



ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

# The role of Randomized Controlled Trials

#### Dr. Georgia Salanti

Lecturer in Epidemiology University of Ioannina School of Medicine

# Outline

- Understanding study designs and the role of confounding
  - Observational studies (cross-sectional and cohort)
  - Confounding
- Randomized Controlled Trials (RCTs)
- How to run properly an RCT in order to minimize the risk of bias

#### The population of interest



#### The population of interest



#### 1. Cross-sectional studies

- Snapshot in time (like a survey)
- Exposure and/or outcome measured at one point in time

– Questions may relate to the past

- Example: Survey of this room to associate the use of antidepressants with obesity
  - Do you take antidepressant?
  - Is you BMI>30?

#### 1. Cross-sectional studies



#### 1. Cross-sectional studies

#### • Good

 fine for life-long exposures (e.g. genetic) and certain outcomes that do not change with time (e.g. lipid levels?)

#### Bad

– Problems with causality

" is it the use of antidepressants that made you obese or is it the fact that you were obese that caused depression (and the prescription of antidepressants)?"

Antidepressant  $\rightarrow$  Obesity

### 2. Cohort studies

- One defined group of people
- Follow-up over time, measuring <u>exposures</u> and <u>outcomes</u>
  - Exposures often measured at baseline
- Compare the outcome (e.g. disease rates) in exposed vs unexposed
- Also called longitudinal study

#### 2. Cohort studies



### 2. Cohort studies: evaluation

- Good
  - whole population of interest
  - can look at many outcomes
  - time element
  - easier to disentangle causes and effects
    - You exclude the people that were obese before they started taking antidepressants
- Bad
  - unsuitable for rare disease (need lots of people)
  - expensive

# 3. Experimental studies: Randomized controlled trials (RCT)



# 3. RCTs: key issues

• Good

- control over confounders (known and unknown)

- Bad
  - only for exposures you can control
    - i.e. healthcare interventions
  - typically can't look at rare outcomes (very expensive)

# Why are RCTs better than observational studies?

• What is confounding?

• Are Mercedes more safe than Porsche?



• Cohort study for 1 year

|                       | Porsche | Mercedes |
|-----------------------|---------|----------|
| At least one accident | 47      | 26       |
| None accident         | 53      | 74       |
| All                   | 100     | 100      |

• RR Porsche vs Mercedes = 47% over 26% = 1.81

• Young people buy Porsche (and drive fast) – Mercedes is more popular among older drivers.

- Risk of a young driver to produce accident=50%
- Risk for older driver=2%

|                       | Porsche | Mercedes |
|-----------------------|---------|----------|
| At least one accident | 47      | 26       |
| Younger than 45       | 45      | 10       |
| Older than 45         | 2       | 16       |
| None accident         | 53      | 74       |
| Younger than 45       | 45      | 10       |
| Older than 45         | 8       | 64       |
| All                   | 100     | 100      |
| Younger than 45       | 90      | 20       |
| Older than 45         | 10      | 80       |

RR<sub>young</sub>=1 RR<sub>older</sub>=1



#### Omega 3 fatty acids and cardiovascular disease



Not a right over this ray. 

Second Statistics of some

which have a been seen in the

the movement of the Children of the Links of



Dealing with confounding in observational studies

- Known confounding factors about can be adjusted by
  - Stratified analysis (e.g. per age group)
  - Using regression models
  - Logit(probability of death) =  $a+\beta_1 \times Omega3+\beta_2 \times Age+\beta_3 \times smoking$
- But this can only be done for a limited amount of known confounding factors

#### Nielsen 2001



#### Randomization



By chance, all characteristics will be on average the same in the two groups (of course we need a larger sample size...)



Randomization controls for unknown factors too!

#### Levels of evidence

| Recommendation | Level of<br>Evidence | Type of Study                             |
|----------------|----------------------|-------------------------------------------|
| Δ              | 1a                   | Systematic review of RCTs                 |
| A              | 1b                   | Individual RCT                            |
| В              | 2a                   | Systematic review of cohort studies       |
|                | 2b                   | Individual cohort study                   |
|                | За                   | Systematic review of case control studies |
|                | 3b                   | Individual case control study             |
| C              | 4                    | Case series/case report                   |
| D              | 5                    | Expert opinion, bench research            |

# Not all RCTs are good

- RCTs can have important flaws in conduct and reporting
- Small and large studies can be bad of good
  - Although empirical evidence has shown small and old studies tend to be of less quality
- <u>Credibility</u> relates to the risk of bias in a study

#### How the soft dias property ani RIST





#### 1. Generation of allocation sequence

- How will we decide who is going to which group? Was the process truly random?
- **Simple** (or complete) randomization
  - Any method that ensure that the chance that a patient receives either the test drug or the placebo is 50%
  - Randomization is performed independently for each patient
    - Eg Good randomization: Coin toss, random numbers table, computer
- **Block** randomization
  - Blocks of k patients are created such that balance is enforced within each block, e.g. EECC, ECEC, ECCE, CEEC, CECE, and CCEE
  - The blocks should be short enough to limit possible imbalance but should be long enough to avoid predictability
  - Is a stratified randomization

# 2. Allocation concealment

- <u>Nobody</u> (participants, clinicians etc) knows who is going to which group <u>at the moment of randomization</u>
- Common methods of ensuring allocation concealment:
  - Sequentially-Numbered, Opaque, Sealed Envelopes
  - Sequentially-numbered containers
  - Pharmacy controlled
  - Central randomization

2. Empirical evidence for the importance of allocation sequence

- Seven empirical studies
- Reasonably strong evidence: average 18% (95% CI 5% to 30%) exaggeration of odds ratios when allocation concealment is inadequate

Pildal et al (IJE 2007)

# 3. Blinding

Who is blinded?

#### Participants

- Providers of care
- Researchers
- Outcome assessors
- Open
- Single
- Double
- Triple

•



"Do a double-blind test. Give the new drug to rich patients and a placebo to the poor. No sense getting their hopes up. They couldn't afford it even if it works."

#### 3. Empirical evidence for blinding

- There is some evidence that failure to blind outcome assessment is associated with exaggeration of the treatment effectiveness by on average 14%
- The risk of bias is higher for subjective outcomes

Schulz 1995

#### 4. Incomplete outcome

Why and when it is a problem?

Consider an intervention that is provided to stop alcoholism

|              | Stopped<br>Drinking | Remained in the study | Left the<br>study | Total |
|--------------|---------------------|-----------------------|-------------------|-------|
| Intervention | 20                  |                       |                   | 100   |
| Control      | 10                  |                       |                   | 100   |

Risk Ratio between the randomized=2

#### 4. Incomplete outcome

Why and when it is a problem?

Consider an intervention that is provided to stop alcoholism

|              | Stopped<br>Drinking | Remained in the study | Left the study | Total |
|--------------|---------------------|-----------------------|----------------|-------|
| Intervention | 20                  | 50                    | 50             | 100   |
| Control      | 10                  | 80                    | 20             | 100   |

Risk Ratio between the randomized=2

Risk Ratio between those that remained in the study=3.2

#### 4. Incomplete outcome

Why and when it is a problem?

Consider an intervention that is provided to stop alcoholism

|              | Stopped<br>Drinking | Remained in the study | Left the<br>study | Total |
|--------------|---------------------|-----------------------|-------------------|-------|
| Intervention | 20 70               | 50                    | 50                | 100   |
| Control      | 10                  | 80                    | 20                | 100   |

Risk Ratio between the randomized=2

Risk Ratio between those that remained in the study=3.2

Risk Ratio assuming all people that left the intervention group did stop drinking whereas all that left the control group did not=7

4. Incomplete outcome: when does it introduce bias in the results?

- Random dropout
  - It's fine, don't worry
- Reasons for dropout related to randomisation or related to outcome
  - Introduces bias!!!
  - Example: trials on interventions for drinking cessation
- Different dropout percentage between the treatment and control group!
  - Study might have high risk of bias

#### Impact of missing data

• Dichotomous

#missing ↑ then impact ↑ #events

• Continuous

%missing<sup>†</sup> then impact<sup>†</sup>

#### Intention To Treat analysis (ITT): What is it?



#### Per-protocol or treatment-received





#### True ITT



Because we want to estimate **the effectiveness** of the intervention under real circumstances and **not the efficacy** of the chemical substance or the nature of the intervention

#### Practical advise

- State explicitly what you mean by ITT as terms are often misused
- What to do when some individuals left the study and you can't find them
  - You can do ITT by 'imputing' missing data (ask for a statistician to help you) and do sensitivity analysis
  - Do available cases analysis but describe the numbers lost to follow-up and the reasons why they left the study.

#### 5. Selective outcome reporting

- Bias due to data available being a biased 'version' of what has been done in practice
- Empirical evidence
  - strong;
  - 71% of outcomes with P<0.05 fully reported</li>
  - 50% of outcomes with P>0.05 fully reported
  - 30% to 50% of primary outcomes changed between protocol and publication

#### **Trial registration**

 Registration of trials before their conduct to promote transparency of research



#### Statistical analysis

- Much easier compared to other designs
  - No need for adjustment for confounders
  - Baseline characteristics should be comparable between the group (when the trial is large enough)
- Be careful with subgroup analysis
  - Subgroups should be pre-specified in the protocol to avoid 'fishing for significance'

#### Reporting

#### The CONSORT Statement: Revised Recommendations for Improving the Quality of Reports of Parallel-Group Randomized Trials

David Moher, MSc; Kenneth F. Schulz, PhD, MBA; and Douglas G. Altman, DSc, for the CONSORT Group\* Ann Intern Med. 2001;134:657-662.

| Paper Section<br>and Topic | ltem<br>Number | Descriptor                                                                                                                                                                                       | Reportec<br>Page Nu |
|----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Title and abstract         | 1              | How participants were allocated to interventions (e.g., "random allocation,"<br>"randomized," or "randomly assigned").                                                                           |                     |
| Introduction<br>Background | 2              | Scientific background and explanation of rationale.                                                                                                                                              |                     |
| Methods                    |                |                                                                                                                                                                                                  |                     |
| Participants               | 3              | Eligibility criteria for participants and the settings and locations where the data were<br>collected.                                                                                           |                     |
| Interventions              | 4              | Precise details of the interventions intended for each group and how and when they<br>were actually administered.                                                                                |                     |
| Objectives                 | 5              | Specific objectives and hypotheses.                                                                                                                                                              |                     |
| Outcomes                   | 6              | Clearly defined primary and secondary outcome measures and, when applicable, any<br>methods used to enhance the quality of measurements (e.g., multiple observations,<br>training of assessors). |                     |
| Sample size                | 7              | How sample size was determined and, when applicable, explanation of any interim<br>analyses and stopping rules.                                                                                  |                     |

#### Table. Checklist of Items To Include When Reporting a Randomized Trial

#### Summarize

- RCTs are great (*in principal*) as they take control of all confounding factors, known and unknown
- A randomized trial should be undertaken with great care. You should
  - Register the protocol
  - Do properly the randomization, allocation concealment and blinding and try not to loose any participants
  - Report as per protocol

#### Acknowledgments

(for inspiring/sharing slides) Julian Higgins Nikos Patsopoulos Haris Vasiliadis