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Abstract. For each q < 1 we precisely evaluate the main Bellman functions
associated with the behavior of dyadic maximal operator on Rn on integrable

functions. Actually we do that in the more general setting of tree-like maximal

operators. These are related to and refine the corresponding Kolmogorov’s
inequality which we show that it is actually sharp. For this we use the effective

linearization introduced in [4] for such maximal operators on an adequate set

of functions.
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1. Introduction

The dyadic maximal operator on Rn is defined by

(1.1) M dφ(x) = sup

{
1

|Q|

∫
Q

|φ(u)| du : x ∈ Q, Q ⊆ Rn is a dyadic cube

}
for every φ ∈ L1

loc(Rn) where the dyadic cubes are the cubes formed by the grids
2−NZn for N = 0, 1, 2, ....

As it is well known it satisfies the following weak type (1, 1) inequality

(1.2) |{x ∈ Rn : M dφ(x) > λ}| ≤ 1

λ

∫
{M dφ>λ}

|φ(u)| du.

for every φ ∈ L1(Rn) and every λ > 0 from which it follows, in view of Kolmogorov’s
inequality, the following Lq inequality

(1.3)

∫
E

|M dφ(u)|q du ≤ 1

1− q
|E|1−q ‖φ‖q1

for every q with 0 < q < 1, every φ ∈ L1(Rn) and every measurable subset E of Rn
with finite measure.

It is easy to see that the weak type inequality (1.2) is best possible. We will
show here that (1.3) is actually sharp.

An approach for studying such maximal operators is the introduction of the
so called Bellman functions (see [5]) related to them which reflect certain deeper
properties of them by localizing. Such functions related to the Lp for p > 1 have
been precisely evaluated in [4].
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The Bellman function related to the present situation is defined for any 0 < q < 1
as follows

Bq(f, h, L, k) = sup{ 1

|Q|

∫
E

(Mdφ)q : AvQ(φ) = f,AvQ(φq) = h,

sup
Q′:Q⊆Q′

AvQ′(φ) = L,E ⊆ Q measurable with |E| = k}(1.4)

where Q is a fixed dyadic cube, Q′ runs over all dyadic cubes containing Q, φ is
nonnegative in L1(Q) and the variables f, h, L and satisfy 0 ≤ f ≤ L, h ≤ fq and
0 ≤ k ≤ 1. Bq is independent of the choice of Q (so we may take Q = [0, 1]n).

There are several other problems in Harmonic Analysis where Bellman func-
tions naturally arise. Such problems (including the dyadic Carleson imbedding
and weighted inequalities) are described in [7] (see also [5], [6]) and also connec-
tions to Stochastic Optimal Control are provided, from which it follows that the
corresponding Bellman functions satisfy certain nonlinear second order PDE.

The exact computation of a Bellman function is a difficult task which is con-
nected with the deeper structure of the corresponding Harmonic Analysis problem.
Thus far several Bellman functions have been computed (see [1], [2], [4], [8], [9],
[12], [13], [14]). Recently L.Slavin and A.Stokolos [11] in some cases linked the Bell-
man function computation to solving certain PDE’s of the Monge Ampere type,
and in this way they obtained an alternative proof of the Bellman functions re-
late to the dyadic maximal operator in [4]. Also in [14] using the Monge-Ampere
equation approach a more general Bellman function than the one related to the
dyadic Carleson imbedding Theorem has be preciesely evaluated thus generalizing
the corresponding result in [4].

Here we will compute the Bellman function defined by (1.4). The computation
of the above Bellman functions will provide refinements of the local Lq inequality
(1.3) which as we will show in the process is sharp. Our approach will not use the
Bellman PDE but will rely on a deeper study of the combinatorial structure of these
maximal operators in the same way as in [4]. However the analysis as well as the
results will be in certain aspects different due to the concavity of the corresponding
q power function and in this sense the results of this paper can be considered as
complementing those in [4]. Actually we will define and compute such functions on
the more general situation of tree-like structures on probability spaces and as in [4]
show that they are always the same.

As in [4] let (X,µ) be a nonatomic probability space and let T be a family of
measurable subsets of X that has a tree-like structure similar to the one in the
dyadic case (the precise definition will be given in the next section). Then we can
define the maximal operator associated to T as follows

(1.5) MT φ(x) = sup

{
1

µ(I)

∫
I

|φ| dµ : x ∈ I ∈ T
}

for every φ ∈ L1(X,µ).
The above maximal operator is related to the theory of martingales and satisfies

essentially the same inequalities as Md. Now we define the corresponding Bellman
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function as

BTq (f, h, L, k) = sup{
∫
E

(max(MT φ,L))qdµ : φ ≥ 0, φ ∈ L1(X,µ),∫
X

φdµ = f,

∫
X

φqdµ = h, E ⊆ X measurable with |E| = k}(1.6)

where again the variables satisfy L ≥ f > 0, 0 < h ≤ fq and 0 ≤ k ≤ 1. It is easy
to see that when X = [0, 1]n, µ is the Lebesgue measure and T is the family of
dyadic cubes contained in X the above function becomes the Bellman function Bq
defined by (1.4) since we can define φ on [0, 2]n\X (and set it equal to 0 outside
[0, 2]n) to make sup

Q′:X⊆Q′
AvQ′(φ) = Av[0,2]n(φ) = L. Also in the case where X, T

are part of a larger tree-like structure, BTq can be defined in an analogous to (1.4)
way.

To state our main result we consider for any 0 < q < 1 the function

(1.7) Hq(z) = (1− q)zq + qzq−1

defined for z > 0. Since H ′q(z) = (1 − q)qzq−2(z − 1) it is easy to see that Hp is
strictly increasing on the interval [1,+∞), strictly decreasing on (0, 1] and it maps
each of them onto [1,+∞). We now define ωq : [1,+∞)→ [1,+∞) by

(1.8) ωq(z) = (H−1q (z))q

where H−1q denotes the inverse function of the restriction of Hq on [1,+∞). Clearly
ωq is strictly increasing, maps [1,+∞) onto [1,+∞), and can be defined by the
equation

(1.9) (1− q)ωq(z) + qωq(z)
1− 1

q = z.

For example for q = 1/2 we have ω1/2(z) = z +
√
z2 − 1.

Next as we shall show in Lemma 3 for any λ > 1 and 0 < k < 1 the equation

(1.10) Hq(
x(1− k)

1− kx
) = λHq(x)

has a unique solution x = x(λ, k) in the interval (1,
1

k
). Then we have the following.

Theorem 1. For any nonatomic probability space (X,µ), any tree-like family T
and any 0 < q < 1 the corresponding Bellman function is given by
(1.11)

BTq (f, h, L, k) =


hωq

(
fq

h
Hq(

L

f
)

)
− Lq(1− k) if k0(f, h, L) ≤ k ≤ 1,

hωq(
fq

h
Hq(x(

fq

h
, k)))− fqx(

fq

h
, k)q(1− k) if 0 < k ≤ k0(f, h, L).

where

(1.12) k0(f, h, L) =

fωq

(
fq

h
Hq(

L

f
)

)1/q

− L

L

(
ωq

(
fq

h
Hq(

L

f
)

)1/q

− 1

)

is the unique in (0,
f

L
) solution of the equation Hq(

L(1− k)

f − Lk
) =

fq

h
Hq(

L

f
).
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Thus the Bellman functions are the same for any such X, T and depend only on

the underlying tree-like structure. Note that since fq > hL > f and ωq

(
fq

h
Hq(

L

f
)

)1/q

>

ωq

(
Hq(

L

f
)

)1/q

=
L

f
the expression in (1.12) is indeed in (0,

f

L
).

Considering the various special cases k = 1, L = f (where for example in the
case L = f the function BTq (f, h, f, k) becomes the supremum of

∫
E

(MT φ)qdµ

when φ ≥ 0,
∫
X
φdµ = f,

∫
X
φqdµ = h and E ⊆ X is measurable with |E| = k) we

get the following:

Corollary 1. For any nonatomic probability space (X,µ) and any tree-like family
T , any φ ≥ 0 measurable with

∫
X
φdµ = f ≤ L,

∫
X
φqdµ = h and any measurable

E ⊆ X with µ(E) = k ∈ [0, 1] we have the following sharp inequalities (where
sharpness means that their right hand side is exactly the supremum over all φ, E
involved with the corresponding properties)

(1.13)

∫
X

(MT φ)qdµ ≤ hωq(
fq

h
)

(1.14)

∫
X

(max(MT φ,L))qdµ ≤ hωq
(

(1− q)Lq + qLq−1f

h

)

(1.15)

∫
E

(MT φ)qdµ ≤ hωq(
fq

h
Hq(x(

fq

h
, k)))− fqx(

fq

h
, k)q(1− k).

Actually the above inequalities will be the basic steps in proving Theorem 1,
starting with (1.13). Note that in [4] the analogous as in (1.14) Bellman function
for p > 1 was given by a double formula and was not C∞, an analogous to (1.14)

relation holding only for L smaller than
p

p− 1
f . However in the present situation

this function is given by a single formula and is smooth.
In view of this Corollary the double expression in (1.11) of Theorem 1 can be ex-

plained as follows. If k is small enough that is if k < k0(f, h, L) then the supremum∫
E

(max(MT φ,L))qdµ is taken ignoring L that is when MT φ > L on E whereas
when k ≥ k0(f, h, L) then the supremum is taken when MT φ ≤ L on the com-
plement of E. The reason for this can be inferred from the proof of Theorem 1.

The number k0(f, h, L) as we shall see in section 6 is close to
f

L
when h is small

(compared to fq).
We will also show that every extremal sequence for (1.13) exhibits a certain

self similar homogeneous behavior (which in case h < fq shows that there are no
extremal functions for it). This is contained in the following (and its proof will use
the independence of the Bellman functions from X, T ).

Proposition 1. If (φm) is a sequence of nonnegative functions in L1(X,µ) such
that

∫
X
φmdµ = f ,

∫
X
φqmdµ = h for all m and

(1.16) lim
m→∞

∫
X

(MT φm)qdµ = hωq(
fq

h
)
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then for every I ∈ T we have:

lim
m→∞

1

µ(I)

∫
I

φmdµ = f , lim
m→∞

1

µ(I)

∫
I

φqmdµ = h and

lim
m→∞

1

µ(I)

∫
I

(MT φm)qdµ = hωq(
fq

h
).(1.17)

That is an extremal sequence for BTq (f, h, f, 1) is also extremal, for the same
values of the variables, when localized on any element of the tree T .

In the special case where q = 1/2 the expressions in (1.13) and (1.14) can be
explicitly computed and they yield the following sharp inequalities

(1.18)

∫
X

√
MT φdµ ≤

√
f +

√
f − h2 < 2f

(1.19)

∫
X

√
max(MT φ,L)dµ ≤ 1

2
(
√
L+

f√
L

) +

√
1

4
(
√
L+

f√
L

)2 − h2.

For the general q in order to compare the above inequalities with what Kol-
mogorov’s inequality would give we will obtain appropriate estimates for the above
expressions. Then after scaling these expressions produce improvements, in view
of the Bellman function (1.4), of Kolmogorov’s inequality on the dyadic maximal
operator on Rn. This will be done in section 6.

This paper is organized as follows. In section 2 we collect a number of technical
Lemmas needed throughout this paper. In section 3 we prove (1.13) (and its sharp-
ness) using the linearization for the maximal operators introduced in [4] and also
prove certain improvements of it under more stringent conditions on φ. In section 4
we compute successively the specializations of the Bellman function (1.6) reaching
the proof of our Theorem 1 and in section 5 we prove Proposition 1. In section 6 we
derive certain approximate expressions for the various Bellman functions and study
how they behave under scaling thus obtaining improved versions of Kolmogorovs
inequality on maximal operators which show its sharpness and explain how our
main Theorem 1 is related to it.

2. Some technical lemmas

In this section we collect certain technical results that will be used throughout
this paper. The first concerns the functions Hq and ωq defined in the introduction.

Lemma 1. Let 0 < q < 1 be fixed. Then
(i) The function ωq : [1,+∞) → [1,+∞) is strictly increasing, strictly concave

and for x > 1 satisfies

(2.1)
d

dx
ωq(x) =

1

1− q
ωq(x)1/q

ωq(x)1/q − 1
.

(ii) We have

(2.2) 1 <
ωq(x)

x
<

1

1− q
for every x > 1 and

(2.3) lim
x→+∞

ωq(x)

x
=

1

1− q
.
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(iii) The function U(x) =
ωq(x)

x
is strictly increasing on [1,+∞).

(iv) We have

(2.4)
x− qx1−

1
q

1− q
< ωq(x) <

x− q(1− q)
1
q−1x1−

1
q

1− q

Proof. (2.1) is an easy computation and then the concavity follows since (2.1) and
ωq(x) > 1 for x > 1 imply that ω′q(x) is strictly decreasing. Moreover (2.2) follows

since ωq(x) > x = (1− q)ωq(x) + qωq(x)1−
1
q > (1− q)ωq(x) and (2.3) follows since

ωq(x)

x
is bounded and ωq(x)−

1
q tends to 0 as x→ +∞. Now (iii) follows since

U ′(x) =
1

x
(

1

1− q
ωq(x)1/q

ωq(x)1/q − 1
− ωq(x)

(1− q)ωq(x) + qωq(x)1−
1
q

) =

=
qωq(x)

(1− q)x2(ωq(x)1/q − 1)
> 0

for x > 1 and then (2.4) follows from (iii) and (2.2) since

x
1
q−1(x− (1− q)ωq(x)) = q(

ωq(x)

x
)1−

1
q .

�

Lemma 2. Let 0 < q < 1 and λ > 1. Then for every α with 0 < α < 1 the equation

(2.5) zq − (1− α)1−q(z − α)q = λα

has a unique solution z = zq(α, λ) in (1,+∞) and moreover α→ zq(α, λ) is strictly
decreasing with

(2.6) zq(α, λ) <
α

1− (1− α)1−q
λ and lim

a→0+
zq(α, λ)q = ωq(λ).

Proof. Let F (α, z) =
zq − (1− α)1−q(z − α)q

α
. Then Fα(1) = 1 and

(2.7)
F (α, z)

zq
=

1

α
(1− (1− α)1−q(1− α

z
)q) >

1

α
(1− (1− α)1−q) > 1− q

whenever z > 1, thus limz→+∞F (α, z) = +∞. On the other hand
∂F (α, z)

∂z
=

q

α

(
1

z1−q
− (

1− α
z − α

)1−q
)
> 0 for every z > 1. Hence (2.5) has a unique solution

z = zq(α, λ) in (1,+∞). Moreover by (2.7) it easily follows the first inequality in
(2.6) which also implies that zq(α, λ) is bounded as α → 0+. But then whenever
αm → 0+ and zm = zq(αm, λ)→ z∗ we have

(2.8) λ =
zqm − (zm − αm)q

αm
+ (zm − αm)q

1− (1− αm)1−q

αm
→ Hq(z

∗)

and this proves the other part of (2.6). To show that α → zq(α, λ) is strictly
decreasing just note that

(2.9)
∂F (α, z)

∂α
= − 1

α2

(
zq − (1− qα)(

z − α
1− α

)q − q(z − α
1− α

)q−1
)
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and with w =
1− α
z − α

∈ (0, 1) use the inequalities (αw+ 1−α)q = (1−α(1−w))q <

1− qa(1− w) < 1− qa+ qw to get
∂F (α, z)

∂α
> 0. �

For the next Lemma (and with 0 < q < 1) we consider the function

(2.10) σq(k, x) =
Hq(

x(1− k)

1− kx
)

Hq(x)

defined for all k, x such that 0 < k < 1 and 0 < x <
1

k
. A straightforward

computation shows that

(2.11) σq(k, x) =
(1− q)x+ q − kx

(1− k)1−q(1− kx)q((1− q)x+ q)

and

∂σq
∂k

(k, x) = Dq(k, x)(x− 1)2,

∂σq
∂x

(k, x) = Dq(k, x)(x− 1)k(1− k)
(1− q)x+ q + 1− kx

(1− q)x+ q
(2.12)

where

(2.13) Dq(k, x) =
(1− q)q(1− k)q−2xq−1

Hq(x)(1− kx)q+2
> 0

on the domain of definition of σq(k, x). We then have the following.

Lemma 3. (i) For any fixed λ > 1 the equation

(2.14) Hq(
x(1− k)

1− kx
) = λHq(x)

has a unique solution x = x(λ, k) = xλ(k) in the interval (1,
1

k
) and it has a

solution in the interval (0, 1) if and only if λ < (1 − k)q−1, in which case this is
also unique. Moreover the function xλ on (0, 1) is smooth strictly decreasing and it
satisfies lim

k→1−
xλ(k) = 1, lim

k→0+
xλ(k) = +∞ and

(2.15) x′λ(k) = − (xλ(k)− 1)((1− q)xλ(k) + q)

k(1− k)((1− q)xλ(k) + q + 1− kxλ(k))
.

(ii) If µ ≥ 0 and we define

(2.16) Rq,µ(k, x) = (
x(1− k)

1− kx
)q

1

σq(k, x)
+ (µq − xq)(1− k)

on W = {(k, x) : 0 < k < 1 and 1 < x <
1

k
}, then

(2.17)
d

dk
Rq,µ(k, xλ(k)) = xλ(k)q − µq.
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(iii) If µ > 1 and ξ is in (0, 1] the maximum value of Rq,µ on the set {(k, x) ∈W :

0 < k ≤ ξ and σq(k, x) = λ} is equal to
1

λ
ωq(λHq(µ)) if ξ ≥ k0(λ, µ) and it is equal

to Rq,µ(ξ, xλ(ξ)) if ξ < k0(λ, µ) where

(2.18) k0(λ, µ) =
ωq(λHq(µ))1/q − µ
µ(ωq(λHq(µ))1/q − 1)

is the unique in (0,
1

µ
) solution of the equation σq(k0, µ) = λ.

(iv) We have

(2.19)
1

k
(1− (1− k)λ−1/q) < xλ(k) <

1

k
(1− (

1− q
1− q + k

)1/q(1− k)λ−1/q)

Proof. (i) The second equation in (2.12) implies (x − 1)
∂σq
∂x

> 0 if x 6= 1. Since,

for any fixed k, lim
x→ 1

k
−
σq(x, k) = +∞ and by (2.11) lim

x→0+
σq(x, k) = (1− k)q−1 the

first part of (i) follows. Now (2.15) follows from (2.12) and lim
k→1−

xλ(k) = 1 follows

since 1 < xλ(k) <
1

k
. To prove that lim

k→0+
xλ(k) = +∞ observe that if there existed

km → 0+ such that xm = xλ(km)→ x∗ < +∞ then kmxm → 0 and so (2.12) would
give λ = σq(km, xm)→ 1 contradiction.

(ii) The equality (2.17) follows from a straightforward but tedious computation
using (2.15), (2.12) and the fact that σq(k, xλ(k)) = λ for all k (so the term 1/σq
in (2.16) is not differentiated, being constant, but is replaced not by λ but by the
expression in (2.11) with x = xλ(k)).

(iii) By (i) there exists a unique k0 = k0(q, λ, µ) in (0, 1) such that xλ(k0) = µ

and since xλ is strictly decreasing we have using (2.17) that
d

dk
Rq,µ(k, xλ(k)) is

> 0 if k < k0 and < 0 if k > k0 hence the maximum value of Rq,µ on the set
{(k, x) ∈ W : 0 < k ≤ ξ and σq(k, x) = λ} is equal to Rq,µ(ξ, xλ(ξ)) if ξ < k0 and

to Rq,µ(k0, xλ(k0)) if ξ ≥ k0. However since µ = xλ(k0) <
1

k0
we have k0 <

1

µ
and

now σq(k0, µ) = σq(k0, xλ(k0)) = λ gives
µ(1− k0)

1− k0µ
= H−1q (λHq(µ)) from which

the expression (2.18) follows. Moreover noting that

(
xλ(k0)(1− k0)

1− k0xλ(k0)
)q = ωq(Hq(

xλ(k0)(1− k0)

1− k0xλ(k0)
)) = ωq(λHq(xλ(k0))) = ωq(λHq(µ))

we get Rq,µ(k0, xλ(k0)) =
1

λ
ωq(λHq(µ)) and this proves (iii).

(iv) We write xλ(k) =
1

k
(1 − (1 − k)θ) where 0 < θ < 1 note that, in view of

(2.11), θ satisfies

λθq =
(1− q)(1− θ) + kθ

(1− q)(1− (1− k)θ) + qk
= ρk,λ(θ)

and observe that
1− q

1− q + k
= ρk,λ(0) < ρk,λ(y) < ρk,λ(1) = 1 for any y ∈ (0, 1). �
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Now for the next Lemma we fix real numbers f, h and k with f, h > 0, h < fq

and 0 < k < 1 and we consider the functions

(2.20) lk(B) = (1− k)1−q(f −B)q + k1−qBq

defined for 0 ≤ B ≤ f and

(2.21) Rk(B) =



(h− (1− k)1−q(f −B)q)ωq

(
k1−qBq

h− (1− k)1−q(f −B)q

)
if (1− k)1−q(f −B)q < h ≤ lk(B)

k1−qBq

1− q
if h ≤ (1− k)1−q(f −B)q

defined for all B ∈ [0, f ] such that lk(B) ≥ h.
Noting that lk has an absolute maximum at B = kf with lk(kf) = fp > h and

that it is monotone on each of the intervals (0, kf) and (kf, f) we conclude that
either lk(f) < h i.e. k1−qfq < h in which case the equation lk(B) = h has a unique
solution in (kf, f) and this is denoted by ρ1 = ρ1(f, h, k) or lk(f) ≥ h in which case
we set ρ1 = ρ1(f, h, k) = f . Also either lk(0) < h i.e. (1−k)1−qfq < h in which case
the equation lk(B) = F has a unique solution in (0, kf) and this is denoted by ρ0 =
ρ0(f, h, k) or hk(0) ≤ F in which case we set ρ0 = ρ0(f, h, k) = 0. In all cases the
domain of definition of Rk is the interval Wk = Wk(f, h) = [ρ0(f, h, k), ρ1(f, h, k)].
We now have the following.

Lemma 4. The maximum value of the function Rk on Wk is attained at the unique

point B∗ = xλ(k)kf > kf where λ =
fq

h
(see Lemma 3), which also satisfies

(2.22) (1− k)1−q(f −B∗)q < h < lk(B∗)

and moreover we have

(2.23) max
Wk

Rk = hωq(
fq

h
Hq(xλ(k)))− (1− k)fqxλ(k)q.

Proof. Clearly (1−k)1−q(f−B)q < h if and only if η0 = max(0, f− h
1
q

(1− k)
1
q−1

) <

B ≤ f , η0 < ρ1(f, h, k) and Rk(B) is strictly increasing inWk∩(0, η0] (if nonempty).
Hence it suffices to find its maximum value on W ′k = Wk∩[η0, f ] = [max(ρ0, η0), ρ1].
In the interior of W ′k we have (using Lemma 1)

(2.24) R′k(B) =
q

1− q
ωq(Z(B))1/q

ωq(Z(B))1/q − 1
[(
B

k
)q−1 − ωq(Z(B))

q−1
q (

f −B
1− k

)q−1]

where

Z(B) =
k1−qBq

h− (1− k)1−q(f −B)q
> 1

in the interior of W ′k and so ωq(Z(B)) > 1 there.
Now if ρ1 = f then since q < 1 we have lim

B→ρ−1
R′k(B) = −∞. Suppose ρ1 < f .

Then lim
B→ρ−1

Z(B) = 1 and

lim
B→ρ−1

((
B

k
)q−1 − ωq(Z(B))

q−1
q (

f −B
1− k

)q−1) = (
ρ1
k

)q−1 − (
f − ρ1
1− k

)q−1 < 0
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since ρ1 > kf . Hence lim
B→ρ−1

R′k(B) = −∞ holds always. In an analogous way (and

since ρ0 < kf) we have lim
B→ρ+0

R′k(B) = +∞ in the case where ρ0 > η0. Moreover

if kf > η0 which happens if and only if (1 − k)fq < h then since Z(kf) > 1 and
q < 1 we get from (2.24) that R′k(kf) > 0.

But by (2.24) we have R′k(B) = 0 if and only if ωq(Z(B))1/q =
B(1− k)

k(f −B)
which

is equivalent to

Hq(
B(1− k)

k(f −B)
) = (1− q)(B(1− k)

k(f −B)
)q + q(

B(1− k)

k(f −B)
)q−1 =

=
k1−qBq

h− (1− k)1−q(f −B)q
> 1(2.25)

and provided that h 6= (1− k)1−q(f −B)q this can been written as

(2.26) hHq(
B(1− k)

k(f −B)
) = fqHq(

B

kf
).

Consider now the equation (2.26) on the larger interval (0, f). Since h < fq

the number B = kf is not a solution of it and since Hq(z) > 1 for all z 6=

1 we get Hq(
B(1− k)

k(f −B)
) > 1 for any solution which in view of the equivalence

of (2.26) with the equality in (2.25) implies that h 6= (1 − k)1−q(f − B)q and
k1−qBq

h− (1− k)1−q(f −B)q
> 1 and so since B > 0 that also h > (1 − k)1−q(f − B)q

for any such solution. Therefore any solution of (2.26) in (0, f) will automatically
belong to the interior of W ′k and would be a root of R′k there.

Now letting x =
B

kf
∈ (0,

1

k
) the equation (2.26) takes the form (2.14) with

λ =
fq

h
> 1 and hence it has always a unique solution x = xλ(k) in (1,

1

k
) hence

(2.26) has a unique solution B∗ = xλ(k)kf in (kf, f) and it has a solution in (0, 1)

if and only if
fq

h
= λ < (1 − k)q−1 which is unique, hence (2.26) has a unique

solution B0 in (0, kf) if (1 − k)1−qfq < h and it has no solutions there otherwise.
Moreover by the above remarks B∗ satisfies (2.22).

If (1 − k)1−qfq < h then η0 = 0 < ρ0 and so lim
B→ρ+0

R′k(B) = +∞, R′k(kf) > 0

and lim
B→ρ−1

R′k(B) = −∞ which imply that the maximum value of Rk is attained

exactly at B∗ > kf (B0 < kf in this case must be an inflection point).
If (1− k)1−qfq ≥ h > (1− k)fq then B∗ is the unique root of R′k in the interior

of W ′k and so R′k(kf) > 0 and lim
B→ρ−1

R′k(B) = −∞ imply that the maximum value

of Rk is attained exactly at B∗.
If (1 − k)fq ≥ h then f ≥ ρ1 > η0 ≥ kf > ρ0 and lim

B→η+0
Z(B) = +∞ so

since q < 1 we get from (2.24) that lim
B→η+0

R′k(B) =
q

1− q
(
η0
k

)q−1 > 0 so again the

maximum value of Rk is attained exactly at B∗.
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To complete the proof of the Lemma we observe that since ωq(Z(B∗))1/q =
B∗(1− k)

k(f −B∗)
,

Rk(B∗) = hωq(Z(B∗))−(1−k)1−q(f−B∗)q(B
∗(1− k)

k(f −B∗)
)q = hωq(Z(B∗))−(1−k)(

B∗

k
)q

and use B∗ = xλ(k)kf and Z(B∗) = Hq(
B∗(1− k)

k(f −B∗)
) = λHq(xλ(k)). �

.

3. Trees and maximal operators

As in [4] we let (X,µ) be a nonatomic probability space (i.e. µ(X) = 1). Two
measurable subsets A, B of X will be called almost disjoint if µ(A∩B) = 0. Then
we give the following.

Definition 1. A set T of measurable subsets of X will be called a tree if the
following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have µ(I) > 0.
(ii) For every I ∈ T there corresponds a finite or countable subset C(I) ⊆ T

containing at least two elements such that:
(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =

⋃
C(I).

(iii) T =
⋃
m≥0 T(m) where T(0) = {X} and T(m+1) =

⋃
I∈T(m)

C(I).

(iv) We have lim
m→∞

sup
I∈T(m)

µ(I) = 0.

For any tree T we define its exceptional set E = E(T ) as follows

(3.1) E(T ) =
⋃
I∈T

⋃
J1,J2∈C(I)
J1 6=J2

(J1 ∩ J2).

It is clear that E(T ) has measure 0.
An easy induction shows that each family T(m) consists of pairwise almost disjoint

sets whose union is X. Moreover if x ∈ X\E(T ) then for each m there exists
exactly one Im(x) in T(m) containing x. For every m > 0 there is a J ∈ T(m−1)
such that Im(x) ∈ C(J). Since then x ∈ J we must have J = Im−1(x). Hence
the set A(x) = {I ∈ T : x ∈ I} forms a chain I0(x) = X ! I1(x) ! ... with
Im(x) ∈ C(Im−1(x)) for every m > 0. From this remark it easily follows that if
I, J ∈ T and I ∩ J ∩ (X\E(T )) is nonempty then I ⊆ J or J ⊆ I. In particular for
any I, J ∈ T we have either µ(I ∩ J) = 0 or one of them is contained in the other.
The following gives another property of T that will be useful later. For a proof see
[4].

Lemma 5. For every I ∈ T and every α such that 0 < α < 1 there exists a
subfamily F(I) ⊆ T consisting of pairwise almost disjoint subsets of I such that

(3.2) µ(
⋃

J∈F(I)

J) =
∑

J∈F(I)

µ(J) = (1− α)µ(I).

Now given any tree T we define the maximal operator associated to it as follows

(3.3) MT φ(x) = sup

{
1

µ(I)

∫
I

|φ| dµ : x ∈ I ∈ T
}
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for every φ ∈ L1(X,µ).
The linearization of this operator we will use has been introduced in [4]. Here

we will recall its definition and properties that we will use (for more details see [4]).
Let φ ∈ L1(X,µ) be a nonnegative function and for any I ∈ T let

(3.4) AvI(φ) =
1

µ(I)

∫
I

φdµ

We will say that φ is T -good if the set Λφ = {x ∈ X\E(T ) : MT φ(x) > AvI(φ)
for all I ∈ T such that x ∈ I} has µ-measure zero. If m ≥ 0 and λI ≥ 0 for
each I ∈ T(m) are given then the function φ =

∑
I∈T(m)

λIχI (where χI denotes the

characteristic function of I) is T -good since AvJ(φ) = AvP (φ) whenever J ∈ C(P ),
P ∈ T(s) for s > m and so Λφ = ∅. We call such a φ a T -step function. However
not all functions are T -good but T -step functions will be enough for our purposes.

Suppose now that φ is T -good. Then for any x ∈ X\(E(T ) ∪ Λφ) (i.e. for
µ-almost every x in X) we define Iφ(x) to be the largest element in the nonempty
set {I ∈ T : x ∈ I and MT φ(x) = AvI(φ)}.

Also given any I ∈ T let A(φ, I) = {x ∈ X\(E(T ) ∪ Λφ) : Iφ(x) = I} ⊆ I and
let

(3.5) Sφ = {I ∈ T : µ(A(φ, I)) > 0} ∪ {X}

which is a subtree of T . We also define the correspondence I → I∗ with respect
to Sφ as follows: I∗ is the smallest element of {J ∈ Sφ : I  J}. This is defined
for every I in Sφ except X. It is clear that the A(φ, I)’s for I ∈ Sφ are pairwise
disjoint and their union has full measure. Their basic properties are the following,
A ≈ B meaning µ(A\B) = µ(B\A) = 0, (see [4]):

(i) If I, J ∈ Sφ then either A(φ, J) ∩ I = ∅ or J ⊆ I.
(ii) If I ∈ Sφ then there exists J ∈ C(I) such that J /∈ Sφ.

(iii) For every I ∈ Sφ we have I ≈
⋃

Sφ3J⊆I

A(φ, J).

(iv) For every I ∈ Sφ we have A(φ, I) ≈ I \
⋃

J∈Sφ:J∗=I
J and so

(3.6) µ(A(φ, I)) = µ(I)−
∑

J∈S:J∗=I
µ(J).

In particular (iv) implies

(3.7) AvI(φ) =
1

µ(I)

∑
J∈Sφ:J⊆I

∫
A(φ,J)

φdµ

so setting

(3.8) aI = µ(A(φ, I)) and xI = a−1I

∫
A(φ,I)

φdµ

for every I ∈ Sφ (in the case where µ(A(φ,X)) = 0 we set xX = 0) we have

(3.9) MT φ =
∑
I∈Sφ

(
1

µ(I)

∑
J∈Sφ, J⊆I

aJxJ)χA(φ,I) .
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and

(3.10)

∫
X

φdµ =
∑
I∈Sφ

∫
A(φ,I)

φdµ =
∑
I∈Sφ

aIxI .

Using this decomposition of MT φ we can now prove the following:

Lemma 6. If the nonnegative function φ ∈ L1(X,µ) is T -good
∫
X
φdµ = f and∫

X
φqdµ = h then we have

(3.11)

∫
X

(MT φ)qdµ ≤ hωq(
fq

h
).

Proof. We let S = Sφ, aI = µ(A(φ, I)),

(3.12) ρI =
aI
µ(I)

∈ (0, 1)

(except possibly for I = X) and

(3.13) yI = AvI(φ) =
1

µ(I)

∑
J∈S:J⊆I

aJxJ

for every I ∈ S. It is easy to see that

(3.14) yIµ(I) =
∑

J∈S:J∗=I
yJµ(J) + aIxI

and so using the concavity of the function t→ tq we have for any I ∈ S

(yIµ(I))q = (
∑

J∈S:J∗=I
τIµ(J)

yJ
τI

+ σIaI
xI
σI

)q ≥

≥
∑

J∈S:J∗=I
τIµ(J)(

yJ
τI

)q + σIaI(
xI
σI

)q(3.15)

whenever the τI , σI > 0 satisfy τI(µ(I)−aI)+σIaI =
∑
J∈S:J∗=I τIµ(J)+σIaI = 1.

We now fix β > 0 and let

(3.16) σI = ((β + 1)µ(I)− βaI)−1 and τI = (β + 1)σI

which satisfy the above relation to get dividing by σ1−q
I

((β + 1)µ(I)− βaI)1−q(yIµ(I))q ≥
∑

J∈S:J∗=I
(β + 1)1−qµ(J)yqJ + aIx

q
I

However xqI = (
1

aI

∫
A(φ,I)

φ)q ≥ 1

aI

∫
A(φ,I)

φq and so summing over all I ∈ S and

using the properties of the A(φ, I)’s we get∑
I∈S

((β + 1)µ(I)− βaI)1−q(yIµ(I))q ≥
∑
J∈S
J 6=X

(β + 1)1−qµ(J)yqJ +

∫
X

φqdµ

and so since yX = f we get

(3.17) (β + 1)1−qfq − h ≥
∑
I∈S

[(β + 1)1−qµ(I)− ((β + 1)µ(I)− βaI)1−q(µ(I))q]yqI
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which since

1

µ(I)
[(β + 1)1−qµ(I)− ((β + 1)µ(I)− βaI)1−q(µ(I))q] =

= (β + 1)1−q − ((β + 1)− βρI)1−q ≥ (1− q)(β + 1)−qβρI

gives

(β + 1)1−qfq − h ≥ (1− q)(β + 1)−qβ
∑
I∈S

aIy
q
I

and so for any β > 0 we have

(3.18)

∫
X

(MT φ)qdµ ≤ 1

1− q
(β + 1)fq − (β + 1)qh

β
.

Considering now the right hand side of (3.18) as a function of β it is easy to see
that it is minimized for β equal to the unique root of the equation

(3.19) Hq(β + 1) = (1− q)(β + 1)q + q(β + 1)q−1 =
fp

h
≥ 1

and so taking β = ωq(
fq

h
)1/q−1 ≥ 0 in (3.18) and using (3.19) completes the proof

of (3.11). �

Remark 1. In case aX = 0 the above proof has to be modified (see [4]). However
we will not need this modification since (as property (ii) implies) we have aX > 0
whenever φ is a T -step function, and this will be enough as we will see in the proof
of the following Theorem.

Next we show that (3.11) holds for general φ and that it is actually best possible.
This is the content of the following.

Theorem 2. For any 0 < q < 1 we have
(3.20)

sup

{∫
X

(MT φ)qdµ : φ ≥ 0, φ ∈ L1(X,µ),

∫
X

φdµ = f,

∫
X

φpdµ = h

}
= hωq(

fp

h
).

Proof. For the general nonnegative φ ∈ L1(X,µ) one can consider the sequence
(φm) where φm =

∑
I∈T(m)

AvI(φ)χI and set

Φm =
∑

I∈T(m)

max{AvJ(φ) : I ⊆ J ∈ T }χI = MT φm

since AvJ(φ) = AvJ(φm) whenever I ⊆ J ∈ T when I ∈ T(m).
Then it is easy to see that

(3.21)

∫
X

φmdµ =

∫
X

φdµ = f , hm =

∫
X

φqmdµ ≥
∫
X

φqdµ = h

for all m and that Φm converges monotonically almost everywhere to MT φ. Since
as we have seen each φm is T -good, (3.11) combined with Lemma 1 (iii) gives

(3.22)

∫
X

Φpmdµ ≤ hmωq(
fq

hm
) ≤ hωq(

fq

h
)

and so letting m→∞ we get (3.11) for the general φ.
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Now to complete the proof of the Theorem we use a similar to [4] construction
and for α with 0 < α < 1, using Lemma 5, for every I ∈ T we choose a family
F(I) ⊆ T of pairwise almost disjoint subsets of I such that

(3.23)
∑

J∈F(I)

µ(J) = (1− α)µ(I).

Then we define S = Sα to be the smallest subset of T such that X ∈ S and for
every I ∈ S, F(I) ⊆ S. It is clear that defining the correspondence I → I∗ with
respect to this S we have J∗ = I ∈ S if and only if J ∈ F(I) and so writing

(3.24) AI = I\
⋃

J∈S:J∗=I
J

we have aI = µ(AI) = µ(I)−
∑
J∈S:J∗=I µ(J) = αµ(I) for every I ∈ S.

Also it is easy to see that

(3.25) S =
⋃
m≥0

S(m) where S(0) = {X} and S(m+1) =
⋃

I∈S(m)

F(I).

We define the rank r(I) of any I ∈ S to be the unique integer m such that
I ∈ S(m) and for λ, γ > 0 to be chosen later we define the xI ’s by setting

(3.26) xI = λγr(I)

for every I ∈ S. For every I ∈ S and every m ≥ 0 we have

(3.27) bm(I) =
∑
S3J⊆I

r(J)=r(I)+m

µ(J) = (1− α)mµ(I)

hence ∑
I∈S

aIx
r
I = λr

∑
m≥0

∑
I∈S(m)

γmrαµ(J) = λrα
∑
m≥0

γmrbm(X) =

= λrα
∑
m≥0

[γr(1− α)]m =
λrα

1− γr(1− α)

for any r > 0 such that γr(1− α) < 1. On the other hand if γ(1− α) < 1

yI =
1

µ(I)

∑
J∈S:J⊆I

aJxJ =
λ

µ(I)

∑
S3J⊆I

αµ(J)γr(J) =

=
λα

µ(I)

∑
m≥0

γm+r(I)
∑
S3J⊆I

r(J)=r(I)+m

µ(J) =

= λαγr(I)
∑
m≥0

γm(1− α)m =
α

1− γ(1− α)
xI

where the yI ’s are defined by the first equality above and so

(3.28)
∑
I∈S

aIy
q
I = (

α

1− γ(1− α)
)q
∑
I∈S

αIx
q
I .

whereas

(3.29) yX =
λα

1− γ(1− α)
.
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We choose λ = fα−1(1 − γ(1 − α)) to make yX = f and γ =
z − α
z(1− α)

where

z = zq(α,
fq

h
) > 1 is the unique root of

zq − (1− α)1−q(z − α)q

α
=
fq

h
furnished by

Lemma 2. Obviously γ > 1 and

γq(1− α) < γ(1− α) = 1− α

z
< 1

and so we have for these choices of λ, γ

(3.30)
∑
I∈S

xqI = h, yX = f and
∑
I∈S

aIy
q
I = zq(α,

fq

h
)qF .

Next we consider the function

(3.31) φα =
∑
I∈S

xIχAI .

so that
∫
X
φαdµ = f,

∫
X
φqαdµ = h, and since MT φα ≥

∑
I∈S AvI(φα)χAIwe have

(3.32)

∫
X

(MT φα)qdµ ≥
∑
I∈S

aIy
q
I = z(α,

fq

h
)qF .

Now we let α→ 0+ and use Lemma 2 to complete the proof. �

Using now Lemma 1 (ii) in (3.20) we get

(3.33)

∫
X

(MT φ)qdµ <
1

1− q
(

∫
X

φdµ)q

which is what Kolmogorov’s inequality would imply. However since by Lemma 1

(ii) limh→0+ hωq(
fp

h
) =

fq

1− q
the above Theorem implies that (3.33) is actually

sharp. When the function φ satisfies certain additional properties the above proof
gives also the following improvement (as shows Lemma 2 for zq).

Theorem 3. Let 0 < q < 1 and suppose α is such that 0 < α < 1. If φ ≥ 0 is
T -good with

∫
X
φdµ = f,

∫
X
φpdµ = h and such that aI = µ(A(φ, I)) ≥ αµ(I) for

every I ∈ S = Sφ then

(3.34)

∫
X

(MT φ)pdµ ≤ zq(α,
fq

h
)h <

α

1− (1− α)1−q
fq <

1

1− q
fq

and the first of these inequalities is best possible.

Proof. To prove (3.34) we use with ρI =
aI
µ(I)

≥ α the inequality

(β + 1)1−q − ((β + 1)− βρI)1−q

ρI
≥ (β + 1)1−q − ((β + 1)− βα)1−q

α

in (3.17) to get for any β > 0

(3.35)

∫
X

(MT φ)qdµ ≤ α (β + 1)1−qfq − h
(β + 1)1−q − (β + 1− βα)1−q

.

instead of (3.18). Now setting z = β + 1 − βα > 1 it is easy to see that the right

hand side is minimized when z satisfies (2.5) with λ =
fq

h
and so using Lemma 2

and the equation (2.5) in (3.35) completes the proof of (3.34).
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To show that (3.34) is best possible we just use the φα in the proof of Theorem
2 for this specific α. �

The above Theorem has the following application in the case where X = [0, 1]n,
µ is the Lebesgue measure and T = D is the tree of all dyadic subcubes of [0, 1]n

and therefore D(m) is the set of all dyadic subcubes of [0, 1]n whose sides have

length equal to 2−m.

Proposition 2. Let 0 < q < 1. Then:
(i) If m > 0 and φ =

∑
I∈D(m)

λIχI then (with
∫
X
φdµ = f,

∫
X
φpdµ = h)

(3.36)

∫
X

(MDφ)qdµ ≤ zq(2−mn,
fq

h
)h <

1

2mn − 2mnq(2mn − 1)1−q
‖φ‖q1

(ii) If φ ∈ L1 and is nonnegative, decreasing in each variable and convex on
(0, 1)n then

(3.37) ‖MDφ‖p ≤ zq(2
−n,

fq

h
)h <

1

2n − 2nq(2n − 1)1−q
‖φ‖q1 .

Proof. Both follow from (3.34). For (3.36) it suffices to observe that φ is D-good
and for any J ∈ Sφ we choose I ∈ D(m) such that |A(φ, J) ∩ I| > 0 and note that

we must have I ⊆ A(φ, J) and so
|A(φ, J)|
|J |

≥ 2−mn.

For (3.37) we use (3.34) for α =
1

2n
noting that for any J ∈ D if J+ is the square

formed by the right halves of the sides of J , the assumptions on φ imply

(3.38) AvJ(φ) ≥ sup
x∈J+

φ(x)

and therefore φ is D-good and for any J ∈ Sφ we have J+ ⊆ A(φ, J). �

The first part of the above Proposition provides an estimate of the limitation for
making the sharp inequality (1.3) an almost equality using dyadic step functions.

4. Bellman functions for the Maximal operator related to
Kolmogorov’s inequality

Here we use the results of the previous sections to study the Bellman functions
for MT defined by (1.6) thus proving our main Theorem 1.

Let us fix 0 < q < 1 and a nonnegative φ ∈ Lp(X,µ) such that
∫
X
φpdµ = F and∫

X
φdµ = f (where fp ≤ F ). For any I ∈ T we apply Theorem 3 for φ restricted

to I and for the tree T (I) = {J ∈ T : J ⊆ I} on the probability space (I,
1

µ(I)
µ)

to get

(4.1) AvI [(MT (I)(φχI))
q] ≤ AvI(φ

q)ωp(
(AvI(φ))q

AvI(φq)
).

Next fix L ≥ f and let I1, I2, ... be all the maximal elements (if any) of {J ∈ T :
AvJ(φ) ≥ L}. It is clear that the Ij ’s are pairwise almost disjoint and that writing
K =

⋃
j

Ij

(4.2) max(MT φ,L) = LχX\K +
∑
j

(MT (Ij)(φχIj ))χIj .
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Therefore writing k =
∑
j µ(Ij) and using (4.1) for I1, I2, ... we get

(4.3)

∫
X

(max(MT φ,L))qdµ ≤ Lq(1− k) +
∑
j

αjωq(
βj
αj

)q

where

(4.4) αj =

∫
Ij

φqdµ ≤ βj = µ(Ij)
1−q(

∫
Ij

φdµ)q.

Now we write

(4.5) A =
∑
j

αj =

∫
K

φqdµ ≤ h and B =
∑
j

(µ(Ij)
q−1βj)

1/q =

∫
K

φdµ ≤ f

note that

(4.6) k1−qBq = (
∑
j

µ(Ij))
1−q(

∑
j

(µ(Ij)
q−1βj)

1/q)q ≥
∑
j

βj ≥ A

and use the concavity of ωq provided by Lemma 1 (i) to conclude that∫
X

(max(MT φ,L))qdµ ≤ Lq(1− k) +Aωq

(∑
j βj

A

)
≤

≤ Lq(1− k) +Aωq(
k1−qBq

A
).(4.7)

The parameters A, B and k satisfy the following inequalities

(4.8) A ≤ k1−qBq, A ≤ h, B ≤ f , 0 ≤ k ≤ 1 and h−A ≤ (1− k)1−q(f −B)q

the last one being just
∫
X\K φ

qdµ ≤ µ(X\K)1−q(
∫
X\K φdµ)q (we also have B ≥ kL

by the choice of the Ij ’s).
Conversely assuming that 0 < k < 1, B < f and A, B satisfy the inequalities

(4.8) we fix δ in (0, 1) we use Lemma 5 to pick a family {I1, I2, ...} of pairwise
almost disjoint elements of T such that

∑
j µ(Ij) = k. Next since A ≤ k1−qBq

using Theorem 3 for each j we choose a nonnegative φj ∈ Lp(Ij ,
1

µ(Ij)
µ) such that

(4.9)

∫
Ij

φqjdµ =
A

k
µ(Ij),

∫
Ij

φjdµ =
B

k
µ(Ij)

and

(4.10)

∫
Ij

(MT (Ij)(φj))
qdµ ≥ δA

k
ωq(

k1−qBq

A
)µ(Ij).

Next we choose a ψ ∈ Lp(X\K,µ) such that

(4.11)

∫
X\K

ψqdµ = h−A > 0 and

∫
X\K

ψdµ = f −B > 0

where K =
⋃
j

Ij which is possible by (4.8) and define

(4.12) φ = ψχX\K +
∑
j

φjχIj .
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Then
∫
X
φdµ = f ≤ L,

∫
X
φqdµ = h and

(4.13)

∫
X

(max(MT φ,L))qdµ ≥ Lq(1− k) + δAωq(
k1−qBq

A
)q.

Letting now δ → 1− we have proved the following:

BTq (f, h, L, 1) = sup{Lq(1− k) +Aωq(
k1−qBq

A
) : k1−qBq ≥ A, A ≤ h,

B < f , 0 < k < 1 and (1− k)1−q(f −B)q ≥ h−A}.(4.14)

The inequalities (4.8) for k, A and B imply that (1− k)1−q(f −B)q + k1−qBq ≥ h
and A ≥ h− (1− k)1−q(f −B)q = C and so using now Lemma 1 (iii) we conclude

that Aωq(
k1−qBq

A
) ≤ Cωq(

k1−qBq

C
) if h > (1− k)1−q(f −B)q and

Aωq(
k1−qBq

A
) < lim

z→0+
zωq(

k1−qBq

z
) =

k1−qBq

1− q

if h ≤ (1− k)1−q(f − B)q so using the notation of (2.20), (2.21) and Lemma 4 we
have

BTq (f, h, L, 1) = sup{Rk,h(B) + Lq(1− k) : 0 < k < 1, 0 < B < f and lk(B) ≥ h} =

= sup
0<k<1

[hωq(
fq

h
Hq(x(

fq

h
, k))) + (Lq − fqx(

fq

h
, k)q)(1− k)]

and so by Lemma 3 (iii) with ξ = 1 and µ =
L

f
> 1 we have proved the following

Proposition 3. For any tree T on (X,µ) and any 0 < q < 1 we have

(4.15) BTq (f, h, L, 1) = hωq(
fq

h
Hq(

L

f
)).

Next to compute BTq (f, h, f, k) for 0 < k < 1 in a similar as in [4] way suppose
that φ, E satisfy the requirements in the corresponding definition, choose u > 0
such that

(4.16) µ({MT φ > u}) ≤ k ≤ µ({MT φ ≥ u})

and choose a measurable D such that V1 = {MT φ > u} ⊆ D ⊆ {MT φ ≥ u} = V2
and µ(D) = k (note that µ is assumed nonatomic). Since MT φ ≤ u on E\V1 it is
easy to see that

(4.17)

∫
E

(MT φ)qdµ ≤
∫
D

(MT φ)qdµ

and defining s ∈ [0, 1] by µ(D) = sµ(V1)+(1−s)µ(V2) we also have (since MT φ = u
on V2\V1)

(4.18)

∫
D

(MT φ)qdµ = s

∫
V1

(MT φ)qdµ+ (1− s)
∫
V2

(MT φ)qdµ.

Now since each of the V1, V2 is a union of families {I(1)j }, {I
(2)
r } consisting of

pairwise almost disjoint elements maximal under AvI(φ) > u (resp. ≥ u) and
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we clearly have MT φ = MT (I)φ for each of those I’s, arguing as in the case of

BTq (f, h, L, 1) and using (4.17) and (4.18) we have

(4.19)

∫
E

(MT φ)qdµ ≤
∑
j

sα
(1)
j ωq(

β
(1)
j

α
(1)
j

) +
∑
r

(1− s)α(2)
r ωq(

β
(2)
r

α
(2)
r

)

where α
(1)
j =

∫
I
(1)
j
φqdµ ≤ β

(1)
j = µ(I

(1)
j )1−q(

∫
I
(1)
j
φdµ)q, α

(2)
r =

∫
I
(2)
r
φqdµ ≤ β

(2)
r =

µ(I
(2)
r )1−q(

∫
I
(2)
r
φdµ)q. Hence using Lemma 1 (i) we have

(4.20)

∫
K

(MT φ)qdµ ≤ Aωq

(∑
j sβ

(1)
j +

∑
r(1− s)β

(2)
r

A

)
where

(4.21) A =
∑
j

sα
(1)
j +

∑
r

(1− s)α(2)
r = s

∫
V1

φqdµ+ (1− s)
∫
V2

φqdµ ≤ h.

Setting

(4.22) B = s

∫
V1

φdµ+ (1− s)
∫
V2

φdµ ≤ f

and noting that k = µ(D) =
∑
j sµ(I

(1)
j ) +

∑
r(1− s)µ(I

(2)
r ) it is easy to see using

(3.15) that

(4.23) k1−qBq ≥
∑
j

sβ
(1)
j +

∑
r

(1− s)β(2)
r ≥ A

and so since ωq is increasing we have

(4.24)

∫
E

(MT φ)qdµ ≤ Aωq
(
k1−qBq

A

)
.

Moreover we note that A,B satisfy all the inequalities in (4.8) (k being now fixed)
the last now being just

(4.25)

∫
X

φqηdµ ≤ (

∫
X

ηdµ)1−q(

∫
X

φηdµ)q

where η = sχX\V1
+ (1− s)χX\V2

.

In the same as in the case for BTq (f, h, L, 1) way and using, for any A,B satisfying
(4.8) (with k fixed), the functions φ defined by (4.12) we get the following

(4.26) BTq (f, h, f, k) = sup{Rk(B) : 0 ≤ B ≤ f and lk(B) ≥ h}

where lk and Rk are defined by (2.20) and (2.21).
Hence Lemma 4 implies.

Proposition 4. We have

(4.27) BTq (f, h, f, k) = hωq(
fq

h
Hq(x(

fq

h
, k)))− fqx(

fq

h
, k)q(1− k).

Now to prove our main Theorem 1 we let w > 0 be such that

(4.28) µ({max(MT φ,L) > w}) ≤ k ≤ µ({max(MT φ,L) ≥ w})



MAXIMAL OPERATORS 21

choose a measurable setK such that U1 = {max(MT φ,L) > w} ⊆ K ⊆ {max(MT φ,L) ≥
u} = U2 and µ(K) = k and as with (4.17) we get

(4.29)

∫
E

(max(MT φ,L))qdµ ≤
∫
K

(max(MT φ,L))qdµ.

We then consider two cases:
(i) If w > L then MT φ > L on K and so (4.29) and µ(K) = k gives

(4.30)

∫
E

(max(MT φ,L))qdµ ≤ BTq (f, h, f, k).

(ii) If w = L then let µ(U1) = k1 ≤ k and note that MT φ ≤ L on K\U1 to get∫
E

(max(MT φ,L))qdµ ≤
∫
U1

(MT φ)qdµ+

∫
K\U1

Lqdµ ≤

≤ BTq (f, h, f, k1) + Lq(k − k1).(4.31)

Conversely given 0 < k1 ≤ k for any 0 < δ < 1 choose a φ̃ satisfying the require-
ments and a measurable set E1 ⊆ X with µ(E1) = k1 that satisfy∫

E1

(MT φ̃)qdµ ≥ δBTq (f, h, f, k1)

and then choose a measurable E2 ⊆ X\E1 with µ(E2) = k−k1. Then E = E1∪E2

satisfies µ(E) = k and∫
E

(max(MT φ̃, L))qdµ ≥
∫
E1

(MT φ̃)qdµ+ Lqµ(E2) = δBTq (f, h, f, k1) + Lq(k − k1).

Letting δ → 1− we have proved that

BTq (f, h, L, k) = sup
0<k1≤k

[BTq (f, h, f, k1) + Lq(1− k1)]− Lq(1− k).

But now (4.27) and Lemma 3 (iii) complete the proof of Theorem 1.

5. Proof of Proposition 1

We will show first that for any I ∈ T(1) = C(X) (see Definition 1)

(5.1) lim sup
m→∞

1

µ(I)

∫
I

φmdµ ≤ f .

Suppose not and choose an I ∈ T(1) such that (5.1) is not satisfied and assume
choosing a subsequence that

(5.2) lim
m→∞

1

µ(I)

∫
I

φmdµ = f1 > f and 0 ≤ lim
m→∞

1

µ(I)

∫
I

φqmdµ = h1 ≤ fq1 .

Then letting τ = µ(I) ∈ (0, 1) we also have

0 ≤ lim
m→∞

1

µ(X\I)

∫
X\I

φmdµ =
f − τf1
1− τ

< f and

lim
m→∞

1

µ(X\I)

∫
X\I

φqmdµ =
h− τh1
1− τ

≥ 0.(5.3)
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Consider the trees T ∗ = {J ∈ T : J ⊆ I} on the probability space (I,
1

τ
µ) and

T ∗∗ = {X\I} ∪ {J ∈ T : J ⊆ X\I} on the probability space (X\I, 1

1− τ
µ) and

note that in view of f1 > f for all sufficiently large m we have

(5.4) MT φm = MT ∗φm on I and MT φm = max(MT ∗∗φm, f) on X\I

hence using (1.13) and (1.14) we get

(5.5) lim sup
m→∞

∫
I

(MT φm)qdµ ≤ τh1ωq(
fq1
h1

) if h1 > 0

and

(5.6) lim sup
m→∞

∫
I

(MT φm)qdµ ≤ τfq1
1− q

if h1 = 0

(where in the case h1 = 0 we just used (2.2)) and

(5.7) lim sup
m→∞

∫
X\I

(MT φm)qdµ ≤ (h−τh1)ωq(
(1− q)(1− τ)fq + qfq−1(f − τf1)

h− τh1
)

if h > τh1 and

(5.8) lim sup
m→∞

∫
X\I

(MT φm)qdµ ≤ (1− τ)fq +
q

1− q
fq−1(f − τf1)

if h = τh1.
In the case 0 < h1 < τh (5.5), (5.7), (1.16) and the concavity of ωq give

(5.9) hωq(
fq

h
) ≤ hωq(

τfq1 + (1− q)(1− τ)fq + qfq−1(f − τf1)

h
)

which since ωq is increasing gives fq ≤ τfq1 + (1 − q)(1 − τ)fq + qfq−1(f − τf1)
which gives fq1 ≥ (1− q)fq + qfq−1f1 which is a contradiction since 0 < q < 1 and
f1 > f > 0.

If h1 = 0 then (5.6), (5.7) and (1.16) give

(5.10) hωq(
fq

h
) ≤ hωq(

(1− q)(1− τ)fq + qfq−1(f − τf1)

h
) +

τfq1
1− q

and since Lemma 1 easily implies

(5.11) ωq(a)− ωq(b) >
1

1− q
(a− b)

whenever a > b ≥ 1 (5.10) gives fq < τfq1 +(1−q)(1−τ)fq +qfq−1(f −τf1) which
is a contradiction (since 0 < τ < 1) even if we had assumed f1 ≥ f .

If τh1 = h then (5.5), (5.8) and (1.16) give

(5.12) hωq(
fq

h
) ≤ hωq(

τfq1
h

) + (1− τ)fq +
q

1− q
fq−1(f − τf1)

which again using (5.11) leads to a contradiction even if we had assumed f1 ≥ f .
This proves (5.1) and then since

(5.13) f = lim
m→∞

∑
I∈T(1)

∫
I

φmdµ ≤
∑
I∈T(1)

lim sup
m→∞

∫
I

φmdµ ≤
∑
I∈T(1)

fµ(I) = f
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we conclude (taking subsequences) that

(5.14) lim
m→∞

1

µ(I)

∫
I

φmdµ = f

for every I ∈ T(1). Moreover the above arguments show that for any I ∈ T(1)
and any subsequence (φmj ) such that limj→∞

1

µ(I)

∫
I

φqmjdµ = h1 we must have

0 < µ(I)h1 < h and then we must also have equality in (5.9) which follows from
(5.5) and (5.7) which in view of the strict concavity of ωq implies (with τ = µ(I))

that
fq

h1
=

(1− q)(1− τ)fq + qfq−1(f − τf)

h− τh1
hence that h1 = h. Thus the first two

equalities in (1.17) hold for any I ∈ T(1). But since we also must have equality in
(5.5) where now f1 = f , h1 = h we conclude that also the third equality in (1.17)
holds for any I ∈ T(1). Now the proof of Proposition 1 can be easily completed by
induction on the levels of the tree T .

6. Approximations of the Bellman functions, scaling and
Kolmogorov’s inequality

Here we will derive certain estimates for the various Bellman functions in order
to get some idea on what Theorem 1 says and then we will use them to study the
behavior of the dyadic maximal function on Rn and the various Bellman functions
that come from (1.4). One could obtain better approximations by iterating the
corresponding estimates in Lemmas 1 and 3. We first have the following.

Proposition 5. The following estimates hold
(i)

(6.1)
fq − qfq−1h

1
q

1− q
< BTq (f, h, f, 1) <

fq − q(1− q)
1
q−1fq−1h

1
q

1− q

(ii)
(6.2)

BTq (f, h, L, 1) <
(1− q)Lq + qLq−1f − q(1− q)

1
q−1((1− q)Lq + qLq−1f)1−

1
q h

1
q

1− q

and

(6.3) BTq (f, h, L, 1) >
(1− q)Lq + qLq−1f − q((1− q)Lq + qLq−1f)1−

1
q h

1
q

1− q
.

(iii)
(6.4)

BTq (f, h, f, k) <
1

1− q
k1−q(f−(

1− q
1− q + k

)1/q(1−k)h1/q)q(1−q( 1− q
1− q + k

)1/qk
h1/q

f
)

and

(6.5) BTq (f, h, f, k) >
1

1− q
k1−q(f − (1− k)h1/q)q.
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(iv) The unique in (0,
f

L
) solution k0 = k0(f, h, L) of the equation Hq(

L(1− k)

f − Lk
) =

fq

h
Hq(

L

f
) satisfies

(6.6) 0 <
f − h1/q

L− h1/q
< k0(f, h, L) <

f − (1− q)1/qh1/q

L− (1− q)1/qh1/q
<
f

L
.

Proof. (i) and (ii) follow from Corollary 1 combined with Lemma 1 (iv). For (iii)

we let λ =
fq

h
> 1 and using the equation satisfied by xλ(k) and (4.27) we get

(6.7) BTq (f, h, f, k) = h(
xλ(k)(1− k)

1− kxλ(k)
)q − fqxλ(k)q(1− k).

But (2.11) gives

(6.8) (
1− k

1− kxλ(k)
)q(1− kxλ(k)

(1− q)xλ(k) + q
) = λ(1− k) =

fq

h
(1− k)

hence using (6.8) in (6.7) we get

BTq (f, h, f, k) = fqkxλ(k)q
(1− k)xλ(k)

(1− q)xλ(k) + q − kxλ(k)
=

= fqkxλ(k)q[1− q(1− kxλ(k))

(1− q)xλ(k) + q − kxλ(k)
].(6.9)

Now (6.4) follows by using (2.19) from Lemma 3 (iv) in (6.9) after observing that

trivially (from 1 < xλ(k) <
1

k
)

(6.10) (1− q)xλ(k) + q − kxλ(k) < max

(
1− k, (1− q)(1− k)

k

)
<

1

k

To prove (6.5) we use the lower bound from (2.19) in the first equality in (6.9) after

observing (now from
1

k
(1− (1− k)λ−1/q) < xλ(k) <

1

k
) that

(1− q)xλ(k) + q − kxλ(k)

1− k
> min

(
1− q
k

(1− λ−1/q) + λ−1/q,
1− q
k

)
>

>
1− q
k

(1− (1− k)λ−1/q).(6.11)

To prove (6.6) we write (using (2.11)) the equation for k0 as

(6.12)
h(1− k0)q

(f − Lk0)q
=

1− k0

1− k0
L

(1− q)L+ qf

and note that since L > f and 0 < k0 <
f

L
the right hand side of (6.12) is between

1 and
1

1− q
(one could also use Lemma 1 (iv) in (1.12)). �

Clearly the above Proposition provides estimates for the full Bellman function
BTq (f, h, L, k) since Theorem 1 implies

(6.13) BTq (f, h, f, k) =

{
BTq (f, h, L, 1)− Lq(1− k) if k ≥ k0(f, h, L)
BTq (f, h, f, k) if k < k0(f, h, L).
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Now we come to the dyadic maximal operator on Rn, consider a nonnegative
φ ∈ L1(Rn) let ‖φ‖1 =

∫
Rn φ and fix a dyadic cube Q. Let Dn(Q) denote the tree

of dyadic subcubes of Q on the probability space (Q,
1

|Q|
|.|). Then we get from

the above Proposition and Corollary 1 (where MDn(Q) denotes the local maximal
operator with respect to the tree Dn(Q) and Md the usual dyadic maximal operator
on Rn).

Corollary 2. We have for any q with 0 < q < 1.
(i)

(6.14)∫
Q

(MDn(Q)φ)q <
|Q|1−q

1− q

[
(

∫
Q

φ)q − q(1− q)
1
q−1 |Q|1−

1
q (

∫
Q

φ)q−1(

∫
Q

φq)1/q
]

.

(ii) If L = sup
Q′:Q⊆Q′

AvQ′(φ) ≤ |Q|−1 ‖φ‖1 then

(6.15)∫
Q

(Mdφ)q <
(1− q)Lq |Q|+ qLq−1

∫
Q
φ− q(1− q)

1
q−1(

∫
Q
φq)1/q((1− q)Lq |Q|+ qLq−1

∫
Q
φ)1−

1
q

1− q

and
(6.16)∫
Q

(Mdφ)q <
|Q|1−q

1− q

[
(1− q) ‖φ‖q1 + q ‖φ‖q−11

∫
Q

φ− q(1− q)
1
q−1 |Q|1−

1
q (

∫
Q

φq)1/q ‖φ‖q−11

]
.

(iii) If E ⊆ Q is measurable then
(6.17)∫
E

(MDn(Q)φ)q <
|E|1−q

1− q

[∫
Q

φ− (
(1− q) |Q|

(1− q) |Q|+ |E|
)1/q(1− |E|

|Q|
) |Q|−

1
q+1

(

∫
Q

φq)1/q
]q

.

(iv) With the above notation
(6.18)∫
E

(Mdφ)q <
|E|1−q

1− q

[∫
Q

φ− (
(1− q) |Q|

(1− q) |Q|+ |E|
)1/q(1− |E|

|Q|
) |Q|−

1
q+1

(

∫
Q

φq)1/q
]q

when |E| ≤ k0 |Q| and
(6.19)∫
E

(Mdφ)q <
(1− q)Lq |E|+ qLq−1

∫
Q
φ− q(1− q)

1
q−1(

∫
Q
φq)1/q

[
(1− q)Lq |Q|+ qLq−1

∫
Q
φ
]1− 1

q

1− q

when |E| > k0 |Q| where the number k0 satisfies
(6.20)∫
Q
φ− |Q|−

1
q+1

(
∫
Q
φq)1/q

L |Q| − |Q|−
1
q+1

(
∫
Q
φq)1/q

< k0 <

∫
Q
φ− (1− q)1/q |Q|−

1
q+1

(
∫
Q
φq)1/q

L |Q| − (1− q)1/q |Q|−
1
q+1

(
∫
Q
φq)1/q

<
1

L |Q|

∫
Q

φ.

(v) Moreover when |E| ≥ 1

L

∫
Q
φ we have

(6.21)

∫
E

(Mdφ)q <
Lq |E|
1− q

≤
|E| |Q|−q ‖φ‖q1

1− q
≤
|E|1−q ‖φ‖q1

1− q
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and when k0 |Q| < |E| <
1

L

∫
Q
φ we have

(6.22)∫
E

(Mdφ)q < |Q|hωq
(
fq

h
Hq(
|Q|
|E|

)

)
− fq

[
(
|Q|
|E|

)q − (
|Q|
|E|

)q−1
]
<
|E|1−q

1− q
(

∫
Q

φ)q.

Proof. (i)-(iv) follow easily from the previous Proposition, noting that (6.16) follows

by first using the inequality L ≤ |Q|−1 ‖φ‖1 in (4.15) and then using Lemma 1

(iv). Also from (6.19) when |E| ≥ 1

L

∫
Q
φ we easily get (6.21). When k0 |Q| <

|E| < 1

L

∫
Q
φ we can argue as follows. We note that (with f =

1

|Q|
∫
Q
φ and

h =
1

|Q|
∫
Q
φq) the function P (z) = hωq

(
fq

h
Hq(

z

f
)

)
− zq(1− k) is increasing in z

when Hq(
z(1− k)

f − zk
) ≥ fq

h
Hq(

z

f
) and f < z <

f

k
, the proof being similar to that of

Lemma 3 using Lemma 1 and the inequality ωq

(
fq

h
Hq(

z

f
)

)
≤ (

z(1− k)

f − zk
)q, to get

(6.23) P ′(z) ≥ 1

1− q
h

z(1− k)

f − zk
z(1− k)

f − zk
− 1

fq

h
q(1−q) 1

f
(
z

f
)q−2(

z

f
−1)−qzq−1(1−k) = 0,

so with k =
|E|
|Q|

we can replace L by
f

k
in the Bellman function and use Lemma 1

(ii) (a better estimate would follow from Lemma 1 (iv)) to get (6.22). �

It is clear that by Proposition 5 all of the above estimates tend to be sharp when∫
Q
φ is fixed and

∫
Q
φq tends to 0. These thus show that Kolmogorov’s inequality

on MDn(Q)φ and Md is sharp (when
∫
Q
φq tends to 0) and provide improvements

the sharp form of which is obtained by appropriately scaling the exact estimates in
Theorem 1 and Corollary 1.
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