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Abstract

Milman proved that there exists an absolute constant C > 0 such that, for every convex body K
in Rn there exists a linear image TK of K with volume 1, such that |TK +Dn|1/n ≤ C, where Dn is
the Euclidean ball of volume 1. TK is then said to be in M -position. Giannopoulos and Milman asked
if every convex body that has minimal surface area among all its affine images of volume 1 is also in
M -position. We prove that the answer to this question is negative, even in the 1-unconditional case.

1 Introduction

Let C > 0. We say that a convex body K of volume 1 in Rn is in M -position with constant C if

(1) |K +Dn|1/n ≤ C,

where Dn is the Euclidean ball of volume 1. Here, | · | = | · |n denotes n-dimensional volume and A + B =
{x+ y : x ∈ A, y ∈ B} is the Minkowski sum of the sets A and B.

The starting point of this paper is a famous result of Milman [7] stating that there exists an absolute
positive constant C such that every convex body has a linear image of volume 1 which is in M -position with
constant C. In what follows, we will refer to the M -position without specifying some precise value for this
numerical constant. It follows from the Brunn–Minkowski inequality

|K1 +K2|1/n ≥ |K1|1/n + |K2|1/n

for non-empty compact subsets K1,K2 of Rn, that if K is in M -position then

|K +Dn|1/n ∼ min
{
|TK +Dn|1/n : T ∈ SL(n)

}
.

Thus, (1) may be viewed as an inverse form of the Brunn–Minkowski inequality. The notation a ∼ b means
that the ratio a/b is bounded by absolute constants (from above and from below).

We say that K is in minimal surface area position if the surface area ∂(K) of K is minimal among
those of its affine images of the same volume. Petty [9] gave a characterization of the minimal surface area
position: K has minimal surface area if and only if the function

x 7→
∫
Sn−1

⟨x, y⟩2dSK(y)

is constant on Sn−1, where SK denotes the surface area measure of K. It is also well-known that the minimal
surface area position is unique up to orthogonal transformations.

Giannopoulos and Milman [4] gave characterizations of the same type for problems that involve other
quermassintegrals. In the same paper, they asked if the minimal surface area position is also an M -position.
Our main result is the following.
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Theorem 1.1. There exists an absolute constant c0 > 0 with the following property: for every positive
integer n, there exists a 1-unconditional convex body K of volume 1 in Rn which is in minimal surface area
position and, at the same time,

|K +Dn|1/n ≥ c0n
1/8.

Theorem 1.1 shows that, if n is large enough then the minimal surface area position may be far from being
an M -position, even in the 1-unconditional case. Recall that K is called 1-unconditional if it is symmetric
with respect to all coordinate hyperplanes.

Let us also note that, in the case n = 2, it was proved in [4] that every convex body K with minimal
surface area has the property

|K + tDn| = min{|TK + tDn| : T ∈ SL(n)}

for every t > 0. Theorem 1.1 shows that this is no longer true in higher dimensions, at least when 1
cn1/8 ≤

t ≤ cn1/8, where c > 0 is a small enough absolute positive constant.

2 Background

Let K and L be two convex bodies in Rn. It is well known by a classical result of Minkowski that, for t > 0,
the volume of the convex body L + tK is a polynomial of degree n, as a function of t. More precisely, one
can write

|L+ tK| =
n∑

j=1

tj
(
n
j

)
V (K[j], L[n− j]) ,

where V (K[j], L[n − j]) are non-negative quantities, called in common mixed volumes of K and L. In this
paper we are mostly interested in the case j = 1. We will write for simplicity V (K,L) := V (K,L, . . . , L) =
V (K[1], L[n−1]). Note that V (K,K) = |K|. Also, if Bn

2 is the Euclidean unit ball in Rn then V (K,Bn
2 ) and

V (Bn
2 ,K) are (up to a constant depending only on n) the mean width and the surface area of K respectively.
A fundamental fact concerning V (K,L) is Minkowski’s inequality

V (K,L) ≥ |K| 1
n |L|

n−1
n ,

with equality if and only if K and L are homothetic.
Assume, now, that both K and L have the origin as an interior point. The quantity V(K, L) can be

expressed as:

V (K,L) =
1

n

∫
Sn−1

hK(x) dSL(x),

where hK(x) = maxy∈K⟨x, y⟩ is the support function of K and SL is the surface area measure of L (SL is a
measure on Sn−1). Recall the definition of SL: If ω is a Borel subset of Sn−1, then

SL(ω) =
∣∣∣{x ∈ bd(L) : ∃ (u, t) ∈ ω × R, so that (tu+ u⊥) ∩ L = {x}

}∣∣∣
n−1

.

Here, bd(L) denotes the boundary of L.
Let K be a convex body in Rn with the origin as an interior point. The polar body K∗ of K is defined

by
K∗ = {x ∈ Rn : ⟨x, y⟩ ≤ 1, y ∈ K}.

We will use the asymptotic formula

1

b1n
≤ (|K| |K∗|)1/n ≤ ω2/n

n ≤ b1
n
,
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which holds true if the centroid of K is at the origin. Here, ωn denotes the volume of the Euclidean unit
ball Bn

2 and b1 > 0 is an absolute constant. The right hand side inequality is the classical Blaschke–Santaló
inequality and it is sharp; equality holds if and only if K is an ellipsoid centered at the origin. The left hand
side inequality was proved much later by Bourgain and Milman (see [2] and [7]) and it is often called the
inverse Blaschke–Santaló inequality.

We close this Section with three facts that will be needed in the sequel. The first one, roughly speaking,
states that K is in M -position if and only if K∗ is in M -position. This follows from the proof of Milman’s
theorem (see [7, Section 4, Remark 3]) on the existence of the M -position (see also [3, Theorem 5.3]).

Fact I. There exists an absolute constant b2 > 0 such that, if K is a convex body with centroid at the origin
in Rn, then

|K +Dn|1/n ≤ b2|K∗ +Dn|1/n,

where A = |A|−1/nA.

For the next two, we need the definition of the covering number of K by L. If K and L are compact
subsets of Rn with non-empty interiors, we define

N(K,L) = min

{
k ∈ N : K ⊆

k∪
i=1

(xi + L) for some x1, . . . , xk ∈ Rn

}
.

Fact II. If K is compact and L is a centrally symmetric convex body in Rn, then

2−n |K + L|
|L|

≤ N(K,L) ≤ 2n
|K + L|

|L|
.

Fact III. There exists an absolute constant b3 > 0 such that if K and L are convex bodies in Rn, then

|L+Dn| ≤ bn3
|K + L|
|K|

|K +Dn|.

Fact II is an easy consequence of the definitions. The inequality on the left is trivial while a short proof
for the inequality on the right is given in [7, section 5] (actually, this is stated in [7] in the special case
where K is convex and L is a ball; however the same proof works for our purposes as well). Fact III follows
immediately from Fact II in the case where L is centrally symmetric. The general case can be deduced from
the Rogers–Shephard inequality [10].

3 Curvature Images

The notion of the curvature image of a star-body was introduced by Lutwak [6] and will play an important
role in the proof of our main result. If K is a star-body with centroid at 0, the curvature image C(K) of K
is the unique convex body with centroid at the origin and surface area measure

dSC(K) =
1

n+ 1
ρn+1
K dλ =: fC(K)dλ,

where ρK is the radial function of K and λ is the Lebesgue measure on Sn−1. Existence and uniqueness of
C(K) are guaranteed by Minkowski’s existence theorem (see e.g. [11], pp. 389–393). It can be proved that
C(K) is affinely associated with K. One can check that

(2) C(TK) = (T ∗)−1C(K)

for every volume preserving linear transformation T of Rn.
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We define the quantity

FK =
1

√
n|K|1+ 1

n

min

{∫
TK

∥x∥2dx : T ∈ SL(n)

}
,

where ∥ · ∥2 denotes Euclidean norm. Using integration in polar coordinates, we readily see that the surface
area of C(K) can be written in the form

∂(C(K)) =

∫
K

∥x∥2dx.

Taking into account (2) we obtain the next Lemma.

Lemma 3.1. Let K be a star-body with centroid at 0. Then, C(K) has minimal surface area if and only if

FK =
1

√
n|K|1+ 1

n

∫
K

∥x∥2dx.

The key step for the proof of Theorem 1.1 will be the following:

Theorem 3.2. Let K be a star-body of volume 1 in Rn, with centroid at 0. Let L be a convex body in Rn,
with centroid at 0, such that K ⊆ L and |L| ≤ αn|K| for some α ≥ 1. Let T ∈ SL(2n), such that

FK×Dn =
1√
2n

∫
T (K×Dn)

∥x∥2dx.

If C(T (K ×Dn)) is the homothet of C(T (K ×Dn)) of volume 1, then

|C(T (K ×Dn)) +D2n|1/2n ≥ c 4
√
FK ,

for some constant c = c(α) > 0 which depends only on α.

For the proof of Theorem 3.2 we will modify an idea from [1, Proposition 1.4]; for our purposes, we have
to deal with the L1-case instead of the more convenient L2-case.

The proof of Theorem 3.2 will be given in the next Section. We close this Section with some information
on the relation of the M -position of K with the M -position of C(K).

Proposition 3.3. There exists an absolute constant c1 > 0 such that, if K is as in Theorem 3.2, then

1

c1
≤ |C(K)| ≤ c1c(α).

Proof. Minkowski’s inequality implies that

|L∗| 1
n |C(K)|

n−1
n ≤ V (L∗, C(K)) =

1

n

∫
Sn−1

hL∗(x)dSC(K)(x)

=
1

n

∫
Sn−1

1

ρL(x)

ρn+1
K (x)

n+ 1
dλ(x) ≤ 1

n

∫
Sn−1

1

ρK(x)

ρn+1
K (x)

n+ 1
dλ(x)

=
1

n+ 1
.

On the other hand, using the inverse Blaschke–Santaló inequality we get

|L∗| 1
n ≥ 1

b1n
|L|− 1

n ≥ 1

b1αn
|K|− 1

n =
1

b1αn
.
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It follows that

|C(K)| ≤
(
b1αn

n+ 1

) n
n−1

≤ c1(α).

On the other hand, from Hölder’s inequality we have

1 = |K| =
1

n

∫
Sn−1

ρnK(x) dλ(x) =
1

n

∫
Sn−1

h
− n

n+1

C(K) (x)
[
h

n
n+1

C(K)(x)ρ
n
K(x)

]
dλ(x)

≤ 1

n

(
n

∫
Sn−1

1

n
h−n
C(K)(x) dλ(x)

) 1
n+1

(
n(n+ 1)

∫
Sn−1

1

n(n+ 1)
hC(K)(x)ρ

n+1
K (x) dλ(x)

) n
n+1

=
1

n
n

1
n+1 [n(n+ 1)]

n
n+1 |C∗(K)|

1
n+1 |C(K)|

n
n+1

≤ c|C(K)|
n−1
n+1 ,

where c > 0 is an absolute constant (in the last step, we have used the Blaschke–Santaló inequality for
C(K)). 2

Proposition 3.4. There exists a constant c(α) > 0, which depends only on α, such that if K is as in
Theorem 3.2 and C(K) := 1

|C(K)|1/nC(K), then

|K +Dn|1/n ≤ c(α)|C(K) +Dn|1/n.

Proof. Using Minkowski’s inequality, we have

|nL∗ + C(K)| 1
n |C(K)|

n−1
n ≤ V (nL∗ + C(K), C(K))

=
1

n

∫
Sn−1

(nhL∗(x) + hC(K)(x))fC(K)(x)dλ(x)

=
1

n

∫
Sn−1

nhL∗(x)fC(K)(x) dλ(x) + |C(K)|

=
1

n

∫
Sn−1

nρ−1
L (x)fC(K)(x) dλ(x) + |C(K)|

≤ 1

n

∫
Sn−1

nρ−1
K (x)

ρn+1
K (x)

n+ 1
dλ(x) + |C(K)|

≤ |K|+ |C(K)| = 1 + |C(K)|.

We set L∗ = |L∗|−1/nL∗. From the inverse Blaschke–Santaló inequality and Proposition 3.3 it follows that

(3) |L∗ + C(K)|1/n ≤ b1c1|nL∗ + C(K)|1/n ≤ b1c1(1 + c1c(α)).

Then, using Facts I and III for L = |L|−1/nL, we obtain

|K +Dn|1/n ≤ |L+Dn|1/n ≤ α|L+Dn|1/n

≤ b2α|L∗ +Dn|1/n ≤ b2b3α
|C(K) + L∗|1/n

|C(K)|1/n
|C(K) +Dn|1/n

≤ c(α)|C(K) +Dn|1/n.

Remark 1. One can use (3) and Facts I and III as in the proof of Proposition 3.4 to derive an inverse form
of the Proposition. Thus, if |L|/|K| ≤ αn, then K is in M -position if and only if C(K) is in M -position
(with a constant that depends only on α).
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4 Proof of Theorem 3.2

Lemma 4.1. Let F1 ⊆ Rn1 and F2 ⊆ Rn2 be compact sets with |F1|n1 = |F2|n2 = 1. Then, for every
T ∈ SL(n1 + n2),

|TF1|n1 |TF2|n2 ≥ 1.

Proof. Approximating F1 and F2 by unions of non-overlapping cubes, we may assume that F1 and F2 are
cubes. In this case, for every T ∈ SL(n1 + n2) we have

|TF1|n1
|TF2 | V ⊥|n2

= 1,

where V = span(T (F1)) and TF2 | V ⊥ is the orthogonal projection of TF2 onto V ⊥. The result follows. 2

Lemma 4.2. Let K be a star-body of volume 1 in Rn such that∫
K

∥x∥2dx =
√
nFK ,

and let T ′ ∈ SL(2n) satisfy

FK×Dn =
1√
2n

∫
T ′(K×Dn)

∥x∥2dx.

Then,
|T ′Dn|1/nn ≥ c1

√
FK

for some absolute constant c1 > 0.

Proof. For every T ∈ SL(2n) we can write∫
T (K×Dn)

∥z∥2dz =

∫
K×Dn

∥Tz∥2dz =

∫
K

∫
Dn

∥Tx+ Ty∥2dy dx

≤
∫
K

∫
Dn

(∥Tx∥2 + ∥Ty∥2) dy dx.

Since ∫
K

∫
Dn

∥Tx+ Ty∥2dy dx =

∫
K

∫
Dn

∥Tx− Ty∥2dy dx,

we can also write∫
T (K×Dn)

∥z∥2 =

∫
K

∫
Dn

∥Tx+ Ty∥2 + ∥Tx− Ty∥2
2

dy dx ≥ 1

2

∫
K

∫
Dn

(∥Tx∥2 + ∥Ty∥2) dy dx.

In other words, ∫
T (K×Dn)

∥z∥2dz ∼
∫
K

∫
Dn

(∥Tx∥2 + ∥Ty∥2) dy dx

= |Dn|
∫
K

∥Tx∥2dx+ |K|
∫
Dn

∥Ty∥2dy

=

∫
K

∥Tx∥2dx+

∫
Dn

∥Ty∥2dy.

Moreover, there exist orthogonal transformations U1, U2 ∈ O(2n) such that

U1(span(TK)) = span(K) and U2(span(TDn)) = span(Dn).
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We set T1 := U1T |span(K) and U2 := U2T |span(Dn). Then,∫
K

∥Tx∥2dx =

∫
K

∥U1Tx∥2dx =

∫
K

∥T1x∥2dx

= | detT1|1/n
∫
K

∥∥∥∥ 1

| detT1|1/n
T1x

∥∥∥∥
2

dx

= | detT1|1/n
∫
S1K

∥x∥2dx,

where S1 := T1/| detT1|1/n (note that S1 ∈ SL(n)). Similar calculations give∫
Dn

∥Tx∥2dx = | detT2|1/n
∫
S2Dn

∥x∥2dx,

for some S2 ∈ SL(n). Since

| detT1|1/n =

(
|T1K|n
|K|n

)1/n

= |TK|1/nn ,

Lemma 4.1 shows that

(4) | detT1|1/n|TDn|1/nn ≥ 1.

If

T := diag

(
1√
FK

, . . . ,
1√
FK

,
√
FK , . . . ,

√
FK

)
.

Then, we may choose U1 = U2 = I2n, and hence, S1 = S2 = In, | detT1|1/n = 1√
FK

and | detT2|1/n =
√
FK .

Since
∫
K
∥x∥2dx =

√
nFK , we have

1√
2n

∫
T (K×Dn)

∥z∥2dz ∼ 1√
FK

1√
n

∫
K

∥x∥2dx+
√

FK
1√
n

∫
Dn

∥x∥2dx

=
1√
FK

FK +
√
FKFDN ∼

√
FK ,

because FDn ∼ 1. Therefore, we have shown that

1√
2n

∫
T ′(K×Dn)

∥z∥2dz ≤ 1√
2n

∫
T (K×Dn)

∥z∥2dz ∼ c
√
FK ,

which implies that

c′
√
FK ≥ |detT ′

1|1/n
1√
n

∫
S′
1K

∥x∥2dx+ |detT ′
2|1/n

1√
n

∫
S′
2Dn

∥x∥2dx

≥ |detT ′
1|1/n

1√
n

∫
S′
1K

∥x∥2dx

≥ |detT ′
1|1/nFK ,

where c, c′ > 0 are absolute constants. It follows from (4) that

c′
√

FK ≥ |T ′Dn|−1/n
n FK ,

and this completes the proof of the Lemma. 2
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Lemma 4.3. There exists an absolute constant c4 > 0 such that, for every star-body K of volume 1 in Rn

and T ∈ SL(2n) so that

FK×Dn =
1√
2n

∫
T (K×Dn)

∥x∥2dx,

one has
c4

4
√

FK ≤ |T (K ×Dn) +D2n|1/2n2n .

Proof. We set t = |T (K ×Dn) +D2n|1/2n2n . Fact II implies that

N(T (K ×Dn), D2n)
1/2n ≤ 2t.

Consequently, there exist k ≤ (2t)2n and x1, . . . , xk ∈ R2n such that

T (K ×Dn) ⊆
k∪

i=1

(xi +D2n),

which gives

TDn ⊆
k∪

i=1

(xi +D2n),

and hence,

TDn ⊆
k∪

i=1

[(xi +D2n) | V ] ,

where V = span(TDn). It follows that

|TDn|n ≤
k∑

i=1

|(xi +D2n) | V |n = k|D2n | V |n ≤ (2Ct)2n,

where C > 0 is an absolute constant. Now, we have

c3
√
FK ≤ |TDn|1/nn ≤ (2Ct)2,

from Lemma 4.2. 2

Proof of Theorem 3.2. From Proposition 3.4 and Lemma 4.3, we have

|C(T (K ×Dn)) +D2n|1/2n2n ≥ c−1
2 |T (K ×Dn) +D2n|1/2n2n ≥ c(α)−1c4

4
√
FK . 2

5 Proof of the main result

In order to deduce Theorem 1.1 from Theorem 3.2, we need to construct 1-unconditional star-bodies which
have large FK and, in addition, are “almost convex”.

Proposition 5.1. There exists an absolute constant c5 > 0 such that, for every positive integer n, there
exists an 1-unconditional star-body K with |conv(K)|/|K| ≤ cn5 and FK ≥ c−1

5

√
n.

Proof. Let {e1, . . . , en} be an orthonormal basis of Rn. We define vi = nei and vn+i = −nei, i = 1, . . . , n.
Since the radius of Dn is of order

√
n, if n is large enough we have that the balls vi +Dn, i = 1, . . . , 2n, are

disjoint. We set
Ki = conv ({0} ∪ (vi +Dn))
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and K =
∪2n

i=1 Ki. It is clear that K is centrally symmetric and 1-symmetric (hence, 1-unconditional), that
is

ρK(|x1|e1 + · · ·+ |xn|en) = ρK(xσ(1)e1 + · · ·+ xσ(n)en)

for all real numbers x1, . . . , xn and every permutation σ of the indices 1, . . . , n. It is also clear that C(K) is
1-symmetric, and so, by Petty’s characterization, C(K) must have minimal surface area. Then, by Lemma
3.1, ∫

K

∥x∥2dx = |K|1+ 1
n
√
nFK .

We estimate FK : we have

1√
n

∫
Ki

∥x∥2dx ≥ 1√
n

∫
Dn

∥x+ vi∥2dx

≥ 1√
n

∫
Dn

(∥vi∥2 − ∥x∥2)dx .

Using the fact that ∥vi∥2 − ∥x∥2 ≥ n− c
√
n for all x ∈ Dn, we easily conclude:

1√
n

∫
Ki

∥x∥2dx ≥ c′5
√
n .

On the other hand,

|Ki| ≤ |vi +Dn|+
∣∣conv [{0} ∪ ((Dn|v⊥i ) + vi

)]∣∣
= |Dn|+

1

n
|Dn | v⊥i |n−1∥vi∥ ≤ c′′5 ,

where c′5, c
′′
5 are absolute constants. Thus,

FK ≥ 2n · c5
√
n/(2c′5n)

1+1/n.

It remains to prove that the ratio |conv(K)|/|K| is small. Set C = conv({v1, . . . , v2n}). It is well-known
that |C|1/n ∼ 1 and also that C is in M -position. Since v1 +Dn ⊆ K ⊆ C +Dn, it follows that

(|conv(K)|/|K|)1/n ≤ |C +Dn|1/n ∼ 1. 2

Remark. By a classical theorem of F. John, the order
√
n for FK is the maximal possible.

Lemma 5.2. Let M be a convex body in Rn. If M is in minimal surface position, then the (n+1)-dimensional
body

M ′ =

(
∂(M)

1
n+1

(2n)
1

n+1

M

)
×

(
(2n)

n
n+1

∂(M)
n

n+1
[−1/2, 1/2]

)
is also in minimal surface area position and has the same volume as M .

Lemma 4.4 is a simple consequence of Petty’s characterization of the minimal surface area position and
we omit its proof.

Proof of Theorem 1.1. Given a positive integer n, we consider the star-body K of Proposition 4.1. We
may apply Theorem 3.2 to construct an 1-unconditional body M2n in R2n, which has volume 1 and is in
minimal surface area position, and at the same time,

|M2n +D2n|1/2n2n ≥ c 4
√
FK ≥ cc5n

1/8.
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We also set M2n+1 = M ′
2n, where M ′

2n is the convex body defined in Lemma 4.4, with M = M2n. Then,

M2n+1 +D2n+1 ⊇

(
∂(M)

1
2n+1

(4n)
1

2n+1

M + (D2n+1 | e⊥2n+1)

)
×

(
(4n)

2n
2n+1

∂(M)
2n

2n+1

[−1/2, 1/2]

)
.

Since M2n has minimal surface area, one can easily check that ∂(M)1/2n+1 ∼ 1. It easily follows that

|M2n+1 +D2n+1|1/2n+1
2n+1 ≥ c6(n+ 1)1/8,

where c6 > 0 is an absolute constant. 2

Let K be a convex body which contains the origin. It is well-known that there exists a volume preserving
linear map T such that the quantity

L2
TK :=

1

|K|n+2
n

∫
TK

⟨x, y⟩2dx

is constant as a function of y ∈ Sn−1. Then, TK is said to be isotropic and the number LTK is called
isotropic constant of K (see [8] for basic results on this concept). It has been conjectured that the isotropic
constants of all centrally symmetric convex bodies are uniformly bounded (this would actually imply that
the isotropic constant of any convex body which contains the origin is uniformly bounded; see [5] for the
proof of this result).

The class of bodies of elliptic type (the terminology is due to Lutwak) is defined to be the family of
all curvature images of convex bodies. As a final remark, we would like to describe the connection of the
problem we study in this paper with the problem of bounding the isotropic constant.

Proposition 5.3. The isotropic constants of all centrally symmetric convex bodies are uniformly bounded
if and only if, in the class of centrally symmetric convex bodies of elliptic type, the minimal surface area
position is also an M -position.

The “if” part of Proposition 4.2 can be deduced from Lemma 3.1, Theorem 3.2 and the well-known fact
that LK ∼ FK for any centrally symmetric convex body K (one may alternatively use Proposition 3.2 and
Proposition 1.4 from [1]). The other direction follows from Remark 1 and Section 2.4 from [8].
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