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ON DIFFERENT CLASSES OF MONOPARAMETRIC STATIONARY ITERATIVE 
METHODS FOR THE SOLUTION OF LINEAR SYSTEMS 

S. GALANIS, A. HADJIDIMOS and D. NOUTSOS 

Department of Mathematics, University of Ioannina, GR-453 32 Ioannina, Greece 

The class of monoparametric k-step methods 

X(m) = o~X(+r) + (I- O)X(m-k) + oc (1) 

used for the solution of the linear system (I - T)x = c is studied. Under certain conditions the spectrum (I( 7’) 
of T must satisfy, for w > 1 and given k( > 2) and p E (0, 1) (a quantity defined in the paper), (optimum) 
convergent methods (1) are derived. Next, an equivalence between (optimum) convergent methods (1) and a 
class of Successive Overrelation (SOR) ones is established. Then, based on (1) a class of new monoparametric 
methods, called k/2-step block iterative methods faster than those in (l), is introduced and studied. Finally, 
various applications and numerical examples in support of the theory developed in this paper are provided. 

1. Introduction 

For the solution of the nonsingular linear system of equations 

Ax=b, (1.1) 

with A E C”,n and x, b E C”, de Pillis and Neumann [8] considered the splitting 

A=A,-A,- ... -A,, (1.2) 

where A, E Cn,“, j = O(l),4 and det( A,) f 0. (1.2) generates the linear stationary k-step iterative 
method 

X(m) = BIX(m-l) + B2X(m-*) + . . . +BkX(m-k) + c, m=k, k-tl;.., 0.3) 

with x(j) E C”, j = O(l)k - 1 a r 1 rary, b’t B, = AilA,, j= l(l)k and c = A;‘b. For a suitable 
choice of the A,‘s based on a knowledge of the spectrum a(A) of A, which is assumed to satisfy 
certain conditions, scheme (1.3) converges to the solution of (1.1). If we consider the new 
splitting A = Ah - Ai - 1 . . -AL with 

A; =-&A,, A; = (I-Q, + pdAb - a, A; = piA;, j = 2(l)/?, 

where pi E C, j = O(l)k satisfy 

0.4) 
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and put T = I - A’;‘A, then the k-step iterative method of Niethammer and Varga [19] is 
derived: 

xCrn) = (poT+ ~J)x@-~) + p2xcm-*) + . . . +pkx”+ + pot, 

m=k, k+l, .... (1.6) 

If the spectrum a(T) or its convex hull H(T) (i.e. the smallest convex polygon containing a(T) 
in the closure of its interior) or, more generally, a closed region R, 3 u(T) (and 1 $ H(T) or R, 
respectively) is known, the problem of determining the optimal values of the parameters p,, 
/’ = O(l)k, except in the special cases of the next paragraph, is still an open one. In the following 
we refer to some of the works for the cases k = 1 and 2. 

For the case k= 1, pot [w (pl = 1 -pO) and H(T) c (-CO, 1) or H(T) ~(1, +cc) the 
optimal solution can be found in Isaacson and Keller [15, Theorem 1, pp. 73-781. For other 
configurations of a(T) optimal solutions were given in [8,12] etc. In case H(T) lies in the half 
complex plane Re z < 1 (or Re z > 1) the problem was solved by Hughes Hallett [13] (see also 
[14]) and Hadjidimos [lo]. For p,, E C (pi = 1 - pO) and 1 $ H(T) a first result was obtained by 
Buoni and Varga [6] and the complete solution was given by Hadjidimos [ll]. For k = 2 and pO, 
pi E [w (p2 = 1 - p0 - pi) the very first optimum result was obtained by Golub and Varga [9]. 
Later came the works by Manteuffel [17-181, de Pillis and Neumann [8], Avdelas and Hadjidi- 
mos [4], Avdelas [l] Leontitsis [16] and the one by Niethammer and Varga [19]. The latter seems 
to be the only one in which an optimal solution for complex p,‘s (and H(T) a line segment) is 
given. 

Some researchers considered monoparametric stationary k-step (k > 2) schemes of type (1.6) 
with pJ = 0, j = l(l)k - 1, pLo E [w. In view of (1.5), if we put p = p0 (1.6) is then simplified to 

xCm) = ~Tx(~-‘) + (1 - w)x(“~~) + WC, m = k, k + 1, . . . . (1.7) 

Apart from the works above for k = 2, for special cases of which schemes (1.6) become 
monoparametric ones, we mention the works by de Pillis [7], Avdelas et al. [3] and Avdelas et al. 
[2], who studied the case k = 2 and Niethammer and Varga [19], who treated as an example the 
case k = 4. As far as the authors know nothing has been done for schemes (1.7) or their variants 
for any k > 3. 

The remaining of this paper is organized as follows. In Section 2 scheme (1.7) for w > 1 and 
given k( & 3) and p E (0, 1) (a quantity to be defined later) is studied by means of Euler 
functions (see [19]) and its optimum is derived. In Section 3 the extension of an idea in Varga 
[21, pp. 141-1441 enables us, under certain assumptions concerning u(T), to establish an 
equivalence between a type of Successive Overrelaxation (SOR) method and the method (1.7) 
such that the optimum ~(6~) for both methods is the same. In Section 4 we exploit the 
equivalence established to introduce what we call monoparametric k/2-step block iterative 
methods and prove that when they apply they are faster than the corresponding k-step ones. 
Finally in Section 5 applications referring to Section 2 are given and a comparison of the 
k/2-step block methods and the k-step methods is made by giving selected numerical examples. 

2. Study of the scheme (1.7) 

We begin our study with the following lemma. 
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Lemma 1. (a) The circle q.~ = Te”, 7 > 0, 8 E [0, 27) in the complex plane is transformed through 

z:=P(p’)=l/p(cp)= 
1 - (1 - W)‘pk 

“~ , w>l,k>3 (2.1) 

into a closed curve C, consisting of k consecutive arcs (let the first one correspond to B[O, 27/k]) 
each of which is symmetric with respect to (w.r. t.) the line passing through the origin and its 
midpoint. Also rotations of the complex plane about the origin through angles of 27/k, but through 
no smaller angles, carry C, into itself. 

(b) For a given p = $( Gj) E (0, 1) and for every 77 E (0, ?J 1, with ;;I = ((k - l)( ijk - 1)) -ilk, and 

only for these values of 17, C, is a simple curve and p(q) in (2.1) for 17 E (1, ;7 ] is an Euler 
function, where cj, E (1, k/( k - 1)) is th e unique positive real root of the equation 

(up)” = kk(k - l)l-k(~ - 1). (2.2) 

Proof. We write (2.1) in polar coordinates and obtain 

1 1 
z :=jj(‘p) =- 

P(V) =w 17 [i 
lcos B - (1 - o)$-’ cos(k - I)0 

-i + sin8+(1-w)nk-i sin(k - 1)s . 
From (2.3) it is found out that the graph C, of z = JJ( ‘p) has polar radius 

r(q, 0, 8) = t + + (1 - ~)~n~(~-i) - 2(1 - W)nk-2 1 
l/2 cos ki9 . 

v 

(2.3) 

(2.4) 

From the latter expression the properties of C, in part (a) follow (see also [20]). 
For the part (b) we have that p(0) = 0 and p(l) = 1, so C, is a simple curve for all n E (0, ;7] 

for which Im(dj(q)/dB) 1 o=. d oes not change sign and p( cp) is an Euler function-for all n E (1, 

$1 for which jj( cp) is univalent in 0,~ D, (0, := { ‘p E Q3: ) cp) < n, n > 0}, with 0, its closure). 
We follow [19, Example 4, pp. 202-2041, differentiate (2.3) w.r.t. 0 and obtain 

dz 1 -=- 
db’ w 

- tsin 8 + (k - l)(l - o)nk-i sin(k - 1)s 
i 

-i 
1 
i cos 8 + (k - l)(l - u)$-’ cos(k - 1)0 )I . (2.5) 

Since Im(dz/dB) IsZO + -cc as n --) O+, Im(dz/dd) JBcO remains nonpositive iff l/n + (k - 

l)(l - w) vkP1 > 0 or equivalently n E (0, ((k - l)( w - l))-‘/k]. The maximum value of n( = ?I) 
> 1 for which the quantity of interest is nonpositive (and p( cp) in (2.1) is an Euler function for 
n E (1, $1) is that for which r(Sj, ijk, 0) = p. Then ?j = ((k - l)(&, - l))-“k and from (2.4) ijk 
must be the (unique) positive real root of (2.2). •! 

Note: The graph of C,( = es) for a given p E (0, 1) is shown in Fig. 1. 

By virtue of Lemma 1 and the theory in [19] we state below a theorem and a corollary whose 
proof is easy. 
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Fig. 1. 

Theorem_ 2. Let Rk be the closed interior of C, ( = C,) of Lemma 1 corresponding to ijk. If 
a(T) c R,, then (1.7), under the initial conditions 

x(O) = c 
> 

x(J) = c + ow-‘), j= l(l)/? - 1 (2.6) 

and with o = cj,, is a k-step iterative Euler method, converges and has an asymptotic convergence 
factor ( f. c. f .) < l/t = ((k - l)( 3, - l))“k, with equality holding iff at least one element of a(T) 
lies on C,. In addition (1.7) converges for any o E [b,, k/( k - 1)). 

Corollary 3. If the elements of u( Tk) for k >, 3 are real and nonegative with p(T) E (0, l), then 
Lemma 1 and Theorem 2 hold with p = p(T). 

Note: The situation for k = 5 is shown in Fig. 2. 
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Fig. 2. 

Remark. From what is known for k = 2 (see e.g. [19]), one can say that Lemma l(b), Theorem 2 
and Corollary 3 hold with C,(and el) degenerating into the double line segment [-p, p], where 
only its end-points are simple points. q 

It is noted that the optimum results for the scheme (1.7) bear a close resemblance with the 
corresponding ones for an SOR method which has a weakly cyclic of index k Jacobi matrix T 

(see [20]). This will be investigated further in the next section. 
In view of what has been developed so far the following theorem can be stated and proved. 

Theorem 4. Let { Ack’} = { Z - Tck’}, k = 2, 3, 4, . . . be a sequence o[ matrix coefficients in (1.1) 
such that for all k and a given p E (0, l), a( Ttk’) c kk, with R, and C, being defined in Theorem 
2. Let also that for each k at least one element of a(Tck’) lies on ck. Then the sequence of optimum 
a.c.j: ‘s of the corresponding schemes (1.7), let them be p;,( = l/tk), is a strictly increasing one. 

Proof. Consider (2.2) with w = ijk, put y = y(k) = p;, = ((k - l)(Lj, - l))l/k E (0, 1) and solve 
for p to obtain 

p = ky,‘( yk + k - 1). (2.7) 
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Assume that y is a continuous function of the real k (instead of an integer one), differentiate 
(2.7) w.r.t. k to take 

$(I -yk)(l - k)y’ =yk(ln yk + 1) - 1 = (Y. (2.8) 

By setting yk=/3~(0, 1) we have y= a/P= 1 + In /3-l//? and a~,@=(1 +p)/p2 > 0. 
Hence y increases with p and since y = 0 at /3 = 1, y is always negative. So is cx = By and from 
(2.8) y’ > 0, meaning that y increases with k. This proves our assertion. q 

Theorem 4 states also that if for some values of k it so happens that its assumptions are 
satisfied, then among all optimum schemes (1.7) the one which corresponds to the smallest k is 
the best. As an application consider the case where k = q > 2 is the smallest integer for which the 
assumptions of Corollary 3 are satisfied. As is obvious the same assumptions will be satisfied for 
k = 2q, 3q, 4q,. . . . However, according to Theorem 4 the best of all optimum schemes (1.7), 

corresponding to k = q, 2q, 3q,. . . , will be the one for k = q. 

Remark If for Tck’ = T the assumptions of Theorem 4 are satisfied for some k 2 2 or if there is 
no k > 1 satisfying them and the convex hull H(T) # 1 is k nown, then it is worth determining 

the optimum monoparametric l- and 2-step schemes (1.7). The first one is determined by the 
algorithm in [13,14] or [lo], while the second one is determined by the algorithm of Young and 
Eidson [23] (see also [22, pp. 194-2001) as this was proved in [3]. If and only if an optimum 
k-step scheme (1.7) (k > 2) exists (for the smallest possible value of k) and is superior to the two 
aforementioned ones, then it must be used in practice with no reservation. 

3. Equivalence of the method (1.7) and a 

Consider a splitting (1.2) for k = 1 so 

x=Tx+c, 

specific SOR method 

that (1.1) is rewritten as 

(3.1) 

with T = B, = AilA, and C = &lb. T in (3.1) is the generalized Jacobi matrix associated with 
the splitting A = A, - A, (see [5]). The analysis that follows is based on the extension of an idea 
in Varga [21, pp. 141-1431. For this we choose a k( 2 2) and form the linear system of kn 
equations with kn unknowns 

Z-= %+21, (3.2) 

where 

(3.3a) 

is of block order k and 

Z= [XTXT . . . x TT ] ) c"=[cTcT . . . c 
TT 
] , (3.3b) 
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with 2, c” E 61kn. As is obvious ,? will be a unique solution of (3.2) iff det( r” - ?) f 0, where f is 
of order kn unit matrix, or iff 1 $ a( ?). Since 

implies G( ?) = (J( Tk), the restriction 1 $ a( ?) is equivalent to 1 g a(Tk). Thus we have 

proved. 

Theorem 5. Let A, be the eigenvalues of T satisfying for a given k, A”/ # 1, j = l(l)n. Then (3.2) 
possesses a unique solution j;; given in (3.3b), with k the unique solution of (3.1). 

Assume that fat a given k 2 2 and a given p E (0, l), the spectrum of T in (3.1) satisfies 
a(T) c R, with R, being defined in Theorem 2. Then consider the block SOR method 
associated with (3.2), namely 

(~-wL)~~‘+‘~=[(1-o)~+wu]~~‘~+os, l-0,1,2,... 

where -L and - U are the strictly lower and upper triangular parts of I” - ? and 

$0 = 
I Xl 

(/)T x$OT . . . ,y,T T ] , xJ”Ec”, j=l(l)k, 

for any o E (1, 2) for which (3.4) converges. In view of (3.5) (3.4) gives 

(3.4) 

(3.5) 

Xl (‘+‘) = wTx~) f (1 - L~)x;‘) + WC 

x2 (‘+‘)=wTxI(‘+‘)+ (1 - w)x:“+ WC, I=O, 1, 2, . . . . 
(3.6) 

xc.‘+‘) = wTxr+;’ + (1 - w)x;” + WC x 

By our assumption (3.4) converges and therefore it converges to the unique solution ,Y of (3.2). 
Hence, by Theorem 5, all the sequences {XI’)}, I = 0, 1, 2, . . . , j = l(l)k, from (3.6) will 
converge to the unique solution x of (3.1). So if we put x(‘~+~-~) = x:‘) and m = fk + j - 1, 
j= l(l)k, I=O, 1, 2 ,..., relations (3.6) can be rewritten as 

~(~)=oTx(~-‘)+(l --w)x(“~~)+uc, m=k, k-tl,..., 

which is nothing but the monoparametric k-step iterative scheme (1.7). Therefore one application 
of the method (3.4) will be equivalent to k applications of the method (1.7). But for the latter 
method, Lemma 1, Theorem 2 and Corollary 3 hold. So they will for the SOR method (3.4). The 
only difference will be that the (optimum) a.c.f. of the SOR method (3.4) will be the k th power 
of the (optimum) a.c.f. of the method (1.7) or the (optimum) a.c.f. of (1.7) will be the k th root of 
the (optimum) a.c.f. of (3.4). Hence p( 5$) = l/?jk = (k - l)( ijk - 1). 

Assume now that together with the system (1.1) we also consider the system 

x’ = TX’ + c’, (3.7) 
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with T’ E C n’-n’, x’, c’ E C”’ and where T’ is a weakly cyclic matrix of index k( >, 2), the ,. n 
spectrum a( T’) of which, for a given p E (0, 1) and for C, and R, of Theorem 2, satisfies 
a(T) \ (0) c a( T’) c ii,, u( Tk) \ { 0) = a( T”) \ { 0) and at least one of the common elements 
of u(T) and a( T’) lies on ek. It is obvious that the (optimum) convergence results of the block 
SOR method associated with (3.7) will coincide with those of the block SOR method (3.4) 
associated with (3.1) and in turn with those of the method (1.7). Thus one can have the optimum 
result of [20] via another root. More specifically. 

Theorem 6. Let that T in (3.1) is a weakly cyclic matrix of index k (>, 2) and that, for a given 
p E (0, l), u(T) c R,. Then Theorem 2 and Corollary 3 hold with p(s&,) < (k - l)(;, - 1) and 
equality holds iff at least one element of u(T) lies on C,. 

Based on Theorem 6 the following theorem can be proved. 

Theorem 7. Let that { Ack’} = {I- Tck’} k = 2, 3, 4, . . . is a sequence of consistently ordered 
k-cyclic matrices with unit diagonal submatrices. Let also that for the sequence { Tck)}, k = 2, 3, 4, 
. . . of the associated block Jacobi matrices and for all k and a given p E (0, l), a( Tck’) c kk and at 
least one element (k elements since A (k) is k-cyclic) of a( Tck’) lies on Ck. Then the sequence of the 
spectral radii of the associated SOR method { p(P&,)}, k = 2, 3, 4, . . . is a strictly decreasing one. 

Proof. From (2.2), by putting y = y( k) = p( .&Q = (k - I)( 5, - 1) E (0, 1) we obtain 

p = ky”k/( y + k - 1). 

From (3.Q if we work in the same way as in Theorem 4, we take 

$(l-y)(l-k)y’=y-l+v (Y + I> In y-ln y>y-l- 2 In y=a 

The sign of (Y is that of p, where 

p = 2a/( y + 1) = 2( y - l)/( y + 1) - In y. 

(3.8) 

(3.9) 

(3.10) 

From (3.10) we have @3/ay = -(y - 1)2/( y( y + 1)2) < 0, so p decreases continuously with y, 
and for y + O+, /? --j + co, while for y + 1 -, j3 + O+. Therefore p > 0 for any y E (0, 1). So, 
from (3.10), (Y L= 0 and from (3.9), y’ < 0, implying that y strictly decreases with k. 0 

Remark 1. In [20], Theorem 6 and Corollary 4 (a special case of which are Theorem 4.4 and its 
corollary in [21, pp. 112-1131) and the discussion which follows are of great value since they 
essentially give the behavior of the optimum asymptotic rate of convergence, R( Z&,) = 
-In p(PQ, for the same p E (0, l), as k( >, 2) + + 00. However, these very useful results were 
obtained under the assumption that p + l-. What makes Theorem 7 be quite different from the 
results in [20] is that it holds for any p E (0, 1). 

Remark 2. From Theorem 7 the optimum relaxation factor G, strictly decreases with k( >, 2) and 
is such that cj, E (1, min{ Li,_,, k/( k - l)}), k = 3, 4, 5, . . . . (The same results hold for the ijk’s 
of Theorem 4.) In addition lim k _ooijk = 1 so that the limiting optimum SOR method is the 
Gauss-Seidel one. (The limiting optimum method (1.7) is the Jacobi method.) 
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4. k/2-step block iterative methods 

Let us return to the solution of system (3.2), where (3.1) and (3.3) hold and assume that there 
exist k 2 3 and p E (0, 1) such that a(T) c kk with at least one element of a(r) on ek ( ek and 
ek are those of Theorem 2). Assume also that k is an even integer and consider the matrix 
A = r” - ? of (3.2) as a consistently ordered k/2-cyclic one with diagonal matrix bL which is the 
direct sum of the 2 x 2 block element [LT y]. The block Jacobi matrix is given by T = f - bp ‘2 
and simple calculations show that 

Fk/2 = 

0 Tk-’ 0 0 . . . 0 0 

0 T” 0 0 . . . 0 0 

0 0 0 TK-’ . . . 0 0 

0 0 OT” . . . 00 
. . . . . . . . . . . . 

0 0 00 . . . 0 Tk-’ 

0 0 00 . ..OTk 

(4.1) 

so ?k/2 has as eigenvalues the numbers Xr (A,, j = l(l)n are the eigenvalues of T) -with 
multiplicity k/2 each and the number zero with multiplicity (k/2)n. For the matrix A we 
consider the splitting A” = 5 - i - 0, where -i and - e are the corresponding block strictly 
lower and strictly upper triangular parts of it. Then the associated SOR method will be 

(I,-w~)~(‘+‘)=[(l-w)~+,~]~-(‘)+o~, I=O,l,2, . . . (4.2) 

If from (4.2) we compute the block vector components xj’+‘), j = l(l)k of Z(‘+‘) we have an 
algorithm analogous to (3.6). Since Theorem 5 holds, we follow the same reasoning as in the 
corresponding part of the analysis of Section 3 and we end up with the two-sweep scheme below 

,ycm) = uTxcm-‘) + (1 - c,+x(~-~) + WC, 

X(mf’) = wTx(m) + (1 _ +(m-k+U + (1 _ ‘,_,)7+‘“’ _ _+-k)) + wc, 

m=k, k+2, . . . 

(4.3a) 

(4.3b) 

(4.3a) is exactly the same as the k-step scheme (1.7) while (4.3b) corresponds to a (k + I)-step 
scheme. In view of (4.3a), (4.3b) can be written as 

xcrn+l) = WT2X(m-‘) + (1 - ~)x(“-~+l) + w( I+ T)c, 

which, if it is combined with (4.3a), gives 

m=k, k+2,.... (4.4) 

However, (4.4) is a k/2-step block iterative method and has the form (1.7) with iteration matrix 
T’ z [; F2] and its (optimum) convergence results are known from the theory of Section 2. So 
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are those of the two-sweep scheme (4.3) and of the SOR method (4.2) having in mind that k/2 
applications of either (4.4) or (4.3) are equivalent to one of (4.2). Let that for given k > 4 even 
and p’ = p2 E (0, l), C;,2 and i?;,* are defined by Lemma 1 and Theorem 2 for (4.4). Since 
a(Y) \ (0) = a(T2) \ {0}, for (optimum) convergence we must have o(T2) c ii, with ek and 
kk corresponding to the same k > 4 and p E (0, l), and ii defining the region consisting of the 
images of the squares of the points of ii,. Since it can be proved that ii;,, c ki and that e;,, 
and ei (the boundary of i’,) share only the points p2e4n”‘/k, j’ = O(l)k/2 - 1 in order to be 
able to compare (4.4) (or (4.3)) with (4.2) instead of u(r) c kk, we must assume that the 
stronger condition a( T2) c 8;,2 holds. This is not unrealistic because such cases arise in 
practice as for example in the case of Corollary 3. Under the assumption a( T2) c kk,2 the 
equation corresponding to (2.2) and giving GL = &k,2 E (1, k/( k - 2)) will be 

(~‘p’)~” = (k/2)k’2(k/2 - 1)1-k’2(~’ - 1). (4.5) 

Also the average optimum a.c.f. for the sequence {xc”‘)}, m = k, k + 1, k + 2,. . . in (4.4) (or 
(4.3)) will be p;; = l/?& = ((k/2 - l)( ;;- - l))“k, while that of the block SOR method (4.2) will 
be p( A!&) = (k/2 - l)( &k - 1). For these to hold at least one element of u(T’) must lie on cL,2. 

As in Section 3 the present optimum results for (4.2) will also hold for a block SOR method 
associated with the solution of a system x’ = T’x’ + c’, with Jacobi matrix T’ weakly cyclic of 
index k/2 for which u(T2) C ii,,. Thus a theorem, call it Theorem 8, which is not given here, 
can be stated. 

Remark. If k( 2 3) is an odd integer, then we construct a (k + 1)/2-step block iterative method 
(for convenience we will call it again k/2-step method), with the only difference being that the 
last block of 5 will be the unit matrix I. This time ? (k+1)/2 looks like (4.1) except that its last 
block is simply Tk instead of being [i ;:-‘I. A similar but more complicated analysis leads to the 
same conclusions, except that p’ = p 2k/(k+1) E (0, 1) and in order to have (optimum) convergence 
there must hold a( T2) c ?jik+‘)/k. We note that although k’ik+‘)‘k shares with ki the point p2 

it does not satisfy the restriction i?rik+‘)‘k c ii. It is pointed 
simple iterations the two-sweep scheme (4.3) is applied (k - 1)/2 
block iteration only (4.3a) is applied. 

out that for every cycle of k 
times, while in the (k + 1)/2st 

Having reached the above conclusions we can state and prove the following two theorems. 

Theorem 9. Let k( 2 4) be an even integer. If from the k-step iterative scheme (1.7) for the solution 
of the system (3.1) we construct the k/2-step block iterative scheme (4.4) (or (4.3)) and it so 

happens that for a given p E (0, l), u(T2) C ii;,,, 

(G/23 %,2 

with at least the element of u(T2) on c?L,, 
are defined from Theorem 2 for p2 and k/2 in the places of p and k), then the average 

optimum a.c. f ., p;;, of (4.3) is less than the optimum a.c. f., pirA, of (1.7). 

Proof. From (2.2) and (4.5) we have that 

(a) p2 z k2 
t and (b) p2 = 

k 2 

(p$ + k - 11’ ‘,’ 2p$;+k-2P”’ 
(4.6) 
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In order to determine which of p;, and p;; is the largest of the two we work the other way round. 

We assume that p;, = p,, =y E (0, 1) and examine which of p and p’ of the left-hand sides of 
(4.6a) and (4.6b) is the largest. For this we form the function 

f(y) = p2/p’2 = k(2yk + k - 2)/(y” + k - 1)2. 

Then, f’(v) = 2k2yk-‘(1 - vk)/( yk + k - 1)3 > 0 for every y E (0, 1). Consequently f( JJ) strictly 
increases in (0, 1) and because f’(1) = 0 there exists a local maximum at y = 1, f(1) = 
k(2 + k - 2)/(1 + k - 1)2 = 1. Therefore f(u) = p’/p’ < 1 in (0, 1) implying that p < p’. From 
this conclusion and the fact that the functions p;, and p+ turning back to our original notation 
in (4.6), are strictly increasing ones w.r.t. p (as is easily checked) the theorem is proved. 0 

In case k( >, 3) is odd the equation corresponding to (4.5) giving G;, = ij;k+,j,2 E (1, (k + l)/ 
(k - 1)) is 

( UP 
, 2k,(k+l))(k+1)/2 = ( k; 1 i’*+‘)“i k; 1 l]l-(*+‘)‘2(w’ _ 1). 

(4.7) 

A theorem completely analogous to Theorem 9, where the obvious assumptions are omitted, can 
be stated and proved. 

Theorem 10. Let k( > 3) be an odd integer. If from the k-step iterative scheme (1.7) for the solution 
of the system (3.1) we construct the (k + 1)/2-step block iterative scheme (4.3) then the average 
optimum a.c. f ., phi, of (4.3) is less than the optimum a.c.f., p+ of (1.7). 

Proof. This time from (2.2) and (4.7) we have 

k2k/(k+U 

P 
2k/(k+l) = 2k/(k+l) 

cp;, + k _ lj2k/(k+l) ‘4 ’ 

P 
Zk/(k+l) = (k + 1) 2k/(k+l) 

(2p;;+k-l)p’i ’ 

(4.8a) 

(4.8b) 

The proof goes on as in Theorem 9 and the conclusion follows. •I 

The following Lemmas 11 and 12, which can be proved in the same way as Theorem 9, help in 
the statement of Theorem 13, which gives the behavior of the optimum a.c.f. for a k/2-step 
block iterative scheme (4.3) as k( z 3) -+ + 00. It is assumed that a(T) passes all the criteria for 
which an optimum k/2-step block scheme for a given p E (0, 1) (and a given k) exists. For 
example for k = 5 we must have a( T3) c A;, with R; being defined in Theorem 2, where instead 
of (2.2), (4.7) with k = 5 is used. 

Lemma 11. For k( > 3) even, the optimum a.c. f. of the k/2-step block iterative scheme, obtained 
from the (k - l)-step iterative scheme (1.7), is less than the optimum a.c. f. of the k/2-step block 
iterative scheme, which is obtained from the k-step iterative scheme (1.7). (Note: A similar 
statement holds if k is odd). 
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Lemma 12. For k ( > 3) even, the optimum a.c. f. of k/2-step block iterative scheme, obtained from 
the k-step iterative scheme (1.7), is less than the optimum a.c. f. of (k/2 + 1)-step block iterative 
scheme obtained from the (k + l)-step iterative scheme (1.7).( Note: A similar statement hold if k 
is odd.) 

A theorem, call it Theorem 13, quite analogous to Theorem 4, suitably adjusted to the present 
k/2-step block iterative schemes, which is not to be given, can be stated and proved. The 
conclusion is the same, namely that the optimum a.c.f.‘s for a given p E (0, 1) strictly increase 
with k. So the best out of all possible optimum schemes is the one corresponding to the smallest 
k. 

5. Applications and numerical examples 

(a) First we give two simple applications of the remark made at the end of Section 2. 
(i) Let a(T) c [-p, 0] with p E (0, 1) and -p, 0 E a(T). It is readily checked by Corollary 3 

that for k = 2, 4, 6, . . . the optimum k-step methods (1.7) can be used and the best out of all 
them is, by virtue of Theorem 4, the one for which k = 2. This gives p;, = p/(1 + (1 - P~)‘/~)_ On 
the other hand, for k = 1, the optimum extrapolated Jacobi method gives (see [15]) &, = 2/(2 + p) 

and P;, = p/(2 + p). It is readily checked that p;, < p+ so that the best optimum scheme (1.7) is 
obtained for k = 1. 

(ii) Let a(T) c R, where R is the rectangle with vertices -to.6 -t 1.2i, and *,0.6 + 1.2i E a(T). 
It is obvious that the theory of Section 2 cannot be applied since all regions R, for k = 2, 3, 4, 
. . . and any p E (0, 1) will not contain the vertices of R which are elements of u(T). It is also 
obvious that for k = 1, because of the symmetry of R w.r.t. the origin, the optimum scheme (see 
[8]) corresponds to Gi, = 1, which gives a divergent scheme. However, following [3], by applying 

Table 1 (k=3) 

,. 
P a3 ;; P;, P;; 

0.680711 1.05485 1.09445 0.478697 0.455416 

0.790230 1.09634 1.16842 0.577572 0.552247 

0.897083 1.17232 1.30948 0.701111 0.676414 
0.977898 1.31511 1.59406 0.857363 0.840639 
0.998978 1.45402 1.89512 0.968356 0.963741 

Table 2 (k = 4) 

0.680711 1.02500 1.06035 0.523294 0.495647 

0.790230 1.05000 1.12293 0.622300 0.592127 

0.897083 1.10000 1.25502 0.740100 0.710628 

0.977898 1.20000 1.54746 0.880100 0.860179 

0.998978 1..30000 1.87990 0.974000 0.968518 
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Table 3 (k = 5) 

0.680711 1.01276 1.02319 0.551515 0.541107 

0.790230 1.02914 1.05336 0.650608 0.639211 

0.897083 1.06530 1.12137 0.764530 0.753402 

0.977898 1.14278 1.27386 0.894019 0.886568 

0.998978 1.22298 1.44136 0.977385 0.975361 

the algorithm by Young and Eidson we can find an optimum scheme for k = 2, with cj, = 0.59589 
and pGz = 0.8813 (see [22, Table 4.1, pr. 198-1991). 

(b) Finally we give some numerical examples to compare the k-step and the k/2-step block 
iterative methods for k = 3, 4 and 5. The basic numerical example, corresponding to k = 4 and a 
4-step method, was taken from [19]. Tables 1, 2 and 3 give a comparison of the k-step and 
k/2-step block methods as regards their optimum a.c.f.‘s for a given p E (0, 1). It is assumed that 
o(T) satisfies the requirement for the corresponding optimum method to exist. From the Tables 
1, 2 and 3 it is seen that the k/2-step block methods converge faster than the corresponding 
k-step ones. Thus, it is shown by numerical examples that the former methods are better than the 
latter ones. It is also noted that for the same p as k decreases the corresponding method becomes 
better, something which was expected from the theory developed in this paper. 
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