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Abstract

We investigate equality cases in inequalities for Sylvester-type functionals. Namely,
it was proven by Campi, Colesanti and Gronchi that the quantity∫

x0∈K
...

∫
xn∈K

[V (conv{x0, ..., xn})]pdx0...dxn , n ≥ d, p ≥ 1

is maximized by triangles among all planar convex bodies K (parallelograms in the sym-
metric case). We show that these are the only maximizers, a fact proven by Giannopoulos
for p = 1. Moreover, if h : R+ → R+ is a strictly increasing function and Wj is the j-th
quermassintegral in Rd, we prove that the functional∫

x0∈K0

...

∫
xn∈Kn

h(Wj(conv{x0, ..., xn}))dx0...dxn , n ≥ d

is minimized among the (n + 1)-tuples of convex bodies of fixed volumes if and only if

K0, ...,Kn are homothetic ellipsoids when j = 0 (extending a result of Groemer) and

Euclidean balls with the same center when j > 0 (extending a result of Hartzoulaki and

Paouris).

1. Introduction

In this paper Vd(·) will denote the volume functional (i.e. Lebesque mea-
sure) in a d-dimensional vector space. If there is no possibility of confusion,
we may omit the index and simply write V (·) instead of Vd(·).
Let K be a convex body in Rd, h : R+ → R+ a strictly increasing function

and n ≥ d an integer. We define

Sh(K,n; d) :=

∫
x0∈K

...

∫
xn∈K

h[V (conv{x0, ..., xn})]dx0...dxn , (1)

where conv{x0, ..., xn} denotes the convex hull of the points x0, ..., xn. In the
case when h(t) = tp , p ≥ 1, and K is of volume 1 this definition coincides
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with the Sylvester functional.
A classical problem is to determine the convex bodies of prescribed volume

for which Sh(K,n; d) attains its extremal values.
Blaschke [1] proved that if d = n = 2 and h is the identity, Sh(K,n; d) is

minimal if and only if K is an ellipse. Groemer [14] [15] proved for all n and
d that ellipsoids are still the only minimizers, when h is in addition convex.
Schöpf [19] extended Groemer’s result for all strictly increasing h, provided
that n = d and Giannopoulos and Tsolomitis [13] proved that ellipsoids are
minimizers in the general case.

A functional very similar to Sylvester’s is the one defined by Busemann
[4] (actually a natural generalization):

Bh(K,n; d) :=

∫
x1∈K

...

∫
xn∈K

h[V (conv{0, x1, ..., xn})]dx1...dxn . (2)

Again when h is convex, Bh(K,n; d) is minimal among all convex bodies
of volume 1 if and only if K is an ellipsoid centered at the origin.
In fact, Busemann [4] established an inequality which gives even more

information. If K1, ..., Kd are convex bodies in Rd, set

B(K1, ..., Kd) :=

∫
x1∈K1

...

∫
xd∈Kd

V (conv{0, x1, ..., xd})dx1...dxd .

Then
B(K1, ..., Kd) ≥ B(B1, ..., Bd) , (3)

where Bi are balls centered at 0 having volumes V (Bi) = V (Ki), i = 1, ..., d.
Here, equality holds if and only if Ki are homothetic origin symmetric ellip-
soids.
Bourgain, Milman, Meyer and Pajor [3] introduced another variation of

Bh(K,n; d): If K1, ..., Kn are convex bodies in Rd, define

Ih(K1, ..., Kn; d) :=

∫
x1∈K1

...

∫
xn∈Kn

h[V (
n∑

i=1

[0, xi])]dx1...dxn , (4)

where
∑n

i=1[0, xi] denotes the Minkowski sum of the line segments [0, xi],

i = 1, ..., n. Note that V (
∑d

i=1[0, xi]) = d!V (conv{0, x1, ..., xd}).
An inequality similar to (3) holds, extending Busemann’s result:

Ih(K1, ..., Kn; d) ≥ Ih(B1, ..., Bn; d) , (5)

where Bi is as in (3).
Motivated by (3) and (4) we can define the multi-entry versions of (1), (2):

Sh(K0, ..., Kn; d) :=

∫
x0∈K0

...

∫
xn∈Kn

h[V (conv{x0, ..., xn})]dx0...dxn (6)
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Bh(K1, ..., Kn; d) :=

∫
x1∈K1

...

∫
xn∈Kn

h[V (conv{0, x1, ..., xn})]dx0...dxn (7)

Following the argument in [3] it is not difficult to obtain inequalities anal-
ogous to (5). Our purpose is to investigate cases of equality in inequalities
of this type.
We prove the following.

Theorem 1. If K0, ..., Kn are convex bodies in Rd, then

Dh(K0, ..., Kn; d) ≥ Dh(B0, ..., Bn; d) , (8)

where D = S, B or I and Bi are balls of volume V (Bi) = V (Ki) centered
at 0, i = 0, ..., n. Moreover when D = S (resp. D = B or I) equality holds
in (8) if and only if K0, ..., Kn are ellipsoids with the same center (resp. cen-
tered at the origin), homothetic to each other. Here we set by convention
K0 = {0}, in the case when D = B or I.

It is easily verified that the functional defined by (6) (resp. (4), (7)) is
invariant under transformations of the form (Φ, ...,Φ), where Φ : Rd → Rd is
a volume-preserving affine (resp. linear) map. Thus, once (8) is proven, the
fact that equality in (8) holds for homothetic ellipsoids of the same center is
immediate.
The quermassintegrals of K, Wj(K), j = 0, 1, ..., d− 1, are defined by the

Steiner formula:

V (K + tB1) =
d∑

j=1

tj
(
d
j

)
Wj(K) , t > 0 ,

where B1 is the unit ball in Rd. We refer to [11] (Chapters 4, 5) or [18]
(Appendix) for basic results on quermassintegrals and related concepts.
A functional generalizing Sh(K,n; d) was introduced in [16] by Hartzoulaki

and Paouris by substituting the volume of the random polytope with its j-th
quermassintegral, j = 0, 1, ..., n − 1. In the same spirit as (4), (6), (7) we
define:

Sh(K0, ..., Kn; d; j) :=

∫
x0∈K0

...

∫
xn∈Kn

h(Wj(conv{x0, ..., xn}))dx0...dxn ,
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Bh(K1, ..., Kn; d; j) :=

∫
x1∈K1

...

∫
xn∈Kn

h(Wj(conv{0, x1, ..., xn}))dx1...dxn ,

Ih(K1, ..., Kn; d; j) :=

∫
x1∈K1

...

∫
xn∈Kn

h(Wj(
n∑

i=1

[0, xi]))dx1...dxn .

It was proven that balls are minimizers of Sh(K, ...,K; d; j) while if h
is convex these are the only minimizers. Note that W0(·) = V (·), hence
Dh(K0, ..., Kn; d; 0) coincides with Dh(K0, ..., Kn; d), D = S, B or I.
We prove the following analogous of Theorem 1.

Theorem 2. The following inequality holds:

Dh(K0, ..., Kn; d; j) ≥ Dh(B0, ..., Bn; d; j) , j = 1, ..., d− 1 , (9)

where D = S, B or I and Bi are balls of volume V (Bi) = V (Ki) centered at
the same point when D = S (resp. centered at 0 when D = B or I). If for
some j equality holds in (9), then Ki = Bi, i = 0, ..., n.

The similarity of the functionals S, B, I allows us to treat all three cases
simultaneously. Inequalities for Theorems 1 and 2 will be proven in Section
4. The proof of the uniqueness results will be given in Sections 5 and 6 re-
spectively.
It can be easily checked that the functionals defined by (4), (6) and (7) do

not attain a maximal value. However, the ”original” version Sh(K,n; d) is in-
variant under affine volume preserving maps and Bh(K,n; d), Ih(K,n; d) :=
Ih(K, ...,K; d) are invariant under volume preserving linear transformations.
Therefore, and since for every sequence of convex bodies there exist affine im-
ages of the same volume, contained in a ball, a compactness argument ensures
the existence of maximizers in the class of all convex bodies for Sh(K,n; d)
and in the class of all convex bodies containing the origin for Bh(K,n; d) and
Ih(K,n; d).
For each one of these functionals, the problem of determining their maxi-

mal value remains open when d ≥ 3, but it is solved in the plane. Namely,
Dalla and Larman [9] proved that triangles are maximizers of Sh(K,n; 2),
when h is the identity. Giannopoulos [12] showed that these are the only
maximizers. Campi, Colesanti and Gronchi proved in [5], [6] that when
h(t) = tp, p ≥ 1, Sh(K,n; 2) is maximized by triangles (parallelograms in
the centrally symmetric case) and Ih(K,n; 2) is maximized by triangles with
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one vertex at the origin (resp. origin centered parallelograms). Moreover,
these are the only polygons having these properties. The same approach can
be used to treat various types of optimization problems (see e.g. [7] or [8]).
The key for the proof is the strict convexity of the functionals mentioned

above under a family of transformations of convex bodies, the so-called par-
allel chord movements. In Section 3 we give a characterization (Theorem 3)
of triangles and parallelograms as maximizers with respect to this type of
functionals.

2. Preliminaries

Given a bounded family of points A = {xi : i ∈ J}, a shadow system
along a direction ν ∈ Sd−1 is a family of convex sets of the form:

Kt = conv{xi + αitν : i ∈ J} , t ∈ [t0, t1] ,

where J is any set of indices and the set {αi : i ∈ J} is a bounded subset
of R. The real number αi is called speed of the point xi with respect to the
shadow system Kt. Clearly, a shadow system is a continuous transformation
with respect to the parameter t. It is also obvious that the projection of Kt

on the hyperplane ν⊥ = {x ∈ Rd : < x, ν >= 0} does not change with t.
Shadow systems were introduced by Rogers and Shephard in [17] where a

fundamental result was proven: The volume of the shadow system Kt is a
convex function of the parameter. The proof is based on the fact that the
length of the intersection of a line parallel to ν with Kt is also a convex func-
tion of t. Later, Shephard observed [20] that the same convexity property
holds as well for other functionals such as the diameter, the mean width or
the maximal brightness of a convex body.
It is straightforward from the definition that the projection of a shadow

system along a direction ν onto an affine subspace H is still a shadow system
in the direction ν| H , where ·|· denotes the orthogonal projection of a vector
or a set onto an affine subspace of Rd. In addition, it can be shown (see [6])
that Minkowski sums of shadow systems along the same direction are also
shadow systems.
Let K be a convex body, and α : K → R be any function with the property

of being constant on each chord of K, parallel to the direction ν ∈ Sd−1. If
there exists an interval [t0, t1] such that the set Kt = {x+ α(x)tν : x ∈ K}
is a convex body, for all t ∈ [t0, t1], we say that the family {Kt}t∈[t0,t1] is
a parallel chord movement. The function α : K → R is called the speed
function of the parallel chord movement.
Clearly, parallel chord movements are special cases of shadow systems.

5



Usual examples of such movements are translations and Steiner symmetriza-
tion. The notion of parallel chord movements first appeared in [5]. An
important fact about a parallel chord movement is that its volume is con-
stant with respect to the parameter t.
The proofs of the maximizing properties of triangles and parallelograms

are based on the following two facts (see e.g. [5]):
1. If Kt is a parallel chord movement then Sh(Kt, n; 2) (resp. Ih(Kt, n; 2))
is a convex function of t and cannot be constant unless its speed function is
affine (resp. linear).
2. If P is a convex polygon which is not a triangle, there exists a paral-
lel chord movement which can reduce P to a polygon with less vertices. A
similar result holds in the centrally symmetric case. We briefly describe this
procedure:
Let v1, v2, v3 be three consecutive vertices of the polygon P . We define the
function α : P → R with the properties: α(v2) = 1, α(v1) = 0 = α(v3), α is
linear in the triangle spanned by v1, v2, v3 and α = 0 elsewhere. Let ν be
the direction parallel to v1 − v3. We set Pt = {x+α(x)tν : x ∈ P}. Suppose
that [t0, t1] is the largest interval such that Pt is convex for all t in [t0, t1]. It
can be easily checked that t0 < 0 < t1 and the family {Pt}t∈[t0, t1] is a parallel
chord movement. Clearly, Pt0 , Pt1 are polygons with less vertices than P .
Now, by 1 and since P0 = P we see that

Sh(P, n; 2) ≤ max{Sh(Pt0 , n, 2), Sh(Pt1 , n, 2)} .

The fact that triangles are maximizers follows immediately from the last in-
equality.

3. Uniqueness of maximizers

We prove the following theorem which ensures the uniqueness of maximizers
of Ih, Sh (h(t) = tp, p ≥ 1) mentioned in the previous section.

Theorem 3. Let D be a continuous, invariant under non-singular affine
(resp. linear) maps functional from the class of convex bodies of R2 into R+

having the following properties:
i) If Kt is a parallel chord movement, t0 < 0 < t1, then D(Kt) is a convex
function of t.
ii) If the speed function α of the movement is not affine (resp. linear) then
D(Kt) is not constant.
Then, triangles (resp. with a vertex at the origin) are the only maximizers
of D in the class of all convex bodies (resp. containing 0) in R2 and parallel-
ograms (resp. origin symmetric parallelograms) are the only maximizers in
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the class of all centrally symmetric convex bodies.

Proof: Let K be a planar body, which contains 0, maximizes D, and is
not a triangle. We write

K = {x+ yν : x ∈ K| ν⊥, fν(x) ≤ y ≤ gν(x)} ,

where ν ∈ S1 and fν ,−gν : K| ν⊥ → R are convex functions. It suffices to
find a direction ν ∈ S1 and some function α : K| ν⊥ → R which is not linear
such that fν + tα is convex and gν + tα is concave in [t0, t1].
Indeed, if we have found such an α, for t ∈ [t0, t1] we set:

Kt = {x+ α(x|ν⊥)tν : x ∈ K}

= {x+ yν : x ∈ K|ν⊥, (fν + tα)(x) ≤ y ≤ (gν + tα)(x)} .

The function α(x|ν⊥) is constant on each chord parallel to ν, while Kt is
convex for all t in [t0, t1]. Therefore, Kt is a parallel chord movement and by
assumptions (i) and (ii) we conclude:

D(K) = D(K0) < max{D(Kt0), D(Kt1)} ,

so K cannot be a maximizer.
Special case: There exist at least two non-regular points (i.e. the supporting
lines on these points are not unique) of the boundary of K, which do not lie
in the same line segment of ∂K.
We may assume that the chord through these two points is parallel to the

x2−axis. We write [b, c] = K| ν⊥, f = fν , g = gν , where ν = e2 = (0, 1).
By assumption, there exists x0 ∈ (b, c) such that f, g are not differentiable

at x0. We define: α(x) = γ(x) in [b, x0] and α(x) = δ(x) in [x0, c], where
γ(x0) = δ(x0) and γ, δ are affine functions with:

|γ′ − δ′| ≤ min{f ′
+(x0)− f ′

−(x0), g
′
−(x0)− g′+(x0)} .

Then, α is as wanted.
To avoid 0 being outside Kt (in the case when D is not translation in-

variant) we can take α so that α(0) = 0, by replacing α with α − α(0) if
necessary.
General case: Since K has at least four extreme points, we can choose reg-
ular points x, y from the boundary of K such that if G1, G2 are the open
half-planes defined by the chord [x, y] the following are satisfied:
i) [x, y] is not contained in the boundary of K.
ii) The tangent lines ex, ey at x, y respectively are not parallel and the in-
tersection point p of these lines lies in G1, while 0 ̸∈ G1.
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Then, there exists a sequence {Kn} of convex bodies such that Kn ↑ K,
Kn ∩ G2 = K ∩ G2 and Kn ∩ G1 = Pn, where Pn are polygons which have
[x, y] as one of their edges.
We apply the parallel chord movement described in Section 2 on vertices

of Pn which do not lie in ex or ey. If there are no such vertices we simply do
nothing. We move vertices of P so that D does not decrease and stop the
movement either when a vertex of Pn ”vanishes” or when the moving vertex
”reaches” one of the lines ex, ey. Repeating the same process as many times
as needed we find for each n a convex body K ′

n such that: V (K ′
n) = V (Kn),

D(K ′
n) ≥ D(Kn) and K ′

n has exactly one or two extreme points inside G1.
Since K ′

n ⊂ conv(K ∪ {p}), there exists a subsequence K ′
nm

which con-
verges to a convex body K ′. Clearly, D(K ′

nm
) ≥ D(Knm) → D(K), which

gives D(K ′) = D(K).
Thus, we have found a convex body K ′ with D(K ′) = D(K) the boundary

of which contains at least one non-regular point which lies inside G1.
If 0 is the unique extreme point of K ′ in G2, we fall in the special case

discussed before. If not, we can find a chord [z, w] contained in G2 so that
the two open half-planes G′

1, G′
2 defined by [z, w] have analogous properties

as G1, G2 plus that x, y are contained in G′
2. Thus, the sets G1∩K, G′

1∩K
are disjoint.
Working as above we get a convex body K ′′ with K ′′ ∩G1 = K ′ ∩G1 and

D(K ′′) = D(K), so that there exists at least one non-regular point q′ of the
boundary of K ′′ contained in G′

1. Notice that q, q′ belong to the convex
angle defined by ex, ey and containing x, y but q′ does not lie in any of these
two lines. Since ex, ey are still supporting lines of K ′′, q and q′ cannot be
contained in a boundary segment. Consequently, the boundary of K ′′ has at
least two non-regular points not contained in the same line segment of ∂K ′′,
while D(K ′′) = D(K) = maxD. This is impossible, so K must be a triangle.
Especially, if D is not translation invariant and since translations are par-
allel chord movements with non-linear speed function, one of the vertices of
K must be the origin. The proof for the centrally symmetric case is similar.2

4. Proof of lower bound inequalities

It is well known that any convex body is reduced to a ball of the same
volume after applying the process of Steiner symmetrization along an ap-
propriate sequence of directions Sd−1. Clearly the functionals Dh are con-
tinuous with respect to the Haussdorff metric, thus we only have to prove
that Dh(K0, ..., Kn; d) does not increase under Steiner symmetrization of
K0, ..., Kn simultaneously along the same direction ν in Sd−1.
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For X = (x0, ..., xn) ∈ (Rd−1)n+1 and t = (t0, ..., tn) ∈ Rn+1 we set:

ΦS,X,j(t) := Wj(conv{(x0, t0), ..., (xn, tn)}) =

ωd

ωd−j

∫
Gd, d−j

Vd−j(conv{(x0, t0), ..., (xn, tn)}| E) dµ(E) ,

ΦB,X,j(t) := Wj(conv{0, (x1, t1), ..., (xn, tn)}) =
ωd

ωd−j

∫
Gd, d−j

Vd−j(conv{0, (x1, t1), ..., (xn, tn)}| E) dµ(E) ,

ΦI,X,j(t) := Wj(
n∑

i=1

[0, (xi, ti)])

=
ωd

ωd−j

∫
Gd, d−j

Vd−j(
n∑

i=1

[0, (xi, ti)]| E) dµ(E) .

The last part of each one of the above equalities is Kubota’s formula (see
[18]), ωd is the volume of the d-dimensional unit ball and µ is the Haar prob-
ability measure defined on the Grassmanian Gd, d−j of (d − j)-dimensional
subspaces of Rd. Note that Gd, d = {Rd}.
The key property of these functions is convexity. To see this, observe that

the restrictions of the integrated functions (as functions of t = (t0, ..., tn)) on
any line segment are exactly the volumes of shadow systems in the direction
of the projection of xd-axis onto E. This follows immediately by the defini-
tion and the properties mentioned in Section 2. For instance, if J = [t, t′],
the shadow system used is:

conv{(x0, t
′
0 + s(t0 − t′0)), ..., (xn, t

′
n + s(tn − t′n)}| E , s ∈ [−1, 1] .

If ν is any direction in Sd−1, Ki can be written:

Ki = {x+ θν : x ∈ Ki| ν⊥, fi, ν(x) ≤ θ ≤ gi, ν(x)} , i = 0, ..., n ,

where fi, ν , −gi, ν are convex functions on Ki| ν⊥. The Steiner symmetral
of Ki is defined by:

Sν(Ki) = {x+ θν : x ∈ Ki| ν⊥, −ki, ν(x) ≤ θ ≤ ki, ν(x)} ,

where ki, ν =
gi, ν−fi, ν

2
, i = 0, ..., n . Set ui, ν =

gi, ν+fi, ν

2
. Then, for i =

0, ..., n we have:

Ki = {x+ θν : x ∈ Ki| ν⊥, −ki, ν(x) + ui, ν(x) ≤ θ ≤ ki, ν(x) + ui, ν(x)} .
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We may assume that ν = ed = (0, ..., 0, 1). Using Fubini’s theorem we find
Dh(K0, ..., Kn; d; j) =

∫
x0∈K0|ν⊥

...

∫
xn∈Kn|ν⊥

[ ∫ k0+u0

−k0+u0

...

∫ kn+un

−kn+un

h(ΦD,X,j(t))dt
]
dX ,

where ki = ki, ν(xi), ui = ui, ν(xi), i=0,...,n and X = (x0, ..., xn).We also set
for simplicity

T = Tν(X) = [−k0, ν(x0), k0, ν(x0)]× ...× [−kn, ν(xn), kn, ν(xn)]

and
u = (u0, ..., un) = uν(X) = (u0, ν(x0), ..., un, ν(xn)) .

Now,
Dh(K0, ..., Kn; d; j)

=

∫
x0∈K0|ν⊥

...

∫
xn∈Kn|ν⊥

∫ ∞

0

V ( [T + u] ∩ {h(ΦD,X,j) ≥ s}) ds dX .

Working similarly for the Steiner symmetrals of K0, ..., Kn we get:
Dh(Sν(K0), ..., Sν(Kn); d; j) =∫

x0∈K0|ν⊥
...

∫
xn∈Kn|ν⊥

∫ ∞

0

V ( T ∩ {h(ΦD,X,j) ≥ s}) ds dX .

Clearly,

V ( (T + u) ∩ {h(ΦD,X,j) ≥ s}) = V (T )− V ( (T + u) ∩ {ΦD,X,j < h−1(s)})

so it suffices to prove that

V ( (T + y) ∩ {ΦD,X,j < ζ}) ≤ V ( T ∩ {ΦD,X,j < ζ}) , (10)

for all y ∈ Rm and all ζ > 0, where m = n+1 if D = S and m = n if D = B
or I. Define the function

η(y) = V ( (T + y) ∩ {ΦD,X,j < ζ}) , y ∈ Rm ,

Note that T , {ΦD,X,j < ζ} are convex and centrally symmetric ({ΦD,X,j < ζ}
is convex because of the convexity of ΦD,X,j). Thus η is an even function and
also, by the Brunn-Minkowski theorem, it is log-concave. Consequently, η
attains its maximum at 0 and (8), (9) follow.
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5. Characterizations of products of homothetic ellipsoids

First we need some geometric lemmas. We preserve the notation of the
previous section.

Lemma 1. If ν = ed and

Dh(Sν(K0), ..., Sν(Kn); d; j) = Dh(K0, ..., Kn; d; j) , (11)

then for any choice of X ∈ K0| ν⊥ × ... ×Kn| ν⊥ there exists a vertex L of
the parallelepiped Tν(X) such that ΦD,X,j(L+suν(X)) is constant in [−1, 1].

Proof. First note that it suffices to prove our claim for (n + 1)-tuples
X ∈ R := int(K0| ν⊥) ∩ ... ∩ int(Kn| ν⊥). The general case follows by
the fact that ui, ν is continuous up to the boundary on any chord of Ki| ν⊥

(since fi, ν , gi, ν are) using an approximation argument.
Now, since ui, ν is continuous in R, (11) together with standard compact-

ness arguments (but somewhat tedious) imply that equality must hold in
(10) for all choices of X ∈ R and ζ > 0. For any X ∈ R we have

V ( (T+u)∩{ΦD,X,j < ζ}) = V ( T∩{ΦD,X,j < ζ}) = V ( (T−u)∩{ΦD,X,j < ζ}),
(12)

where T = Tν(X), u = uν(X) (the right hand equality follows from the fact
that the function η defined above is even). Note that {ΦD,X,j < ζ} contains
T when ζ is large. By the choice of X it follows that V (T ) > 0, so there
exists a ζ0 > 0 such that

ζ0 = inf{ζ > 0 : T ⊆ {ΦD,X,j < ζ} } .

Clearly, the boundary of {ΦD,X,j < ζ0} touches the boundary of T at some
vertex L of T. However (12) holds, which cannot happen unless L+u, L−u
belong to {ΦD,X,j ≤ ζ0} and since L is contained in ∂{ΦD,X,j ≤ ζ0} we con-
clude that the segment [L− u, L+ u] lies on the boundary of {ΦD,X,j ≤ ζ0}.
Consequently, ΦD,X,j(L+ su) = ζ0 for all s in [−1, 1].2

Lemma 2. i) Assume that the convex bodies K0, ..., Kn do not all have
the same centroid, n ≥ 1. Then there exist directions ν0, ..., νn in Sd−1 such
that the convex bodies Sνn ◦ ... ◦ Sν0(Ki), i = 0, ..., n contain the origin in
their interior and at the same time do not all have the same centroid.
ii) If K1, ..., Kn do not all have their centroid at 0, there exist directions
ν0, ..., νn such that 0 is not the centroid of all Sνn ◦ ... ◦ Sν0(Ki), i = 0, ..., n
but they all contain the origin in their interior.

11



Proof. i) An inductive argument reduces to the case n = 1. If ai is the
centroid of Ki, i = 0, 1, we can choose a direction ν with the property that
there exists a point x0 ∈ int(K0) such that the segment [0, x0] is parallel to
ν but ν is not parallel to [a0, a1]. Then a0| ν⊥ ̸= a1| ν⊥.
Clearly, the centroid of Sν(Ki) is ai| ν⊥, i = 0, 1 and 0 ∈ int(Sν(K0)).

Note that every Steiner symmetral of Sν(K0) contains the origin in its inte-
rior. So by the above discussion we can find a direction u ∈ Sd−1 so that
the centroids of Su ◦ Sν(K0), Su ◦ Sν(K1) are different but they contain the
origin in their interior.
ii) We just take K0 to be a centrally symmetric body and apply (i) for the
convex bodies K0, ..., Kn.2

The previous lemma allows us to assume that 0 ∈ int(Ki), i = 0, ..., n.
Suppose for instance that D = S, the intersection of the interiors of all Ki

is empty and equality holds in (8). Since Sh does not increase under Steiner
symmetrization, by Lemma 2 we can find convex bodies that contain 0 in
their interior but not all of them have the same centroid. In particular, these
bodies are not homothetic ellipsoids with the same center.

Lemma 3. For almost every direction ν ∈ Sd−1 we have:

k0, ν(x) = ... = kn, ν(x) = 0, for all x ∈ ∂(Ki| ν⊥), i = 0, ..., n . (13)

Proof. Let y be a point in Ki and ν a direction in Sd−1. If ki, ν(y| ν⊥) ̸= 0,
clearly y is contained in a line segment in the boundary of Ki, parallel to ν.
However, it follows by a classical result of Ewald, Larman and Rogers [10]
that the set of all such directions is of measure zero, completing the proof.2

Proof of uniqueness in Theorem 1:
Suppose that equality holds in (8). Then, (11) is valid for every ν ∈ Sd−1.

We choose a direction ν such that (13) holds. We may assume that ν = ed.
Choose arbitrary xi ∈ Ki| ν⊥, i = 1, ..., d−1, so that the points 0, x1, ..., xd−1

are affinely independent.
As mentioned, we may assume that 0 is contained in the interior of Ki| ν⊥,

i = 0, ..., n. So, any line of ν⊥ through the origin crosses the boundary of
Ki| ν⊥ for all i = 0, ..., n. Thus, we can choose points xi ∈ ∂(Ki| ν⊥),
i = 0, d, d + 1, ..., n which lie in the same line through 0. Moreover, the
choice can be made so that x0 is an endpoint of the line segment spanned by
x0, xd, ..., xn.
Let υ be the other endpoint of the line segment conv{xi : i = 0, d, ..., n}

when D = S, B or the line segment
∑n

i=d[0, xi] when D = I. Lemma 1
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ensures that there exists a vertex L = (l0, ..., ln) of T = Tν(X) such that
ΦD,X,0(L+suν(X)) is constant in [−1, 1] (where X = (x0, ..., xn)). Note that
li = ±ki, so li = 0 for i = 0, d, ..., n.
Set also β for the speed of the point (υ, 0) with respect to the shadow

system

conv{(xi, li + sui) : i = 0, ..., n} (when D = S, B) or

n∑
i=1

[
0, (xi, li + sui)

]
(when D = I).

Now, for D = S or B we have:

V
(
conv({(xi, li + sui) : i = 0, 1, ..., d− 1} ∪ {(υ, sβ)})

)
≤ V

(
conv{(xi, li + sui) : i = 0, ..., n}

)
≡ const ,

where equality holds for s = 0. The left hand side is the volume of a shadow
system and therefore is a convex function of s. Thus, equality must hold
everywhere in [−1, 1]. A similar result holds in the case D = I.
So, we have shown that

V
(
conv({(xi, li + sui) : i = 0, 1, ..., d− 1} ∪ {(υ, sβ)})

)
≡ const , (14)

V
(d−1∑

i=0

[0, (xi, li + sui)] + [0, (υ, sβ)]
)
≡ const . (15)

Observe that x0 = 0 and u0 = l0 = 0, when D = B or I. Consequently, (14)
and (15) give:

| det
[
(x0, l0 + su0, 1), ..., (xd−1, ld−1 + sud−1, 1), (υ, sβ, 1)

]
| ≡ const ,

hence
det

[
(x0, u0, 1), ..., (xd−1, ud−1, 1), (υ, β, 1)

]
= 0 .

It follows that the points (xi, ui), i = 0, ..., d − 1, (υ, β) lie in a common
hyperplane. Since x1, x2 were chosen arbitrarily, the graph of the functions
u1, ν and u2, ν is contained in this hyperplane, which shows that u1, ν and
u2, ν are restrictions of the same affine function. Applying the same argu-
ment to all pairs of indices, it follows that u0, ν , ..., un, ν are all restrictions of
the same affine function. By Lemma 3 this property holds for almost every
direction in Sd−1. Consequently, for almost every direction ν the midpoints
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of all chords of K0, ..., Kn, parallel to ν, are contained in a common hyper-
plane Hν . This is actually true for every direction in Sd−1. Thus, (see [2])
K0, ..., Kn are ellipsoids. Moreover it easy to check that a linear map that
transforms K1 into an origin centered ball also transforms the rest of the Ki’s
into origin centered balls. Thus, all Ki are homothetic with the same cen-
ter. In particular, if D = B or I, K0 = {0}, so the center of Ki is the origin.2

6. Characterizations of products of Euclidean balls

Lemma 4. Let Q ⊆ Rd be a polytope with vertices υ1, ..., υn. Suppose
that the vertices υ1, ..., υk , k ≥ d span a supporting hyperplane H of Q and
x is a point of the polytope spanned by υi, i = 1, ..., k. Define the shadow
system

Qs = conv
(
{υ1 + β1sν, ..., υn + βnsν, x+ β0sν} ∪ Ps

)
, s ∈ [s0, s1]

for some β0, ..., βn ∈ R, s0 < 0 < s1 and any shadow system {Ps}s∈[s0, s1]

along a direction ν ∈ Sd−1. If the volume of Qs is an affine function of the pa-
rameter s andQ0 = Q, then for all s in [s0, s1], x+β0sν, υ1+β1sν, ..., υk+βksν
are contained in the same supporting hyperplane of Qs.

Proof. If Q is of dimension less than d, the fact that Qs is affine implies
that V (Qs) = 0 , s ∈ [s0, s1]. This means that for each s, Qs is contained in
a hyperplane and the result follows.
We are left with the case in which Q is full dimensional. Using Fubini’s

theorem we have:

Qs =

∫
z∈ Q| ν⊥

V1(Qs ∩ (z + νR)) dz ,

where V1(·) is the 1-dimensional Lebesque measure. The integrated function
is convex on s and the volume of Qs is affine. A continuity argument similar
to the one used in Lemma 1 implies that the length of Qs ∩ (z+ νR) is affine
in [s0, s1] for all z in Q| ν⊥.
The intersection of Q with the line through x, parallel to ν is a line seg-

ment [x, y] (possibly degenerate). We may assume that x is contained in
the convex hull of υ1, ..., υd, where υi, i = 1, ..., d, are affinely indepen-
dent and that ν is not parallel to H (in the opposite case the result is
obvious). Then x =

∑d
i=1 λiυi for some λi ≥ 0 with

∑d
i=1 λi = 1 and

y =
∑d

j=1 µjυij for some i1, ..., id ∈ {1, ..., n} and µj ≥ 0 with
∑d

i=1 µi = 1.

We set γ :=
∑d

i=1 λiβi and δ :=
∑d

j=1 λijβij . To prove that x + β0sν,
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υ1+β1sν, ..., υd+βdsν lie on the same hyperplane it suffices to show that β0 =
γ. Clearly, V1([x+β0sν, y+δsν]), V1([x+γsν, y+δsν]) ≤ V1(Qs∩(x+Rν)) ,
with equality for s = 0. Since the functions on the left are convex and the one
on the right is affine it follows that equality must hold in both inequalities
everywhere in [s0, s1], thus β0 = γ.
Next we take any point z from the interior of the simplex spanned by

υ1, ..., υd. Thus, z =
∑d

i=1 λiυi for some λi > 0. We set γ′ =
∑d

i=1 λiβi. Since
ν and H are not parallel it is clear that z+γ′sν is an interior point of the sim-
plex spanned by υ1+β1sν, ..., υd+βdsν. However, Qs = conv{Qs∪{z+γ′sν}}
so the assumptions of the Lemma hold. It follows by the above discussion
that z+γ′sν is a boundary point ofQs which shows that υ1+β1sν, ..., υd+βdsν
span a supporting hyperplane of Qs. Finally, we apply the same argument
to all d-tuples of affinely independent points from υ1, ..., υk to obtain that all
υi + βisν, i = 1, ..., k lie on the same supporting hyperplane of Qs.2

Before proving Theorem 2, we state an interesting reformulation of Lemma 5:

Corollary 1. Let Q be a full dimensional polytope and

Qs = conv{x+ β(x)sν : x ∈ Q}, s ∈ [−1, 1]

be a shadow system along the direction ν. If the volume of Qs is an affine
function, then Qs is also a polytope, combinatorially equivalent to Q, for all
s in (−1, 1).

Proof. It suffices to prove our claim in a small neighborhood of 0. Let
υ1,...,υn be the vertices of Q. Set βi := β(υi), i = 1, ..., n. Clearly

Qs = conv{υ1 + sβ1ν, ..., υn + sβnν} ,

since the volume of the right-hand part is convex and dominated by the affine
function V (Qs). A continuity argument ensures that the vertices ofQs are ex-
actly the points υi+sβiν for s near 0. By Lemma 4, it follows that if υ1,...,υm
are the vertices of a facet F of Q then the vertices υ1+sβ1ν, ..., υm+sβmν are
contained in a common facet Fs of Qs. Interchanging the role of Q and Qs

we see that these are exactly the vertices of the facet Fs. Similarly, the facets
of Qs are exactly of the form Fs, where F is a facet of Q. The result follows.2

Proof of uniqueness in Theorem 2:
First suppose that D = S or B. Choose arbitrary x1 ∈ K1| ν⊥. By Lemma

2, we may assume that 0 is contained in the interior of all Ki, hence we can
choose x2 = 0 and xi ∈ Ki| ν⊥, i = 0, 3, ..., n so that the polytope spanned
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by the points x0, ..., xn is k-dimensional, where k = d− j. Assume again that
ν = ed. By Lemma 1 we find a point L of T and a ζ0 ≥ 0 such that

ΦD,X,j(L+ su) = ΦD,X,j(L) = ζ0 , ∀ s ∈ [−1, 1] . (16)

We show that, if D = S or B, then u1, ν(x1) = u0, ν(x0) which means
that u1, ν = u0, ν = const. This will imply that for each ν in Sd−1 all the
midpoints of the chords of K0, K1 lie on the same hyperplane orthogonal to
ν, thus (see [2]) K0, K1 are balls and, similarly, so are K2, ..., Kn. Also, as
in the proof of Theorem 1, K0, ..., Kn will all have the same center and if
D = B, the center of Ki will be the origin.
By Kubota’s formula and (16) we get:∫

Gd,k

Vk( conv{(x0, l0 + su0), ..., (xn, ln + sun)}| E) dµ(E)

=

∫
Gd,k

Vk( conv{(x0, l0), ..., (xn, ln)}| E) dµ(E) , s ∈ [−1, 1] .

The convexity on s implies that the integrated function must be affine
with respect to s. Clearly, the polytope P spanned by the points (xi, li),
i = 0, ..., n, has dimension k or k+1. We may assume that the points (xi, li),
i = 0, ..., k, span a k-dimensional supporting affine subspace H0 of P , not
parallel to ν.
Let G be a (k + 1)-dimensional subspace of Rd containing P and E a k-

dimensional subspace of G, perpendicular to H0 (i.e. E contains a vector
orthogonal to H0). We set,

Q = conv{(x0, l0), ..., (xn, ln)}| E .

Then Q is of dimension k or k − 1. Moreover, the points (xi, li)| E, i =
0, ..., k, are contained in the same (k− 1)-dimensional face of Q. In addition,
the k-dimensional volume of the shadow system

Qs := conv{(x0, l0 + su0), ..., (xn, ln + sun)}| E

is an affine function of the parameter s. Note also that (0, l2) ∈ P , so
ν = ed ∈ G (l2 cannot be 0 since we assumed that the origin is an interior
point of Ki) thus the points (xi, li + sui), i = 0, ..., n, are contained in G for
all s in [−1, 1].
Now, Lemma 4 implies that the points (xi, li + sui)| E, i = 0, ..., k are

contained in the same hyperplane of E. It follows that the affine subspace Hs

spanned by the points (xi, li + sui), i = 0, ..., k, is still perpendicular to E
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for all s in [−1, 1].
In particular, we have shown that for each k-dimensional subspace E of

G, perpendicular to the affine subspace H0 of G, E is also perpendicular
to H1 ⊆ G. This case can occur only if H0 and H1 are parallel. By as-
sumption, the vector ν = ed is not parallel to H0. Since both H0 and H1

have the same dimension, the linear spaces spanned by (xi − x0, li − l0) and
(xi − x0, li − l0 + ui − u0), i = 1, ..., k respectively are identical, so u1 = u0.
The proof when D = I is based on the same idea. We briefly describe

the argument: The choice of (x1, ..., xn) ∈ K1| ν⊥ × ... × Kn| ν⊥ can be
made so that the zonotope P =

∑n
i=1[0, (xi, li)] is a (k + 1)-dimensional

parallelepiped (indeed, we can choose some of the xi’s to be equal to 0 if
necessary). As before, equality in (9) forces the k-dimensional volume of
the zonotope

∑n
i=1[0, (xi, li + sui)] | E to be affine, for every k-dimensional

subspace E of Rn. Assuming without loss of generality that the segments
[0, (xi, li)], i = 1, ..., k span a facet F of P , not parallel to ν = ed and tak-
ing E to be perpendicular to F , we conclude (using Lemma 4) that the
k-dimensional parallelepiped spanned by (xi, li + sui), i = 1, ..., k, is always
identical to F . This shows that u1 = ... = un = 0 and the result follows.2
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