Wetting behavior of plasma treated low-k films in dHF cleans solutions

Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
Department of Materials Science and Engineering, Ioannina University, Ioannina, Greece

Abstract

Post-ash and post-etch cleaning of low-k structures require significant wetting of their surfaces. This work focuses on the interactions between dilute HF cleaning chemistries (dHF—1:50 to 1:1000) on porous low-k surfaces (k = 2.3) as a function of time. Wetting of these solutions was measured by a contact angle goniometer within a high humidity environment. Because ashing low-k films can change their surface chemistry and structure, the contact angles of dHF on N2/H2 and O2 ashed porous low-k films were measured as well. Ellipsometry has shown that 1:50 HF removes an ash-damaged layer from the low-k. Based on thickness loss measurements (ellipsometry and profilometry), the composition of the dilute HF droplet changes minimally as it etches the dielectric surface. Under more concentrated dHF solutions, changes in contact angle, droplet radius, and volume indicate that the droplet spreads for an initial period and then reaches a steady state, perhaps due to the creation of an etch inclusion on the surface. The steady state volume changes show volume loss rates similar to those expected from evaporation; however, the total volume losses are less than expected from only evaporative processes.

1. Introduction

As the integrated circuit device fabrication industry strives for smaller and more advanced technologies, the efficiency and precision of their fabrication processes become progressively more relevant. One of the key processes in microfabrication is the etching and cleaning of features. As feature sizes scale, wetting of cleans chemistries is crucial to the removal of etch debris in sub-45 nm structures. How these chemistries and their wetting behavior change as a function of time will relate to how effective the cleaning process can become [1]. Porous low-k films are of particular interest as they are more affected by plasma processes than more chemically robust films and have greater surface roughnesses than dense dielectric layers (in addition to roughness due to porosity). In this study, the wetting behavior of dilute HF (dHF) solutions on plasma-etched low-k substrates is analyzed as a function of time and HF concentration.

To achieve a successful wetting behavior, three factors must be understood: the surface chemistries (and surface energies) of substrates, the chemical interactions between the HF solution and the substrate, and the effective evaporation of the HF solution. The surface chemistries of the substrate are influenced by the plasma ashing that was previously applied. These ashes can degrade a substrate's resistance to the wet etch process by removing hydrophobic groups, thus, rendering the hydrophilic surface more vulnerable to HF attack [2]. In HF dissolution of silica, HF2 and F− react with the SiO2 to form SiF4 and then H2SiF6 [3].

When dealing with the wetting behavior of a droplet, the competing surface energies between solid, liquid, and gas must be taken into account as described by Young's equation [4].

\[\gamma_d + \gamma_g \cos \theta_c = \gamma_{lg} \]

For a clean chemistry to wet a low-k surface, the surface energy of the low-k-gas interface must exceed the sum of the clean-gas and low-k-liquid interfaces, and must also be greater than the surface energy of the low-k-liquid interface. Thus, the adhesive forces are stronger than the cohesive forces, and wetting of the surface occurs.

Evaporation of the HF solution can also affect the wetting behavior of a substrate. A prolonged wetting time can result in evaporation of the HF solution. With this loss of liquid volume, the contact angle can be affected. To quantify this behavior, contact angles that are formed at the solid–liquid interface are measured and examined with respect to surface chemistry, roughness, and profile.
2. Experimental

Samples were chemically vapor deposited SiOCH low-k films (~2700 Å on a silicon wafer) with porosities of about 25–30%, pore diameters of approximately 2 nm, and k values of 2.3. The films were plasma-ashed under the following conditions: N$_2$/H$_2$ (30 s, 900 sccm, 2000 W, 2 Torr, 260 °C), N$_2$/H$_2$ (60 s, 900 sccm, 2000 W, 2 Torr, 260 °C), and O$_2$ (20 s, 25 °C). These films were individually mounted onto a Rame Hart contact angle goniometer in a humidity-controlled environment. A relative humidity of ~63% was achieved by placing a hot water beaker on a stage inside the goniometer set-up. The water was heated to create a humid environment, but did not exceed the dew point as to avoid condensation on the camera lens. Each film was exposed to 6 μl droplets of 1:50, 1:100, 1:200, and 1:1000 solutions of HF. Contact angles of each sample were measured as a function of time at 30 s intervals using the FOControl image processing software. The wetting angle, height, and width of each droplet were calculated using the collected images from Image J software (NIST). Surface roughness was measured using a Veeco Multimode NanoScope III atomic force microscope (AFM) in tapping mode. Changes in film thicknesses were measured using a JA Woollam Variable Angle Spectroscopic Ellipsometer (VASE) for 3 angles (65, 70, and 75 degrees) and 300–1000 nm wavelengths. Different functionally-graded Cauchy models were developed to determine the film thickness for each unetched low-k sample. These respective models were then used on each etched (30 s exposure 1–50 dHF) sample. The width, and depth of substrate removed during this process was measured using a Veeco Dektak 150 Profilometer. Chemistries of the film surfaces were characterized by X-ray photoelectron spectroscopy (XPS) using a PHI 5000 Versaprobe. Although Young’s equation is a good model for describing the wetting behavior of a solid substrate, it assumes a perfectly smooth surface, and does not take into account the roughness found in low-k films. In this work, the plasma-ashed and as-cured (unashed) substrates not only involve the interactions between their respective chemistries, but also the adhesive and cohesive interactions between the liquid and the roughness of the film surface [5]. To study these features, AFM was used to analyze the topographies of the low-k dielectrics and revealed their respective roughness values, root mean squared roughness, R_q [6]. In addition, XPS was used to characterize the carbon concentration of the respective surfaces. A loss of surface carbonaceous groups suggests a concomitant loss of hydrophobicity. Table 1 shows previous results relating the R_q values, the percentage of carbon on the surface, and the resulting water contact angles [7].

3. Results and discussion

As expected, the as-cured sample has lower R_q compared to the plasma-ashed samples. The roughnesses of the ashed samples are very similar; therefore, the wetting behavior may be more affected by the surface chemistry. Previous work has also shown that because of the formation of bridged siloxanes, the oxygen ashing densifies the topmost layer of a low-k preventing liquid intrusion into the film [2,8]. As expected, the as-cured sample contained the highest carbon percentage on the surface, and exhibited the highest contact angle of H$_2$O. The lower percentage of carbon in the plasma-ashed substrates corresponds to lower contact angles due to their greater hydrophilicity. It should be noted that these carbon losses during the ashing process occur only to a depth of about 30–40 nm [9].

Ellipsometry data were used to determine film thickness losses after a 30 s 1:50 HF exposure (followed by a DI water rinse). From this data, an etch rate was calculated to provide some insight into the etching behavior of these substrates. In Table 1, we see that the etch rate for this dHF concentration relates well to the measured contact angles after 30 s. When comparing data from Table 1 to Fig. 1a, it is seen that the most pronounced changes in contact angle (N$_2$/H$_2$ at 30 and 60 s) correspond to the highest initial etch rates.

Alternatively, the as-cured sample has the most gradual change in contact angle (CA) and the slowest etch rate. Using these etch rates and the 1:50 HF exposure time for each sample to calculate total film thickness loss, the dHF likely etched through the film to the SiO$_2$. Visual inspection, as well as FTIR analysis suggests this occurred as well. Additionally, profilometry data indicated that the surface film losses were greater than or equal to the ~2700 Å of low-k material for 1:50 and 1:100 HF.

In this work, the factors that affect the wetting behavior of the as-cured and plasma-ashed low-k films were studied by measuring the contact angles of dHF as a function of concentration and time. The results are presented in Fig. 1a. In Fig. 1b, the initial water contact angles for each of the respective mobieties are shown with the dHF contact angles as a function of time. This large change in contact angle is in some part due to the chemical reaction between dHF and the low-k. The CA of the as-received substrate at an HF concentration of 1:50 decreases at a steady rate. The shaded region in Fig. 1a indicates the initial period where significant etching likely occurs, specifically, in the plasma-ashed substrates. Within this region, N$_2$/H$_2$ ashes appear to be more affected than the O$_2$-ashed and as-cured films.

There is not a large change in the wetting behavior of the as-cured sample when the cleaning solution of dHF is changed from 1:50 to 1:100, as shown in Figs. 1a and 2. The oxygen-ashed sample appears to be more affected by this concentration than the 1:50 while the changes in the 30 s N$_2$/H$_2$ contact angles show a more gradual change than observed in the more concentrated dHF.

Significant changes in the CA of N$_2$/H$_2$ at 60 s behavior are still evident at 1:100 dHF. For lower HF concentrations such as 1:200 and 1:1000, a gradual decrease in CA is observed for all substrates as shown in Figs. 3 and 4. Surface discoloration of the films at the spot of dHF exposure suggests that the substrates chemically react at these concentrations although no large drops in CA are observed in these figures. When one examines the “time lapse” contact angle images for all samples exposed to 1:200 and 1:1000 dHF, it is clear that the droplet radii are effectively unchanged as a function of time—the droplet edges appear “pinned” on the substrate surface.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>RMS roughness</th>
<th>%C on surface (XPS)</th>
<th>H$_2$O contact angle (deg)</th>
<th>Etch rate calculated from ellipsometry (nm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As cured</td>
<td>0.39 ± 0.005 nm</td>
<td>28.1</td>
<td>92</td>
<td>24</td>
</tr>
<tr>
<td>O$_2$, 20 s</td>
<td>0.45 ± 0.012 nm</td>
<td>3.3</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>N$_2$/H$_2$, 30 s</td>
<td>0.48 ± 0.012 nm</td>
<td>6.1</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>N$_2$/H$_2$, 60 s</td>
<td>0.49 ± 0.021 nm</td>
<td>6.1</td>
<td>50</td>
<td>64</td>
</tr>
</tbody>
</table>
Fig. 1a. The contact angle as a function of time for all substrates at 1:50 HF and their corresponding H₂O contact angles (contact angle measurement errors are ±1°). The boxed area is shown in detail in Fig. 1b.

Fig. 1b. The contact angle as a function of time for all substrates at 1:50 HF and their corresponding H₂O contact angles for the first 150 s.

Fig. 2. The contact angles as a function of time for all substrates at 1:100 HF.

Fig. 3. The contact angles as a function of time for all substrates at 1:200 HF.

Fig. 4. The contact angles as a function of time for all substrates at 1:1000 HF.
In samples that show large initial decreases in contact angle, the droplet spreads during this period. Fig. 9 shows the initial 1:100 HF droplet spreading on the 60 s N₂/H₂ ashed sample. Spreading of the droplet indicates that the dHF/low-k adhesion is exceeding the dHF liquid cohesion, and, potentially, etching of the substrate.

The wetting behavior of the as-cured substrate decreases with decreasing HF concentrations, as seen in Fig. 5, due in part to the hydrophobicity of this film. XPS results indicate that the carbon concentration of the as-cured low-k film is relatively constant (25–30 at.%) as a function of depth; therefore, the film surface would remain hydrophobic throughout any etching process [6,9].

As stated previously the ashing processes remove the carbon from the first 300–400 Å of the films [5]; consequently, this region is very vulnerable to HF attack as shown by Gorman et al. for porous MSQ low-k films [2]. Beneath this carbon depleted layer, the carbon concentration will resemble the unashed low-k. In the O₂-ashed substrate, there is a clear distinction in the CA as a function of time for the high and low concentrations of HF, as seen in Fig. 6. This may be due to a densified layer that an O₂-ash reportedly leaves on the substrate, and the lower dilutions lack sufficient chemical strength to etch through this layer. It is unclear why the 1:100 dHF solution exhibits a more pronounced etch than the 1:50 dHF. For the N₂/H₂ at 30 s, dilutions of 1:100, 1:200, and 1:1000 dHF exhibit gradual changes in CA as a function of time, as shown in Fig. 7. Comparatively, N₂/H₂ at 60 s shows pronounced changes in CA for 1:50 and 1:100 dHF solutions. This is due to the longer ash time yielding a greater damage to the substrate, and thus creating a greater vulnerability to chemical attack at the surface [2]. These comparisons can be observed in Figs. 7 and 8. These data and the etch rates reported in Table 1 for these CVD films follow the same trend for oxidizing (O₂) and reducing (H₂) ashes as those described by Gorman.

One of the aims of this work is to separate the contributions of evaporation and chemical reactions, and analyze their respective roles in the wetting behavior of these substrates. To study evaporative behavior, the evaporation rates of HF concentrations 1:50 and 1:1000, the two extreme dHF concentrations for each substrate, were plotted against the Popov model [10] (Figs. 10–13).
This model was chosen because it fits a large range of contact angles; however, it assumes a constant radius of the droplet, thus does not model spreading droplet behavior. For the as-cured substrate, it was observed that the droplet remained “pinned” for all HF concentrations, and thus followed the trends of the Popov model with respect to evaporation rate (especially for 1:1000 dHF). The results in Fig. 10 show that greater evaporation rates were observed with higher concentrations of HF, and these rates differ from Popov. These results also showed that the initial droplet volumes vary from the expected 6 μl. Potential causes included some interaction between the micropipette tip and dHF, and the use of the 5–40 micropipette near its lowest volume limit. For 1:1000 concentrations of HF in the plasma-ashed substrates, the experimental data followed the evaporation rate described by the model rather closely (although the droplet volumes do not correspond as well). It can be assumed that these similarities are due to the pinning of the droplets that was observed in these lower concentrations. For the plasma-ashed substrates pinning is not optically observed until at least 90 s (120 s in the case of the 60 s N2/H2 substrate) for higher HF concentrations of 1:50 and 1:100.

For the higher dHF concentrations on the O2 substrate (Fig. 11), the rate of droplet volume loss is proportional to the HF concentration, but less so than the other ashed substrates. The 60 s N2/H2 ashed sample, however, follows the model closely for high and low concentrations.

The volume of the low-k film lost during exposure may explain the pinning of the droplets and apparent steady state changes in contact angle at longer exposure times. Profilometry was used to measure the profile of the film covered by the droplet and showed that much larger amounts of low-k film were etched by 1:50 and 1:100 dHF as compared to the lower concentrations. Based on the etch rates approximated by the ellipsometry measurements, 300 s exposures of 1:50 and 1:100 dHF removed all films to the bare SiO2/Si substrate. The removal of the film may create a physical barrier to the droplet continuing to spread. As the higher concentrations of HF begin to react with the surface, the droplet’s radius dramatically increases and etching of the surface commences. As the droplet etches and widens, it reaches a critical radius at which the droplet becomes confined within the etched region and becomes pinned. At this pinned point, the CA gradually decreases by droplet height only. Unpinned behavior was only observed in the high HF concentrations of the plasma-ashed surfaces. The as-cured substrate remained pinned for all concentrations. As a result of film dissolution, the addition of HSiF6 to the dHF solution, and the concomitant loss of HF2 and F− in the droplet (the chief reacting species in HF [2,11]) is not significant given the volume of the droplet. Calculations indicate that only 0.16%
of the droplet volume will consist of H_2SiF_6 despite dissolution of the full 2700 Å of the film beneath the droplet.

4. Conclusions

For unashed and ashed porous low-k films, the contact angle of dilute HF decreased as a function of time and was dependent on the concentration of HF and ashed condition of the substrate. At higher concentrations of dHF on ashed samples, droplets spread during the initial exposure times. This may have been due to significant wetting of these hydrophilic surfaces. After a short period (90–120 s), the droplet spreading halted, possibly due to the creation of an etch pit. For the times measured (they differed for each sample), ellipsometry and profilometry measurements suggested that the 1:50 HF droplet etched through all low-k samples regardless of droplet spreading. The hydrophobicity of the unashed low-k may have pinned the droplet edges while still permitting significant etching of the film. While the dissolution of 2700 Å of the low-k films produced H_2SiF_6, this species contributed to less than 0.2% to the droplet volumes and was not likely to significantly impact the droplet chemistry as a function of time. The wetting behavior of dHF on these films was greatly influenced by their respective surface chemistries which may explain their spreading (or lack thereof). The Popov model predicted evaporative losses of the droplets that differed from the experimentally measured volume losses, but, in the more dilute HF concentration, showed very similar loss rates.

Acknowledgements

This work was supported by the Center of Advanced Research and Technology at the University of North Texas and Sematech. Visiting researchers from Ioannina University were funded by European Union IRSES Project #295190.

References