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Abstract

Schneider posed the problem of determining the maximal value of the affine invariant

|ΠK|/|K|d−1, where ΠK is the projection body of the d-dimensional convex bodyK. Some

three-dimensional conjectures of Brannen, related to Schneider’s problem are confirmed.

Namely, we determine the maximal value of |ΠK|/|K|2 in the class of three-dimensional

zonoids, cones and double cones. Equality cases are, also, investigated. Moreover, results

related to a conjecture of Petty, concerning the minimal value of the above quantity

are obtained. In particular, we provide a negative answer to a question of Martini and

Mustafaev.

1. Introduction

Let K be a convex body in Rd, that contains 0 in its interior. Its sup-
port function is defined by:

hK(x) = max{ < x, y > | y ∈ K } , x ∈ Rd ,

where < ·, · > stands for the usual inner product in Rd. Obviously, hK is
convex and positively homogeneous. On the other hand, it is known that
any convex and positively homogeneous function is the support function
of a unique convex set. Moreover, support functions are additive under
Minkowski sums (i.e. vector sums). To be more specific, if L is another
convex body, then hK+L = hk + hL.

One may compute the support function of a line segment [−y, y], centered
at the origin:

h[−y,y](x) = | < x, y > | , x ∈ Rd .
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Thus, if Z is the Minkowski sum of the line segments [−yi, yi], i = 1, ..., n,

hZ(x) =
n∑
i=1

| < x, yi > | , x ∈ Rd .

Translations of such bodies are called zonotopes and the members of the
closure of the set of all zonotopes with respect to the Hausdorff metric are
called zonoids.

The projection body ΠK of K is defined by its support function:

hΠK(x) = |K | x⊥| = 1

2

∫
Sd−1

| < x, y > | dS(K, y) , x ∈ Sd−1 ,

where |·| = |·|d denotes the volume functional in Rd, K | x⊥ is the orthogonal
projection of K onto the subspace x⊥ orthogonal to x and dS(K, ·) is the
surface area measure of K on the unit sphere Sd−1.

Clearly, the projection body of a convex body is always a zonoid. The
opposite is also true; any zonoid is the projection body of a convex body. In
fact, the operator Π is a continuous bijection between the class of centrally
symmetric convex bodies and the class of zonoids. We refer to [6] or [20] for
proofs, extensions and topics related to the mentioned properties, concerning
support functions and projection bodies.

One of the outstanding problems in convex geometry is the determination
of the extremal values of the affine invariant |ΠK|/|K|d−1 (a proof of the fact
that this functional is indeed affine invariant can be found in [14]). Many
variants of this problem are solved. For example, Petty [15] showed that the
quantity |(ΠK)∗|·|K|d−1 is maximal if and only if K is an ellipsoid and Zhang
[23] proved that it attains its minimal value if and only if K is a simplex.
Here, (ΠK)∗ = {y| < x, y > ≤ 1, x ∈ ΠK} is the polar body of ΠK. Other
types of modifications have been considered by Lutwak (see e.g. [8], [9]).
Unfortunately, very little progress has taken place towards the direction of
the initial problem.

Petty’s conjecture [15] states that the ratio |ΠK|/|K|d−1 is minimal if and
only if K is an ellipsoid (see [7] for applications). Schneider [19] conjectured
that in the class of centrally symmetric convex bodies

|ΠK|
|K|d−1

≤ 2d ,

with equality if and only if K is the affine image of cartesian products of
line segments or centrally symmetric planar convex figures (the class of these
bodies is identical to the class of symmetric cylinders in the three-dimensional
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case).
Both Petty’s and Schneider’s conjectures make sense only if d ≥ 3. In fact,

if K is a planar convex body, it is well known that:

4 ≤ |ΠK|
|K|

≤ 6 , (1)

with equality in the left if and only if K is centrally symmetric and in the
right if and only if K is a triangle. These facts follow immediately from (5),
(7) below and the two-dimensional Rogers-Shephard inequality [18], respec-
tively.

Counterexamples to Schneider’s conjecture were given by Brannen [2]. The
same author [2] [3] conjectured that it would be true if we restricted ourselves
in the class of zonoids. We prove this fact in three dimensions. We hope that
the method described below can be modified to work in any dimension.

Theorem 1. If Z is a three-dimensional zonoid, then

|ΠZ| ≤ 23|Z|2 . (2)

Equality holds if and only if Z can be written as the Minkowski sum of five
line segments or as the sum of a cylinder and a line segment.

Using an inequality for the volume of polar projection bodies due to Reis-
ner [16] [17], Theorem 1 shows that for all 3-dimensional zonoids Z we have

|(ΠZ)∗| · |Z|2 ≥ 4

3
,

with equality if and only if Z is a parallelepiped. We note here that the prob-
lem of finding the minimum of the quantity |(ΠK)∗| · |K|d−1 among centrally
symmetric convex bodies still remains open. Makai and Martini [11] conjec-
tured that this minimum is attained if and only if K is a parallelepiped.

The proof of (2) and of the characterization of equality cases will be given
in Sections 3 and 4 respectively.

We also deal with two other three-dimensional classes of convex bodies.
To be more specific, we determine the extremal values of |ΠK|/|K|2 in the
special case, in which K is a cone or a centrally symmetric double cone.

Theorem 2. Let K = conv(P ∪ {e3}) be a three-dimensional cone, where
P is a convex body in R2 × {0} of area 1 and e3 = (0, 0, 1). Then,

|ΠK| = 1

2
+

1

4
|ΠP | .
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Corollary 1. Let K be a cone in R3. Then,

13.5 ≤ |ΠK|
|K|2

≤ 18 .

Equality holds in the right if and only if K is a simplex and in the left if and
only if K has centrally symmetric basis.

Corollary 1 follows immediately from (1) and Theorem 2.

Corollary 2. Let K be a centrally symmetric double cone in R3. Then,

|ΠK|
|K|2

= 9 .

Corollaries 1 and 2 are also conjectures of Brannen [3]. Theorem 2 and
Corollary 2 will be treated in Section 5. We mention that Brannen conjec-
tured that |ΠK|/|K|2 is maximal in the class of centrally symmetric convex
bodies if and only if K is a centrally symmetric double cone and in the class
of general convex bodies if and only if K is a simplex.

The Steiner symmetrization StνK of a d-dimensional convex body K along
the direction ν ∈ Sd−1 is defined to be the unique convex body with the prop-
erty that for any line l parallel to ν, the line segment l ∩ StνK is symmetric
with respect to the hyperplane ν⊥ and also |l ∩ StνK|1 = |l ∩K|1. Martini
and Mustafaev [10] asked if the inequality

|Π(StνK)| ≤ |ΠK| (3)

holds for every direction ν ∈ Sn−1. It is well known that the volume of K
remains unchanged under Steiner symmetrization and, furthermore, K can
always be transformed to a ball after applying an appropriate sequence of
Steiner symmetrizations. Thus, it is clear that Petty’s conjectured inequality
would follow from (3). We prove, however, that (3) is not true in general.
This will be an easy application of Corollary 2.

Theorem 3. For any d ≥ 3, there exists a convex body K and a direc-
tion ν ∈ Sd−1, such that

|Π(StνK)| > |ΠK| .

Proof. We will make use of the following easy fact: If K is a convex body of
volume 1 in Rd−1, then

|Π(K × [−1/2, 1/2])|d = 2 · |ΠK|d−1 . (4)
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Note that if K is a convex body contained in the subspace orthogonal to some
direction ν and I is a line segment parallel to ν, then for any unit vector w
in ν⊥, we have

Stw(K + I) = (StwK) + I .

Using this fact, (4) and an inductive argument, we conclude that we only
have to construct a three-dimensional counterexample for (3).

Let C be a centered three dimensional cube of volume 1. Choose some
vertex v of C and set ν to be the direction parallel to [−v, v]. Then, one may
check that the Steiner symmetrization of C along the direction ν is a centrally
symmetric double cone built on a regular hexagon, which is contained in the
plane ν⊥. Then, by Corollary 2 we have:

|ΠC| = 8 < 9 = |Π(StνC)| . 2

Some further results on Petty’s conjecture, involving centroid bodies and
mean values of volumes of projection bodies, are included in Section 6.

2. Some basic formulas

Let Z =
∑n

i=1[−xi, xi] be a zonotope in Rd. The volume of Z is given
by (see [22] for proof and extensions):

|Z| = 2d
∑

{i1,...,id}⊆[n]

| det(xi1 , ..., xid)| = 2d

d!

∑
i1,...,id∈[n]

|det(xi1 , ..., xid) | , (5)

where [n] := {1, ..., n}.
Thus, if F1, ..., Fn are the facets of a polytope K in Rd with corresponding

outer normal unit vectors x1, ..., xn, by the definition of ΠK and (5), we have:

|ΠK| =
∑

{i1,...,id}⊆[n]

|Fi1|...|Fid | · | det(xi1 , ..., xid) | (6)

Suppose, now, that K = Z =
∑n

i=1[−xi, xi]. If we, in addition, assume
that any d vectors from x1, ..., xn are linearly independent, it can be proven
that its facets are exactly (up to translation) the (d − 1)-dimensional par-
allelepipeds of the form

∑d−1
i=1 [−xji , xji ], where 1 ≤ j1 < ... < jd−1 ≤ n.

In other words, the outer unit normals to the facets of Z, multiplied by
the (d − 1)-dimensional volume of the corresponding facet, are exactly the
vectors:

± 2d−1 xi1 ∧ ... ∧ xid−1
, 1 ≤ i1 < ... < id−1 ≤ n ,
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where x1 ∧ ... ∧ xd−1 stands for the vector product of x1, ..., xd−1.
Applying formula (6), we immediately obtain:
|ΠZ| =

2d
2

((d− 1)!)dd!

∑
i1,...,id(d−1)∈[n]

| det(xi1∧ ...∧xid−1
, ... , xi(d−1)(d−1)+1

∧ ...∧xid(d−1)
) | .

(7)
It is obvious that this identity holds even if we do not assume the xi’s to be
in general position.

3. Proof of the main inequality

Define the functions S, T : (R3)
6 → R+ by:

S(x1, ..., x6) =
∑

i1,...,i6∈[6]
ij 6=ik for j 6=k

| det(xi1 , xi2 , xi3) · det(xi4 , xi5 , xi6) | ,

T (x1, ..., x6) =
∑

i1,...,i6∈[6]
ij 6=ik for j 6=k

| det(xi1 ∧ xi2 , xi3 ∧ xi4 , xi5 ∧ xi6) | .

Clearly, S and T are convex and positively homogeneous on each one of
their variables. Also, it is easy to see that S(x1, ..., x6) = 0 if and only if
T (x1, ..., x6) = 0. We will use the convexity property in the following form:

Lemma 3.1. Let f, g be real functions defined on an open interval (a, b)
of the real line. Suppose, also, that g is strictly positive in (a, b), f is convex
and g is affine. Then, the ratio f/g admits a maximum value in (a, b) if and
only if f is a constant multiple of g.

Let us now rewrite (5) and (7) involving T and S. If Z =
∑n

i=1[−xi, xi] is
a zonotope in R3, we first note that we may assume that n ≥ 6 (by taking
some of the xi’s equal to each other, if necessary ). We have:

|ΠZ| = 29

23 · 3!

∑
i1,...,i6∈[n]

| det(xi1 ∧ xi2 , xi3 ∧ xi4 , xi5 ∧ xi6) |

=
26

3!

( ∑
i1,i2,i3∈[n]

ij 6=ik for j 6=k

T (xi1 , xi1 , xi2 , xi2 , xi3 , xi3)
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+
∑

i1,i2,i3,i4∈[n]

ij 6=ik for j 6=k

T (xi1 , xi1 , xi2 , xi2 , xi3 , xi4)+
∑

i1,i2,i3,i4,i5∈[n]

ij 6=ik for j 6=k

T (xi1 , xi1 , xi2 , xi3 , xi4 , xi5)

+
∑

i1,i2,i3,i4,i5,i6∈[n]

ij 6=ik for j 6=k

T (xi1 , xi2 , xi3 , xi4 , xi5 , xi6)
)
. (8)

Similarly,

|Z|2 =
(23

3!

)2 ∑
i1,...,i6∈[n]

| det(xi1 , xi2 , xi3) · det(xi4 , xi5 , xi6) |

=
26

(3!)2

( ∑
i1,i2,i3∈[n]

ij 6=ik for j 6=k

S(xi1 , xi1 , xi2 , xi2 , xi3 , xi3)

+
∑

i1,i2,i3,i4∈[n]

ij 6=ik for j 6=k

S(xi1 , xi1 , xi2 , xi2 , xi3 , xi4)+
∑

i1,i2,i3,i4,i5∈[n]

ij 6=ik for j 6=k

S(xi1 , xi1 , xi2 , xi3 , xi4 , xi5)

+
∑

i1,i2,i3,i4,i5,i6∈[n]

ij 6=ik for j 6=k

S(xi1 , xi2 , xi3 , xi4 , xi5 , xi6)
)
. (9)

Observing (8) and (9), we conclude that the proof of (2) reduces to the proof
of the following inequality:

T (x1, ..., x6) ≤ 4

3
S(x1, ..., x6) , x1, ..., x6 ∈ Rd . (10)

To establish (10), some lemmas from three-dimensional affine geometry are
required.

Lemma 3.2. Let x1, ..., x6 be vectors in R3, where x4, x5, x6 are linearly
dependent. The following formulas are true:
i) (x1 ∧ x2) ∧ (x2 ∧ x3) = det(x1, x2, x3) · x2 .
ii) det(x1 ∧ x2 , x3 ∧ x4 , x5 ∧ x6) = det(x1, x2, x4) · det(x3, x5, x6) .

Assertion (i) is a well known property of the vector product in R3. To
prove (ii), we may assume that there exist numbers λ4, λ6 such that x5 =
λ4x4 + λ6x6. Then, by (i) we have:

det(x1 ∧ x2 , x3 ∧ x4 , x5 ∧ x6) = λ4 < x1 ∧ x2 , (x3 ∧ x4) ∧ (x4 ∧ x6) >
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= λ4 ·det(x1, x2, x4)·det(x3, x4, x6) = det(x1, x2, x4)·det(x3, λ4x4+λ6x6, x6)

= det(x1, x2, x4) · det(x3, x5, x6) . 2

Lemma 3.3. Let x1, ..., x6 be vectors in R3. If two of them are parallel, then

T (x1, ..., x6) =
4

3
S(x1, ..., x6) .

Proof. Obviously, we may assume that all x1, ..., x6 are unit vectors. Also,
by symmetry, one can take x5 = x6. It follows by the previous lemma that

| det(x5 ∧ xi1 , x5 ∧ xi2 , xi3 ∧ xi4) | = | det(x5, xi1 , xi2) · det(x5, xi3 , xi4) |

= | det(x5 ∧ xi3 , x5 ∧ xi4 , xi1 ∧ xi2) | ,
where {i1, i2, i3, i4} = {1, 2, 3, 4}. Thus,

T (x1, ..., x6) = 2 · 23 · 3!
∑

i1<i2, i3<i4
{i1,i2,i3,i4}={1,2,3,4}

| det(x5 ∧ xi1 , x5 ∧ xi2 , xi3 ∧ xi4) |

= 2 · 23 · 3!
∑

i1<i2, i3<i4
{i1,i2,i3,i4}={1,2,3,4}

| det(x5, xi1 , xi2) · det(x5, xi3 , xi4) |

=
2 · 23 · 3!

2 · 2
∑

{i1,i2,i3,i4}={1,2,3,4}

| det(x5, xi1 , xi2) · det(x5, xi3 , xi4) |

=
2 · 23 · 3!

22 · 2 · 32
S(x1, ..., x6) =

4

3
S(x1, ..., x6) . 2

Let Z be a zonotope in R3, which is the sum of five line segments. As
mentioned above, one can write Z =

∑6
i=1[−xi, xi], for some x1, ..., x6 in R3

with x5 = x6. The previous lemma combined with (8) and (9) ensures that
|ΠZ| = 8|Z|2.

Suppose, now, that x1, ..., xs are vectors in R3. We set for simplicity
E(x1, ..., xs) to be the set of all planes through 0, spanned be pairs of vectors
from x1, ..., xs.

Lemma 3.4. Let x1, ..., x6 be vectors that span R3, such that any two of
them are not parallel. Assume that for every i = 1, ..., 6, there exist two dif-
ferent planes E1, E2 from E(x1, ..., xi−1, xi+1, ..., x6), that contain xi. Then,
after a possible rearrangement of indices, the sets of coplanar vectors from
x1, ..., x6 are exactly the following:

{x1, x2, x3} , {x2, x4, x5} , {x1, x5, x6} , {x3, x4, x6} .
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Proof. Clearly, any five vectors from x1, ..., x6 cannot lie in the same plane.
We assume, without loss of generality that x1, x2, x3 are linearly dependent.
Since there exists a plane E in E(x1, x3, ..., x6) that contains x2, different
than the one spanned by x1, x3, we may assume that x2, x4, x5 are linearly
dependent, while each one of x4, x5 is not coplanar with x1, x3.

Similarly, either x1 is linearly dependent with x5, x6 or it is linearly de-
pendent with x4, x6. We may assume that the first case occurs. Now, x6

cannot be contained in any of the planes spanned by x4, x5 and x1, x2 (in the
opposite case, five vectors from the xi’s would be coplanar). This forces x3

to be coplanar with x4, x6.
We have shown that these sets are indeed linearly dependent. If there ex-

isted another subset of {x1, ..., x6} with this property, five vectors from the
xi’s would be coplanar, which is impossible. 2

The key to the proof of (10) will be the next lemma.

Lemma 3.5. Let x1, ..., x6 be vectors, for which the conclusion of Lemma
3.4 holds. Then

T (x1, ..., x6) <
4

3
S(x1, ..., x6) .

Proof. Consider the following subsets of the set U of summands in T (x1, ..., x6):

Uij =
{
| det(xi∧xj , xi1∧xi2 , xi3∧xi4) | 6= 0

∣∣∣ {i1, i2, i3, i4} = {1, ..., 6}\{i, j}
}
,

i, j = 1, ..., 6, i 6= j. It is clear, that the sets U12, U23, U13, U24, U25, U45, U26

cover U . It follows from Lemma 3.2 that the elements of U12 are exactly the
terms of the form:

| det(x1, x2, xi1) · det(xi2 , xi3 , xi4) | 6= 0 , {i1, i2, i3, i4} = {3, 4, 5, 6} .

Similar expressions can be derived for the elements of U23 and U13. Hence,
since | det(x1, x2, x3) | = 0 and U12, U23, U13 are disjoint the sum of all terms
that belong to V1 := U12 ∪ U23 ∪ U13, is a constant multiple of S(x1, ..., x6).
One may easily compute this constant to be 2/3.

Similarly, the sum of all terms contained in V2 := U24 ∪ U25 ∪ U45 also
equals 2/3 · S(x1, ..., x6).

Clearly, terms of the form (each one counted 23 · 3!-times)
| det(x4 ∧ x5 , x1 ∧ x6 , x2 ∧ x3) |, | det(x4 ∧ x5 , x1 ∧ x2 , x3 ∧ x6) |,
| det(x2 ∧ x5 , x1 ∧ x3 , x4 ∧ x6) | belong both to V1 and V2. Thus, if A is
the sum of terms from V1 ∪ V2, we have:

A ≤ 4

3
S(x1, ..., x6)− 23 · 3!

[
| det(x4 ∧ x5 , x1 ∧ x6 , x2 ∧ x3) |
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+| det(x4 ∧ x5 , x1 ∧ x2 , x3 ∧ x6) |+ | det(x2 ∧ x5 , x1 ∧ x3 , x4 ∧ x6) |
]

=
4

3
S(x1, ..., x6)− 23 · 3!

[
| det(x4, x5, x3) · det(x1, x2, x6) |

+| det(x4, x5, x1) · det(x2, x3, x6) |+ | det(x1, x3, x5) · det(x2, x4, x6) |
]
,

where we used once again Lemma 3.2.
Next, we observe that x1, x5, x6 are coplanar, so by Lemma 3.2 we have:

| det(x2 ∧ x6 , x1 ∧ x5 , x3 ∧ x4) | = | det(x1, x2, x5) · det(x3, x4, x6) | = 0 .

Consequently,

U26 \ (V1 ∪ V2) =
{
| det(x2 ∧ x6 , x1 ∧ x4 , x3 ∧ x5) |

}
and since | det(x4, x5, x3) · det(x1, x2, x6) | > 0, we conclude:

T (x1, ..., x6) <
4

3
S(x1, ..., x6) + 23 · 3!

[
| det(x2 ∧ x6 , x1 ∧ x4 , x3 ∧ x5) |

−| det(x4, x5, x1) · det(x2, x3, x6) | − | det(x1, x3, x5) · det(x2, x4, x6) |
]
.

Finally, by assumption, there exist numbers λ4, λ6 such that x3 = λ4x4 +
λ6x6. Using the fact that x1, x5, x6 are coplanar, we have:

| det(x2 ∧ x6 , x1 ∧ x4 , x3 ∧ x5) | ≤ | λ4 · det(x2 ∧ x6 , x1 ∧ x4 , x4 ∧ x5) |

+| λ6 · det(x2 ∧ x6 , x1 ∧ x4 , x6 ∧ x5) |

= | λ4 · det(x4, x5, x1) · det(x4, x2, x6)|+ | λ6 · det(x4, x5, x6) · det(x1, x2, x6)|

= | det(x3, x5, x1) · det(x4, x2, x6) |+ | det(x4, x5, x1) · det(x2, x3, x6) | ,

completing the proof. 2

Proof of (10):
If the assumptions of Lemma 3.3 or Lemma 3.4 are true or S(x1, ..., x6) = 0,

the assertion is obvious. In any other case, there exists some i in {1, ..., 6},
such that xi belongs to at most one plane from E(x1, ...xi−1, xi+1, ..., x6). It
is easy, then, to see that there exist real numbers t1 < 0 < t2 and a vector ν
such that: For all E ∈ E(x1, ...xi−1, xi+1, ..., x6), we have:

xi ∈ E ⇔ xi + tν ∈ E , for all t ∈ (t1, t2)
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and also

#E(x1, ...xi−1, xi + tjν, xi+1, ..., x6) < #E(x1, ..., x6) , j = 1, 2. (11)

We note here that this fact will be also used in the next section.
Consequently, the function

[t1, t2] 3 t 7→ S(x1, ...xi−1, xi + tν, xi+1, ..., x6)

is affine. Thus, by the convexity of T (x1, ...xi−1, xi + tν, xi+1, ..., x6) and by
Lemma 3.1, we conclude that

T

S
(x1, ..., x6) ≤ T

S
(x1, ..., xi−1, xi + tjν, xi+1, ..., x6) ,

for j = 1 or 2 (clearly, S(x1, ..., xi+tjν, ..., x6) cannot be zero for both j = 1, 2;
in the opposite case, S(x1, ..., x6) would be zero).

We may repeat this procedure as many times as needed. Nevertheless, as
(11) shows, after only a finite number of steps we will have found vectors
z1, ..., z6 for which the conditions of Lemma 3.3 or Lemma 3.4 are true and
also (T/S)(x1, ..., x6) ≤ (T/S)(z1, ..., z6). 2

4. Characterization of extremal zonoids

Lemma 4.1. Let x1, ..., x6 be vectors in R3. If four of them are coplanar,
then

T (x1, ..., x6) =
4

3
S(x1, ..., x6) .

Proof. Suppose e.g. that x1, x2, x3, x4 are coplanar. If (i1, i2, i3, i4) is a
permutation on {1, 2, 3, 4}, it is clear that

| det(xi1∧xi2 , xi3∧xi4 , xi5∧xi6) | = 0 = | det(xi1 , xi2 , xi3)·det(xi4 , xi5 , xi6) | .

Also, by Lemma 3.2, it follows that

| det(xi1 ∧ xi2 , xi3 ∧ x5 , xi4 ∧ x6) | = | det(xi1 , xi2 , x5) · det(xi3 , xi4 , x6) |

= | det(xi1 ∧ xi2 , xi4 ∧ x5 , xi3 ∧ x6) | .

Hence,

T (x1, ..., x6) = 23 · 3!
∑

(i1,i2,i3,i4)∈S4
i1<i2

| det(xi1 ∧ xi2 , xi3 ∧ x5 , xi4 ∧ x6) |
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= 2 · 23 · 3!
∑

(i1,i2,i3,i4)∈S4
i1<i2,i3<i4

| det(xi1 , xi2 , x5) · det(xi3 , xi4 , x6) | = 4

3
S(x1, ..., x6) ,

where S4 is the set of permutations on {1, 2, 3, 4}. 2

Suppose, now, that Z is the sum of at least six line segments [−xi, xi],
i = 1, ..., n (as mentioned above, this is no loss of generality). If Z is the sum
of a cylinder and a line segment, then for any six vectors from x1, ..., xn, at
least two are collinear or at least four are coplanar. The previous Lemma,
Lemma 3.3, (8) and (9) show that |ΠZ| = 23|Z|2. Since the same is true
when Z is the sum of five line segments, we only have to prove the ”only if”
part in Theorem 1.

It is now clear that the problem of characterization of zonoids, for which
equality in (2) is attained, reduces to the determination of the 6-tuples
(x1, ..., x6) such that T (x1, ..., x6) = (4/3) · S(x1, ..., x6). If the conditions of
Lemma 3.3 or Lemma 4.1 hold, the last equality is true. In what follows, we
will show that these are the only possible equality cases.

To accomplish this, we need a series of geometric lemmas. The proof of
the following is obvious.

Lemma 4.2. Let E be a plane in R3, that does not contain 0 and y1, ..., y5

be points in E, with y4 6= y5. Suppose, also, that y3 lies in the line segment
[y1, y2] and yi is not collinear with y1, y2, i = 4, 5. If xi is the position vector of
yi, i = 1, ..., 5, then there exists a vector ν in R3 and real numbers t1 < 0 < t2,
such that x3 + tiν is parallel to xi, i = 1, 2 and det(x3 + tν, x4, x5) 6= 0 for all
t in (t1, t2), if and only if y3 is an interior point of [y1, y2], while at the same
time the line aff{y4, y5} and the interior of the segment [y1, y2] are disjoint.

In order to make use of the previous lemma, we observe that the ratio
T/S(x1, ..., x6) is independent of the length and the orientation of the xi’s.
Thus, we may assume that the endpoints of x1, ..., x6 all lie in the same plane
in R3, not containing the origin.

Let A = {x1, ..., x6} be a set of six vectors in R3. We say that A has
the (N)-property, if no two of x1, ..., x6 are parallel and no four of them are
coplanar.

Lemma 4.3. Let {x1, ..., x6} be a set of vectors in R3 having the (N)-
property, where xi is the position vector of some point yi, i = 1, ..., 6. We
assume the following:
i) y1, ..., y6 are coplanar and y6 is an interior point of the segment [y1, y2].
ii) For every i, j, i 6= j, in {3, 4, 5} the line spanned by the points yi, yj, and
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the interior of [y1, y2] are disjoint.
iii) There exists some permutation (k1, k2, k3) of {3, 4, 5} and some interior
point y of [y1, y2], such that the lines aff{y1, yk1}, aff{y2, yk2}, aff{y, yk3}
are either parallel or they have a common point, which is different from
y3, y4, y5.
Then,

T (x1, ..., x6) <
4

3
S(x1, ..., x6) .

Proof. Let us assume that T (x1, ..., x6) = (4/3) · S(x1, ..., x6). According to
the previous lemma, there exist numbers t1 < 0 < t2 and a vector ν, such
that x6 + tiν is parallel to xi, i = 1, 2, and the quantity S(x1, ..., x5, x6 + tν) is
affine (and positive) in [t1, t2], as a function of t. This, combined with (10),
Lemma 3.1 and the fact that T (x1, ..., x5, x6 + tν) is convex on t in [t1, t2],
shows immediately that the function

[t1, t2] 3 t 7→ T

S
(x1, ..., x5, x6 + tν)

is constant. In particular, T (x1, ..., x5, x6 + tν) must be affine in [t1, t2].
Since it is clear that there does not exist a j ∈ {3, 4, 5} such that yj is

collinear with y1, y2 (in the opposite case, x1, x2, x6, xj would be coplanar),
the point y of assumption (iii) is unique. In other words, for some permuta-
tion (k1, k2, k3) of {3, 4, 5}, the lines ε1 := aff{y1, yk1}, ε2 := aff{y2, yk2},
aff{y, yk3} are parallel or have a common point, while for each y′ in the
interior of [y1, y2], different from y, the lines ε1, ε2, aff{y′, yk3} neither are
parallel nor contain a common point.

Consequently, for t1 < t < t2, the intersection of the planes span{x1, xk1},
span{x2, xk2}, span{x6 +tν, xk3} is non-trivial if and only if x6 +tν is parallel
to the position vector of y. This shows that the quantity

| det(x1 ∧ xk1 , x2 ∧ xk2 , (x6 + tν) ∧ xk3) |

is zero for a unique interior point t of [t1, t2].
It follows that the function T (x1, ..., x5, x6 + tν) cannot be affine in [t1, t2],

proving our claim. 2

Lemma 4.4. Let y1, ..., y5 be points lying in the same plane, such that
y1, y3, y4 are collinear, y2, y3, y5 are collinear and there are no other sets of
three collinear points among them. Exactly one of the following are true:
i) aff{y4, y5} ∩ int[y1, y2] 6= ∅ .
ii) The assumption (iii) in Lemma 4.3 holds true.
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Proof. Up to a possible rearrangement of indices, there exist exactly the
following cases:

Lemma 4.5. Let {y1, ..., y5} be discrete points, lying in the same plane,
such that:
i) y5 is an interior point of the line segment [y3, y4].
ii) Each one of the segments [y1, y2], [y3, y4] is contained in one of the two
open half-planes defined by the other one.
Then, for some choice of k1, k2, there exists an interior point y of [y1, y2], such
that the lines aff{y, y5}, aff{y1, yk1}, aff{y2, yk2} have a common point,
where {k1, k2} = {3, 4}.

Proof. The vertices of the polygon P = conv{y1, y2, y3, y4} are exactly the
points y1, y2, y3, y4. Therefore, the line defined by y5 and the intersection
point of the diagonals of P , crosses [y1, y2] at one of its interior points. 2

Lemma 4.6. Suppose that the set {x1, ..., x6} satisfies the (N)-property.
Assume, furthermore, that there is no plane in E(x1, ..., x5), that contains x6.
Then, there exist a vector ν and real numbers t1 < 0 < t2 with the following
properties:
i) There exists a plane Ei from E(x1, ..., x5) that contains x6 + tiν, i = 1, 2.
ii) For all t in (t1, t2), there is no plane from E(x1, ..., x5), that contains x6+tν.
iii) The set {x1, ..., x5, x6 + tiν} satisfies the (N)-property, for i = 1 or 2.

Proof. If there exists at most one 3-tuple of coplanar vectors from x1, ..., x6,
our claim follows easily. If there exist at least two such 3-tuples, let G be the
open convex angle defined by the corresponding planes, so that G contains
x6. Clearly, there exists some plane E, that contains exactly two vectors
from x1, ..., x5 but not x6, the intersection of E with G is not empty and
for some point x in E the interior of the segment [x, x6] and any plane from
E(x1, ..., x5) are disjoint. The result follows. 2

The proof of the following fact is easy and will be omitted.

Lemma 4.7. Suppose that the set {x1, ..., x6} has the (N)-property and
for every i = 1, .., 6, there exists a plane Ei from E(x1, ..., xi−1, xi+1, ..., x6)
that contains xi. Up to a possible rearrangement of indices, one of the fol-
lowing is true:
i) x1, x2, x3 are coplanar and x4, x5, x6 are coplanar.
ii) x1, x2, x3 are coplanar, x3, x4, x5 are coplanar and x1, x5, x6 are coplanar.

Now we are ready to prove the key fact mentioned at the beginning of this
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section.

Lemma 4.8. The set {x1, ..., x6} satisfies the (N)-property, if and only if

T (x1, ..., x6) <
4

3
S(x1, ..., x6) .

Proof. It suffices to prove the ”only if” part. Suppose that the set {x1, ..., x6}
satisfies the (N)-property. If the assumptions of Lemma 3.4 are true, the as-
sertion is true by Lemma 3.5.

Case I: Assume that the following are true:
a) For every i = 1, ..., 6, there exists some planeEi from E(x1, ..., xi−1, xi+1, ...,
x6) that contains xi.
b) There exists an i, i = 1, ..., 6, a vector ν and real numbers t1 < 0 < t2,
so that for all k, l = 1, ..., 6 and for all t in (t1, t2), det(xi + tν, xk, xl) = 0,
if and only if det(xi, xk, xl) = 0 and, furthermore, the sets {x1, ..., xi−1, xi +
tjν, xi+1, ..., x6} do not satisfy the (N)-property, j = 1, 2.

By assumption (a) and Lemma 4.7, there are two possibilities (rearranging
the indices, if necessary):
i) x1, x2, x3 are contained in some plane E1 and x4, x5, x6 are contained in
some other plane E2. Since the (N)-property holds, replacing xi with −xi
if necessary, we may assume that x1, x2, x3 are contained in the same open
half-space of E2 and x4, x5, x6 are contained in the same open half-space of
E1. One can check that we can, simultaneously, take xi to be the position
vector of some point yi, i = 1, ..., 6, where y1, ..., y6 are coplanar. Then, it is
clear that five of the points y1, ..., y6 satisfy the assumptions of Lemma 4.5,
thus by Lemma 4.3 we obtain T (x1, ..., x6) < (4/3) · S(x1, ..., x6).
ii) {x1, x2, x3}, {x2, x4, x5}, {x1, x5, x6} are sets of linearly dependent vec-
tors. Then, we may assume that there exists some vector ν and real numbers
t1 < 0 < t2, so that for all t in (t1, t2), we have det(x3 + tν, xk, xl) 6= 0 if and
only if det(x3, xk, xl) 6= 0, while the sets {x1, x2, x3 + tjν, x4, x5, x6}, j = 1, 2,
do not satisfy the (N)-property. If for j = 1 or 2, four of the vectors x1, x2,
x3 + tjν, x4, x5, x6 were coplanar, then x4, x5, x6 would also be coplanar and
x1, ..., x6 would not span R3. This forces x3 +tjν to be parallel to xj, j = 1, 2.
As before, we may assume that the xi’s are the position vectors of some copla-
nar points y1, ..., y6 respectively. It is clear that we can apply Lemma 4.4 for
the points y1, y2, y4, y5, y6. If (i) of Lemma 4.4 is satisfied, then Lemma 4.2
contradicts to our assumption in the present Lemma. Therefore, the asser-
tion (ii) of Lemma 4.4 holds, hence T (x1, ..., x6) < (4/3) · S(x1, ..., x6).

By Lemma 4.6, the only remaining case is the following:
Case II: There exist an index i from {1, ..., 6}, a vector ν and an interval

[t1, t2] that contains 0 in its interior, which is maximal under the assumption
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that the following are true:
a) For all t in (t1, t2) and for all k, l = 1, ..., 6, k, l 6= i, xi + tν, xk, xl are
coplanar, if and only if xi, xk, xl are coplanar.
b) The set {x1, ..., xi−1, xi + tjν, xi+1, ..., x6} satisfies the (N)-property, for
j = 1 or 2.

Let us assume that equality holds in (10). By assumption (a), it follows
that the function

[t1, t2] 3 t 7→ S(x1, ...xi−1, xi + tν, xi+1, ..., x6) ,

is affine, thus Lemma 3.1, combined with (10), implies that

T

S
(x1, ...xi−1, xi + tν, xi+1, ..., x6) =

4

3
, t ∈ [t1, t2] .

Hence, by assumption, it is clear that there exists a set of vectors {z1, ..., z6}
with the (N)-property, such that T (z1, .., z6) = (4/3)·S(z1, ..., z6) and #E(z1, .
.., z6) < #E(x1, ..., x6). Clearly, after a finite number of repetitions of the
same procedure, we will have constructed a set of six vectors with the (N)-
property, that satisfies the assumptions of Lemma 3.4 or falls into Case I.
This is impossible and the conclusion follows. 2

The proof of the remaining part of Theorem 1 follows easily from Lemma
4.8. Indeed, let Z be a zonotope in R3 with support function

hZ(x) =

∫
S2

| < x, y > | dµ(y) ,

where µ(·) =
∑n

i=1 αiδxi(·) and δxi(·) is the Dirac measure in xi, for some
unit vectors xi and some positive numbers αi (n ≥ 6). By Lemma 3.3, (8)
and (9), we have

6!
(26

3!

)−1[
23|Z|2−|ΠZ|

]
= 6!

∑
i1,...,i6∈[n]
i1<...<i6

αi1 ...αi6

[4

3
S(xi1 , ..., xi6)−T (xi1 , ..., xi6)

]

=
∑

i1,...,i6∈[n]

αi1 ...αi6

[4

3
S(xi1 , ..., xi6)− T (xi1 , ..., xi6)

]
.

or

6!
(26

3!

)−1[
23|Z|2 − |ΠZ|

]
=

∫
x1∈S2

...

∫
x6∈S2

ϕ(x1, ..., x6) dµ(x1)...dµ(x6) ,

where we set ϕ := (4/3) · S − T . By approximation, the last identity holds
for any measure on S2, thus for every three-dimensional zonoid.
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Now, if Z is not the sum of five line segments or the sum of a cylinder and
a line segment, there clearly exists a set of vectors {y1, ..., y6}, contained in
the support of µ, that satisfies the (N)-property. By the continuity of ϕ and
the fact that ϕ(y1, ..., y6) > 0, we have∫

x1∈S2

...

∫
x6∈S2

ϕ(x1, ..., x6) dµ(x1)...dµ(x6) > 0 ,

which completes the proof. 2

5. Cones and double cones

Suppose that K = conv(P ∪ {e3}) is a cone in R3, where P is a con-
vex body in R2 × {0}. For our purpose, we may assume that P is a polygon
that contains the origin. Let A1, ..., An be the edges of P . Set, also, hi to
be the outer normal vector to Ai, of length equal to the distance of Ai from
the origin and take vectors ai, parallel to Ai, which have length equal to the
length of Ai, i = 1, ..., n. We may choose the orientations of the ai’s, so that
det(ai, hi) > 0, i = 1, ..., n.

Now the facets of K are exactly the sets

P , Fi := conv(Ai ∪ {e3}) , i = 1, ..., n .

Let xi be the outer unit normals to Fi, i = 1, ..., n. Then, since −e3 is the
outer unit normal vector to P , by (6), we have:

|ΠK| =
∑

{i1,i2,i3}⊆[n]

|Fi1| · |Fi2| · |Fi3| · | det(xi1 , xi2 , xi3) |

+
∑

{i1,i2}⊆[n]

|P | · |Fi1| · |Fi2| · | det(xi1 , xi2 , e3) | (12)

A crucial observation for what follows is the fact that all terms of the form
|Fi1| · |Fi2| · |Fi3| · | det(xi1 , xi2 , xi3) | are non-zero. One can easily see this by
taking a suitable affine transformation that maps Fi1 , Fi2 to facets that are
parallel to the vector e3. Then, for any i3 different than i1, i2, the image of
Fi3 through this transformation is necessarily not parallel to e3.

Clearly, the vector hi − e3 is parallel to the facet Fi. Thus, the vector
ai ∧ (hi − e3) is orthogonal to Fi, hence a multiple of xi. Moreover, since
hi − e3 is orthogonal to ai,

|ai ∧ (hi − e3)| = |ai| · |hi − e3| = 2|Fi| , i = 1, ..., n .
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Consequently, we have shown that

|Fi| · xi = ±1

2
ai ∧ (hi − e3) (13)

We may now use (13), Lemma 3.2 (i) and the fact that the vectors a1∧h1,
a2 ∧ h2 are parallel, to deal with every term of (12) separately:

|P | · |F1| · |F2| · | det(x1, x2, e3) | = |P | · 1
4
| det(a1∧ (h1−e3), a2∧ (h2−e3), e3) |

=
1

4
|P | · | det(a1 ∧ e3, a2 ∧ e3, e3) | = 1

4
|P | · | det2×2(a1, a2) | .

Thus,∑
{i1,i2}⊆[n]

|P | · |Fi1| · |Fi2| · | det(xi1 , xi2 , e3) | = 1

4
|P | ·

∑
{i1,i2}⊆[n]

| det(ai1 , ai2) |

=
1

4
|P | · |ΠP | . (14)

Moreover,∣∣∣ det(a1 ∧ (h1 − e3), a2 ∧ (h2 − e3), a3 ∧ (h3 − e3)
) ∣∣∣

=
∣∣∣ det(−a1 ∧ e3,−a2 ∧ e3, a3 ∧ h3) + det(−a1 ∧ e3, a2 ∧ h2,−a3 ∧ e3)

+det(a1 ∧ h1,−a2 ∧ e3,−a3 ∧ e3)
∣∣∣

= | < (−a1∧e3)∧ (e3∧a2), a3∧h3 > + < (−a1∧e3)∧ (e3∧−(a3)), a2∧h2 >

+ < a1 ∧ h1, (−a2 ∧ e3) ∧ (e3 ∧ a3) > |

= | det(−a1, e3, a2) · det(e3, a3, h3) + det(−a1, e3,−a3) · det(e3, a2, h2)

+det(−a2, e3, a3) · det(a1, h1, e3) |

= | det2×2(a1, a2) · det2×2(a3, h3) + det2×2(a3, a1) · det2×2(a2, h2)

+det2×2(a2, a3) · det2×2(a1, h1) | .

Since | conv({0} ∪ Ai) | = det(ai, hi)/2, it follows that

|F1| · |F2| · |F3| · |det(x1, x2, x3)| = 1

4
·
∣∣∣ det(a2, a3) · | conv({0} ∪ A1) |

+det(a3, a1) · | conv({0} ∪ A2) |+ det(a1, a2) · | conv({0} ∪ A3) |
∣∣∣ . (15)
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If we assume, in addition, that A1, A2 are adjacent edges, then

| conv({0} ∪ A1 ∪ A2) | = | conv({0} ∪ A1) |+ | conv({0} ∪ A2) | .

In this case,

det(a3, a1) · | conv({0} ∪ A2) |+ det(a2, a3) · | conv({0} ∪ A1) |

= det(a3, a1)·| conv({0}∪A1∪A2) |+det(a1+a2, a3)·| conv({0}∪A1) | . (16)

Set R(K) := |ΠK| − (1/4) · |P | · |ΠP |. To prove Theorem 2, it suffices to
prove that R(K) depends only on the area of P and that equality in Theorem
2 holds for some P .

Let v1, ..., vn be the vertices of P . Suppose that P is not a triangle. We
may assume that the line segments [v1, v2], [v2, v3] are the edges A1, A2

respectively and that 0 is not contained in the triangle conv(A1 ∪ A2). The
fact that det(ai, hi) > 0 easily implies that the vector a1 +a2 and the segment
[v1, v3] have equal lengths and parallel directions.

We employ here a method often used by Campi, Colesanti and Gronchi
(see e.g. [4] or [5]). Consider the family of polygons

Pt = conv{v1, v2 + tν, v3, ..., vn} , t ∈ [t1, t2] ,

where ν is any vector parallel to a1 + a2 and [t1, t2] is the largest interval, in
which v1, v3 are vertices of Pt for all t in (t1, t2). Clearly, (t1, t2) contains 0,
P0 = P and, furthermore, the volume of Pt is constant in [t1, t2]. Also, Pt
contains 0 in its interior for all t in [t1, t2].

If A1, t, A2, t, A3, ..., An are the edges of Pt, the corresponding parallel vec-
tors are a1, t = a1 ± tν, a2, t = a2 ∓ tν, a3, ..., an. Substituting ν by −ν if
necessary, we may assume that a1, t = a1 − tν and a2, t = a2 + tν.

By (12), (14), (15), (16) we have:

R
(
conv({e3} ∪ Pt)

)
=

∑
{i1,i2,i3}⊆[n]\{1,2}

|Fi1| · |Fi2| · |Fi3| · |det(xi1 , xi2 , xi3)|

+
1

4

∑
{i2,i3}⊆[n]\{1,2}

i∈{1,2}

∣∣∣ det(ai + εitν, ai2) · | conv({0} ∪ Ai3) |

+det(ai3 , ai + εitν) · | conv({0} ∪ Ai2) |+ det(ai2 , ai3) · | conv({0} ∪ Ai,t) |
∣∣∣

+
1

4

∑
i∈[n]\{1,2}

∣∣∣det(ai, a1 − tν) · | conv({0} ∪ A1,t ∪ A2,t) |
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+det(a1 +a2, ai)·| conv({0}∪A1,t) |+det(a1−tν, a2 +tν)·| conv({0})∪Ai |
∣∣∣ ,

where ε1 = −1, ε2 = 1.
Then, | conv({0}∪A1,t∪A2,t) | and det(a1− tν, a2 + tν) = 2| conv{v1, v2 +

tν, v3} | are clearly constant in [t1, t2]. Also, det(ai, a1− tν) and | conv({0}∪
Ai,t) | are affine in [t1, t2], i = 1, 2. As observed previously, each term of
the sum above is strictly positive in (t1, t2). All these facts imply that the
quantity R(conv(Pt ∪ {e3})) is affine in [t1, t2].

We conclude that for some i, j, with {i, j} = {1, 2},

R
(
conv(Pti∪{e3})

)
≤ R(K) = R

(
conv(P0∪{e3})

)
≤ R

(
conv(Ptj∪{e3})

)
.

It is true that the number of vertices of Pt1 and Pt2 is strictly less than
the number of vertices of P . Thus, by an inductive argument, there exist
triangles T1, T2 in R2 × {0} of the same area as P , with:

R
(
conv(T1 ∪ {e3})

)
≤ R(K) ≤ R

(
conv(T2 ∪ {e3})

)
.

However, by definition, R(K) is invariant under maps of the form

R3 3 (s1, s2, s3) 7→ (Φ(s1, s2), s3) ∈ R3 ,

where Φ is an area-preserving, affine transformation on R2. This shows that
R(K) = R(conv(T ∪ {e3})), where T is any triangle of the same area as P .
Thus, R(K) depends only on the area of P .

In the particular case in which |P | = 1 and K is the simplex, it is clear
that |P | · |ΠP |/4 = 1.5 and one easily calculates (see e.g. [3]) |ΠK| = 2.
Thus, R(K) = 1/2. 2

To prove Corollary 2, take K to be the double cone conv(P ∪ {±e3}) and
K ′ to be the cone conv(P ∪{e3}), where P is a centrally symmetric polygon
in R×{0} of area 1. If F1, ..., Fn are the facets of K ′, that are different from
P , by (6), (12) and (14) it follows that:

|ΠK ′| = 1

4
|P | · |ΠP |+

∑
{i1,i2,i3}⊆[n]

|Fi1| · |Fi2 | · |Fi3 | · | det(xi1 , xi2 , xi3) | ,

|ΠK| = 23 ·
∑

{i1,i2,i3}⊆[n]

|Fi1| · |Fi2| · |Fi3| · | det(xi1 , xi2 , xi3) | .

Thus,
|ΠK|
|K|2

= 23 ·
(
|ΠK ′| − 1

4
|P | · |ΠP |

)
· 9

4
= 9 ,
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where we used Theorem 2 and the fact that |K| = 2/3. 2

6. Projection bodies and centroid bodies

Let K be a star body in Rd. The centroid body ΓK of K is defined
by its support function

hΓK(x) =

∫
K

| < x, y > | dy =
1

d+ 1

∫
Sd−1

| < x, y > | ρd+1
K (y) dy , x ∈ Sd−1 ,

where ρK is the radial function of K and the last equality follows by inte-
gration in polar coordinates. Obviously, ΓK is a zonoid. It can be easily
shown that the functional |ΓK|/|K|d+1 is invariant under non-singular linear
transformations. A basic inequality for volumes of centroid bodies is due to
Busemann and Petty [1] [13]:

|ΓB1|
|B1|d+1

≤ |ΓK|
|K|d+1

(17)

where B1 is the unit ball. Here, equality holds if and only if K is an origin
symmetric ellipsoid. We prove the following:

Proposition 6.1. If K is a star body in Rd, then

|Π(ΓB1)|
|(B1)|(d+1)(d−1)

≤ |Π(ΓK)|
|K|(d+1)(d−1)

(18)

with equality if and only if K is an ellipsoid with center at the origin.

Note here that the quantity |Π(ΓK)|/|K|(d+1)(d−1) is also invariant under
linear maps. Also, as (17) shows, (18) would follow by Petty’s conjectured
inequality.

In what follows, αd, βd etc. will be positive constants that depend only
on the dimension d. For p = 1 and p = 2, define the quantity

Sp(K) =

∫
x1∈K

...

∫
xd∈K

|det(x1, ..., xd)|p dx1...dxd =

1

(d+ p)d

∫
x1∈Sd−1

...

∫
xd∈Sd−1

|det(x1, ..., xd)|p ρK(x1)d+p...ρK(xd)
d+p dx1...dxd.

It is clear that Sp(K) is invariant under volume preserving linear transfor-
mations. Also, it follows from (5) that the volume of ΓK is given by

|ΓK| = αdS1(K) .

21



We say that K is in isotropic position, if the function

Sd−1 3 x 7→
∫
K

< x, y >2 dy

constant. In this case, the quantity

LK :=
(
∫
K
< x, y >2 dy)

1
2

|K| 12+ 1
d

is called the isotropic constant of K. By definition, if K ′ is an affine image
of K then LK′ = LK . An obvious fact is that if K is isotropic of volume 1
and {e1, ..., ed} is an orthonormal basis, then∫

K

< x, ei >< x, ej > dx = L2
Kδij , i, j = 1, ..., d .

It is well known (see e.g. [12]) that there is always a linear transformation
T , such that TK is isotropic and of the same volume as K. Thus, it is clear
by the above discussion that

S2(K) = βd(L
2
K)d|K|d+2 .

Lemma 6.1. There exists some constant δd, such that if K is a star body
in Rd then

S1(K)
d+2
d+1 ≤ δdS2(K) ,

with equality if and only if K is an origin symmetric ellipsoid.

Proof.

S2(K) = βdL
2d
K |K|d+2 = βd

(1

d

∫
TK

|x|2 dx
)d

= β̃d

(∫
Sd−1

ρd+2
TK (x) dx

)d
≥ β′d

(∫
Sd−1

ρd+1
TK (x) dx

)d d+2
d+1

,

where T is a transformation, such that TK is isotropic of the same volume as
K and we used Hölder’s inequality in the last part. Equality holds if and only
if ρTK is constant i.e. TK is a ball centered at the origin or, equivalently, K
is an ellipsoid with center at 0.

On the other hand, it is clear that there exist some constants γd, γ
′
d, such

that

γ′d

∫
Sd−1

ρd+2
TK (x) dx = γd

∫
Sd−1

∫
TK

| < x, y > | dx dy

dωd
= V (Γ(TK), B1, ..., B1) ,
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where ωd is the volume of the d-dimensional unit ball and V (Γ(TK), B1, ..., B1)
denotes the mixed volume of Γ(TK) and B1 (see [20] for definitions and re-
lated inequalities concerning mixed volumes). Now, the Minkowski inequality
gives:

V (Γ(TK), B1, ..., B1) ≥ |Γ(TK)|
1
d · |B1|

d−1
d ,

with equality if and only if Γ(TK) is a ball. If TK is a ball centered at the
origin, then Γ(TK) is a ball. Hence if K is an ellipsoid of center at 0, then
equality holds in the last inequality. Combining both inequalities together
with the equality cases, we conclude the desired result.2

Proposition 6.1, follows from Lemma 6.1. First we need some additional
well known facts. The Busemann formula [1] states:

|K| d−1 = ζd

∫
Sd−1

S1(K ∩ x⊥) dx . (19)

Using a generalization of Busemann’s formula Weil [22] showed that if

hZ(x) =
1

2

∫
Sd−1

| < x, y > | f(y) dy , x ∈ Rd ,

is the support function of a d-dimensional zonoid Z, for some measurable
function f : Sd−1 → R, then its surface area measure is absolutely continuous
with respect to the Lebesque measure and its density function fZ is given
by:

fZ(x) = θd

∫
Sd−1∩x⊥

..

∫
Sd−1∩x⊥

det(x1, ..., xd−1)2 f(x1)...f(xd−1) dx1...dxd−1 .

Let P be a convex body, having absolutely continuous surface area measure
with density f . Petty [14] proved the following inequality

|ΠP | ≥ cd

( ∫
Sd−1

f
d

d+1 (x) dx
)d+1

, (20)

with equality if and only if P is an ellipsoid. The quantity Ω(P ) : =∫
Sd−1

fd/d+1dx is called the affine surface area of P .

Proof of Proposition 6.1.
Note that (according to Weil’s result) the surface area measure of ΓK is ab-
solutely continuous with respect to the Lebesque measure and its density is
given by:

f(x) = ld · S2(K ∩ x⊥) , x ∈ Sd−1 .
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Thus, by (20), Lemma 6.1 and (19), we have

|Π(ΓK)| ≥ λd

( ∫
Sd−1

S2(K ∩ x⊥)
d

d+1 dx
)d+1

≥ λ′d

(∫
Sd−1

S1(K ∩ x⊥) dx
)d+1

= λ′′d|K|(d−1)(d+1) .

Equality holds in both inequalities if K is an ellipsoid with center at 0 and
in the second one only if K ∩ x⊥ is an ellipsoid centered at the origin, for
every x ∈ Sd−1. It follows then from [6], Theorem 7.1.5 that K is necessarily
an ellipsoid centered at the origin. 2

Next we state an application of Proposition 6.1 in three dimensions.

Theorem 4. Let n ≥ 3 be an integer. Among all 3-dimensional convex
bodies of volume 1, ellipsoids with center at the origin are exactly the bodies
that minimize the functional

Qn(K) :=

∫
x1∈K

...

∫
xn∈K

∣∣∣Π( n∑
i=1

[−xi, xi]
)∣∣∣ dx1...dxn .

In other words, the mean value of the volume of the projection body of
the sum of n line segments picked uniformly and independently from a con-
vex body K of prescribed volume, is minimal if and only if K is an origin
symmetric ellipsoid. Theorem 4 is formally related to Petty’s conjecture as
follows: If one could replace the Minkowski sum with the convex hull in The-
orem 4, then Petty’s conjecture would be correct in three dimensions. Note,
also, that the functional Qn(K)/|K|3 is invariant under non-singular linear
transformations.
Proof of Theorem 4.
Let us use (8) and Lemma 3.3 to derive a simple expression for Qn(K):

Qn(K) = α1

(
n
3

)∫
(x1,x2,x3)∈K3

det(x1, x2, x3)2 dx1dx2dx3

+α2

(
n
4

)∫
(x1,x2,x3,x4)∈K4

|det(x1, x2, x3) · det(x1, x2, x4)| dx1dx2dx3dx4

+α3

(
n
5

)∫
(x1,x2,x3,x4,x5)∈K5

|det(x1, x2, x3) · det(x1, x4, x5)| dx1dx2dx3dx4dx5
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+α4

(
n
6

)∫
(x1,...,x6)∈K6

|det(x1 ∧ x2, x3 ∧ x4, x5 ∧ x6)| dx1...dx6

=: α1

(
n
3

)
A1(K) + α2

(
n
4

)
A2(K) + α3

(
n
5

)
A3(K) + α4

(
n
6

)
A4(K) ,

where α1, ..., α4 are absolute positive constants.
Since A1(K) = S2(K) = β3(L2

K)3 and since it is well known that the
isotropic constant is minimal if and only if K is an ellipsoid centered at 0, it
follows that

A1(K) ≥ A1(B1) ,

where B is the ball of center 0 and volume 1, with equality if and only if K
is an ellipsoid centered at 0.

Also, by (7) and Proposition 6.1, we have:

A4(K) = µ|Π(ΓK)| ≥ µ|Π(ΓB1)| = A4(B1) ,

where µ is an absolute constant.
To complete the proof of Theorem 4, observe that A2(K) =∫
x1∈K

∫
x2∈K

(∫
x3∈K

|det(x1, x2, x3)| dx3 ·
∫
x4∈K

|det(x1, x2, x4)| dx4

)
dx1dx2

=

∫
x1∈K

∫
x2∈K

(∫
x3∈K

|det(x1, x2, x3)| dx3

)2

dx1dx2

and, similarly,

A3(K) =

∫
x1∈K

(∫
x2∈K

∫
x3∈K

|det(x1, x2, x3)| dx2dx3

)2

dx1 .

One may, now, use the process of Steiner symmetrization in a standard way
(taking, also in advantage the obvious fact that A2(K), A3(K) are invariant
under volume-preserving linear maps) to show that

Ai(K) ≥ Ai(B1) , i = 2, 3 .

We omit the details. 2
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7. Some concluding remarks

§1) The fact that the class of three-dimensional zonoids, in which equal-
ity holds in (2), strictly contains the class of cylinders is of some interest.
For instance, one can easily derive an infinite family of counterexamples to
Schneider’s conjecture in three dimensions, also extended to any dimension
using (4).

Indeed, suppose that Z is a zonotope in R3, which is the sum of five line
segments in general position or the sum of a cylinder and a line segment, but
not a cylinder. Then,

|Π(Π−1Z)| > 23|Π−1Z|2 .

To see this, note that as shown in Schneider [20] (p. 417),

|Π(ΠZ)|
|ΠZ|2

≤ |ΠZ|
|Z|2

, (21)

with equality if and only if Π(ΠZ) and Z are homothetic. However, Weil [21]
showed that cylinders are the only three-dimensional polytopes having this
property. Since Z is a polytope, but not a cylinder, so is Π−1Z. Thus, replac-
ing in (21) Z by Π−1Z and using the equality characterization in Theorem
1, the conclusion follows. As an example, one may conclude that for every
centrally symmetric three-dimensional polytope K of volume 1, with at most
ten facets, it is true that |ΠK| ≥ 8, with equality if and only if K is a cylinder.

If E is a three-dimensional ellipsoid, one may easily compute that |ΠE|/|E|2
< 8. Thus, if K is a cone, a centrally symmetric double cone or of the
form Π−1Z, where Z is a zonoid for which equality in (2) is attained, then
|ΠE|/|E|2 < |ΠK|/|K|2. As far as we know, there are no other natural
three-dimensional classes of convex bodies, beside cylinders, in which Petty’s
conjecture has been confirmed.

§2) The problem of proving the analogous to (2) in all dimensions seems to
be much more complicated than the three-dimensional case. One of the main
reasons, in our opinion, is that it is not very clear what someone would expect
as equality cases. An inequality analogous to (10) would be the key to this
problem. One may consider the functions S and T in d dimensions, defined
by (9) and (8) respectively, to conclude that the inequality |ΠZ|/|Z|d−1 ≤ 2d

holds for any zonoid Z, if and only if the same inequality holds for zonotopes
being the sum of at most d(d− 1)-line segments.
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§3) If K is a 3-dimensional star body, set

Pn(K) :=

∫
x1∈K

....

∫
xn∈K

|
n∑
i=1

[−xi, xi]|2 dx1...dxn .

To conclude this paper, we would like to remark that the value of the ratio
Qn(B)/Pn(B) agrees with Petty’s conjecture for all integers n ≥ 3, where B
is a three-dimensional euclidian ball with center at 0. Indeed, one computes

Pn(K) = β1

(
n
3

)
A1(K)+β2

(
n
4

)
A2(K)+β3

(
n
5

)
A3(K)+β4

(
n
6

)
B4(K),

where

B4(K) :=
(∫

x1∈K

∫
x2 ∈K

∫
x3∈K

|det(x1, x2, x3)| dx1dx2dx3

)2

and β1, ..., β4 are absolute constants. Taking n to be 3, 4, 5 successively,
it follows by Theorem 1 that αi/βi = 8 > |ΠB|/|B|2, i = 1, 2, 3. Also, the
law of large numbers implies easily that the random zonotope 1

n

∑n
i=1[−xi, xi]

converges almost surely to a multiple of the centroid body of K, as n tends to
infinity, thus limn→∞Qn(K)/Pn(K) = |Π(ΓK)|/|ΓK|2. On the other hand, it
is clear that limn→∞Qn(K)/Pn(K) = α4A4(K)/β4B4(K). Taking K = B, it
follows that α4A4(B)/β4B4(B) = |ΠB|/|B|2, so Qn(B)/Pn(B) > |ΠB|/|B|2
, n ≥ 3. The last inequality would follow by Petty’s conjectured inequality.

Acknowledgement. Special thanks to Prof. Souzana Papadopoulou for
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