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Abstract. We obtain sharp estimates for the localized distribution function

of the dyadic maximal function M dφ, given the local L1 norms of φ and of
G ◦ φ where G is a convex increasing function such that G(x)/x → +∞ as

x → +∞. Using this we obtain sharp refined weak type estimates for the

dyadic maximal operator.

1. Introduction

The dyadic maximal operator on Rn is defined by

(1.1) M dφ(x) = sup

{
1

|Q|

∫
Q

|φ(u)| du : x ∈ Q, Q ⊆ Rn is a dyadic cube

}
for every φ ∈ L1

loc(Rn) where the dyadic cubes are the cubes formed by the grids
2−NZn for N = 0, 1, 2, ....

As it is well known it satisfies the following weak type (1, 1) inequality

(1.2) |{x ∈ Rn : M dφ(x) > λ}| ≤ 1

λ

∫
{M dφ>λ}

|φ(u)| du.

for every φ ∈ L1(Rn) and every λ > 0 from which it is easy to get the following Lp

inequality

(1.3) ‖Mdφ‖p ≤
p

p− 1
‖φ‖p

for every p > 1 and every φ ∈ Lp(Rn) which is best possible (see [?], [?] for the
general martingales and [?] for dyadic ones).

An approach for studying such maximal operators is the introduction of the
so called Bellman functions (see [?]) related to them which reflect certain deeper
properties of them by localizing. Such functions related to the Lp inequality (??)
have been precisely evaluated in [?]. Actually defining for any p > 1
(1.4)

Bp(F, f, L) = sup

{
1

|Q|

∫
Q

(Mdφ)p : AvQ(φp) = F,AvQ(φ) = f, sup
R:Q⊆R

AvR(φ) = L

}
where Q is a fixed dyadic cube, R runs over all dyadic cubes containing Q, φ is
nonnegative in Lp(Q) and the variables F, f, L satisfy 0 ≤ f ≤ L, fp ≤ F which is
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independent of the choice of Q (so we may take Q = [0, 1]n) it has been shown in
[?] that

(1.5) Bp(F, f, L) =

{
Fωp

(
pLp−1f−(p−1)Lp

F

)p
if L < p

p−1f

Lp + ( p
p−1 )p(F − fp) if L ≥ p

p−1f .

where ωp : [0, 1] → [1, p
p−1 ] is the inverse function of Hp(z) = −(p− 1)zp + pzp−1.

Actually this has been shown in a much more general setting of tree like maximal
operators on probability spaces and the corresponding Bellman function is always
the same. Also in [?] Bellman functions related to local Lp, Lq inequalities have
been determined, which turned out to be considerably more complicated than those
in (??).

For more information and results on the Bellman approach we refer to [?], [?],
[?] and for exact determinations of various Bellman functions (which usually is a
difficult task) see [?], [?], [?], [?], [?], [?], [?] and [?].

One may look at (??) as an extremum problem which reflects the deeper structure
of the dyadic maximal function since it encodes information not only about the size
of the function but also a measure of its variance. In this spirit we will study here a
corresponding extremum problem for the standard weak-Lp quasi-norms. Therefore
we define

Bp,∞(F, f, L) = sup{ 1

|Q|
‖Mdφ‖pLp,∞(Q) : AvQ(φp) = F,

AvQ(φ) = f, sup
R:Q⊆R

AvR(φ) = L}(1.6)

where ‖Mdφ‖Lp,∞(Q) = sup{λ |{Mdφ ≥ λ} ∩Q|1/p : λ > 0} is the corresponding lo-

cal weak-Lp quasi-norm. In this note we will among other things explicitly compute
the above function.

Actually as in [?] we will take the more general approach of defining Bellman
functions with respect to the maximal operator on a nonatomic probability space
(X,µ) equipped with a tree T (see Definition 1.1). Then we can define the maximal
operator associated to T as follows

(1.7) MT φ(x) = sup

{
1

µ(I)

∫
I

|φ| dµ : x ∈ I ∈ T
}

for every φ ∈ L1(X,µ). The above maximal operator is related to the theory of
martingales and satisfies essentially the same inequalities as Md.

Next we let G : [0,+∞)→ [0,+∞) be a strictly convex and increasing function

and such that limx→+∞
G(x)
x = +∞ and for any f, F, λ such that 0 < f < λ,G(f) <

F we define

DG(λ, f, F ) = sup{µ({MT φ ≥ λ})) : φ ≥ 0, φ ∈ L1(X,µ),∫
X

φdµ = f,

∫
X

G ◦ φdµ = F}.(1.8)

Then we will in Theorem 1 find the exact form of the above function. This gives
the best possible behavior of the distribution function of the maximal operator and
can be thought of as a sharp refinement of the classical weak type inequality (??).

Using this we will then solve corresponding to (??) local extremum problems
but with the more general functional sup{H(λ)µ({Mdφ ≥ λ}) : λ > 0} where H is
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another convex function (in a sense at most as strong as G) and then we will use
this to find the solution of extremal problems like (??) but with mixed norms.

A common feature in all those computations is that the corresponding functions
are independent from the particular tree T used, and therefore we have suppressed
the T from them.

Acknowledgement. The authors would like to thank the referee for suggesting
Remark 2 and Corollaries 4 and 5.

2. The main result

As in [?] we will let (X,µ) be a nonatomic probability space (i.e. µ(X) = 1).
Two measurable subsets A, B of X will be called almost disjoint if µ(A ∩ B) = 0.
Then we give the following.

Definition 1. A set T of measurable subsets of X will be called a tree if the
following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have µ(I) > 0.
(ii) For every I ∈ T there corresponds a finite subset C(I) ⊆ T containing at

least two elements such that:
(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =

⋃
C(I).

(iii) T =
⋃
m≥0 T(m) where T(0) = {X} and T(m+1) =

⋃
I∈T(m)

C(I).

(iv) We have lim
m→∞

sup
I∈T(m)

µ(I) = 0.

The elements of such a tree T behave in a similar to the dyadic cubes manner,
in particular if the intersection of two elements of T has positive measure then one
is contained in the other. For more details as well as for a proof of the following
Lemma we refer to [?].

Lemma 1. For every I ∈ T and every α such that 0 < α < 1 there exists a
subfamily F(I) ⊆ T consisting of pairwise almost disjoint subsets of I such that

(2.1) µ(
⋃

J∈F(I)

J) =
∑

J∈F(I)

µ(J) = (1− α)µ(I).

Also we will need the following.

Lemma 2. Let G be a convex increasing function on [0,+∞) such that limx→+∞
G(x)
x =

+∞ and let (Y, µ) be a nonatomic measure space with δ = µ(Y ) < +∞. Then
given α, β > 0 there exists a nonnegative measurable function ψ on Y such that∫
Y
ψdµ = α and

∫
Y
G ◦ ψdµ = β if and only if δG(αδ ) ≤ β.

Proof. One direction is just Jensen’s inequality. For the other if δG(αδ ) ≤ β for
any t such that 0 < t ≤ δ we choose a measurable subset C(t) of Y such that
µ(C(t)) = t (this is possible since µ is nonatomic) and define ψt = α

t χC(t). Clearly∫
Y
ψtdµ = α and

∫
Y
G ◦ψtdµ = tG(αt ). But now the assumptions on G,α, β easily

imply that there exists t as above with tG(αt ) = β. �

Now we state the main result of this note.
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Theorem 1. Let G be a C1 strictly convex increasing function on [0,+∞) such

that limx→+∞
G(x)
x = +∞ and let 0 < f < λ,G(f) < F be given. Then DG(λ, f, F )

is equal to f
λ when f G(λ)

λ ≤ F and it is equal to the unique solution k in (0, fλ ) of
the equation

(2.2) (1− k)G(
f − λk
1− k

) + kG(λ) = F

when f G(λ)
λ > F .

Proof. Let φ ≥ 0 be measurable and such that
∫
Y
φdµ = f and

∫
Y
G◦φdµ = F and

consider the set E = {MT φ ≥ λ}. It is easy to see as in the dyadic case that E is
the union of a family {Ii} (finite or countable) of pairwise almost disjoint elements
of T such that

∫
Ii
φdµ ≥ λµ(Ii). Let

k = µ(E), xi =

∫
Ii

φdµ, ai = µ(Ii), yi =

∫
Ii

G ◦ φdµ,

x̄ =

∫
X\E

φdµ and ȳ =

∫
X\E

G ◦ φdµ.(2.3)

We have

(2.4) xi ≥ λai,
∑
iai = k, x̄+

∑
ixi = f and ȳ +

∑
iyi = F .

Upon setting A =
∑
ixi the convexity of G implies∑

iaiG(
xi
ai

) ≥
∑
iaiG(

∑
ixi∑
iai

) = kG(
A

k
),

G(
xi
ai

) = G(
1

µ(Ii)

∫
Ii

φ) ≤ 1

µ(Ii)

∫
Ii

G ◦ φ =
yi
ai

and

G(
x̄

1− k
) = G(

1

µ(X\E)

∫
X|E

φ) ≤ 1

µ(X\E)

∫
X|E

G ◦ φ =
ȳ

1− k
.(2.5)

Hence
(2.6)

G(
f −A
1− k

) = G(
x̄

1− k
) ≤ ȳ

1− k
=
F −

∑
iyi

1− k
≤
F −

∑
iaiG(xi

ai
)

1− k
≤
F − kG(Ak )

1− k
which gives

(2.7) Ck(A) = (1− k)G(
f −A
1− k

) + kG(
A

k
) ≤ F

where λk =
∑
iλai ≤

∑
ixi = A ≤ f .

Conversely given 0 < k < 1 and λk ≤ A < f satisfying (??) we use Lemma 1 to
choose a pairwise almost disjoint family {Ii} of elements of T such that k =

∑
iµ(Ii)

and then use Lemma 2 on Y = X\
⋃
iIi we choose a nonnegative measurable func-

tion ψ on Y satisfying
∫
Y
ψdµ = f −A and

∫
Y
G ◦ψdµ = F − kG(Ak ) the condition

in Lemma 2 being here just (??). Thus by defining

(2.8) φ =
A

k

∑
iχIi + ψχY

it is easy to see that
∫
Y
φdµ = f and

∫
Y
G ◦ φdµ = F and moreover since clearly

MT φ ≥ λ on
⋃
iIi we get DG(λ, f, F ) ≥ k.
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Thus DG(λ, f, F ) is the supremum of all k in (0, fλ ) for which there exists at least
one A in [λk, f) such that (??) holds.

Now observing that

(2.9) C ′k(A) = −G′(f −A
1− k

) +G′(
A

k
) > 0 if

A

k
>
f −A
1− k

that is when A ≥ fk and since λ > f we conclude that (??) holds for some A as
above if and only if it holds at A = λk.

But defining now

(2.10) R(k) = (1− k)G(
f − λk
1− k

) + kG(λ)

the convexity of G implies that

(2.11) R′(k) = G(λ)−G(
f − λk
1− k

)− (λ− f − λk
1− k

)G′(
f − λk
1− k

) > 0

for any k in (0, fλ ). Moreover R(0) = G(f) < F and R( fλ ) = f G(λ)
λ and these easily

complete the proof of the Theorem. �

It is obvious that when λ ≤ f the expression DG(λ, f, F ) is equal to 1. Spe-
cializing now the above Theorem to the case G(x) = xp where p > 1 we get the
following.

Corollary 1. For any p > 1, Dp(λ, f, F ) is equal to f
λ when fp−1 < λp−1 ≤ F

f

and it is equal to the unique solution k in (0, fλ ) of the equation

(2.12)
(f − kλ)p

(1− k)p−1
+ kλp = F

when λp−1f > F .

In particular

(2.13) D2(λ, f, F ) =

{
f
λ if f < λ ≤ F

f
F−f2

F−2λf+λ2 if F
f < λ.

Next Theorem 1 implies that with f, F fixed the function k(λ) = DG(λ, f, F )

satisfies k(λ)G(λ) < F as λ → +∞ and so since G(x)
x → +∞ that k(λ)λ → 0 as

λ→ +∞. Using this into (??) and letting λ→ +∞ we get the following.

Corollary 2. We have for any G as in Theorem 1 that limλ→+∞G(λ)DG(λ, f, F ) =
F −G(f). In particular if p > 1 we have limλ→+∞ λpDp(λ, f, F ) = F − fp.

Remark 1. If Q is C1 strictly concave and increasing function on [0,+∞) satis-

fying limx→+∞
Q(x)
x = 0 then the proof of Theorem 1 can be carried out with minor

modifications and by reversing the inequalities to give that whenever 0 < f < λ and

0 < F < Q(f) the corresponding function DQ(λ, f, F ) is equal to f
λ when f Q(λ)

λ ≥ F
and to the unique solution k in (0, fλ ) of the equation (??) with Q replacing G oth-
erwise. Thus the function Dp(λ, f, F ) can be computed and for 0 < p < 1. In
particular for p = 1/2 we get

(2.14) D1/2(λ, f, F ) =

{
f
λ if f < λ ≤ ( fF )2

f−F 2

f−2F
√
λ+λ

if ( fF )2 < λ.
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Remark 2. One can generalize the above result as follows. Instead of fixing the L1

norm and the higher ”quasi-norm” defined by G ◦ φ one could fix two quasi-norms
a lower one and a higher one. To describe the result, given G is as in Theorem 1
and g another strictly convex and increasing function on [0,+∞) we define for any
f, F, λ such that 0 < λ, G(f) < F

DG,g(λ, f, F ) = sup{µ({MT φ ≥ λ})) : φ ≥ 0 measurable∫
X

g ◦ φdµ = f,

∫
X

G ◦ g ◦ φdµ = F}.(2.15)

Then the following holds.

(2.16) DG,g(λ, f, F ) = DG(g(λ), f, F )

The proof in the case g(λ) > f is similar to that of Theorem 1 by taking xi =
∫
Ii
g ◦

φdµ, yi =
∫
Ii
G◦g ◦φdµ, x̄ =

∫
X\E g ◦φdµ and ȳ =

∫
X\E G◦g ◦φdµ in (??) instead

and noting that xi ≥ g(λ)ai by Jensen’s inequality and so A ≥ g(λ)k, and, for the
lower bound, taking φ = g−1(Ak )

∑
iχIi + g−1 ◦ ψχY in (??) instead. If g(λ) ≤ f

then to show that DG,g(λ, f, F ) = 1 we take A = fk for any k < 1 then take φ as
before and let k → 1. Of course for the upper bound one could just use Theorem 1
for the function g ◦ φ since by Jensen’s inequality g(MT φ(x)) ≤ MT (g ◦ φ)(x) for
all x ∈ X.

Now we let H : [0,+∞)→ [0,+∞) be a strictly convex and increasing function
and such that H(0) = 0 and given any ψ measurable in X we define

(2.17) |ψ|H,∞ = sup{H(λ)µ({|ψ| ≥ λ}) : λ > 0}.
Then we consider the following

BG,H,∞(F, f) = sup{|Mdφ|H,∞ : φ ≥ 0, φ ∈ L1(µ),∫
X

φdµ = f,

∫
X

G ◦ φdµ = F}.(2.18)

In view of the above Corollary it is clear that this will be +∞ if H is stronger than
G in the sense H(x)/G(x)→ +∞ as x→ +∞. Next we prove the following.

Theorem 2. Assume G is a C2 increasing function on [0,+∞) satisfying G′′ > 0

on (0,+∞), G(0) = G′(0) = 0 and limx→+∞
G(x)
x = +∞ and let H be a strictly

convex and increasing function on [0,+∞), such that H(0) = 0. Moreover we
assume that the function G

H is increasing on (0,+∞). Then we have

(2.19) BG,H,∞(F, f) =
H(τ(Ff ))

τ(Ff )
f

where τ is the inverse of the function G̃ (x) = G(x)
x on (0,+∞).

Proof. Fix f, F as in Theorem 1. Given φ ≥ 0 be measurable and such that∫
Y
φdµ = f and

∫
Y
G ◦ φdµ = F Theorem 1 and the convexity of H implies that

(2.20) H(λ)µ({MT φ ≥ λ}) ≤ H(λ)DG(λ, f, F ) =
H(λ)

λ
f ≤

H(τ(Ff ))

τ(Ff )
f

when λ ≤ τ(Ff ). On the other hand the same Theorem implies that there is φ as

above with H(λ0)µ({MT φ ≥ λ0} ≥ H(λ0)
λ0

f where λ0 = τ(Ff ). In particular this
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implies that BG,H(f, F ) ≥ H(λ0)
λ0

f . Hence in view of the other part of Theorem 1

upon setting k(λ) to denote the unique solution of (??) when λ > λ0 the proof will
be complete once we have shown that H(λ)k(λ) is strictly decreasing on λ > λ0.
Differentiating (??) with k replaced by k(λ) which is legitimate in view of the

implicit function theorem we easily get setting x(λ) = f−k(λ)λ
1−k(λ) that

(2.21)
d

dλ
logH(λ)k(λ) =

H ′(λ)

H(λ)
−k
′(λ)

k(λ)
=
H ′(λ)

H(λ)
− G′(λ)−G′(x(λ))

G(λ)−G(x(λ))− (λ− x(λ))G′(x(λ))

(the implicit function theorem can be applied sinceG(λ)−G(x(λ))−(λ−x(λ))G′(x(λ)) >
0) and this expression has the same sign as

(2.22) W (x) = H ′(λ)[G(λ)−G(x)− (λ− x)G′(x)]−H(λ)[G′(λ)−G′(x)]

evaluated at x = x(λ). Moreover since f < λ we have 0 < x(λ) < λ and so it
suffices to prove that W (x) ≤ 0 on [0, λ]. But W (0) = H ′(λ)G(λ)−H(λ)G′(λ) ≤ 0
since G

H is increasing and W (λ) = 0. Also

(2.23) W ′(x) = G′′(x)[−(λ− x)H ′(λ) +H(λ)]

and so W ′(λ) > 0 and W ′ has at most one zero in (0, λ). These easily imply that
W (x) ≤ 0 on [0, λ] and thus complete the proof of the Theorem. �

Specializing the above Theorem to the case where G(x) = xp, H(x) = xq where
p > 1, 1 ≤ q ≤ p we easily get the following.

Corollary 3. Given p > 1 and q with 1 ≤ q ≤ p we have for any nonnegative
measurable φ that

(2.24) ‖MT φ‖q,∞ ≤ ‖φ‖
p(q−1)
q(p−1)
p ‖φ‖

p−q
q(p−1)

1

and this is sharp in the sense that the right hand side is the supremum of the left
hand side over all φ’s with fixed L1 and Lp norms. In particular when p = q we get
the sharp inequality

(2.25) ‖MT φ‖q,∞ ≤ ‖φ‖q .

Note that inequality (??) follows from (??) via Hölder’s inequality. The main
point though is the sharpness of (??) when the L1 and Lp norms of φ are fixed. We
also remark that in the case p = q the value of the L1 norm of φ does not appear
in the corresponding supremum which is in sharp contrast with the corresponding
problem involving strong Lp norms mentioned in the Introduction.

Also specializing (??) to the case where G(x) = xp2/p1 , g(x) = xp1 where 1 ≤
p1 < p2 and then using the above Theorem with H(x) = xq where p1 ≤ q ≤ p2
one easily obtains thew following.

Corollary 4. Given p2 > p1 ≥ 1 and q with p1 ≤ q ≤ p2 we have for any
nonnegative measurable φ that

(2.26) ‖MT φ‖q,∞ ≤ ‖φ‖
p2(q−p1)

q(p2−p1)
p2 ‖φ‖

p1(p2−q)

q(p2−p1)
p1

and this is sharp in the sense that the right hand side is the supremum of the left
hand side over all φ’s with fixed Lp1 and Lp2 norms.



8 ANTONIOS D. MELAS AND ELEFTHERIOS N. NIKOLIDAKIS

Similar remarks as with Corollary 3 apply here.
Now let G be as in Theorem 2 and let q ≥ 1. For any 0 < f < L and F > G(f)

we define

BG,q,∞(F, f, L) = sup{‖max(MT φ,L)‖qq,∞ : φ ≥ 0, φ ∈ L1(µ),∫
X

φdµ = f,

∫
X

G ◦ φdµ = F}.(2.27)

This is a generalized version of the function defined in (??). Then using Theorems
1 and 2 we get the following.

Theorem 3. If G is as in Theorem 2 and q ≥ 1 is such that x−qG(x) is increasing
in x > 0 then we have

(2.28) BG,q,∞(F, f, L) =

{
τ(Ff )q−1f if f < L < τ(Ff )1−

1
q f

1
q

Lq if τ(Ff )1−
1
q f

1
q ≤ L.

In particular if p > 1 and p ≥ q then

(2.29) Bp,q,∞(F, f, L) =

{
F

q−1
p−1 f

p−q
p−1 if f < L < F

q−1
q(p−1) f

p−q
q(p−1)

Lq if F
q−1

q(p−1) f
p−q

q(p−1) ≤ L
and so for any p > 1

(2.30) Bp,∞(F, f, L) =

{
F if f < L < F 1/p

Lp if F 1/p ≤ L.

Proof. Given any φ as in (??) and any λ > f we have λqµ({max(Mdφ,L) ≥ λ}) ≤
Lq if λ ≤ L and it is ≤ λqDG(λ, f, F ). On the other hand the proof of Theorem 2
implies that λqDG(λ, f, F ) is decreasing if λ > τ(Ff ). This combined with Theorem

1 implies that BG,q,∞(F, f, L) is equal to Lq if L ≥ τ(Ff ) and to max(Lq, τ(Ff )q−1f)

otherwise and this easily completes the proof. �

Also by using Corrolary 4 and defining

B
p1,p2,q,∞(F, f, L) = sup{‖max(MT φ,L)‖qq,∞ : φ ≥ 0 measurable∫

X

φp1dµ = f,

∫
X

φp2dµ = F}.(2.31)

we get the following.

Corollary 5. Given p2 > p1 ≥ 1 and q with p1 ≤ q ≤ p2 we have

(2.32) Bp1,p2,q,∞(F, f, L) =

{
F

q−p1
p2−p1 f

p2−q
p2−p1 if f < L < F

q−p1
q(p2−p1) f

p2−q

q(p2−p1)

Lq if F
q−p1

q(p2−p1) f
p2−q

q(p2−p1) ≤ L
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