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SUMMARY

Large 2-level Toeplitz systems arise in many applications and thus an e�cient strategy for their so-
lution is often needed. The already known methods require the explicit knowledge of the generating
function f of the considered system Tnm(f)x= b, an assumption that usually is not ful�lled in real
applications. In this paper, we extend to the 2-level case a technique proposed in the literature in such
a way that, from the knowledge of the coe�cients of Tnm(f), we determine optimal preconditioning
strategies for the solution of our systems. More precisely, we propose and analyse an algorithm for
the economical computation of minimal features of f that allow us to select optimal preconditioners.
Finally, we perform various numerical experiments which fully con�rm the e�ectiveness of the proposed
idea. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We introduce and discuss a new algorithm for the preconditioning of the two-level Toeplitz
system of the form Tnm(f)x= b where n;m are large, the symbol f is assumed to be
real-valued and continuous, (Tnm(f))(j; k)(p; q) = tk−j; q−p with tr; s being the Fourier coe�cients
of f, i.e. tr; s=(1=4�2)

∫ �
−�
∫ �

−� f(x; y)e
−i(rx+sy) dx dy, i2 =−1. Here the 2-index notation

(Tnm(f))(j; k)(p; q) indicates that we are selecting the block (j; k) of size m with j; k ∈ {1; : : : ; n}
and, in that block, we are selecting the entry (p; q), p; q ∈ {1; : : : ; m}. Such a kind of matrices
(often also called block Toeplitz with Toeplitz blocks) arise in several applications (see e.g.
Reference [1]) such as Markov chains, integral equations, in the solution of certain partial
di�erential equations (PDEs), image restoration, etc. In some contexts the generating function
f is explicitly given or can be easily obtained, but in many others, like image processing,
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Markov chains, tomography, etc. the analytic expression of the symbol is not available and,
as a consequence, we do not know crucial properties such as the presence of zeros, their
localization, their multiplicities, etc. We recall that the considered information is essential
to understand the spectral properties (extreme eigenvalues, ill-conditioning, ill-posedness)
of the matrices and therefore to select the most suitable preconditioning methods (see
References [2, 3]). The unilevel case has been treated in Reference [4] using band Toeplitz
preconditioners and in Reference [5], using circulant-like preconditioners constructed by pos-
itive reproducing kernels. Unfortunately, the use of circulant preconditioners, as well as those
belonging to more general matrix algebras, cannot be extended to the 2-level setting by pre-
serving neither the superlinear nor the optimal behaviour (see References [6–8] for negative
results regarding the notion of superlinearity and References [9, 10] for negative results re-
garding the notion of optimality). In addition, it is well known (see e.g. Reference [11]) that
the spectral properties of the Toeplitz matrices are described very precisely by the symbol.
For instance, if zero belongs to the range of f then the sequence {Tnm(f)}n;m is asympto-
tically ill-conditioned: more precisely, the problem will be ill-posed in a discrete sense if f
has non-de�nite sign while we have invertibility but asymptotical ill-conditioning if f is non-
negative (or equivalently non-positive). In the latter we need preconditioning and an optimal
technique consists in using Tnm(g) as preconditioner where g is a polynomial and has the
same zeros as f with the same orders. The system related to Tnm(g) is banded and can be
solved by multigrid methods [12]; moreover the preconditioning sequence is optimal so that
only a �xed number of preconditioned conjugate gradient (PCG) iterations (independent of n
and of m) has to be performed in order to reach the solution within a preassigned accuracy.
In conclusion we need algorithms for determining these analytical information on the zeros
of f: in Reference [4], Serra Capizzano has studied the unilevel case for generating functions
only known through the matrix coe�cients (i.e. the Fourier coe�cients of f). He proposed
two kinds of approximations of f by Fourier expansion and by Rayleigh quotient. Here,
following a similar approach, we study the 2-level problem by approximating the unknown
generating function f from the coe�cients of the matrix. We extend the same techniques for
the approximation of f into the two-dimensional setting. The main idea is to approximate f
over the grid

Snm=
{(

−�+ 2k�
n
;−�+ 2j�

m

)
; k=1; 2; : : : ; n; j=1; 2; : : : ; m

}
(1)

on the square (−�; �]2, then to look for the roots of f, to estimate their multiplicities, to
characterize the problem (well-conditioned, ill-conditioned, ill-posed), and �nally to choose
the appropriate method. Since the zeros cannot be computed exactly in general we also need to
check the robustness of the preconditioning technique with regard to numerical=approximation
errors in the computation of the position of the zeros.
The paper is organized as follows. In Section 2 the basic theory is brie�y sketched and in

Section 3 the proposed approach is analysed and some numerical results are given.

2. BASIC THEORY

First we report the basic property for an approximation theory based construction of an e�cient
2-level band Toeplitz preconditioner. Indeed, as the numerical examples show, Proposition 1
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is based on a strong numerical evidence and could be easily proved, as in the unilevel setting
(see References [4, 13]), by making use of Theorem 3.1 and of the results of Section 2.3 in
Reference [13] (for a detailed proof we refer to Reference [14]).

Proposition 1 (Noutsos et al. [14])
Let f(x; y) be a non-negative 2-variate, 2�-periodic continuous function which is equivalent
to the trigonometric polynomial g(x; y) in the sense that f=g is bounded away from zero
and from in�nity. Suppose that (x0; y0) is a root of even multiplicity of g or suppose that
g de�nes a curve of roots of even multiplicity C(x; y)=0 in the domain (−�; �]2. Let also
(x̃0; ỹ0) be an approximation of (x0; y0) with �=(�1; �2)

T = (x̃0; ỹ0)
T − (x0; y0)T or C̃(x; y)=0

be an approximation of C(x; y)=0 with �(x; y)= C̃(x; y)−C(x; y). Then, under the restriction
‖�‖∞6cmin{1=n; 1=m} or ‖�(x; y)‖∞6cmin{1=n; 1=m}, c being a positive constant indepen-
dent of n and m, the spectrum of the preconditioned matrix T−1

nm (g̃)Tnm(f) is contained in a
strictly positive, bounded interval independent of n and m. Here g̃(x; y) is the trigonometric
polynomial which approximates g(x; y) and having as roots the point (x̃0; ỹ0) or the curve
C̃(x; y)=0 with the same multiplicity. Under these assumptions the 2-level band Toeplitz
matrix Tnm(g̃) can be used as preconditioner for the 2-level Toeplitz system Tnm(f)x= b and
the convergence will be optimal (i.e. with a linear rate of convergence independent of both
n and m).

We remark here that the above property holds also in the case where the polynomial g has
more than one point or curve or combination of points and curves of roots. We will use the
following theorem concerning the approximation of a 2-variate function by Rayleigh quotient.

Theorem 1 (Noutsos et al. [14])
Let f be a 2�-periodic continuously di�erentiable 2-variate function with bounded
second derivative. We consider �x=eix; �y=eiy and the associated unitary vectors �Tx =
1=

√
n(1 �x �2x · · · �n−1x ), �Ty =1=

√
m(1 �y �2y · · · �m−1

y ). Let �xy=�x ⊗ �y be the
tensor product of the above vectors. Then

rnm[f](x; y)=
�HxyTnm(f)�xy
�Hxy�xy

=f(x; y) + O

(
max

{
1
n
;
1
m

})
(2)

Regarding the Fourier expansion Fn−1; m−1(f) of f of degree n− 1 and m− 1, we observe
that the latter approximation is much faster when f is very smooth (due to its Lebesgue
constant of order log(n) + log(m)), but may fail to converge when f is only continuous. On
the other hand, thanks to the Korovkin theory, the Rayleigh quotient approximation always
converges when f is continuous and preserves the sign of f, but its order of approximation
is not sensitive to the regularity of f. We point out that these two types of approximation
will be the main theoretical tools for the construction of our banded preconditioners.

3. THE PROPOSED METHOD—NUMERICAL EXAMPLES

In this section, we propose and describe the procedure in which, starting from the sole knowl-
edge of the entries of Tnm(f), we approximate the generating function f and consequently
we determine the appropriate preconditioner. We present also various numerical experiments
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Table I. Number of outliers for T−1
nm (g̃)Tnm(f), range (f=g)= [1; 20:73921].

� n=m out �n= �m �min �max � out �n= �m �min �max

4 0 0:2¡1 1.3834 16.4384 0 0:04¡1 1.6741 15.7964
8 0 0:4¡1 1.2598 18.8287 0 0:08¡1 1.2130 17.8996

0.05 16 0 0:8¡1 1.1134 20.2060 0.01 0 0:16¡1 1.0321 19.2999
32 9 1:6¿1 1.0690 27.4340 0 0:32¡1 1.0181 19.9149
64 61 3:2¿1 0.5231 60.1832 0 0:64¡1 1.0077 20.5311

to test the e�ectiveness of the proposed method. The testing functions have been chosen in
such a way to cover a wide class of generating functions. First, we consider a numerical
example which underlies the main idea described in Proposition 1: a good approximation of
the ‘exact’ trigonometric polynomial g(x; y) leads to a controlled number of spectral outliers
laying outside the main clustering mass described by the range of f=g.
Numerical example 1: We consider the Toeplitz matrix Tnm(f) produced by the gen-

erating function f(x; y)= (1 + x2 + y2)((2 cos(x) − sin(x + 2y))2. It is obvious that the
trigonometric polynomial g(x; y)= (2 cos(x) − sin(x + 2y))2 has an in�nite number of roots
which form a curve of roots. For the solution of the system Tnm(f)x= b by a PCG iter-
ation we use as preconditioner the 2-level band Toeplitz matrix Tnm(g̃) instead of Tnm(g),
where g̃(x; y)= (2 cos(x− �)− sin(x+2y+ �))2 is an approximation of g(x; y). In Table I we
show the strict relation existing between the approximation error and the number of outlying
eigenvalues. It is observed that, only when n�=m� exceeds 1, there exist eigenvalues of the
preconditioned matrix that lie outside the range of f=g. We give the outline of our procedure
in the following 4 steps and then we describe each of them:

• Step 1: Approximate the function f from the coe�cients of the matrix.
• Step 2: Search for the possible roots of f.
• Step 3: Estimate the multiplicities of each root.
• Step 4: Categorize the roots and choose the appropriate preconditioner.

Indeed we have to admit that there are still a lot of details to be taken into account in order
to produce a real algorithm; in this sense Steps 1–4 can be regarded as a collection of ideas
that eventually have the potential to lead to a real black-box procedure for the analysis, the
detection and the e�ective preconditioning of ill-conditioned two-level Toeplitz systems.
Step 1: First of all, from the coe�cients of the matrix Tnm(f), we approximate the function

f over the grid Snm ⊂ (−�; �]2 de�ned in (1). By taking into account of Theorem 1 and of
the subsequent remark, we restrict our attention to two possible approximations of the func-
tion f, namely by Fourier expansion or by Rayleigh quotient (2). There are advantages and
disadvantages of the above approximations. The approximation by Rayleigh quotient leads
to a smoother shape (less oscillations) of the function with respect to (w.r.t.) the Fourier
approximation. Moreover, whenever Tnm(f) is positive de�nite, the Rayleigh quotient approx-
imation is uniformly positive while the Fourier approximation could lead to negative values
in some points (especially if Tnm(f) is ill-conditioned and positive de�nite as in the case of
a non-negative symbol). On the other hand, the Fourier approximation is much faster when
f is smooth. The computational cost for both the approximation methods is O(nm(log n +
logm)) since both the quantities can be evaluated through a constant number of fast Fourier
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transforms (FFTs). In practice, we use the Fourier approximation for all points of the grid
and then we check by Rayleigh quotient only the points in which the �rst approximation
gave absolutely small negative values. If the algorithm estimates that the function changes
sign, then we assume that the problem is ill-posed in a discrete sense (the matrix Tnm(f) is
non-de�nite and potentially singular). In the last case, it could be necessary to use some kind
of regularization and the above procedure stops here. Otherwise we proceed to Step 2.
Step 2: First of all we must search for the local minima. Since the approximated function

f does not change sign, we assume that f is a non-negative function. The possible roots
would be points from the set of the local minima. The searching is done along the directions
of x and y comparing the approximated values of the successive points. If the approximated
value in a local minimum is of order O(max{1=n; 1=m}), then it is possible that f has a root
in that point. To check it, we must also take the grid S2n2m and compute only the value of
the corresponding (new grid) point.
Step 3: For the estimation of the multiplicities of the roots we work in grids with small

values of n and m (much smaller than the dimensions of the system in such a way that the
computation cost of one PCG iteration dominates). Our approach is based on the following
reasoning: let (x0; y0) be the zero of f with multiplicity 2k1 w.r.t. x and 2k2 w.r.t. y. For the
sake of simplicity and without loss of generality, we assume that (x0; y0)= (0; 0) and f(x; y)
positive elsewhere. Then the function f can be written as

f(x; y)= h(x; y)((2− 2 cos(x))k1 + (2− 2 cos(y))k2) (3)

where h(x; y) is a continuously di�erentiable and strictly positive function. Therefore f is
equivalent to the function (2− 2 cos(x))k1 + (2− 2 cos(y))k2 . Since the smallest eigenvalue of
Tnm(f) collapses to zero as n and m tends to in�nity with a convergence speed depending on
the order of its unique zero (see Reference [11]), it follows that it can be written in the form

�nm=
c1
n2k1

+
c2
m2k2

+ o
(
1
n2k1

+
1
m2k2

)
(4)

where c1 and c2 are positive constants. We suppose now that m has been chosen so large
(w.r.t. n) that the dominating term is 1=n2k1 . Now we take the ratio

snm=
�n=4; m − �n=2; m
�n=2; m − �nm =

c1

(
1

( n4 )
2k1

− 1
( n2 )

2k1

)
+ o
(
1
n2k1

)

c1

(
1

( n2 )
2k1

− 1
n2k1

)
+ o
(
1
n2k1

) =22k1 + o(1) (5)

Therefore, the ratio snm is an approximation of 22k1 and consequently log2(snm) can be con-
sidered a good guess for the multiplicity 2k1 of the considered root (w.r.t. x). The previous
analysis has been done by considering the exact values of the eigenvalues which are unknown.
To follow our procedure, we have to approximate these eigenvalues. From the previous step
we have in hand the approximation of the root (x̃0; ỹ0) and the value f(x̃0; ỹ0) which is an
approximation of �nm. The related approximation error is of order O(max{1=n; 1=m}) which
is not convenient for the estimation of the multiplicity. To improve the approximation, we
use the inverse power method. Recalling Theorem 4.1 of Reference [4], we observe that it
can be easily extended in the 2-level setting. In other words, the vector �x̃0ỹ0 , de�ned in
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Table II. Positions and multiplicities of the zeros: f(x; y)= (x2 + y2)((x − 1)2 + (y − 2)2).

Grid (x̃; ỹ) �̃n; m log2(s̃nm) (x̃; ỹ) �̃n; m log2(s̃nm)

(8,32) (0.349,0.286) 0.777 (1.047,1.999) 0.735
(16,32) (0.185,0.286) 0.227 (0.924,1.999) 0.227
(32,32) (0.095,0.095) 0.092 2.03 (1.047,1.999) 0.093 1.92

(32,8) (0.095,0.349) 0.622 (1.047,1.745) 0.645
(32,16) (0.095,0.185) 0.215 (1.047,2.033) 0.219
(32,32) (0.095,0.095) 0.092 1.73 (1.047,1.999) 0.093 1.76

Table III. Iterations of PCG method: f(x; y)= (x2 + y2)((x − 1)2 + (y − 2)2).
(n; m) (16,16) (16,32) (32,16) (16,64) (64,16) (32,32) (32,64) (64,32)
Inm 166 237 216 308 311 325 467 479
Tnm(g̃) 34 50 40 49 45 44 51 49
Tnm(g) 27 30 30 33 32 34 37 36

Theorem 1, is a good approximation of the eigenvector corresponding to �nm. Using this ini-
tial vector, we start the inverse power method and only a few iterations are required to get a
good approximation �̃nm of �nm. Finally, the approximation of the multiplicity is given by

2k1 ≈ log2(s̃nm)= log2
(
�̃n=4; m − �̃n=2; m
�̃n=2; m − �̃nm

)
(6)

Obviously, the multiplicity 2k2 (w.r.t. y) is approximated by following an analogous approach.
Of course, if the function has a structure di�erent from (3), then the reasoning is more
complicated: however the information obtained in Step 2 is the key point for adapting the
techniques to be used in Step 3. We perform two further numerical tests in order to show the
e�ectiveness of our algorithm.
Numerical example 2: We consider the Toeplitz matrix Tnm(f) generated by the symbol

f(x; y)= (x2 + y2)((x − 1)2 + (y − 2)2). It is obvious that the points (0; 0) and (1; 2) are
roots of f with multiplicities 2 according to both variables. We applied the proposed method
to the matrix Tnm(f). Table II contains two parts: the �rst one refers to the root (0; 0) and the
second to (1; 2). In the �rst column we give the dimension of the testing grid while in the
second one the positions where the zeros of f have been estimated by the algorithm. In
the third column, we give the approximated eigenvalues after 5 iterations of inverse power
method. Finally, in the fourth column, the approximated multiplicities according to both axis
are given. As it can be observed, our procedure approximates satisfactorily the multiplicity 2.
We have implemented our approach to solve the Toeplitz system by PCG method and the
numbers of iterations are given in Table III. In the �rst row, we report the dimensions of n
and m while in the second one the required numbers of iterations of the (unpreconditioned)
CG method. In the third row, the iteration count of the PCG method is displayed. The
preconditioner is the matrix Tnm(g̃), where the polynomial g̃(x; y) has been computed by
using the information in Table II. Finally, in the last row we report the number of iterations

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:231–239



A PRECONDITIONING PROPOSAL FOR TWO-LEVEL TOEPLITZ SYSTEMS 237

Table IV. Positions and multiplicities of the zeros: f(x; y)= x2 + y4.

Grid (x̃; ỹ) �̃nm log2(s̃nm) Grid (x̃; ỹ) �̃nm log2(s̃nm)

(8,32) (0.349,0.095) 0.1304 (32,8) (0.095,0.349) 0.0730
(16,32) (0.185,0.095) 0.0362 (32,16) (0.095,0.185) 0.0146
(32,32) (0.095,0.095) 0.0097 1.831 (32,32) (0.095,0.095) 0.0097 3.61
(64,32) (0.048,0.095) 0.0025 1.892 (32,64) (0.095,0.048) 0.0093 3.754

of PCG method, where the preconditioner is the ‘exact one’, i.e. the matrix Tnm(g) with
g(x; y)= (2− 2 cos(x) + 2− 2 cos(y))(2− 2 cos(x− 1) + 2− 2 cos(y− 2)). We used as initial
guess the null vector, as b the vector having all its components equal to 1, and as stopping
criterion ‖rk‖2=‖r0‖2610−5, where rk is the residual vector after k iterations. By comparing
the last two rows, we observe that the preconditioner obtained by our procedure is very
close to the ‘exact’ one. Indeed, it is clearly shown that the number of required iterations is
independent of n, m and thus the corresponding PCG method is optimal.
Numerical example 3: We consider the Toeplitz matrix Tnm(f) generated by f(x; y)=

x2 + y4. In Table IV we have reported the same type of information as in Table II. The
purpose of the choice of the latter function is to test the sensitivity of the proposed method
when a zero has di�erent multiplicity w.r.t. x and y. The results fully con�rm the e�ectiveness
of the algorithm.
Step 4: We �nally focus our attention to the case where f has an in�nite number of roots

which form a curve of roots. If we have found (in Step 2) a sequence z(k); k=1; 2; : : : ;
of roots such that ‖z(k+1) − z(k)‖6�; k=1; 2; : : : ; �=O(max{1=n; 1=m}), then we assume that
these points represent an approximate sampling of a curve of roots. Consequently, we have
to approximate the curve by using a method from approximation theory. The most useful
of such methods are the Chebyshev approximation (L∞), least-squares approximation (L2)
and L1 approximation. Let Cf(x; y)=2l�, (x; y) ∈ (−�; �]2, l an integer, be the approximate
curve (in implicit form) of roots with multiplicity 2k and where Cf(x; y) is a trigonometric
polynomial. Let also (x̃i; ỹi) ∈ (−�; �]2, i=1; 2; : : : ; q, be distinct roots of even multiplicities
2k1i w.r.t. x and 2k2i w.r.t. y, respectively. Then the 2-level Toeplitz matrix Tnm(g̃) generated
by the 2-variate trigonometric polynomial: g̃=(2 − 2 cos(Cf))k

∏q
i=1((2 − 2 cos(x − x̃i))k1i +

(2− 2 cos(y − ỹi))k2i ) can be used as preconditioner.
Numerical example 4: We apply the previous idea to the function f(x; y)= (x−y)2 which

vanishes in the line x − y=0. In Figure 1 we show the exact line (solid line), the one
estimated by our algorithm (approximated roots in the grid Snm; n=m=32) and the line
(dash line) obtained by least-squares approximation. It is clear that the two lines are very
close each other: the result is nontrivial since the function f is not continuous when regarded
as a 2�-periodic function and therefore the information provided by its Fourier coe�cients
(the entries of Tnm(f)) is quite poor.
Computational cost: We �nally observe that the pre-computing computational cost (the one

related to the analysis of the underlying generating function and to the construction of the
preconditioner) is essentially given by few FFTs and therefore is dominated by any matrix
vector product occurring in any single CG or PCG iteration. In fact, Step 1 is performed by
using a bidimensional FFT (O(nm(log(n)+ log(m)) arithmetic operations (�ops)), Step 2 has
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x 

y 

Figure 1. Approximation of a curve of roots f(x; y)= (x − y)2.

a linear cost in nm (and therefore is negligible w.r.t. the FFT cost), Step 3 is in principle
very expensive since it involves the inverse power method, but it is performed on matrices
of size constant w.r.t n and m and Step 4 could cost again O(nm(log(n) + log(m)) �ops.
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