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Professor John Ioannidis was born in New York, USA, in
1965 and graduated from Athens College in Greece as the
Valedictorian of the class of 1984, the highest honour of this
prestigious school. He won several awards, including first
prize in the Greek National Mathematics Competition and
the John Vakis Award for Natural Sciences. He graduated at
the top of his class from the School of Medicine, University
of Athens, Greece, in 1990. He then did his residency training
in Internal Medicine at Harvard’s New England Deaconess
Hospital, currently Beth Israel Deaconess Medical Centre,
USA. In 1993–1996, he pursued fellowship training at the
Division of Infectious Diseases and the Division of Clinical
Care Research at Tufts-New England Medical Centre,
Boston, MA, USA. After completing his fellowship, he moved
to the National Institutes of Health, in a career position at
the National Institute of Allergy and Infectious Diseases,
Bethesda, MD, USA, with a joint appointment at Johns
Hopkins Hospital and Johns Hopkins University School of
Medicine, Baltimore, MD, USA. He has been Chairman
of the Department of Hygiene and Epidemiology at the
School of Medicine, University of Ioannina, Ioannina,
Greece, since 1999 (as tenured Professor since 2003). He
has also served in the adjunct faculty of Tufts University
School of Medicine since 1996, with the rank of Professor

since 2002. He is a member of the editorial board of 12
international journals, including the 

 

Lancet

 

.
Professor Ioannidis’s publication record includes approx-

imately 300 papers, which have received over 8000 citations.
His work combines skills in novel clinical research method-
ology and evidence-based medicine with the challenges of
current molecular medicine. He has made major contribu-
tions in the following areas:

 

1

 

Leading empirical research on clinical research evidence
and its limitations; the concordance of various forms of
evidence and small studies versus 

 

.

 

 large-scale evidence.

 

2

 

Making sense of evidence in the revolution of human
genomics (large-scale evidence on genetic susceptibility for
complex diseases, replication validity, racial descent
differences, microarray research and discovery-oriented
research, human genome epidemiology network and the
roadmap for human genome epidemiology).

 

3

 

Evaluations of bias and credibility in research findings
(time-lag bias, publication bias, reporting biases, empirical
evidence on replication and contradiction of clinical
research, challenges in translational medicine and modelling
the credibility of research findings).

 

4

 

Development and leadership of international consortia
of investigators in clinical research, especially in human
genomics and beyond; meta-analyses of individual participant
data; prospective meta-analysis.

 

5

 

Highlighting the importance of reporting and appraising
harms of medical interventions (reporting of harms in
clinical trials, large-scale evidence on harms and lead author
of CONSORT for harms).

 

6

 

Extensive applications of evidence-based medicine across
a wide-range of medical specialties, including meta-analyses
of randomized trials, epidemiological studies, diagnostic
evaluations and prognostic factors; randomized trials in
AIDS treatment, antiretroviral resistance testing, anaemia
in kidney disease, autoimmune diseases and antibiotic use.

Professor John Ioannidis has been an outstanding
researcher of the methodology of biomedical research. He
has both broad and deep knowledge of basic and clinical
bioscience and an immensely analytical and deductive mind
that has helped analyse and synthesize data creatively from
diverse studies. His contribution to biomedical research is
both unique and major. The ESCI is proud to bestow upon
him the 2007 Clinical Investigator Award.

Prof. George P. Chrousos, MD, PhD,
Athens, Greece

E-mail: chrousge@med.uoa.gr



 

European Journal of Clinical Investigation

 

 (2007) 

 

37

 

, 340–349

 

© 2007 The Author. Journal Compilation © 2007 Blackwell Publishing Ltd

 

Blackwell Publishing Ltd

 

ESCI Award 2007
Molecular evidence-based medicine

 

Evolution and integration of information in the genomic era

 

J. P. A. Ioannidis

 

University of Ioannina School of Medicine, Greece; Biomedical Research Institute-Foundation for Research and 

Technology-Hellas, Ioannina, Greece; Tufts University School of Medicine, Boston, MA, USA 

 

Abstract

 

Evidence-based medicine and molecular medicine have both been influential in biomedical
research in the last 15 years. Despite following largely parallel routes to date, the goals and
principles of evidence-based and molecular medicine are complementary and they should
be converging. I define molecular evidence-based medicine as the study of medical
information that makes sense of the advances of molecular biological disciplines and where
errors and biases are properly appreciated and placed in context. Biomedical measurement
capacity improves very rapidly. The exponentially growing mass of hypotheses being tested
requires a new approach to both statistical and biological inference. Multidimensional
biology requires careful exact replication of research findings, but indirect corroboration is
often all that is achieved at best. Besides random error, bias remains a major threat. It is
often difficult to separate bias from the spirit of scientific inquiry to force data into coherent
and ‘significant’ biological stories. Transparency and public availability of protocols, data,
analyses and results may be crucial to make sense of the complex biology of human disease
and avoid being flooded by spurious research findings. Research efforts should be integrated
across teams in an open, sharing environment. Most research in the future may be designed,
performed, and integrated in the public cyberspace.

 

Keywords

 

Evidence-based medicine, molecular medicine, replication, research, translation.

 

Eur J Clin Invest 2007; 37 (5): 340–349

 

Evidence-based medicine and molecular medicine

 

Both ‘evidence-based medicine’ and ‘molecular medicine’
are widely circulating terms in the literature. Both have their

strong proponents and occasional, equally strong critics.
A PubMed search (as of 27 December 2006) retrieves
23 957 items with ‘evidence-based medicine’, 32 751 with
‘evidence-based’ (it could be ‘evidence-based X’, i.e.
evidence-based ‘anything’), and 660 853 with ‘evidence’.
‘Molecular medicine’ retrieves 18 025 items and ‘molecular’
alone retrieves way over a million (1 251 859). Clearly
these are two powerful currents of thinking in the bio-
medical sciences.

The two currents nevertheless have had little overlap to
date and they have been promoted by largely different
circles. A search of the 

 

Journal of Clinical Investigation

 

, 

 

Cell

 

,

 

Journal of Experimental Medicine

 

 and 

 

Journal of Biological
Chemistry

 

 does not yield a single article with ‘evidence-based
medicine’, while 1273 articles are retrieved in these same
journals for ‘molecular medicine’. A search of the 

 

British
Medical Journal

 

 and the 

 

Journal of the American Medical
Association

 

 conversely yields 707 articles for ‘evidence-based
medicine’ and only 15 for ‘molecular medicine’.

Both terms have conceptual roots that reach the distant
past [1,2], but their mainstream emergence in the biomedical
literature, in the way that we conceive them today, is only
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about 15 years old. ‘Evidence-based’ medicine was first
used as a term by Gordon Guyatt and the McMaster team
in a 

 

JAMA

 

 paper in 1992 [3]. Interestingly, the same journal
used the term ‘molecular medicine’ in a 1993 review [4] –
actually an even earlier ‘molecular medicine’ title had
appeared in 

 

BMJ

 

 in 1987 [5], well before wide spread to
basic/translational biomedical journals.

‘Evidence-based’ has recently been invoked to accom-
pany almost anything (Table 1) that seeks a touch of scien-
tific justification and prestige. It has replaced authoritarian
experts in the role of accredited guarantor of merit; although
the term is often applied no more judiciously than expert
dogma had been applied in the past [6]. The current paper,
as most papers that support evidence-based medicine, is also
unfortunately written by an expert – of sorts. Surprisingly,
or even disappointingly, ‘evidence-based molecular medicine’
has not been used in the literature – PubMed does not
recognize this phrase. Perhaps proponents of molecular
medicine did not feel that the ‘evidence-based’ seal could
enhance the credibility of their efforts. PubMed similarly
does not recognize the phrase ‘molecular evidence-based
medicine’. Perhaps those who trusted evidence-based
medicine did not feel at home with the complex deeds of
molecular medicine. So why bring these two currents
together then?

Wikipedia [7] claims that ‘Evidence-based medicine
applies the scientific method to medical practice. According
to the Centre for Evidence-Based Medicine, “Evidence-
based medicine is the conscientious, explicit and judicious
use of current best evidence in making decisions about the
care of individual patients”’ [8]. But then, if this is about
applying the scientific method and best evidence, can this
be done without using, exploiting or integrating what the
biomedical sciences are working on currently? I could not
find a Wikipedia entry for ‘molecular medicine’, but argu-
ably it encompasses all the efforts to apply to medicine the
scientific principles and insights from advances in ‘basic’
molecular biological sciences. If this is so, then evidence-
based medicine and molecular medicine have comple-
mentary aims.

 

What is the current best evidence?

 

In the 1990s, evidence-based medicine tried to develop
explicit procedures and schemes (‘hierarchies’) for rating
evidence. Despite variability [9–12], these hierarchies typically
placed meta-analyses and randomized trials at the top. Non-
randomized studies, even worse, uncontrolled studies, and
isolated observations were placed at lower levels. Expert
opinion was always at the bottom or not listed at all. Classic
empirical studies also showed that experts were indeed not
to be trusted [13]. Biological or molecular mechanisms were
typically not mentioned at all, as if they had nothing to do
with evidence.

It was soon realized that the type of design alone could
not guarantee the credibility of a specific piece of clinical
investigation [6]. While randomized studies are more
reliable and more protected from bias compared with non-
randomized studies, some randomized trials may be worse
than respective non-randomized studies. When the two
designs disagree, it is not always certain that randomized
trials have found the right answer [14–16]. It also became
apparent that appraisal of what is a good study can be
considerably subjective, especially when studies are
appraised after their completion [17]. This led to some
strong controversies, as exemplified by the heated mammo-
graphy debate [18,19].

Currently proposed grading systems focus more appro-
priately on a composite appraisal of the credibility and pro-
tection from bias in the accumulated evidence [20,21].
However, as we move from the level of interpreting the
results of a single study or set to studies towards making a
decision about clinical use, the consensus decreases steeply
even when very knowledgeable clinician investigators and
methodologists are involved [21]. Moreover, for each
question of interest, what constitutes the best study design
and best type of evidence may be different. There are many
important questions that cannot be addressed with random-
ized trials – in fact, perhaps most questions of scientific and
clinical interest cannot be addressed with randomized
trials [6].

Unfortunately, this fruitful debate was disconnected
from what was happening in the molecular medicine side.
Molecular medicine was largely redefining the questions of
interest in clinical investigation. A constant argument against
evidence-based medicine has been that the average evidence,
as derived from one or more clinical studies, cannot be
applied to the individual patient. Clinicians want to treat
individuals, not an average abstract phantom. Individuals
vary enormously in the risk of disease, outcomes and treat-
ment responses [22–26]. Molecular medicine in the past
decade has taken the route of trying to achieve this individ-
ualization, pursuing an ideal of ‘personalized medicine’
[27,28]. New technologies stemming from the genomics
revolution have made major promises in this regard [29–
31]. However, it was not clearly realized that a main obstacle
in obtaining reliable evidence from these new technologies
was to tackle the typical errors and biases that evidence-
based medicine was so sensitized to [32]. Not surprisingly,
personalized medicine is not here yet [33].

Table 1 ‘Evidence-based X’: titles of articles where evidence-based 
is used to accompany diverse entities

Analysis, appraisal, approach, assessment of the literature, clinical 
practice, clinical update, complementary medicine, conceptual 
framework, consensus process, data, decision making, dentistry, 
dermatology, design, discussion, emergency medicine, guidelines, 
health care architecture, health information, health information 
provision, health policy information, interventions, knowledge, 
management, medical education, medicines, model, nursing, pain 
management, patient choice, politics, practice, prevention 
programmes, problem solutions, psychotherapies, public health 
system, radiology, research, review, surgery, surgical rebuttal, 
systematic review, testing, therapies, update

Based on screening of the 100 latest entries in PubMed 
retrieved with a search for ‘evidence-based’ on 
December 27, 2006
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The situation seems almost schizophrenic. While evidence-
based medicine has been questioning the validity of well-
designed mega-trials and large-scale meta-analyses of several
thousand subjects [34,35], molecular medicine has been
making certain promises from studies based on a few dozen
samples where noise overwhelms true biological signals
[36,37]. Conversely, while molecular medicine has entered
the level of complexity where tens and hundreds of thou-
sands of biological factors are measured, evidence-based
medicine is still preoccupied with painfully appraising inter-
ventions, concepts and approaches that perhaps should have
been abandoned long ago based on the wealth of information
acquired in the biological sciences.

 

Molecular evidence-based medicine: information, 
errors, and biases

 

I define here molecular evidence-based medicine as the
study of medical information that makes sense of the
advances of molecular biological disciplines and where
errors and biases are properly appreciated and placed in
context. I prefer the term ‘information’, because ‘evidence’
already implies an appraisal of the strengths and weaknesses
of the information, while ‘knowledge’ and ‘science’ are even
more remote goals.

Information is accumulating exponentially in current
research efforts, biomedical and beyond. Less than half a
century ago, Bradford Hill, a father of modern epidemiology,
claimed that no scientific paper was satisfactory unless an
independent reader could check the results on the back of
an envelope [38]. Currently, the databases that we can
amass are stretching beyond the handling limits of software
such as MS Excel, Mathematica or MATLAB. Raw data in
some sciences have already reached the levels of petabytes
(2 to the 50th power bytes of information) and there is no
reason to believe that the pace of expansion will slow down
[39,40]. For several problems in the physical sciences,
splitting problems into many thousands of pieces and asking
interested citizens to run them in their personal computers
is the only viable solution. This resorting to amateur
citizen-scientists may soon be true for the biomedical
sciences as well.

There is no reason to worry about having so much data.
Information is great news. If anything, the current informa-
tion mass provides an obvious proof of how amazingly little
we knew in the past, and how much we have to try to learn
in the future, if the expansion continues. Large disciplines
of the past become obsolete and we can only look back with
a smile upon some of the claims we made even not so long
ago [41]. However, the availability of so much data creates
a challenge for meeting some of the basic prerequisites of
the scientific endeavour. These are the need for transparency
and availability of the information and the ability to under-
stand and measure the errors and biases that are potentially
embedded in it.

Many people think that science is about making discoveries.
However, this discovery gold rush has resulted in a new

culture where ‘publish or perish’ has been replaced and/or
enhanced by ‘patent and prosper’ [42]. Despite the extensive
discoveries and geometrically increasing number of patents,
nevertheless, really new and useful medical interventions and
products for therapeutic, preventive, diagnostic, or predictive
purposes are few [43–45]. Of 101 promises for clinical use
of discoveries that were made in the top basic science
journals between 1979 and 1983, only five were in clinical
use and only one had made a major clinical impact 25 years
later [43]. Most basic research and even clinical investigation
seems to get nowhere, despite efforts to strengthen the
translational interface [41,46]. Empirical evidence has
shown that animal research has led to no successes in some
fields such as acute stroke [47] or has often been refuted
by clinical research in others [48]. On the clinical trials side,
some of the best proponents of evidence-based medicine
were justly lamenting recently why we have so few useful
trials [49]. We have conducted half a million trials in the
last half century, but empirical evaluations show that they
remain laden with errors and biases and many of them tell
us very little, or give wrong messages [50–52].

I have argued that in the current era, we have so many
postulated discoveries that the main priority is to get rid of
false discoveries, replicate and validate the few true ones,
and move these to translation to benefit individual patients
and the population at large [41,53,54]. This shifts attention
from the production of still more tentative discoveries to the
understanding of the errors and biases inherent in the
research process. Understanding errors and biases is critical
for making the right choices to discard the false and promote
true research findings.

 

Mass of hypotheses and complex information: 
implications for errors

 

Let us use the traditional epidemiological terminology for
chance (random) error that has no systematic component,
i.e. results are not tilted more in one direction rather than
the other, on average. Until recently, we were content to use
statistical techniques that would make sure that 5% of our
experiments might give false-positive significant results
simply by chance. That was probably acceptable when there
were few scientists and few experimental hypotheses being
tested. It was also particularly acceptable when the hypotheses
being tested had strong support from other lines of evidence,
i.e. we were not searching in the dark, but simply reinforcing
our appreciation for some research finding that we had
strong reasons to believe in. Given this background, when
we get a significant result in an experiment, the chances that
it is truly significant rather than a spurious chance finding
are high.

Two major changes have gradually occurred in biomedical
investigation, with accelerated speed over the last decade.
First, the number of scientific hypotheses that we can test
has increased at an exponential pace and this increase has
been further compounded by a rapid increase in the number
of teams of researchers proposing and testing hypotheses.
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To take one field alone, complex disease genetics, we are
currently aware of 12 000 000 variants in the human
genome. Testing half a million is a matter of routine already,
while testing all of them, and more, will soon also be routine.
The actual number of possible hypotheses in a single experi-
ment where these polymorphisms are involved is not just
12 000 000. If we consider all the possible combinations
among 12 000 000 binary variables, the total number of
possible hypotheses in a single experiment is 2

 

12 000 000

 

, i.e.
4 

 

×

 

 10

 

2085

 

. If I try to write this number in full expansion
with all its zeros, it will take about the space of two double-
spaced pages in a Word document on a PC and about half
a page in a print journal.

Second, we have become far less selective in our choice
of hypotheses to test. In many biomedical fields, we have
even adopted techniques and methods that simply test en
masse everything that can be tested rather than try to select
upfront a few hypotheses that are more likely to yield fruit.
After a long series of high-profile refutations in many fields
ranging from molecular genetics to influential clinical trials
[55–57], we realize that much of the epidemiology and
pathophysiology inference machinery to select and filter
hypotheses has probably not been working adequately –
often it is not working at all. Causal inference and patho-
physiological thinking may work for some very clear-cut
situations, e.g. Mendelian inheritance mutations where the
mutation causes the disease and the disease cannot exist
without the mutation [58]; or major acquired disease risks
such as smoking for lung cancer, where the risk calculations
can indeed be made on the back of an envelope [59]. How-
ever, most of the biology that underlies human health and
disease is likely to be extremely complex, multifactorial, and
laden with weak effects [60,61]. The growth of systems biology
reminds us of this complexity even when we try to assemble
the pieces of the biological machinery, let alone see them
work over time in a dynamical interactive fashion [62–64].
Empirical evaluations also suggest that when it comes to
complex disease pathogenesis, biological plausibility
does not square very well with epidemiological and clinical
data [65,66].

The failure of many/most translational efforts to date may
reflect that basic/preclinical investigations until now have
made simplistic assumptions, as compared with the com-
plex biology of human health and disease [67]. Studying one
or a few biological parameters in experimental systems
under-appreciates complex biological pathways. This may
also underlie the failures of several ‘simple’ biological
surrogate markers as clinical trial endpoints [68,69] and the
relative dearth of evidence-based diagnostic and prognostic
markers in the molecular era [70–73]. Now that we are
flooded with millions of single biological factors, our
insisting on one or another of them in the recent past seems
unbelievably implausible, if not naive.

Current multidimensional (‘–omics’) approaches may
address this criticism by diminishing the bulk of hypotheses-
at-hand to a viable small number where composite systems
of biological factors are seen as a package. Thousands and
millions of biological factors can again be streamlined to
relatively few packages. However, handling such complex

packages, avoiding biases, and translating them for practical
purposes is very challenging [74–76]. Despite extreme interest,
to date only one modern multidimensional application
(tests for gene expression profiling for node-negative breast
cancer) has moved into clinical practice for predictive
purposes; even this one probably had less optimal independent
validation than thought [77–79] and prospective results
from clinical trials are still not available. Some promising
multidimensional biological applications with microarrays
or proteomics have been refuted on rigorous scrutiny [80–
82]. Other multidimensional approaches such as genome-
wide association studies still discover biological factors one
at a time despite testing thousands thereof [83,84].

The extreme number of possible hypotheses suggests that
in many fields perhaps the only viable way forward is to pro-
ceed with en masse testing, without making any effort of
prefiltering with biological or other plausibility filters. As we
do this, conventional levels of statistical significance make no
sense [85]. Trying to correct for the number of hypotheses
is also very difficult, since we often cannot even count very
well the number of hypotheses that have been tested, and
we still do not know how many other scientists are working
on the same or similar hypotheses. So, no matter how low
we set the 

 

P

 

-value threshold, we may never be fully certain
about the truth of a research finding.

 

Evolution of the scientific information: exact 
replication versus corroboration

 

Regardless of the complexity involved, if many teams run the
same exact experiments and studies, then lack of replication
will force the abandonment of the spurious false-positive
claims. This is often true: rigorous, exact replication is a way
to make safe progress. However, a prerequisite would be
that exact replication does not also copy the errors that were
possibly made in the first study [86]. Moreover, subgroup
differences [87], experimental peculiarities, subtle modifica-
tions in a study may be invoked to transform lack of replica-
tion into spurious corroboration. Approximate corroboration
is very frequently invoked in the biological sciences. Some-
times exact replication is indeed very difficult. In a recent

 

Nature

 

 article, a famous scientist was claiming, perhaps
rightly, that his results may be invalidated simply by moving
to a different laboratory where the water in the pipelines
would be different [88]. Generalizability and even more
transposability of research findings in different experimental
conditions and settings remains an open question from the
basic sciences to large-scale pragmatic clinical trials [89,90].

Often exact replication has even been discredited as ‘me
too’ poor-quality research. This is a misconception. In fact
the problem with ‘me too’ research is not so much that people
try to do the same thing as a previous team of scientists has
done. Running a rigorous replication study can be a very
demanding effort. The problem may be mostly that the
replicating scientists are forced to convince their peers that
they have done something different, thus new. In addition
to statistical significance at all cost [91], novelty at all cost
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is often considered a prerequisite for publication in many
journals, especially the most prestigious ones [92]. Investi-
gators may be forced to distort their analyses, outcomes,
reporting, findings, or highlight spurious subgroups,
unfounded interactions or peculiar exceptions simply to
show that they have something novel to report.

There are many examples where exact replication has
been left aside in favour of novelty-seeking. One of the first
proposed high-profile associations between a polymorphism
and a disease outcome was a 1994 

 

Nature

 

 publication on a

 

TNFA

 

 promoter variant conferring susceptibility to cerebral
malaria [93]. By the end of 2006, this article had been cited
792 times (per Web of Science). One would expect that this
would reflect extensive replication of the proposed association.
However, an analysis of the first 100 citations that this paper
received (covering citations up to late 1996) shows that not
a single one of them tried to probe again the association of

 

TNFA

 

 genetic variability and cerebral malaria. Of the 100

citing articles (Fig. 1a), 50 had no new data: they were
reviews, hypotheses, editorials and letters. Another 19 dealt
neither with malaria nor with 

 

TNFA

 

 genetic variability, 12
addressed malaria but not 

 

TNFA

 

 genetic variability, and 19
probed associations of 

 

TNFA

 

 genetic variability with various
other conditions and phenotypes. These included in order
of appearance type II diabetes mellitus, toxoplasma cyst
burden and encephalitis, early onset pauciarticular juvenile
chronic arthritis, mucocutaneous leishmaniasis, X-linked
adrenoleukodystrophy phenotype diversity, multiple sclerosis,
severe sepsis, differential tumour necrosis factor alpha pro-
duction, insulin-dependent diabetes mellitus, inflammatory
bowel disease, rheumatoid arthritis, coeliac disease, death
from meningococcal disease and systemic lupus erythema-
tosus – some of them studied more than once in various
aspects and with 12 of these 19 studies proposing significant
associations.

The proposing team subsequently also published on a dif-
ferent 

 

TNFA

 

 polymorphism that would modulate malarial
outcomes [94], and also claimed that different alleles con-
ferred susceptibility to severe anaemia from malaria versus
cerebral malaria [95]. Independent teams then found no
association with the original proposed polymorphism with
either cerebral malaria or severe anaemia [96,97]. Thus,
what was probably a false-positive finding, not only got
entrenched in the literature, but it also lent citation support
for probably over 100 other proposed associations, many/
most of which are likely to also be spurious. Several other
examples exist in the literature where lack of adherence to
exact replication has created literature bodies where out-
comes, biological factors, or both are not standardized
[98,99] or the replication process has been incomplete or
spurious [100,101].

Hopefully, the lack of exact replication is not the rule and
it is possible that recognition of the need to replicate findings
is increasing. As a comparative example, Fig. 1(b) shows the
split of the first 36 citations received by the article on the first
large-scale genome-wide association study of Parkinson’s
disease [102]. Within a few months of its publication, a
series of studies were published trying to replicate, without
success, its findings; within less than a year, a large collab-
orative replication effort was also published that did not
replicate any of the proposed findings [103]. As shown
(Fig. 1b), reviews and editorials still have their lion’s share
in shaping the literature, but real replications also have a
prominent place. Another welcome emergence is the con-
siderable proportion of methodology papers, in this specific
example at least.

 

Bias and the spirit of scientific inquiry

 

I have only indirectly touched upon bias until now. In a
world without bias, we simply have to deal with our chance
and multiple testing problems. Tough as they might be, they
might be manageable eventually. However, bias is a whole
different story. Deviating a bit from conventional epidemiology
nomenclature, I define bias here as anything, beyond chance

Figure 1 Types of articles citing (a) a Nature paper that had 
proposed in 1994 that a tumour necrosis factor alpha (TNFA) 
promoter variant confers susceptibility to cerebral malaria (100 first 
citations of the 792 received as of the end of 2006) and (b) an 
American Journal of Human Genetics paper that presented the results 
of a genome-wide association study in 2005 (first 36 citations as 
of late 2006).
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error, that can cause the appearance of significant research
findings, while these do not really exist. Reverse bias is also
possible, i.e. some true findings may be missed because
of bias. However, there is probably a preponderance of
bias over reverse bias in the research endeavour at large.
Consciously, subconsciously, and unconsciously the quest
for discovery is a quest for significant findings and thus bias
is a way to get to this goal earlier and easier [104].

Much of the basic and clinical investigation of the recent
past has made a principle of trying to read meaningful
biological stories in the data. Understanding mechanisms
and processes has required an abstractive mode of thinking
where a biological story would emerge linking different
aspects in the data. Scientific thinking was purposefully
trained to remove selectively what did not fit in the picture
and find, isolate, strengthen and highlight links and associ-
ations. If this is a good description of scientific thinking,
then scientific thinking is trained par excellence to generate
bias and find links and associations not only where they do
exist, but also where they do not exist.

The increasing complexity of modern biomedical data-
bases may be creating an intimidation barrier to anyone who
wants to perform linking exercises with bare hands and bare
brains on the back of an envelope. However, computer
power has supplemented the required means for continuing
these exercises in the face of increasing complexity. This
includes text mining and connectivity approaches that try
to isolate new and more comprehensive biological links in
large-scale information [105–107]. Clearly, whatever emerges
out of such complex processing requires further independent
replication. However, given the complexity of the derived
patterns, exact replication becomes a major challenge and
approximate corroboration may be what can best be
achieved with all the limitations discussed above.

 

Transparency and integration of information

 

Bias can occur within single studies and also in scientific
fields at large. Measurements, data, analyses and results
may be guided, or distorted, towards a postulated research
finding in a single study. This has happened in the past and
will continue to happen unavoidably. While some study
designs are proud of their rigorous, inflexible adherence to
protocols, others are trained by default upon data dredging
and data mining [108]. Data dredging and data mining are
often absolutely appropriate. What matters is that (1) they
are acknowledged as such; (2) the data dredging and mining
is transparent and other scientists can track the process;
(3) the field contains complete and transparent information
on other studies where the products of the data dredging
and data mining can be tested for replication; and, ideally,
(4) the complete information accumulated by all teams
working on the same topic can be nonselectively integrated.

In the last decade, we have witnessed many efforts that
try to maximize transparency on what exactly is being done
within a research project. These efforts cover both evidence-
based medicine (e.g. CONSORT for clinical trials

[109,110], STARD for diagnostic tests [111], REMARK
for prognostic marker studies [112], and QUOROM for
meta-analyses [113]); and molecular medicine initiatives
(e.g. MIAME for microarrays experiments [114] and many
other efforts in systems biology [115]). Most of these efforts
have focused on comprehensive reporting of the study
methods and results. However, after the fact, one may be
unwilling to report the deficiencies of one’s study design, data
and analyses thereof. Forcing investigators to report on each
aspect of their study may force white and not so white lies.

This problem can be bypassed only if the full protocols
of scientific research are transparently available upfront
before any experiments or measurements are done. For
some other sciences, this sounds almost self-evident. For
example, a spacecraft sent out to explore the galaxy beyond
the solar system follows a specifically laid out plan on what
information it is to collect and how and what the backup
plans are in case of adversities and system failures. More-
over, unavoidable adjustments to the original plans are also
thoroughly recorded with minute attention as the experi-
ment unfolds. In biomedical research, this has not been so
clear cut. Perhaps such upfront transparency seems to con-
tradict the individualistic spirit of scientific discovery, where
any bright person can surprise the establishment with his
or her fresh ideas and results. One has to be very careful
not to stifle creativity, independence and spontaneity.
Research is not about bureaucrats who simply keep good
records. It is about creative and imaginative people who,
nevertheless, should still keep good records.

For a lot of biomedical research, upfront registration of
protocols should be feasible. For example, there is no reason
why this cannot happen for all randomized trials. Upfront
trial registration is a very important initiative in this regard
[116,117]. Nevertheless, 2 years after its adoption by the
most influential medical journals, the majority of clinical
trials are still not registered upfront. Even for those that are
registered, registration does not mean that full and exact
details are provided for the outcomes and anticipated analyses.
Therefore, while simple registration obviates to some extent
the problem of publication bias, it still leaves considerable
room for selective analysis and outcome reporting [118,119].
Moreover, if the preference for significant results continues
to guide the research process, the problem of time-lag bias
remains unchallenged despite registration [120]. Early pub-
lished results may be inflated [121–125] and one should be
cautious to wait until the more complete picture emerges.

Many fields in molecular medicine have made major
progress in realizing the importance of making all the pro-
tocol details and data available in public, even if this is done
after the fact. The microarrays field is one such example,
where sophisticated databases are already available for this
purpose [126–129] and similar initiatives are also being
launched for other multidimensional biological research.
The availability of all methods and data can help integrate
evidence efficiently and minimize selection bias across
different studies on the same research question. However,
the complexity of the methods and data make such efforts
increasingly difficult [130,131]. Transparency is struggling
to match complexity.
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Table 2 shows comparatively the amount of information
on methods and data available in public, using representative
examples of landmark papers. The discovery of the DNA
double helix in 1953 is often applauded for its exceptional
brevity: one single page sufficed to present the greatest dis-
covery of the past century [132]. However, viewed from a
different angle, that paper is devoid of methods, certainly
has no statistics, and there are no data deposited for public
view anywhere. The discovery seems like a sudden stroke
of genius, and it is mostly indirectly from memoirs that we
know about the intense interchange of data and information
between Watson and Crick and the teams of Franklin and
Pauling at that time – even to the point of gossip arising on
who really had the major contribution to the discovery.
More than four decades later, the landmark paper of the
CARE trial that propelled the benefits of cholesterol reduction
with a statin in myocardial infarction even in patients with
average cholesterol [133] was nine pages long, but the
methods ran at half a page and only a tenth of the page in
this small print section was devoted to statistical methods.
Now, compare a recent paper presenting the results of
microarrays experimentation for a clinical predictive pur-
pose [134]. The paper is ten pages long, but its methods
run into much greater detail and it is also accompanied by
a couple gigabytes of online-accessed, publicly available
data.

The same table also shows an imaginary future paper. The
paper may exist only online and may be updated over time
with comments, response to criticism, and corrections
[135]. The amount of information may be well beyond the
capability of a current typical PC to handle. Data will be
fully publicly available on the Web; access, data inspection,
calculations and efforts to integrate these databases with
other similar databases may be performed from a distance
without any need to transfer the data to a particular computer
terminal. Clinical and laboratory experiment output may be
processed with sophisticated quality control systems and
deposited in the public online database. ‘Running’ new
studies may become largely a job for robots – the really
important scientific activities are to meticulously design
these studies and to find ways to integrate the information
across many studies conducted worldwide. Protocols and data
would be in public view with every process automatically
recorded in the system. Such recording systems that capture

anything that is being done in the data or analyses are
already available for some genomic organizations, so this is
not really science fiction.

Does a transparent global integration system mean the
demise of personal ingenuity and investigative talent? Until
now, much scientific innovation has seemingly come out of
nowhere, and this surprise part has been a great excitement
about research: ‘unregistered’ scientists challenging and
refuting old dogmas and opening new avenues. I think that
integration and transparency of the scientific endeavour
can only facilitate, not stifle, this ingenuity and creative
spontaneity in the research process. This process resembles
world history at large, where major events were often triggered
and acted by people and factors unpredictable to outsiders
of established civilizations that mistakenly thought that the
world could not extend beyond their own. Now the whole
world is known, isn’t it? – so we cannot be really surprised,
perhaps history has ended [136]. Again and again, we have
seen that this belief has been refuted and history has con-
tinued to surprise us. No doubt, research will also continue
to surprise and fascinate us.
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