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Abstract. We provide sharp lower Lp-bounds for the localized dyadic maxi-
mal operator on Rn, when the local L1 and the local Lp norm of the function

are given. We actually do that in the more general context of homogeneous

trees in probability spaces. For this we use an effective linearization for such
maximal operators on an adequate set of functions.

1. Introduction

The dyadic maximal operator on Rn is a useful tool in analysis and is defined by

(1.1) M dφ(x) = sup

{
1

|Q|

∫
Q

|φ(u)| du : x ∈ Q, Q ⊆ Rn is a dyadic cube

}
for every φ ∈ L1

loc(Rn) where the dyadic cubes are the cubes formed by the grids
2−NZn for N = 0, 1, 2, ....

It follows easily from the Lebesgue differentiation theorem that M dφ ≥ |φ| al-
most everywhere. Also for any dyadic cubeQ it is trivial thatM dφ ≥ sup

R:Q⊆R
AvR(|φ|)

everywhere on Q where the supremum is taken over all dyadic cubes R containing
Q and AvR(|φ|) = 1

|R|
∫
R
|φ|. Therefore for any p > 1, for any dyadic cube Q and

for any φ ∈ Lploc(Rn) we have

(1.2)
1

|Q|

∫
Q

(Mdφ)p ≥ max

(
1

|Q|

∫
Q

|φ|p , ( sup
R:Q⊆R

AvR(|φ|))p
)

.

The purpose of this paper is to examine whether the above more or less trivial
lower bound for the localized behavior of the maximal function can be improved,
aiming at sharpness. To give a precise estimate of the eft-hand side of (1.2) we
define for any p > 1 the following Bellman function (see [8]):
(1.3)

Bd,p(F, f, L) = inf

{
1

|Q|

∫
Q

(Mdφ)p : AvQ(φp) = F,AvQ(φ) = f, sup
R:Q⊆R

AvR(φ) = L

}
where the infimum taken over all nonnegative measurable functions φ (the definition
of this function uses a fixed cube Q, but in fact due to scaling the function is
independent of the fixed cube). Our aim is to find what exactly this is.

Actually as in [7] we will take the more general approach of defining Bellman
functions with respect to the maximal operator on a nonatomic probability space
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(X,µ) equipped with an N -homogeneous tree-like family T (as discussed Section
2 the dyadic subcubes of say [0, 1]n form a 2n-homogeneous tree) thus defining,
whenever F, f, L are positive real numbers with f ≤ L and fp ≤ F ,

BT (F, f, L) = inf {
∫
X

max(MT φ,L)pdµ : φ ≥ 0 measurable with∫
X

φdµ = f ,

∫
X

φpdµ = F}.(1.4)

Then our main theorem is the following.

Theorem 1. For any nonatomic probability space (X,µ), any N -homogeneous tree-
like family T and any F, f, L with f ≤ L and fp ≤ F the corresponding Bellman
function is given by

(1.5) BT (F, f, L) = Lp +
Np − 1

Np −N
(F − Lp−1f)+

where x+ = max(x, 0).

Thus in particular for the dyadic maximal operator in Rn we get for any φ ≥ 0
measurable and supported in the cube Q0 = [0, 1]n that the following sharp estimate
holds with L = sup

R:Q0⊆R
AvR(|φ|)

(1.6)

∫
Q0

(Mdφ)p ≥ Lp +
2np − 1

2np − 2n
(

∫
Q0

|φ|p − Lp−1
∫
Q0

|φ|)+.

Also by taking N →∞ we conclude that there is no uniform lower estimate, other
than the trivial one (1.2), holding for all homogeneous tree-like families T , which
shows the dependence on the dimension in the case of the dyadic maximal operators.
Note that the situation for the upper bound (corresponding sup Bellman function)
is quite different since the expression does not depend on T at all (see [4]). However
see the ast section in [7] where this phenomenon has been encountered.

Next taking L = f in the above Theorem we get the following

Proposition 1. For any N -homogeneous tree-like family T and any F, f with
fp ≤ F we have

(1.7) BT (F, f, f) = fp +
Np − 1

Np −N
(F − fp).

We have stated this as a separate proposition because it will be our main step
in proving Theorem 1. Equation (1.7) and with p = 2 shows the exact effect of the
variance of φ.

As for a Corollary of more global nature we have the following Lp-improvement
on the a.e. bound M dφ ≥ |φ| in Rn.

Corollary 1. If φ ∈ Lp(Rn) and
∫
B(0,ρ)

|φ| = o(ρ(p−1)n) as ρ → ∞ (in particular

if φ is in Lq(Rn) where 1 ≤ q < p) then

(1.8)

∫
Rn

(Mdφ)p ≥ 2np − 1

2np − 2n

∫
Rn

|φ|p .

This can be easily deduced by applying Proposition 1 to the systems of the dyadic
subcubes of the 2n types of cubes

∏n
i=1[0,±2m] (each equipped with normalized

Lebesgue measure) add the corresponding (1.7) inequalities and then let m→∞.
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In section 2 we give the definitions and basic properties of N -homogeneous trees
T and the corresponding maximal operators and a general procedure (introduced
in [4]) that can be used to approach Bellman functions related to MT φ. In section
3 we will prove Proposition 1 and then in section 4 we will use it to prove Theorem
1.

For more on Bellman functions and their relation to harmonic analysis we refer
to [8], [9], [10] and [18]. For the exact evaluation of Bellman functions in certain
cases we refer to [1], [2], [4], [6], [7], [11], [12], [13], [15], [16], [17]. We also note the
approach initiated in [11], and also used in [17], to certain Bellman functions via
PDE methods which has given alternative proofs of the results in [4] plus certain
more general ones.

2. Trees and maximal operators

As in [4] we let (X,µ) be a nonatomic probability space (i.e. µ(X) = 1). We
give the following.

Definition 1. (a) A set T of measurable subsets of X will be called an N -homogeneous
tree (where N > 1 is an integer) if the following conditions are satisfied:

(i) X ∈ T and for every I ∈ T there corresponds a finite subset C(I) ⊆
T containing N elements each having measure equal to N−1µ(I) such that the
elements of C(I) are pairwise disjoint subsets of I and I =

⋃
C(I).

(ii) T =
⋃
m≥0 T(m) where T(0) = {X} and T(m+1) =

⋃
I∈T(m)

C(I)

(iii) The family T differentiates L1(X,µ).

We could replace the disjointness condition in (ii) above by asking that the
pairwise intersections have measure 0 instead. But then one could replace X by
X\
⋃
I∈T

⋃
J1,J2∈C(I), J1 6=J2(J1 ∩ J2) which has full measure.

Examples. 1) If Q0 is the unit cube Rn we let E be the union of all the
boundaries of all dyadic cubes in Q0 then let X = Q0\E and T be the set of all
open dyadic cubes Q ⊆ Q0. Here N = 2n and each C(Q) is the set of the 2n

subcubes of Q obtained by bisecting its sides. More generally for any integer m > 1
we may consider all m-adic cubes Q ⊆ Q0 with C(Q) being the set of the mn open
subcubes of Q obtained by dividing each side of it into m equal parts.

2) Given the integers d1, ..., dn ≥ 1 and m > 1 we can define T on X equal to Q0

minus a certain set of measure 0 by setting for each open parallelepiped R the family
C(R) to consist of the open parallelepipeds formed by dividing the dimensions of R
into md1 , ...,mdn equal parts respectively. For example if n = 2,m = 2, d1 = 1 and
d2 = 2 we get the set of dyadic parabolic rectangles contained in [0, 1]2.

An easy induction shows that each family T(m) consists of pairwise disjoint sets

each having measure N−m, and whose union is X. Moreover if x ∈ X the set
A(x) = {I ∈ T : x ∈ I} forms a chain I0(x) = X ! I1(x) ! ... with Im(x) ∈
C(Im−1(x)) for every m > 0. From this remark it easily follows that if I, J ∈ T
and I ∩ J is nonempty then I ⊆ J or J ⊆ I. In particular for any I, J ∈ T we
have either I ∩ J = ∅ or one of them is contained in the other. The following
gives another property of T that will be useful later. For a proof in a more general
context see [4].



4ANTONIOS D. MELAS*, ELEFTHERIOS N. NIKOLIDAKIS**, AND THEODOROS STAVROPOULOS*

Lemma 1. For every I ∈ T and every α such that 0 < α < 1 there exists a subfam-
ily F(I) ⊆ T consisting of pairwise disjoint subsets of I such that µ(

⋃
J∈F(I) J) =∑

J∈F(I) µ(J) = (1− α)µ(I).

Proof. Write α =
∑∞
j=1 djN

−j in the N -ary system and then use dj elements of
each scale T(j), noting that all these can be made pairwise disjoint since dj < N ,
and property (i) in definition 1. �

Now given any such T we define the maximal operator associated to it as follows

(2.1) MT ψ(x) = sup {AvI(|ψ|) : x ∈ I ∈ T }

for every ψ ∈ L1(X,µ) where for any nonnegative φ ∈ L1(X,µ) and for any I ∈ T
we have written AvI(φ) = 1

µ(I)

∫
I
φdµ.

Let φ be a nonnegative nonconstant T -step function, that is there exist an integer
m > 0 and λP ≥ 0 for each P ∈ T(m) such that

(2.2) φ =
∑

P∈T(m)

λPχP

(where χP denotes the characteristic function of P ). For every x ∈ X we let Iφ(x)
denote the unique largest element of the set {I ∈ T : x ∈ I and MT φ(x) = AvI(φ)}
(which is nonempty since AvJ(φ) = AvP (φ) whenever P ∈ T(m) and J ⊆ P ). Next
for any I ∈ T we define the set

(2.3) AI = A(φ, I) = {x ∈ X : Iφ(x) = I}

and we let S = Sφ denote the set of all I ∈ T such that AI is nonempty. It is clear
that each such AI is a union of certain P ’s from T(m) and moreover

(2.4) MT φ =
∑
I∈S

AvI(φ)χAI
.

We define the correspondence I → I∗ with respect to S as follows: for any I ∈ S,
I∗ is the minimal element in the set of all J ∈ S that properly contain I. This
is defined for every I in S that is not maximal with respect to ⊆. We also write
yI = AvI(φ) for every I ∈ S.

The main properties of the above are given in the following (see also [4] and [5]).

Lemma 2. (i) For every I ∈ S we have I =
⋃

S3J⊆I
AJ .

(ii) For every I ∈ S we have AI = I \
⋃

J∈S:J∗=I
J and so µ(AI) = µ(I) −∑

J∈S:J∗=I µ(J) and AvI(φ) = 1
µ(I)

∑
J∈S:J⊆I

∫
AJ
φdµ.

(iii) For a I ∈ T we have I ∈ S if and only if AvQ(φ) < AvI(φ) whenever
I ⊆ Q ∈ T , I 6= Q. In particular X ∈ S and so I → I∗ is defined for all I ∈ S
such that I 6= X.

(iv) If I, J ∈ S are such that J∗ = I then

(2.5) yI < yJ ≤ NyI .

Proof. (i) Clearly X =
⋃
J∈S

AJ . Fix I ∈ S. Supposing that x ∈ A(φ, J)∩I for some

J we have x ∈ I ∩ J 6= ∅ and so either I ⊆ J or J ⊆ I. Suppose now that I  J .
Then also AvJ(φ) = MT φ(x) ≥ AvI(φ) and so I cannot be an Iφ(z) for any z ∈ I.
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Therefore A(φ, I) = ∅ contradicting the assumption I ∈ S. Hence we must have
J ⊆ I and this easily implies that I is the union of all AJ ’s for J ⊆ I.

(ii) Follows easily from (i).
(iii) One direction follows from the definition of the Iφ’s. For the other assume

that I ∈ T(s) satisfies the assumption. Since

(2.6) AvJ(φ) =

∑
F∈C(J) µ(F ) AvF (φ)∑

F∈C(J) µ(F )

we conclude that for each J ∈ T there exists J ′ ∈ C(J) such that AvJ′(φ) ≤
AvJ(φ). Starting from I and applying the above m − s times we get a chain
I = I0 ⊇ I1 ⊇ ... ⊇ Im−s such that I(r) ∈ T(s+r) for each s and moreover
AvIm−s(φ) ≤ AvIm−s+1(φ) ≤ ... ≤ AvI1(φ) ≤ AvI0(φ) = AvI(φ). Now from this
and the assumption on I it clear that Iφ(x) = I for every x ∈ Im−s and therefore
I ∈ S.

(iv) The inequality yI < yJ follows from (iii). For the other inequaity let F be
the unique element of the whole family T such that J ∈ C(F ). Note that F ⊆ I. We
claim that AvF (φ) ≤ yI . Indeed I ∈ S implies that AvQ(φ) < yI whenever I ⊆ Q,
I 6= Q and so if AvF (φ) > yI there would exist F ′ ∈ T such that F ⊆ F ′ ⊆ I,
F ′ 6= I and AvF ′(φ) > AvQ(φ) whenever F ′ ⊆ Q, F ′ 6= Q. But this combined with
(iii) implies that F ′ must be in S contradicting our assumption J∗ = I. Thus we
get since J ⊆ F

(2.7) yJ =
1

µ(J)

∫
J

φdµ ≤ 1

µ(J)

∫
F

φdµ =
µ(F )

µ(J)
AvF (φ) ≤ µ(F )

µ(J)
yI = NyI

which completes the proof. �

The above Lemma shows that this linearization MT φ may be viewed as a mul-
tiscale version of the classical Calderon-Zygmund decomposition.

3. Proof of Proposition 1

Here we will prove Proposition 1. Assuming that T is a N -homogeneous tree we
let φ be a nonnegative T -step function such that

(3.1)

∫
X

φdµ = f and

∫
X

φpdµ = F

and let S = Sφ be the corresponding subtree of T . Using the notation from section
2 we make the following two simple observations. First by Lemma 3 (iv) we have
yI∗ < yI ≤ NyI∗ for all I ∈ S\{X} and second φ(t) ≤ yI whenever I ∈ S and
t ∈ AI .

The second remark gives

(3.2)

∫
AI

φ(t)pdµ(t) ≤
∫
AI

φ(t)yp−1I dµ(t) = yp−1I

∫
AI

φdµ

for all I ∈ S, and Lemma 2 (ii) implies that∫
AI

φdµ = µ(I)yI −
∑

J∈S:J∗=I
µ(J)yJ
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Hence

F =

∫
X

φpdµ =
∑
I∈S

∫
AI

φpdµ ≤
∑
I∈S

yp−1I (µ(I)yI −
∑

J∈S:J∗=I
µ(J)yJ) =

= ypXµ(X) +
∑

I∈S:I 6=X

ypIµ(I)−
∑

J∈S:J 6=X

yp−1J∗ µ(J)yJ

and so

(3.3) F ≤ fp +
∑

I∈S:I 6=X

µ(I)yI(y
p−1
I − yp−1I∗ )

Now (2.4) and Lemma 2 imply that∫
X

(MT φ)pdµ =
∑
I∈S

aIy
p
I =

∑
I∈S

(µ(I)−
∑

J∈S:J∗=I
µ(J))ypI =

= fp +
∑

I∈S,I 6=X

µ(I)(ypI − y
p
I∗)(3.4)

Next for any I ∈ S, I 6= X we have 1 <
yI
yI∗
≤ N . On the other hand the function

h(t) =
tp − 1

tp − t
is easily seen to be strictly decreasing on (1,+∞). Therefore since

yI
yI∗
∈ (1, N ] we obtain the following

(3.5)
ypI − y

p
I∗

yI(y
p−1
I − yp−1I∗ )

= h(
yI
yI∗

) ≥ h(N) =
Np − 1

Np −N
.

Using (3.5) in (3.4) and by (3.3) we get∫
X

(MT φ)pdµ ≥ fp +
Np − 1

Np −N
(
∑

I∈S:I 6=X

µ(I)yI(y
p−1
I − yp−1I∗ )) ≥

≥ fp +
Np − 1

Np −N
(F − fp)(3.6)

for all nonnegative step functions φ.
Now for the general case, given φ ≥ 0 measurable satisfying (3.1) we define φm

as follows

φm =
∑

I∈T(m)

AvI(φ)χI

and note that

(3.7) MT φm =
∑

I∈T(m)

max{AvJ(φ) : I ⊆ J ∈ T }χI

since AvJ(φ) = AvJ(φm) whenever I ⊆ J ∈ T when I ∈ T(m). Also

(3.8)

∫
X

φmdµ =

∫
X

φdµ = f , Fm =

∫
X

φpmdµ ≤
∫
X

φpdµ ≤ F

for all m and MT φm converges monotonically to MT φ. Also since each φm is a
T -step function we can apply (3.6), to get

(3.9)

∫
X

(MT φm)pdµ ≥ fp +
Np − 1

Np −N
(Fm − fp)
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for every m. On the other hand we have φpm ≤ (MT φ)p everywhere and φpm → φp

almost everywhere by property (iv) in Definition 1. Hence by dominated conver-
gence we conclude that Fm =

∫
X
φpmdµ →

∫
X
φpdµ = F and so using monotone

convergence for MT φm and (3.9) we get

(3.10)

∫
X

(MT φ)pdµ = lim
m→∞

∫
X

(MT φm)pdµ ≥ fp +
Np − 1

Np −N
(F − fp)

These prove that BTp (F, f, f) ≥ fp + Np−1
Np−N (F − fp).

To prove the reverse inequality we fix positive f and F with fp < F (the case
F = fp being trivial), and let X = I0 ⊇ I1 ⊇ ...Is ⊇ Is+1 ⊇ ... be a chain such that
Is ∈ T(s) for all s ≥ 0 (and so µ(Is) = N−s).

For a strictly increasing sequence of nonnegative integers m0 < m1 < ... < mk <
... to be chosen later we define

(3.11) φ = f

∞∑
k=0

Nmk−kχImk
\Imk+1

.

We have

(3.12)

∫
X

φdµ = f

∞∑
k=0

Nmk−k(N−mk −N−mk−1) = f

∞∑
k=0

N−k(1− 1

N
) = f

(3.13)∫
X

φpdµ = fp
∞∑
k=0

Nmkp−kp(N−mk−N−mk−1) = fp(1− 1

N
)

∞∑
k=0

Nmk(p−1)−kp def
= F0

say, and if mk−1 < s ≤ mk where k ≥ 0 (setting m−1 = −1) then

(3.14) AvIs(φ) = Nsf

∞∑
j=k

Nmj−j(N−mj −N−mj−1) = fNs−k

and this increases as s increases (if s = mk then AvIs(φ) = AvIs+1
(φ)). We next

claim that MT φ(x) = AvIs(φ) whenever x ∈ Is\Is+1 and s ≥ 0. Indeed suppose
that x ∈ Is\Is+1 and let J be the unique element of T(s+1) such that x ∈ J (clearly
J ∈ C(Is) and J 6= Is). Then the set of all I’s in T containing x consists of I0, ..., Is
and J and certain subintervals of J . But AvIs(φ) ≥ AvIr (φ) for all 0 ≤ r < s and
since φ is either 0 on J (if s is not an mk) or if s = mk (so φ = fNmk−k on J) it is
equal to AvIs(φ) on J we get that MT φ(x) = AvIs(φ). Hence using (3.14) we get

(3.15) MT φ = f

∞∑
s=0

Ns−k(s)χIs\Is+1

where k(s) is the smallest integer k with mk ≥ s. This implies that
(3.16)∫
X

(MT φ)pdµ = fp
∞∑
s=0

Nps−pk(s)(N−s −N−s−1) = fp(1− 1

N
)

∞∑
s=0

N (p−1)s−pk(s).
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Next we compute
∞∑
s=0

N (p−1)s−pk(s) =

∞∑
j=0

N−pj
∑

s:k(s)=j

N (p−1)s =

m0∑
j=0

N (p−1)s +

∞∑
j=1

mk∑
s=mk−1+1

N (p−1)s−pj =

= (Np−1 − 1)−1

(
(1−N−p)Np−1(

∞∑
k=0

Nmk(p−1)−kp)− 1

)
=

= (Np−1 − 1)−1
(

(1−N−p)Np−1(
F0

(1− 1
N )fp

)− 1

)
(3.17)

therefore

(3.18)

∫
X

(MT φ)pdµ = fp +
Np − 1

Np −N
(F0 − fp).

Hence to complete the proof of Proposition 1 it suffices to show that a sequence
(mk) as above can be found such that F0 as defined in (3.13) equals our given F .

But this will follow by applying the next lemma to the real number a =
F

fp
> 1.

Lemma 3. Suppose N > 1 is an integer and p > 1, a > 1 are real numbers. Then
there exist integers 0 ≤ m0 < m1 < ... < mk < ... such that

(3.19) a = (1− 1

N
)

∞∑
k=0

Nmk(p−1)−kp.

Proof. Since a > 1 there exists a maximal j0 ≥ 0 such that N j0(p−1) ≤ a. Set a0 =
a, m0 = j0 and inductively define ar ≥ 1, jr ≥ 0, mr > mr−1 by choosing jr to be
the maximal integer such that N jr(p−1) ≤ ar, setting mr = mr−1 + jr + 1 > mr−1
and

(3.20) ar+1 =
N(ar − (1− 1

N )N jr(p−1))

N jr(p−1)
≥ 1.

An easy induction shows that for any r > 0

(3.21) a = Nmr(p−1)−rp−1ar+1 + (1− 1

N
)

r∑
k=0

Nmk(p−1)−kp.

Next, for any r > 0, by the way jr is chosen we have ar < N (jr+1)(p−1) hence

(3.22) ar − (1− 1

N
)N jr(p−1) < (1− N − 1

Np
)ar

and so using (3.20), and mr = mr−1 + jr + 1 we conclude that

Nmr(p−1)−rpar+1 < Nmr(p−1)−rp N

N jr(p−1)
(1− N − 1

Np
)ar =

= (1− N − 1

Np
)Nmr−1(p−1)−(r−1)par(3.23)

and so

(3.24) Nmr(p−1)−rp−1ar+1 < (1− N − 1

Np
)r
a1
N

.

Taking now r →∞ in (3.24) and using (3.21) the proof of the lemma is complete.
�

This completes the proof of Proposition 1.
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4. Proof of Theorem 1

Assume f, F, L are positive and such that L > f , fp ≤ F . We consider two
cases:

Case 1: F ≥ Lp−1f . Let φ be nonnegative and measurable, satisfying (3.1).
Consider the set K = ∪{J ∈ T : AvJ(φ) ≥ L} which clearly is equal to the union
of pairwise disjoint (maximal) elements Ij of T . Setting

(4.1) αj =

∫
Ij

φpdµ, βj =
1

µ(Ij)

∫
Ij

φdµ and λj = µ(Ij)

and using Proposition 1 for φ restricted to Ij and for the tree T (Ij) on the proba-

bility space (Ij ,
1

µ(Ij)
µ) consisting of all elements of T contained in Ij we get

(4.2)
1

µ(Ij)

∫
Ij

(MT (φ))pdµ ≥ 1

µ(Ij)

∫
Ij

(MT (Ij)(φχIj))
pdµ ≥ βpj +

Np − 1

Np −N
(
aj
µ(Ij)

− βpj ),

and so multiplying by µ(Ij) and adding over all j’s gives

(4.3)

∫
K

(MT (φ))pdµ ≥ Np − 1

Np −N
∑

αj −
N − 1

Np −N
∑

λjβ
p
j .

Noting that MT (φ) < L off K we have
(4.4)∫

X

max(MT (φ), L)pdµ ≥ Lp(1−
∑

λj)−
Np − 1

Np −N
∑

αj −
N − 1

Np −N
∑

λjβ
p
j .

But since also φ(t) ≤ MT (φ)(t) < L on X\K we have F −
∑
αj =

∫
X\K φ

p ≤
Lp−1

∫
X\K φ = Lp−1(f −

∑
λjβj), so (4.4) gives∫

X

max(MT (φ), L)pdµ ≥ Lp + (F − Lp−1f)
Np − 1

Np −N
−

−
∑

λj(L
p − Np − 1

Np −N
βjL

p−1 +
N − 1

Np −N
βpj ).(4.5)

Now we use the fact that each βj belongs to the interval [L,NL] (since the Ij ’s
are maximal) combined with the observation that the convex function g(x) = 1 −
Np−1
Np−N x+ N−1

Np−N x
p satisfies g(1) = g(N) = 0 we infer that g(

βj
N

) ≤ 0 for all j, thus

the sum in (4.5) is nonpositive. Therefore (4.5) implies

(4.6)

∫
X

max(MT (φ), L)pdµ ≥ Lp +
Np − 1

Np −N
(F − Lp−1f).

Conversely by applying Lemma 1 we take Ij to be pairwise disjoint members of T
such that

∑
µ(Ij) = f

L ∈ (0, 1) and for each j use the proof of Proposition 1 to
take φj on Ij such that

(4.7)
1

µ(Ij)

∫
Ij

φjdµ = L,
∑
j

∫
Ij

φpjdµ = F

(which is possible since F ≥ Lp−1f implies that we can find αj ≥ µ(Ij)L
p such

that
∑
aj = F ) and

(4.8)
1

µ(Ij)

∫
Ij

(MT (Ij)(φχIj))
pdµ = Lp +

Np − 1

Np −N
(

1

µ(Ij)

∫
Ij

φpjdµ− L
p).
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Then we define φ =
∑
j φjχIj and note that since φ = 0 off ∪jIj and AvIj (φ) = L

for all j’s we have MT (φ) < L on X\∪j Ij and so MT (φ) = MT (Ij)(φj) on each Ij .
Hence ∫

X

max(MT (φ), L)pdµ =

= Lp(1−
∑

µ(Ij)) + Lp
∑

µ(Ij) +
Np − 1

Np −N
∑

(

∫
Ij

φpjdµ− L
pµ(Ij)) =

= Lp +
Np − 1

Np −N
(F − Lp

∑
µ(Ij)) = Lp +

Np − 1

Np −N
(F − Lp−1f).(4.9)

Case 2: F < Lp−1f . Here we have the trivial bound
∫
X

max(MT (φ), L)pdµ ≥
Lp. But also there exists κ ≥ f such that κp−1f = F and by our assumption we

also have κ < L. We choose a measurable K ⊆ X with µ(K) =
f

κ
∈ (0, 1] and

take φ = κχK . Then
∫
X
φdµ = κµ(K) = f ,

∫
X
φpdµ = κpµ(K) = F and since

L > κ = ‖φ‖∞ we have MT (φ) < L on X. Thus
∫
X

max(MT (φ), L)pdµ = Lp and
this completes the proof of Theorem 1.
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