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This paper presents a parallel algorithm for the solution of linear systems and determinant 
evaluation suitable for use on the proposed parallel computers of the future. The new method can be 
considered as extending the novel matrix factorisation strategies introduced by Evans and Hatzopoulos 
[l] and Evans and Hadjidimos [2] in which quadrant interlocking factors are considered instead of the 
more usual LU factors of triangular decomposition. 

1. Introduction 

Recently Evans and Hatzopoulos [l] and Evans and Hadjidimos (see [2] and [3]) have 
introduced two new factorisation techniques for a matrix A. These are known as Quadrant 
Interlocking Factorisation techniques (abbreviated to QIFl and QIF2 respectively) and are 
such that the second is a modification of the first whilst both are suitable for the solution of the 
non-singular linear system 

Ax = b (1.1) 

on a Parallel Computer of the type “Single Instruction Stream-Multiple Data Stream” (SIMD) 
(see Flynn [4] and Stone [S]). Both QIF techniques are in most cases better than the well 
known ones given by Sameh and Kuck [6], Lambiotte [7], Evans and Hatzopoulos [8] etc. 

In this paper, we present a new version of the QIF2 technique, namely NQIF2, which 
constitutes an improvement over the old QIF2 procedure in as much as that both the total 
number of time steps and the maximum number of processors working in parallel required for 
the solution of the system (1.1) are decreased considerably. In addition, we present a parallel 
algorithm for the evaluation of the determinant of a matrix A by using the QIFl technique. 
Such an algorithm based on QIFl has so far been believed as not possible (see [2]). Finally, the 
various tables given in the text make comparisons amongst all these three techniques so that 
the best one to use in each case is readily produced. 
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2. The new (N)QIF2 factorisation 

We consider system (1.1) where A is a non-singular matrix of order n with elements ai,,, 
i,j = l(l)n and x and b two n-dimensional vectors with x unknown and b known and 
corresponding components Xi and bi, i = l(l)n. We now assume that there exists three matrices 
W, D and Z, each of order II, such that 

A= WDZ. (2.1) 

In (2.1) the W-factor is the same factor as in the QIF2 technique (see [2]), namely of the form 

(2.2) 

D is a diagonal matrix with elements di, i = l(l)n and the Z-factor is of the same type as in 
the QIF2 technique with the only exception being that it has units on the main diagonal. Thus, 
the matrix Z in (2.1) is of the form 
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(2.3) 

where it is pointed out that the product DZ in (2.1) is in fact the factor Z in the QIF2 

technique (see [2]). 
The motivations for the creation of the new technique were the following three points (i) 

the observation that if the basic algorithmic step for the factorisation of the matrix A by using 
the QIF2 technique were split into two half steps then the number of time steps as well as the 
maximum number of processors working in parallel at the same time would become much 
smaller; (ii) the adoption of the form A = WDW’ for the real symmetric positive definite case 
in QIF2 could have readily come from the adoption of the form WDZ for the general case, 
and (iii) the observation that if the previous general form were adopted the solution of a 
system with matrix coefficient DZ in two stages would require many less time steps than the 
corresponding solution of the system with coefficient matrix Z in the QIF2 technique. 
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3. The computation of the IV-, D- and Z-matrices 

From (2.1) we have that 

A = i di WiZT 2 
i=l 

(3.1) 

where Wi and Zi, i = l(l)n are the column vectors of the matrices W and Z’ respectively. Now 
we define the matrices Ak and Ak+1,2, k = l(l)[i(n - l)], with the symbol [a] denoting the 
largest integer not greater than the real number (Y, such that 

AI=A, 

k-l 

Ak =A- 2 diWiZ:- 2 diWiZ:T k = 2(l)& - l)] , 

i=l i=n-k+2 

(3.2) 

Ak+l,2=A-i diWiZ:- i diWiZ:y k = l(l)& - l)] . 
i=l i=n-k+2 

It can be easily seen, from (3.2), that the following relationships also hold: 

A,.1/2 = h. - dkwkz: > 
k = l(l)[+(n - l)] . (3.3) 

A k+l - - Ak+l/2 - dn-k+,wn-k+lZfn-k+,, 

From relationships (3.2) it can be also deduced that the first and last (k - 1) rows and columns 
of any Ak matrix defined there are zero. So are the first k and the last (k - 1) rows and 
columns of any Ak+1j2 matrix. 

If we consider all the relationships above the NQIF2 algorithm for finding the elements of 
three matrices W, D and Z becomes 

(a) &=&it, 

(b) Zkj = ai!)/Q, wj,k = aii’/dk, i = k + l(l)n - k + 1, 

(C) &+I,2 = Ak - A’kk’Z: , 

(d) dn-k+l = a:k-+kli:+k+l 

(4 Zn-k+l,j = aLk-‘kY3jIdn-k+1 9 

wj,"-k+l = Ujkn+-lkl:)l/dn-k+l 7 j = k + l(l)n - k 9 

(f) 
(k+1/2) t Akcl = Ak+u2 - An-k+lZn-k+l , 

(3.4) 

for all k = l(l)[$(n - l)]. In (3.4) u:T’ denotes the element of the A,,, matrix in the position , 

(p, q), while Ai” denotes the ith column vector of the Al matrix. The reader is reminded that 
in order to complete the evaluation of all the elements of the matrices concerned one more 
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Table 1 
Factorisation of a matrix 

Method Num. of time steps Max. num. of proc. 

QIFl 3(n- l)- 1.5(1+(-l)“) 2(n - 2)? 

QIF2 4S(n - 1) - 0.75( 1 + (- 1)“) 2(n - 2y 

NQIF2 3(n - 1) (n - I)’ 

stage, for k = [$(n + l)], is necessary. To be more specific, if n is odd, step (3.4a) has to be 
carried out in order to find the value of the central element dk, while if II is even, steps 

(3.4a)-(3.4d) h ave to be carried out in order to find the central elements dk, .?&,kilr wk+l,k and 
d k+l. Here, it has to be made clear that in steps (3.4~) and (3.4f) use of the column vectors Aik’ 
and ALk_“$’ was made instead of the products dk Wk and dnmk+, W,_,+, respectively as was 
indicated from relationships (3.3). This was permitted because of the second sets of relation- 

ships in steps (3.4b) and (3.4e) and thus a saving of two extra parallel calculations at each stage 
of the algorithm (3.4) was made. 

If we adopt the basic assumption (as in [l, 2, 31 and [6]) that a parallel replacement 
statement requires negligible time, while any other parallel arithmetic operation needs the 
same time step we can very easily determine that the total number of time steps for the 
complete factorisation of the matrix A is equal to 6[i(n - l)] if n is odd and 6&n - l)] + 3 if n 
is even. Both these expressions are equal to 3(n - 1) for any n. At the same time the maximum 
number of processors working in parallel needed to perform all the operations required is 
readily seen to be (n - 1)2. 

In Table 1 below we give the number of time steps as well as the maximum number of 
processors required for the complete factorisation of the matrix A by using each one of the 
three methods QIFl, QIF2 and NQIF2. 

From Table 1 it is readily seen that the QIFl technique is always better than QIF2 for all 
n 2 3. Comparing now the QIFl and NQIF2 techniques we can see that for any it odd both 

techniques require the same number of time steps while for it even, QIFl requires three time 
steps less than NQIF2 does. Comparing now the maximum number of processors used it is 
easily found out that only for y1 = 3 and 4 is QIFl better than NQIF2 while for II 2 5 NQIF 2 is 

the best of the two. 
Before we close this section we have to point out that the factorisation (2.1) where D is a 

diagonal matrix and the other two factors are of the forms (2.2) and (2.3) respectively, is 
unique. The proof is omitted here. 

4. Solution of the linear system 

For the solution of the linear system (1.1) we introduce the auxiliary vectors y and U, with 
components yi, Ui, i = l(l)n respectively, so that in view of (2.1) it is equivalent to solving the 
following three simpler systems 

Wy=b, (4.1) 

Du=y (4.2) 
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and 

Zx=u. 

101 

(4.3) 

To solve system (4.1) we let Wy = b = b(l) so that 

iyiW,=b. 
i=l 

We then introduce the vectors bCk+*“) and bCk), for k = l(l)[$(n + l)], such that 

b(l) = b 
7 

b&+1/2) = b(k) _ YkWk, blk+‘)= b(k+1’2)- yn-k+,wn_k+l. 

Hence, the NQIF2 algorithm for the solution of system (4.1) is the following 

(a) yk = b(kk) ? 

W b (k+W = b(k) _ Ykwk , 

(C) y,,-k+l = b’,“-‘k’: , 

(d) b (k+l) = b(k+*‘2)- yn-k+lWn-k+l , 

(4.4) 

for k = l(l)[$(n - l)]. If II is odd, step (4.4a) has to be executed for k = [$(n + l)] to find the 
element in the middle yk, while if n is even, steps (4.4ak(4.4c) have to be executed for the 
same value of k = [i(n + l)] to find the two centre elements yk and yk+l. Under the assump- 
tions of Section 3, concerning the time needed for a parallel operation, we can very easily find 
that for the evaluation of the components of the vector y, a total number of 4[i(n - l)] + 1 + 
(-1)” = 2(n - 1) t ime steps and a maximum number of (n - 1) processors are required. 

As can be readily seen system (4.2) is solved in one time step using 12 processors. More 
specifically we have 

Ui = yi/di 9 i = l(l)n * 

Finally to solve system (4.3) we proceed as follows. We let 2x = u = u(‘) so that 

2 x,ZT = u(l) ) 
i=l 

where Z:, i = l(l)n are the column vectors of the matrix Z. We then introduce the vectors 
u(i) and u(~+I’~), for i = l(l)[i(n + l)], such that 

UC’) = u 
7 

U(‘-k+2/3) = U(l-k+l) _ x 

n 
_k+lZ;_k+, , 

@-k+2) = UU-k+3/2) _ xkz* 
k, 

where 1 = [$(n + l)] and k = [$(n + l)](-l)l, except for n odd and k = 1 when we put 
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Table 2 

Solution of the auxiliary systems 

Method Num. of time steps Max. num. of proc. 

QIFI 4S(n - 1) - 0.75(1 + (- 1)“) 2(n - 2) 
QIF2 6(n - 1) 2(n - 2) 

NQIF2 4n -3 n 

u(“*) = U(I) = u and uc2) = u(l) - x127. If n is odd we start with 

(4 xi = up , 
w u(2) = u (I)- x,z; ) 

while if y1 is even, we start with 

(4 xi+1 = u% , 
(b) u(3m = u(1) _ x 

1+1 
z* 

1+1, 

(c> ) 
xI = uj3/*) 

(4 
@) = 

u(3’2) - XlZT . 

We then proceed by using the algorithm 

(4 x”-k+l = &;::), 

(‘4 U(‘-k+W*) = U(l-k+l)_ x 

” 
_k+,z*_k+l 

n 3 

(c) xk = u(kl-k+W*) 
3 

(4 U(l-k+2) = U(f-k+3/*) _ x 

k 
z* 

k > 

(4.5) 

(4.6) 

(4.7) 

for k = [i(n - l)](-l)l, where step (4.7d) is not executed for k = 1. Starting with (4.5) or (4.6) 
depending on whether IZ is odd or even respectively, and then applying algorithm (4.7) we can 
obtain the solution of system (4.3) in a total number of 4[i(n - l)] + 1+ (-1)” = 2(n - 1) time 
steps by using a maximum number of (n - 1) processors working in parallel. 

Thus for the complete solution of systems (4.1)-(4.3) the time steps and the maximum 
number of processors required for the three basic techniques are given in Table 2. 

Table 3 
Complete solution of the original system 

Method Num. of time steps Max. num. of proc. 

QIFl 7S(n - 1) - 2.25(1+ (- 1)“) 2(n - 2)* 
QIF2 10.5(n - I)- 0.75(1+ (-1)“) 2(n - 2)* 

NQIF2 7n-6 (n - 1)’ 
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When Tables 1 and 2 are combined we can form Table 3 in which the results for the 
complete solution of the original system (1.1) are given for the three Quadrant Interlocking 
Factorisation techniques. 

As is readily seen from Table 3 the QIFl technique is always better than QIF2. Comparing 
QIFl with NQIF2 as far as the total number of time steps is concerned we can find out that for 
n = 4, 6, 8 and 10 QIFl is the best of the two, for n = 3 and n = 12 they are equivalent, while 
for any other value of n NQIF2 is the best. Taking into consideration the maximum number of 
processors required we arrive at exactly the same conclusion as previously for the factorisation 
stage. That is, for n = 3 and 4 QIFl is the best while for any other value of II, NQIF2 is the 
one which utilises a smaller maximum number of processors. 

5. Basic remarks concerning the NQIF2 technique 

When we consider the analysis made so far in the previous sections concerning the NQIF2 
technique as well as some of the basic results in [2] we can make the following remarks: 

(i) A possible breakdown during the factorisation process (see [2]) can be avoided 
provided that 

a k,k, a(nk-+;2i,n-k+l 
(k) 

fO, k = l(l)[i(n - l)] and a::‘# 0, 

with 1 = [$(n + l)] ‘f 1 n is even. If the matrix A is a non-singular matrix then an interchanging 
column strategy can be adopted in the same way as suggested in [2]. 

(ii) The interchanging column strategy is not necessary if A is a diagonally dominant 
matrix. This was proved directly in [2] for the matrices Ak and indirectly for the matrices 
A k+1/2 for all k = l(l)[$,(n - l)], since these matrices, as was proved there, possess the same 
property of diagonal dominance. 

(iii) On the other hand when A is a real symmetric positive definite matrix no breakdown 
occurs during the factorisation process. This was proved in [2] under the assumption that there 
existed matrices W and D (diagonal) such that A = WDW’. Since the existence of these two 
matrices is not an obvious thing, especially in the present case of the NQIF2 technique, we show it 
by stating and proving the following theorem. 

THEOREM. If A is a real symmetric positive definite matrix, then so are all matrices A;, 
k = l(l)& + l)] or AL+1,2, k = l(l)[$(n - l)] and k = [$(n + l)] if n is even. The mafrices A; 
and A;+1,2 are obtained from the matrices Ak and Ak+ln, defined in (3.2), by deleting the first 
and the last (k - 1) zero rows and columns or the first k and the last (k - 1) zero rows and 
columns respectively. 

PROOF. First we define the unit matrix of order (n - l)ln_l, the (n - l)-dimensional zero 
vector OneI, and then we define the (n - l)-dimensional vectors W; and A;“’ obtained from the 
vectors WI and Ai” respectively by deleting their first components. It is evident that 
dI = ai? = all > 0 and that A3,2 = A, - A$“W: = A, - dl Wl W:. Therefore 

A;,, = A; - A;‘l’W;’ = A; - dI W; W;’ . 
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Now we define the non-singular matrix 

[ 

1 
El = O”_, 

- W” 

I,_, I 
and we form the product 

C = B’AB = 
[ 

all 
A;“’ 

or equivalently 

- 

r(l)t A, - al, w;’ 

allWI A; _ A;“‘W;’ _ ,;(A;“” - 

Since A is a real symmetric positive definite matrix so is the matrix C = B’AB. On the other 
hand it is known that if C is a real symmetric positive definite matrix then so is any submatrix 
obtained from it by deleting any rows of C and the corresponding columns (see e.g. 19, 
p. 21, Proof of Theorem 2.51). Thus by deleting the first row and column of C we obtain A;,* 
which is a real symmetric positive definite matrix. Hence d,, = a L:‘,“’ > 0. We now proceed in an 
obvious way from the right bottom corner of A&2 and prove that AS is a real symmetric 
positive definite matrix in an analogous way. The complete proof of the Theorem can be given 
by induction. 

(iv) It has to be pointed out that in the case where A is a real symmetric positive definite 
matrix then in (2.1) Z = W’ and the algorithm given in the previous sections applies in a 
straightforward manner. As is obvious the total number of time steps remains the same as in 
the general case while the maximum number of processors used becomes (n - l)n/2. As is also 
known, there does not exist a free root Choleski type analogue for the QIFl technique. 

(v) It is remarkable to point out that the NQIF2 technique is equivalent from either point 
of view (that is the number of time steps and the maximum number of processors required) to 
the LDU method of parallel solution given by Sameh and Kuck [6]. 

6. Evaluation of the determinant of a matrix 

The evaluation of the det(A) by using the NQIF2 technique follows the same steps as in the 
case of the QIF2 technique (see [2]). The only difference is that A is given by (2.1) and 
therefore 

det(A) = det( W) det(D) det(Z) . (6.1) 

Since the matrix W in the NQIF2 technique is exactly the same as the W factor in QIF2 that 
for the factor Z in QIF2 we had that det(Z) = II;==, Zi,i. Because of the fact that the matrix Z in 
the NQIF2 technique is of the same type as the corresponding factor in QIF2 then we 
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immediately obtain for the present case that 

det(A) = det(D) = fi di . 
i=l 

105 interlocking factorisation methods 

det(Z) = 1. Therefore (6.1) becomes 

(6.2) 

The product in (6.2) can be obtained in [log n] parallel time steps, where the symbol [(Y] 
denotes the smallest integer not less than the real number a. (The logarithm is taken to the 
base 2.) 

The general belief so far has been that the determinant of a matrix A cannot be evaluated 
by using the QIFl technique. This is not true as we shall show in the following sequel. Let W 
and Z be the two factors in the QIFl factorisation (see [l]). We have that 

det(A) = det( W) det(Z) . (6.3) 

Since the form of the W matrix in the QIFl factorisation is the same as the W matrix in either 
the QIF2 or the NQIF2 factorisation apart from the fact that the elements in the positions 
(n - k + 1, k), k = l(l)[n/2] are zeros, a proof similar to the one given in [2] leads to the conclusion 
that det( W) = 1. As is known the form of the Z matrix (see [l]) is given in (6.4) 

Z= 

211 212 

222 

0 

G-1.2 

2 nl Z”2 

To find det(Z) we multiply the first row of Z by a multiplier such that when this first row is 
added to the last row the new element in the position (n, 1) becomes zero. As is known the 
determinant of the new matrix is equal to det(Z). If now we expand the new determinant 
according to the elements of its first column we obtain the result in (6.5): 

213 . . . Zl,n-2 Z1.P1 21, 

223 . . . Z2,n-2 Z2,n-1 

233 
. . . 

Z3,n-3 

0 
Zn-2.3 ’ * * Zn-2,n-2 

Zn-1,3 * *. Zn-l,n-2 Zn-l,n-1 

z n3 
. . . 

Zn,n-2 Zn.n-1 &l,n 

(6.4) 

det(Z) = zll det 

223 

233 

Zn-1.3 

_A 
z 

&I3 
211 

213 

. . . 

. . . 

. . . 

22,n-1 

0 
0 

Zn-l,n-1 

z Ill 
Zn,n-1 - - Zl.n-1 

211 

0 

t 
Z”1 -- 

n,n 
211 

J)* 

21” 

(6.5) 

Now by expanding the determinant of the RHS of (6.5) according to the elements of the last 
column we obtain (6.6) 
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Table 4 
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Evaluation of the determinant of a matrix 

Method Num. of time steps Max. num. of proc. 

QIFl 3(n - 1) + [log[t(n + l)]] - 0.5(1+ (- 1)“) 2(n - 2)* 
QIF2 4S(n - l)+ [log n] - 0.75(1+ (-1)“) 2(n - 2)* 

NQIF2 3(n - 1) + [log nl (n - 1)2 

’ I: 

det 

222 223 . . . 

233 . . . 

0 . . . 

Zn-2.3 . . . 

z,- 1.2 Znml.3 . . . 

By repeating the process a further [i(n - l)] times we can finally 

det(A) = det(Z) =“;‘ii”‘l t”,r,+, k 
k=, * . 

:“:,:::_,+,I , (6.7) 

z2.e2 z2.cI 

Z3,“P2 

0 

znm2,nm2 

Zn-IF2 ZPl.PI I 
(6.6) 

obtain by induction that 

where in (6.7) the determinant corresponding to the value of k = [i(n + l)] for n odd reduces 
to the single element &,k. Since each determinant in the RHS of (6.7) had been evaluated 
during the factorisation process, except the one corresponding to the value of k = [$n + l)] if n 
is even, they do not have to be evaluated again provided that we had kept the corresponding 

values. For the evaluation of the last determinant, for n even, two extra time steps are needed. 
Thus, the total number of time steps needed for the evaluation of the RHS of (6.7) is 

[log&r + l)]] + 1 + (-1)“. 
Taking into consideration Table 1 and the result which we have just obtained we form 

Table 4 in which the total number of time steps and the maximum number of processors 
required in all three techniques are given. 

As is readily found out from Table 4, QIFl is always better than QIF2 technique. In 
addition to that, QIFl is also always better than NQIF2 as far as the total number of times 
steps required are concerned for any value of n 2 3. From the point of view of the maximum 
number of processors used, however, NQIF2 is the best of the two for any n 2 5. 
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