent

systems can cope with the limited number of speakers.
An additional advantage of the speaker-independency

is the fact that the experimental protocol is determinis-

tic, in the sense that the exact configuration is known.

On the contrary when speaker-dependent cross valida-
tion is employed, the random partition does not allow

for a reproduction of the exact configuration, making

the results not directly comparable between research

groups [55]. Finally, the speaker-independent systems

are suitable for real-life applications, such as call centre
applications, media segmentation, and public transport

surveillance.

As already noted, speaker-dependent emotion recog-

nition leads to far better results than speaker-indepen-

dent modeling. Previous work [2] has indicated that

an average emotion recognition rate of 84% is achie-
ved in speaker-dependent experiments, whereas for the

speaker-independent case the emotion recognition drops

to 60%. The aforementioned conclusion is also verified

in [56] for 10 different classifiers. The averaged emotion

recognition performance equals 89.49% for the speaker-
dependent case, whereas it drops to 71.29% for the

speaker-independent one. In addition, activation classi-

fication to 3 categories, namely high, neutral, and low,

is carried out in [58]. Speaker-independent average acti-
vation recognition equals 59.3%, whereas when speaker-

dependent experiments are executed the average activa-

tion recognition raises to 83.7%. This conclusion is also
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verified in [6], where speaker-independent and speaker-

dependent experiments lead to an emotion recognition

rate equal to 78.2% for the first case and to 84.8% for

the second case.

Efficiency is presented by means of confusion matri-
ces as well as emotion recognition accuracy for this case-

study. The columns of the confusion matrix correspond

to the actual emotion and the rows to the predicted one.

The confusion matrix elements are recognition rates ex-
pressed in percentage. Confusion matrices presented in

Tables 13-15 are column normalized confusion matri-

ces, since the number of utterances per each emotional

class is not the same. Accuracy is the percentage of the

correctly recognized utterances to the total number of
utterances.

6.2 K Nearest Neighbors (KNNs)

The KNN classifier is used as a baseline classifier. If
K = 1, all utterances derived from the training set will

be classified correctly, but the test set accuracy will be

insufficient. As K → ∞, a less biased classifier is ob-

tained. However, since the number of utterances is a
finite one, it is true that optimality cannot be reached.

In this paper, KNN with Euclidean distance function

is tested. A varying number of neighbors is investigated

ranging from 1 to 20. The way emotion recognition

accuracy develops with respect to parametrization is
demonstrated in Figure 2. To comment on the just-

mentioned figure, the male curve corresponds to the

mean male accuracy over 5 experiments. As a reminder,

there are 5 male speakers in EMODB and the exper-
iments are speaker-independent. This means that the

classifier is trained using 4 male speakers and tested on

the remaining 5th one. The aforementioned protocol is

repeated 5 times, so that every male speaker appears in

the test set exactly once. Next, the mean accuracy over
the five male subjects is reported. The same protocol

is also applied for the 5 female speakers. The term “all

subjects”, stands for the averaged mean accuracy over

male and female subjects together.
In general, emotion recognition accuracy of female

subjects tends to be higher than that of male subjects

for low values of K, whereas it inclines to be lower than

that of male subjects for highK values. Overall emotion

recognition accuracy improves continuously from K=1
to K=6, where it reaches its maximum value. The con-

fusion matrix for K=6 is provided in Table 13 and the

corresponding emotion recognition accuracy succeeded

is 77.9%. For K > 6 values the emotion recognition
accuracy presents a generally falling trend with a slow

rate. Thus, the best parameter is indicated by experi-

mentation, an experimental protocol proven to be suc-
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Fig. 2 Speaker-independent emotion recognition accuracy of
KNN for various K values, for male subjects, female subjects,
and both genders.

cessful in [9] [13] [20] [33] [51] [52] [60]. If parameters

are randomly or badly chosen, the worst emotion recog-
nition accuracy equals about 70%.

Table 13 Confusion matrix (%) for the KNN with 6 neighbors

happiness neutral boredom sadness disgust anxiety anger

happiness 75.4 1.8 0 0 0 0 1.7
neutral 16.0 76.4 1.3 0 0 0 0
boredom 1.4 19.1 89.3 13.7 4.9 0 0.8
sadness 0 2.7 8.1 86.3 0 10.0 0
disgust 2.9 0 1.3 0 48.8 15.7 4.9
anxiety 2.9 0 0 0 29.2 64.3 4.9
anger 1.4 0 0 0 17.1 10.0 87.7

6.3 Support Vector Machines (SVMs)

SVMs are also known as maximum margin classifiers.

The SVM theory is formulated to solve binary classifi-
cation problems originally, rendering SVMs ideal for the

case under consideration, since we apply a psychologically-

inspired binary cascade classification schema. Two dif-

ferent kernels are exploited. Let vi be the ith training
vector.

1. Gaussian radial basis function kernel:

KSVM (vi,vj) = exp(−
||vi − vj ||

2

2σ2
), (1)

where σ is a scaling factor; and

2. Linear (homogeneous):

KSVM (vi,vj) = vT
i vj . (2)

SVM with Gaussian radial basis function kernel are

tested for various σ values with σ ∈ (0, 10], as can be

seen in Figure 3. The best performance is obtained for
σ = 1. For the case of SVM with Gaussian radial basis

function kernel the two genders exhibit the same pat-

tern: emotion recognition accuracy reaches at a fast rate

its maximum for σ=1, whereas it decreases strictly at a
slower rate for greater σ values. The confusion matrix

for σ=1 is exhibited in Table 14 and the related accu-

racy equals 86.4%. Male emotion recognition accuracy
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is consistently greater than female emotion recognition,

with exception of extreme low and high σ values. The

lower bound accuracy presented by SVM with Gaus-

sian radial basis function kernel is 50.7% and can be

attributed to poor parametrization. Linear SVM has
the advantage of no need for parametrization. The cor-

responding confusion matrix is sketched in Table 15.

It achieves an emotion recognition accuracy equal to

87.7%, which is in fact the highest achieved by all three
classifiers.
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Fig. 3 Speaker-independent emotion recognition accuracy of
SVM with Gaussian radial basis function kernel for various σ

values, for male subjects, female subjects, and both genders.

Table 14 Confusion matrix (%) for the SVM with Gaussian
radial basis function kernel (σ = 1)

happiness neutral boredom sadness disgust anxiety anger

happiness 89.7 0 0 0 0 0 1.7
neutral 2.9 90.5 1.5 0 0 0 0
boredom 0 9.5 91.0 11.4 2.5 0 0
sadness 0 0 6.0 88.6 0 3.1 0
disgust 2.9 0 1.5 0 47.5 6.1 1.7
anxiety 0 0 0 0 37.5 87.7 6.5
anger 4.5 0 0 0 12.5 3.1 90.1

Table 15 Confusion matrix (%) for the linear SVM

happiness neutral boredom sadness disgust anxiety anger

happiness 92.6 0 0 0 0 0 1.6
neutral 0 98.9 1.3 0 0 0 0
boredom 0 1.1 88.5 11.5 2.5 0 0
sadness 0 0 8.9 88.5 0 3.1 0.8
disgust 2.9 0 1.3 0 60.0 9.2 3.3
anxiety 2.9 0 0 0 27.5 83.1 6.6
anger 1.6 0 0 0 10.0 4.6 87.7

6.4 Discussion

Before proceeding to the statistical analysis of the ex-

perimental results, we would like to discuss some issues

related to the performance of the proposed approach.

With respect to the first contribution of the paper,

i.e. the psychologically-inspired binary cascade classi-

fication schema, an additional set of experiments has

taken place in order to verify its effectiveness. For the

aforementioned experiments we resorted to a flat, one-
layer, single multiclass system (i.e. the classifier dis-

criminates among the seven emotions in just one step)

instead of the binary cascade classification schema. The

rest of the experimental protocol is identical to that of
the proposed approach. Once again, 75 features are re-

tained from a total of 2286 features for each gender

separately. However, this time feature selection takes

place just once and not for every single step of the

psychologically-inspired binary cascade classification sche-
ma. In total, 75 features are selected for the male sub-

jects and 75 for the female ones. This means that the

75 selected features are supposed to be discriminative

for a 7-class problem, instead of a 2-class one. An emo-
tion recognition accuracy of 65.2% is reported, when

the KNN with 6 neighbours is exploited. KNN is pre-

ferred since SVM is inherently a two-class classifier.

Referring to the second contribution, that is the use

of the 602 novel features, a second set of alternative ex-
periments has been carried out. In this case, the novel

features are retained from the original feature set, whe-

reas the remaining experimental protocol remains unal-

tered. That is, the psychologically-inspired binary cas-
cade classification schema is exploited for each gender

separately, but there are no novel features among the 75

selected ones. If the reader inspects Tables 1-11, he/she

has to ignore those feature whose indices are in bold. In

essence, the total number of computed features is 1725,
minus those that are removed because of the missing

values, that is a total of 1703 features prior to feature

selection. In that case an overall emotion classification

accuracy of 72.4% is reported, when SVM with linear
kernel is applied as classifier. With respect to features

computation, an extra set of experiments has been ex-

ecuted. If all 2286 features are fed as input to the lin-

ear SVM classifier, i.e. no feature selection is applied

prior to classification, the performance achieved equals
66.5%. Once again, the remaining experimental proce-

dure parameters are not modified. The aforementioned

fact underlines the importance of feature selection, whe-

reas the interested reader may find a discussion on the
subject on subsection 5.3.

Regarding the last contribution, that is the sepa-

ration of genders, a fourth set of complementary ex-

periments has been completed. In this case we retain

the psychologically-inspired binary cascade classifica-
tion schema, as well as the full feature set, comprising

of all 2286 features before feature selection and of 75

features after feature selection. This time, however, the
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features are selected for both genders simultaneously,

as traversing the classification schema. In specific, fea-

ture selection is carried out exactly half times compared

to those required for the original proposed system. For

this set of experiments, however, the 75 selected fea-
tures try to discriminate between two emotional cat-

egories for male and female subjects, simultaneously.

Moreover, with respect to the speaker-independent pro-

tocol the classifier is trained on 9 subjects and tested on
the refrained one. This means that both males as well

as females subjects are included in the training proce-

dure, regardless of the testing speaker. Specifically, for

5 experiments the classifier is trained on 4 male and 5

female subjects and tested on restrained 1 male sub-
ject, whereas for additional 5 experiments, 5 male and

4 female subjects are exploited to train the classifier,

whereas the testing is carried out with the remaining 1

female subject. When the linear SVM is tested as classi-
fier, the reported emotion classification accuracy equals

72.2%.

A positive point of the work presented here is that
it manages to separate among negative emotions effec-

tively. However, previous research has shown that dis-

tinguishing among negative emotions is a more diffi-

cult task than distinguishing among positive ones [64].

Furthermore, the presented strategy discriminates effi-
ciently between anger and happiness, a problem com-

monly met in the literature [13] [65].

With respect to our previous work [32], a smaller set

of 1418 features was computed to discriminate between

negative and non-negative valence emotions. The latter

is just the first level of the proposed psychologically-

inspired binary cascade classification schema presented
in Figure 1. The best accuracy achieved in [32] equals

about 90.0%. Here with the extraction of 2327 features

the corresponding accuracy (i.e. the emotion recogni-

tion accuracy between negative and non-negative va-
lence emotions) raises up to 97.0%, verifying the dis-

criminative power of the features added to the feature

set, as well as the importance of the computation of

adequate features for the emotion recognition task.

It is worth to note that here the linear SVM has ac-

complished emotion recognition accuracy equal to 87.7%

for all 7 emotions and 97.0% for discriminating neg-

ative from non-negative valence emotions. The com-
plete set of 7 emotions corresponds to the lowest bi-

nary tree nodes, whereas the couple of negative and

non-negative valence emotions is, in essence, the first

level of the psychologically-inspired binary cascade clas-
sification schema. The performance decrease may be

attributed to a couple of facts. On the one hand, fur-

ther misclassifications may happen as the binary tree is

traversed, while on the other hand less utterances are

available for each refinement step.

6.5 Statistical analysis

In this Section, two sets of comparisons are carried out.

The first one refers to studying the classifiers’ error rate
differences, so as to test whether the classifiers are sta-

tistically significantly different or not. The second one

assesses the information expressed by the confusion ma-

trices and ranks the classifiers according to their degree

of informativeness. Statistical analysis of results is a de-
sirable procedure, since it adds to the meta-knowledge

of the experimental outcome. For example, it provides

insight about the classifiers suitability, strengths, flex-

ibility, and effectiveness for the problem in question.
This way, the best performing solutions are highlighted

and proposed for future exploration based on a strong

mathematical background. Moreover, statistical analy-

sis may be a prerequisite step for creating an ensemble

of classifiers.

With respect to the first comparison set, we would

like to examine the accuracy of the three different clas-

sifiers. To do so, the method described in [23] is ap-
plied, which exploits the Normal law distribution to

determine if the error rate difference between a couple

of classifiers is statistically significant or not. It is, in

essence, a hypothesis testing, where under hypothesis
H0 the error rates of the classifiers are considered to

be equal, whereas under the alternative hypothesis H1

the first classifier is better than the second one. Since

it is a statistical method, a confidence interval has to

be determined. Here, the confidence interval is set to
95%. For the KNN and the SVM with Gaussian radial

basis function kernel the best parametrization case is

considered, i.e. K=6 and σ = 1, respectively. First, we

compare the SVM with Gaussian radial basis function
kernel against the KNN and we find that the SVM with

Gaussian radial basis function kernel is statistically sig-

nificant better than the KNN. Next, the comparison of

the linear SVM classifier against the KNN takes place

and the KNN is found to be statistically significant
worst that the linear SVM. Finally we compare the lin-

ear SVM against the SVM with Gaussian radial basis

function kernel. This time the classifiers are found to

be of equal accuracy, consequently is evaluated that the
SVM kernel does not play a statistically important role

in the classifier accuracy.

Moving to the second set of comparisons, we aim to
assess the classifiers performance in terms of confusion

matrices evaluation [34]. In [63], it is demonstrated that

for comparing confusion matrices the common metrics



16

of accuracy, precision, recall, and F1 may be inappropri-

ate, since they can be misleading about evaluating the

information expressed by the confusion matrix. On the

contrary mutual, information is considered to be the

appropriate measure to compare classifiers’ confusion
matrices. For this purpose, the mutual information be-

tween the predicted label and the ground truth label is

computed for each confusion matrix [63]. For the case

of the KNN classifier, the mutual information equals
0.5095, for the SVM with Gaussian radial basis func-

tion kernel the corresponding value is 0.5524, whereas

for the linear SVM the mutual information value raises

to 0.5609. This means that the most informative classi-

fier is the linear SVM, less informative is the SVM with
Gaussian radial basis function kernel, and the least in-

formative is the baseline KNN classifier.

7 Comparison with previous related work

utilizing EMODB

As stated in subsection 2.2, there is a number of works
that implement emotion recognition on EMODB. The

aim of this Section is to present, discuss and compare

the contemporary results presented in the aforemen-

tioned recent approaches to those of ours approach.

In [65], the rates of the correctly classified utter-

ances are as follows: 52.7% for the happiness, 84.8% for

boredom, 52.9% for neutral, 87.6% for sadness, 86.1%
for anger, and 76.9% for anxiety. The authors come to

the conclusion that no feature set can sufficiently distin-

guish between anger and happiness. In specific, 33.9% of

the utterances that express happiness are wrongly clas-

sified as expressing anger. However, the strategy pro-
posed here is able to distinguish between anger and

happiness. As is demonstrated in Table 15, 1.6% of

the angry utterances are mistakenly classified as utter-

ances expressing happiness, whereas 1.6% of the happy
coloured utterances are erroneously classified as angry

ones. Furthermore, the authors state that boredom and

anger are easily separated, which is also verified by the

experiments presented in this paper (see Tables 13-15).

The overall emotion recognition accuracy achieved

in [48] equals 78.7% for all seven emotional states of

EMODB. In specific, anger is recognized correctly at

a 92.91% rate, boredom at 74.68%, disgust at 68.42%,
anxiety at 70.91%, happiness at 50%, neutral at 85.90%,

and sadness at 90.57%. Compared to the approach pre-

sented in this paper, the greatest difference in recogni-

tion rate refers to happiness, which we classify correctly
with a 92.6% recognition rate (absolute improvement

equal to 42.6 points), while the lower difference is ob-

served for the utterances expressing sadness, which are

classified in our work at a 87.7% recognition rate (ab-

solute deterioration equal to 5.21 points).

An emotion recognition rate of 78.2% is achieved,

without feature selection in [6]. With feature selection,

emotion recognition accuracy equals 78.5% for rank sea-
rch SVM wrapper, 81.3% for rank search subset eval-

uation, 78.2% for greedy stepwise SVM wrapper, and

79.1% for information gain ratio. For the best perform-

ing case, that is rank search subset evaluation, the tech-
nique proposed in this paper presents an accuracy im-

provement of 6.4 points.

Emotion accuracy equals 71.7% for all emotional

classes in [46], that is an absolute deterioration of 16

points when compared to the system presented here.
The authors in [46] pay attention to the frequently con-

fused pairs of emotions. According to reported results,

anger and happiness exhibit the maximum average er-

ror frequency equal to 6.66%, while in our approach
the corresponding rate is 1.6%. The second most com-

monly confused pair of emotions is fear and happiness.

For the method presented in [46], 6.04% of the utter-

ances expressing anxiety are wrongly classified as hap-

piness, while for our approach the corresponding rate
is 2.9%. The least confusing pairs of emotion in [46]

are anger and sadness, as well as fear and sadness that

are never confused, which is also true for our approach.

Finally, when emotion recognition is coupled with the
recognizer output voting error reduction, which is a

speech recognition technique, emotion recognition ac-

curacy raises up to 76.4%.

The best accuracy for the 4 emotional classes of

anger, happiness, neutral, and sadness equals 85.5% in
[1]. It is achieved when the least square bound feature

selection algorithm is applied and 13 features are re-

tained. Our best accuracy equals 87.7% for all 7 emo-

tional classes. Confining ourselves to the emotional cat-

egories recognized in [1], i.e. anger, happiness, neutral,
and sadness, for our approach the emotional classes of

happiness, neutral, and sadness are those with the 3

highest recognition rates (sadness and boredom share

the same recognition rate of 88.5%), while anger has
the 4th highest recognition rate.

The overall accuracy achieved reaches 84.55%. The

percentage of the correctly classified utterances equals

95.04% for anger, 66.67% for happiness, 84.34% for sad-

ness, and 85.07% for neutral. In [13], as in the work pre-
sented in [65], there is a high confusion between hap-

piness and anger, which is not the case of our study.

More specifically, in [13], 18.05% of the utterances that

express actually happiness are classified as conveying
anger. It should be noted that with respect to happiness

our algorithm manages an absolute maximum improve-

ment of 25.93 points. On the contrary, the greatest (and
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only) deterioration of our algorithm, compared to the

one presented in [13], refers to the emotional category

of anger and equals 7.34 points. Finally, both the ap-

proach presented in [13] as well as our approach manage

a perfect separation between neutral and sadness utter-
ances.

8 Concluding remarks

This paper addresses the vocal emotion recognition prob-
lem by investigating a large feature set and a psycho-

logically-inspired binary cascade classification schema.

The proposed psychologically founded schema applies

the “divide-and-conquer” technique, discriminating ini-
tially among emotion categories rather than emotions

themselves. This way, commonly confused pairs of emo-

tions are clearly separable. The schema is easily adapt-

able to diverse emotions and its analysis level is ad-

justable to the problem under consideration.
There are three main steps in the presented ap-

proach: first feature extraction is applied, then feature

selection is carried out, and finally classification is em-

ployed. So far the research community has not agreed
on a feature set that efficiently describes the emotional

states. The authors’ contribution to investigate the afore-

mentioned matter lies in the computation of an ex-

tended feature set. Several features that are considered

here, are proposed for the first time within the context
of emotion recognition. The emotional categories of the

features are related to statistics of pitch, formants, and

energy contours, as well as spectrum, cepstrum, percep-

tual and temporal features, autocorrelation, MPEG-7
descriptors, Fujisaki’s model parameters, voice quality,

jitter, and shimmer. Feature selection is executed by

means of FFS for each gender separately, aiming to take

context into account. EMODB is utilized to conduct

speaker-independent experiments. The aforesaid means
that the same speaker may not occur in the training

and the test splits, making the system able to handle

efficiently an unknown speaker. Therefore, there is no

risk of classifier overfitting, as well as speaker adap-
tation. Consequently, the proposed system is robust,

stable, and is expected to demonstrate a generalization

ability. The baseline KNN, as well as SVMs with linear

and Gaussian radial basis function kernel are examined

as classifiers.
Finally, statistical analysis of the experimental re-

sults is carried out with respect to emotion recognition

accuracy as well as in terms of confusion matrices eval-

uation. Analysis verifies that SVMs are suitable classi-
fiers for emotion recognition under the binary cascade

classification schema. In particular, linear SVM, which

has the advantage of no parametrization, accomplishes

a high accuracy of 87.7%, better than the accuracy pre-

sented in recent work exploiting EMODB.

Future work includes the computation of more fea-

tures, aiming to capture additional aspects of emotions.

Furthermore, alternative feature selection techniques
may be tested and compared. Additionally, classifica-

tion results could be fused by means of a parallel or a

tandem Bayesian network, so as to lead to a more ro-

bust system and to boost performance further. Towards
the same goal meta-classifiers could be applied, as well.

It would be also interesting to ask human listeners to

annotate the database and then compare the classifier

confusion matrices to the human ones. Moreover, an

additional classification schema could be applied that
exploits exclusively the dimensional descriptors, i.e. va-

lence, activation, and stance, instead of the categorical

ones.
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