(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 35878, 891]*) (*NotebookOutlinePosition[ 36521, 913]*) (* CellTagsIndexPosition[ 36477, 909]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ RowBox[{ StyleBox["(*", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], RowBox[{ StyleBox[\(This\ notebook\ is\ used\ to\ self\ consistently\ derive\ \ stationary\ equilibria\ \ within\ the\ framework\ of\ Ideal\ \ Magnetohydrodynamics\ in\ cylindrical\ geometry . \ The\ input\ quantities\ needed\ \ as\ functions\ of\ the\ \ radial\ distance\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox["rho", FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(are\ the\ q - profile\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(the\ axial\ magnetic\ field\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(the\ axial\ and\ azimuthal\ \ velocity\ components\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(and\ the\ mass\ density . \ The\ calculated\ quantities\ are\ the\ azimuthal\ magnetic\ \ field\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(the\ pressure\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(the\ axial\ current\ density\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(the\ total\ axial\ current\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(the\ radial\ electric\ field\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(its\ radial\ variation\ \((shear)\)\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(and\ the\ shear\ of\ the\ ExB\ velocity . \ \ \[IndentingNewLine]In\ particular\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(reversed - magnetic - shear\ equilibrium\ quantities\ \ are\ evaluated\ here; \ accordingly\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{ StyleBox["the", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox["prescribed", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{ StyleBox[" ", FontColor->RGBColor[1, 0, 1]], " "}]], StyleBox["q", FontColor->RGBColor[1, 0, 1]]}], StyleBox["-", FontColor->RGBColor[1, 0, 1]], StyleBox[\(profile\ \ exhibits\ a\ maximum\ on\ the\ magnetic\ axis\ \), FontColor->RGBColor[1, 0, 1]]}], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(rho = 0\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(and\ a\ minimum\ inside\ the\ plasma\ column . \ Also\), FontColor->RGBColor[1, 0, 1]], StyleBox[",", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox[\(a\ peaked\ profile\ for\ the\ axial\ velocity\ and\ a\ \ Gaussian - like\ profile\ for\ the\ azimuthal\ velocity\ are\ \ \(\(chosen\)\(.\)\)\), FontColor->RGBColor[1, 0, 1]]}], StyleBox[" ", FontColor->RGBColor[1, 0, 1]], StyleBox["*)", FontColor->RGBColor[1, 0, 1]]}]], "Input"], Cell[BoxData[ StyleBox[\(Developer`ClearCache["\"]\), FormatType->StandardForm]], "Input"], Cell[BoxData[ StyleBox[\( (*\ Prescribed\ Quantities\ \ *) \), FontColor->RGBColor[1, 0, 1]]], "Input"], Cell[BoxData[{ \(\(q[rho_] := qc \((1 - a*rho^2\ + b*rho^3)\)\ ;\)\), "\[IndentingNewLine]", \(\(Bz[rho_] := Bz0 \((1 + c \((1 - rho^2)\))\)^\((1/ 2)\);\)\), "\[IndentingNewLine]", \(\(uz[rho_] := uz0 \((1 - rho^3)\)^3;\)\), "\n", \(\(utheta[rho_] := utheta0*rho \((1 - rho)\)\ Exp[\(-\((\((rho - rhomn)\)^2)\)\)/ h];\)\), "\[IndentingNewLine]", \(m[rho_] := m0*\((\((1 - rho^3)\)^3)\)\)}], "Input"], Cell[BoxData[ StyleBox[\( (*\ Calculated\ Quantities\ *) \), FontColor->RGBColor[1, 0, 1]]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"(", StyleBox["*", FontColor->RGBColor[1, 0, 0]]}]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox[\(Btheta\ = \@\(\(e\)\(\ \)\)*rho*Bz[rho]/q[rho]\), FontColor->RGBColor[1, 0, 0]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox["*)", FontColor->RGBColor[1, 0, 0]]}]], "Input"], Cell[BoxData[{ \(\(bth = FullSimplify[\@\(\(e\)\(\ \)\)*rho* Bz[rho]/q[rho]];\)\), "\[IndentingNewLine]", \(Btheta[rho_] := bth\)}], "Input"], Cell[BoxData[ StyleBox[\( (*\ A\ graph\ of\ the\ azimuthal\ magnetic\ field\ *) \), FontColor->RGBColor[1, 0, 0]]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Plot[ bth /. \ {a \[Rule] 8, b \[Rule] 10.67, c \[Rule] \(-0.0975\), e \[Rule] 0.11, Bz0 \[Rule] 1, qc \[Rule] 6}, {rho, 0, 1}]\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .61803 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 7.09827 [ [.21429 .00222 -9 -9 ] [.21429 .00222 9 0 ] [.40476 .00222 -9 -9 ] [.40476 .00222 9 0 ] [.59524 .00222 -9 -9 ] [.59524 .00222 9 0 ] [.78571 .00222 -9 -9 ] [.78571 .00222 9 0 ] [.97619 .00222 -3 -9 ] [.97619 .00222 3 0 ] [.01131 .15668 -24 -4.5 ] [.01131 .15668 0 4.5 ] [.01131 .29865 -24 -4.5 ] [.01131 .29865 0 4.5 ] [.01131 .44061 -24 -4.5 ] [.01131 .44061 0 4.5 ] [.01131 .58258 -24 -4.5 ] [.01131 .58258 0 4.5 ] [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash .21429 .01472 m .21429 .02097 L s [(0.2)] .21429 .00222 0 1 Mshowa .40476 .01472 m .40476 .02097 L s [(0.4)] .40476 .00222 0 1 Mshowa .59524 .01472 m .59524 .02097 L s [(0.6)] .59524 .00222 0 1 Mshowa .78571 .01472 m .78571 .02097 L s [(0.8)] .78571 .00222 0 1 Mshowa .97619 .01472 m .97619 .02097 L s [(1)] .97619 .00222 0 1 Mshowa .125 Mabswid .07143 .01472 m .07143 .01847 L s .11905 .01472 m .11905 .01847 L s .16667 .01472 m .16667 .01847 L s .2619 .01472 m .2619 .01847 L s .30952 .01472 m .30952 .01847 L s .35714 .01472 m .35714 .01847 L s .45238 .01472 m .45238 .01847 L s .5 .01472 m .5 .01847 L s .54762 .01472 m .54762 .01847 L s .64286 .01472 m .64286 .01847 L s .69048 .01472 m .69048 .01847 L s .7381 .01472 m .7381 .01847 L s .83333 .01472 m .83333 .01847 L s .88095 .01472 m .88095 .01847 L s .92857 .01472 m .92857 .01847 L s .25 Mabswid 0 .01472 m 1 .01472 L s .02381 .15668 m .03006 .15668 L s [(0.02)] .01131 .15668 1 0 Mshowa .02381 .29865 m .03006 .29865 L s [(0.04)] .01131 .29865 1 0 Mshowa .02381 .44061 m .03006 .44061 L s [(0.06)] .01131 .44061 1 0 Mshowa .02381 .58258 m .03006 .58258 L s [(0.08)] .01131 .58258 1 0 Mshowa .125 Mabswid .02381 .05021 m .02756 .05021 L s .02381 .0857 m .02756 .0857 L s .02381 .12119 m .02756 .12119 L s .02381 .19217 m .02756 .19217 L s .02381 .22766 m .02756 .22766 L s .02381 .26315 m .02756 .26315 L s .02381 .33414 m .02756 .33414 L s .02381 .36963 m .02756 .36963 L s .02381 .40512 m .02756 .40512 L s .02381 .4761 m .02756 .4761 L s .02381 .51159 m .02756 .51159 L s .02381 .54709 m .02756 .54709 L s .25 Mabswid .02381 0 m .02381 .61803 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath .5 Mabswid .02381 .01472 m .06244 .03003 L .10458 .04804 L .14415 .06746 L .18221 .08972 L .22272 .119 L .26171 .15476 L .30316 .20377 L .34309 .26469 L .3815 .33764 L .42237 .42804 L .46172 .51585 L .48147 .55339 L .49955 .58009 L .5095 .5908 L .51408 .59467 L .51896 .59802 L .52168 .59954 L .52414 .60069 L .52664 .60165 L .52894 .60234 L .53023 .60265 L .53164 .60292 L .53306 .60312 L .53383 .6032 L .53455 .60326 L .53524 .6033 L .53589 .60332 L .5371 .60332 L .53841 .60326 L .53915 .6032 L .53984 .60313 L .54102 .60297 L .54226 .60275 L .54447 .60223 L .54686 .60149 L .54947 .60047 L .55415 .59807 L .5585 .59523 L .56846 .58663 L .57911 .57453 L .6206 .50734 L .66059 .43105 L .69905 .36201 L .73997 .29966 L .77937 .25114 L .81726 .2138 L .8576 .18215 L .89642 .15789 L .9377 .13722 L Mistroke .97619 .12163 L Mfstroke % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 177.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgX0oooo000K0?oo o`030000003oool0oooo01P0oooo0P00003X0?ooo`006`3oool00`000000oooo0?ooo`0J0?ooo`80 0000iP3oool001/0oooo00<000000?ooo`3oool0703oool200000>@0oooo000K0?ooo`030000003o ool0oooo01h0oooo0P00003R0?ooo`006`3oool00`000000oooo0?ooo`0P0?ooo`800000h03oool0 01/0oooo00<000000?ooo`3oool08P3oool00`000000oooo0?ooo`3M0?ooo`006`3oool00`000000 oooo0?ooo`0S0?ooo`800000g@3oool001/0oooo0P00000V0?ooo`800000f`3oool001/0oooo00<0 00000?ooo`3oool09`3oool00`000000oooo0?ooo`3H0?ooo`006`3oool00`000000oooo0?ooo`0X 0?ooo`800000f03oool001/0oooo00<000000?ooo`3oool0:P3oool00`000000oooo0?ooo`3E0?oo o`006`3oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo0=@0oooo000K0?ooo`030000 003oool0oooo02`0oooo0P00003D0?ooo`006`3oool00`000000oooo0?ooo`0^0?ooo`030000003o ool0oooo0=40oooo000K0?ooo`030000003oool0oooo02l0oooo00<000000?ooo`3oool0d03oool0 01/0oooo00<000000?ooo`3oool0<03oool200000=00oooo000K0?ooo`800000<`3oool00`000000 oooo0?ooo`340?ooo`8000001`3oool001/0oooo00<000000?ooo`3oool0<`3oool00`000000oooo 0?ooo`310?ooo`8000002@3oool001/0oooo00<000000?ooo`3oool0=03oool00`000000oooo0?oo o`2n0?ooo`8000002`3oool001/0oooo00<000000?ooo`3oool0=@3oool00`000000oooo0?ooo`2k 0?ooo`8000003@3oool001/0oooo00<000000?ooo`3oool0=P3oool200000;T0oooo0P00000?0?oo o`006`3oool00`000000oooo0?ooo`0h0?ooo`030000003oool0oooo0;@0oooo0P00000A0?ooo`00 6`3oool00`000000oooo0?ooo`0i0?ooo`030000003oool0oooo0;40oooo0P00000C0?ooo`006`3o ool00`000000oooo0?ooo`0j0?ooo`030000003oool0oooo0:h0oooo0P00000E0?ooo`000P3oool2 000000@0oooo0P0000040?ooo`8000000`3oool4000000@0oooo00<000000?ooo`3oool0>`3oool0 0`000000oooo0?ooo`2[0?ooo`8000005`3oool000050?ooo`000000oooo0?ooo`000000203oool0 10000000oooo0?ooo`0000020?ooo`030000003oool0oooo00D0oooo00<000000?ooo`3oool0?03o ool00`000000oooo0?ooo`2X0?ooo`8000006@3oool000050?ooo`000000oooo0?ooo`000000203o ool010000000oooo0?ooo`0000030?ooo`030000003oool0oooo00@0oooo0P00000n0?ooo`030000 003oool0oooo0:D0oooo0P00000K0?ooo`0000D0oooo0000003oool0oooo000000080?ooo`040000 003oool0oooo000000@0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`0n0?ooo`03 0000003oool0oooo0:80oooo0P00000M0?ooo`0000D0oooo0000003oool0oooo000000080?ooo`04 0000003oool0oooo00000080oooo00@000000?ooo`3oool00000103oool00`000000oooo0?ooo`0o 0?ooo`030000003oool0oooo09l0oooo0P00000O0?ooo`000P3oool2000000X0oooo0P0000040?oo o`8000001@3oool00`000000oooo0?ooo`0o0?ooo`030000003oool0oooo09h0oooo00<000000?oo o`3oool07`3oool001/0oooo00<000000?ooo`3oool0@03oool00`000000oooo0?ooo`2K0?ooo`80 00008P3oool001/0oooo00<000000?ooo`3oool0@@3oool00`000000oooo0?ooo`2H0?ooo`800000 903oool001/0oooo00<000000?ooo`3oool0@P3oool00`000000oooo0?ooo`2F0?ooo`030000003o ool0oooo02@0oooo000K0?ooo`030000003oool0oooo04<0oooo00<000000?ooo`3oool0U03oool0 0`000000oooo0?ooo`0U0?ooo`006`3oool00`000000oooo0?ooo`140?ooo`030000003oool0oooo 0940oooo0P00000X0?ooo`006`3oool2000004D0oooo00<000000?ooo`3oool0T03oool00`000000 oooo0?ooo`0X0?ooo`006`3oool00`000000oooo0?ooo`150?ooo`030000003oool0oooo08h0oooo 00<000000?ooo`3oool0:@3oool001/0oooo00<000000?ooo`3oool0AP3oool00`000000oooo0?oo o`2<0?ooo`030000003oool0oooo02X0oooo000K0?ooo`030000003oool0oooo04L0oooo00<00000 0?ooo`3oool0RP3oool00`000000oooo0?ooo`0[0?ooo`006`3oool00`000000oooo0?ooo`180?oo o`030000003oool0oooo08L0oooo0P00000^0?ooo`006`3oool00`000000oooo0?ooo`180?ooo`03 0000003oool0oooo08H0oooo00<000000?ooo`3oool0;P3oool001/0oooo00<000000?ooo`3oool0 B@3oool00`000000oooo0?ooo`240?ooo`030000003oool0oooo02l0oooo000K0?ooo`030000003o ool0oooo04X0oooo00<000000?ooo`3oool0PP3oool00`000000oooo0?ooo`0`0?ooo`006`3oool0 0`000000oooo0?ooo`1:0?ooo`030000003oool0oooo0840oooo00<000000?ooo`3oool0<@3oool0 01/0oooo00<000000?ooo`3oool0B`3oool00`000000oooo0?ooo`1o0?ooo`030000003oool0oooo 0380oooo000K0?ooo`800000C@3oool00`000000oooo0?ooo`1m0?ooo`030000003oool0oooo03<0 oooo000K0?ooo`030000003oool0oooo04d0oooo00<000000?ooo`3oool0N`3oool00`000000oooo 0?ooo`0d0?ooo`006`3oool00`000000oooo0?ooo`1=0?ooo`030000003oool0oooo07X0oooo00<0 00000?ooo`3oool0=@3oool001/0oooo00<000000?ooo`3oool0CP3oool00`000000oooo0?ooo`1h 0?ooo`030000003oool0oooo03H0oooo000K0?ooo`030000003oool0oooo04l0oooo00<000000?oo o`3oool0MP3oool00`000000oooo0?ooo`0g0?ooo`006`3oool00`000000oooo0?ooo`1?0?ooo`03 0000003oool0oooo07D0oooo00<000000?ooo`3oool0>03oool001/0oooo00<000000?ooo`3oool0 D03oool00`000000oooo0?ooo`1c0?ooo`030000003oool0oooo03T0oooo000K0?ooo`030000003o ool0oooo0540oooo00<000000?ooo`3oool0L@3oool00`000000oooo0?ooo`0j0?ooo`006`3oool0 0`000000oooo0?ooo`1A0?ooo`030000003oool0oooo0700oooo00<000000?ooo`3oool0>`3oool0 01/0oooo0P00001C0?ooo`030000003oool0oooo06h0oooo00<000000?ooo`3oool0?03oool001/0 oooo00<000000?ooo`3oool0D`3oool00`000000oooo0?ooo`1]0?ooo`030000003oool0oooo03`0 oooo000K0?ooo`030000003oool0oooo05<0oooo00<000000?ooo`3oool0K03oool00`000000oooo 0?ooo`0m0?ooo`006`3oool00`000000oooo0?ooo`1D0?ooo`030000003oool0oooo06X0oooo00<0 00000?ooo`3oool0?P3oool001/0oooo00<000000?ooo`3oool0E03oool00`000000oooo0?ooo`1Y 0?ooo`030000003oool0oooo03l0oooo000K0?ooo`030000003oool0oooo05D0oooo00<000000?oo o`3oool0I`3oool00`000000oooo0?ooo`100?ooo`006`3oool00`000000oooo0?ooo`1E0?ooo`03 0000003oool0oooo06H0oooo00<000000?ooo`3oool0@@3oool00080oooo0P0000040?ooo`800000 103oool2000000D0oooo0`0000030?ooo`030000003oool0oooo05H0oooo00<000000?ooo`3oool0 I@3oool00`000000oooo0?ooo`110?ooo`0000D0oooo0000003oool0oooo000000080?ooo`040000 003oool0oooo000000D0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`1F0?ooo`03 0000003oool0oooo06@0oooo00<000000?ooo`3oool0@P3oool000050?ooo`000000oooo0?ooo`00 0000203oool010000000oooo0?ooo`0000020?ooo`D000000`3oool2000005P0oooo00<000000?oo o`3oool0HP3oool00`000000oooo0?ooo`130?ooo`0000D0oooo0000003oool0oooo000000080?oo o`040000003oool0oooo00000080oooo00@000000?ooo`3oool00000103oool00`000000oooo0?oo o`1G0?ooo`030000003oool0oooo0640oooo00<000000?ooo`3oool0A03oool000050?ooo`000000 oooo0?ooo`000000203oool010000000oooo0?ooo`0000030?ooo`030000003oool0000000@0oooo 00<000000?ooo`3oool0F03oool00`000000oooo0?ooo`1O0?ooo`030000003oool0oooo04D0oooo 00020?ooo`8000002P3oool2000000D0oooo0P0000040?ooo`030000003oool0oooo05P0oooo00<0 00000?ooo`3oool0G`3oool00`000000oooo0?ooo`150?ooo`006`3oool00`000000oooo0?ooo`1I 0?ooo`030000003oool0oooo05d0oooo00<000000?ooo`3oool0AP3oool001/0oooo00<000000?oo o`3oool0F@3oool00`000000oooo0?ooo`1L0?ooo`030000003oool0oooo04L0oooo000K0?ooo`03 0000003oool0oooo05X0oooo00<000000?ooo`3oool0F`3oool00`000000oooo0?ooo`170?ooo`00 6`3oool00`000000oooo0?ooo`1J0?ooo`030000003oool0oooo05X0oooo00<000000?ooo`3oool0 B03oool001/0oooo00<000000?ooo`3oool0F`3oool00`000000oooo0?ooo`1H0?ooo`030000003o ool0oooo04T0oooo000K0?ooo`030000003oool0oooo05/0oooo00<000000?ooo`3oool0F03oool0 0`000000oooo0?ooo`190?ooo`006`3oool2000005d0oooo00<000000?ooo`3oool0EP3oool00`00 0000oooo0?ooo`1:0?ooo`006`3oool00`000000oooo0?ooo`1L0?ooo`030000003oool0oooo05D0 oooo00<000000?ooo`3oool0B`3oool001/0oooo00<000000?ooo`3oool0G03oool00`000000oooo 0?ooo`1D0?ooo`030000003oool0oooo04`0oooo000K0?ooo`030000003oool0oooo05d0oooo00<0 00000?ooo`3oool0D`3oool00`000000oooo0?ooo`1<0?ooo`006`3oool00`000000oooo0?ooo`1M 0?ooo`030000003oool0oooo0580oooo00<000000?ooo`3oool0C@3oool001/0oooo00<000000?oo o`3oool0GP3oool00`000000oooo0?ooo`1@0?ooo`030000003oool0oooo04h0oooo000K0?ooo`03 0000003oool0oooo05h0oooo00<000000?ooo`3oool0D03oool00`000000oooo0?ooo`1>0?ooo`00 6`3oool00`000000oooo0?ooo`1O0?ooo`030000003oool0oooo04h0oooo00<000000?ooo`3oool0 C`3oool001/0oooo00<000000?ooo`3oool0G`3oool00`000000oooo0?ooo`1=0?ooo`030000003o ool0oooo0500oooo000K0?ooo`800000H@3oool00`000000oooo0?ooo`1<0?ooo`030000003oool0 oooo0500oooo000K0?ooo`030000003oool0oooo0600oooo00<000000?ooo`3oool0B`3oool00`00 0000oooo0?ooo`1A0?ooo`006`3oool00`000000oooo0?ooo`1Q0?ooo`030000003oool0oooo04X0 oooo00<000000?ooo`3oool0D@3oool001/0oooo00<000000?ooo`3oool0H@3oool00`000000oooo 0?ooo`190?ooo`030000003oool0oooo0580oooo000K0?ooo`030000003oool0oooo0680oooo00<0 00000?ooo`3oool0B03oool00`000000oooo0?ooo`1B0?ooo`006`3oool00`000000oooo0?ooo`1R 0?ooo`030000003oool0oooo04L0oooo00<000000?ooo`3oool0D`3oool001/0oooo00<000000?oo o`3oool0HP3oool00`000000oooo0?ooo`170?ooo`030000003oool0oooo05<0oooo000K0?ooo`03 0000003oool0oooo06<0oooo00<000000?ooo`3oool0A@3oool00`000000oooo0?ooo`1D0?ooo`00 6`3oool00`000000oooo0?ooo`1S0?ooo`030000003oool0oooo04D0oooo00<000000?ooo`3oool0 E03oool001/0oooo00<000000?ooo`3oool0I03oool00`000000oooo0?ooo`130?ooo`030000003o ool0oooo05D0oooo000K0?ooo`800000I@3oool00`000000oooo0?ooo`130?ooo`030000003oool0 oooo05D0oooo000K0?ooo`030000003oool0oooo06D0oooo00<000000?ooo`3oool0@@3oool00`00 0000oooo0?ooo`1F0?ooo`006`3oool00`000000oooo0?ooo`1U0?ooo`030000003oool0oooo0440 oooo00<000000?ooo`3oool0EP3oool001/0oooo00<000000?ooo`3oool0IP3oool00`000000oooo 0?ooo`0o0?ooo`030000003oool0oooo05L0oooo000K0?ooo`030000003oool0oooo06H0oooo00<0 00000?ooo`3oool0?`3oool00`000000oooo0?ooo`1G0?ooo`006`3oool00`000000oooo0?ooo`1W 0?ooo`030000003oool0oooo03d0oooo00<000000?ooo`3oool0F03oool001/0oooo00<000000?oo o`3oool0I`3oool00`000000oooo0?ooo`0m0?ooo`030000003oool0oooo05P0oooo00020?ooo`80 0000103oool2000000@0oooo0P0000030?ooo`<000001@3oool00`000000oooo0?ooo`1W0?ooo`03 0000003oool0oooo03`0oooo00<000000?ooo`3oool0F@3oool000050?ooo`000000oooo0?ooo`00 0000203oool010000000oooo0?ooo`0000020?ooo`040000003oool0oooo000000@0oooo00<00000 0?ooo`3oool0J03oool00`000000oooo0?ooo`0k0?ooo`030000003oool0oooo05T0oooo00001@3o ool000000?ooo`3oool0000000P0oooo00@000000?ooo`3oool000000P3oool010000000oooo0?oo o`0000040?ooo`800000J@3oool00`000000oooo0?ooo`0j0?ooo`030000003oool0oooo05X0oooo 00001@3oool000000?ooo`3oool0000000P0oooo00@000000?ooo`3oool000000P3oool3000000D0 oooo00<000000?ooo`3oool0J@3oool00`000000oooo0?ooo`0i0?ooo`030000003oool0oooo05X0 oooo00001@3oool000000?ooo`3oool0000000P0oooo00@000000?ooo`3oool000000`3oool00`00 0000oooo0?ooo`040?ooo`030000003oool0oooo06T0oooo00<000000?ooo`3oool0>03oool00`00 0000oooo0?ooo`1K0?ooo`000P3oool2000000X0oooo0P0000040?ooo`<00000103oool00`000000 oooo0?ooo`1Z0?ooo`030000003oool0oooo03L0oooo00<000000?ooo`3oool0F`3oool001/0oooo 00<000000?ooo`3oool0JP3oool00`000000oooo0?ooo`0f0?ooo`030000003oool0oooo05`0oooo 000K0?ooo`030000003oool0oooo06X0oooo00<000000?ooo`3oool0=P3oool00`000000oooo0?oo o`1L0?ooo`006`3oool00`000000oooo0?ooo`1[0?ooo`030000003oool0oooo03@0oooo00<00000 0?ooo`3oool0G@3oool001/0oooo00<000000?ooo`3oool0J`3oool00`000000oooo0?ooo`0d0?oo o`030000003oool0oooo05d0oooo000K0?ooo`030000003oool0oooo06`0oooo00<000000?ooo`3o ool0"], ImageRangeCache->{{{0, 287}, {176.938, 0}} -> {-0.107864, -0.00762002, \ 0.00394728, 0.00052961}}], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]], Cell[BoxData[ StyleBox[\( (*\ Calculation\ of\ the\ flow\ term\ in\ the\ pressure\ expression\ *) \ \), FontColor->RGBColor[1, 0, 0]]], "Input"], Cell[BoxData[{ \(\(Mthet = FullSimplify[ m[rho]*\((utheta[rho]^2)\)/\((Btheta[ rho]^2)\)];\)\), "\[IndentingNewLine]", \(\(FullSimplify[\((\((1/mi0)\) - Mthet)\) \((1/ r0)\) \((\((Btheta[rho]^2)\)/ rho)\)];\)\), "\[IndentingNewLine]", \(\(Int1 = Integrate[%, rho];\)\), "\n", \(\(Int2 = Int1 /. \ rho \[Rule] 0;\)\)}], "Input"], Cell[BoxData[ StyleBox[\( (*\ Normalized\ expression\ for\ the\ pressure\ *) \), FontColor->RGBColor[1, 0, 0]]], "Input"], Cell[BoxData[{ \(\(P = \((\(-1\)/\((2* mi0)\))\) \((Bz0 \((1 + c \((1 - rho^2)\))\)\ + \((\(Bz0\ \@e\ rho\ \@\(1 + c - c\ \ rho\^2\)\)\/\(qc - a\ qc\ rho\^2 + b\ qc\ rho\^3\))\)^2)\) + \((\(Bz0\^2\ \ \((1 + c)\)\)\/\(2\ mi0\))\) - \((Int1 - Int2)\);\)\), "\[IndentingNewLine]", \(\(P1 = P /. \ rho \[Rule] 1;\)\), "\n", \(\(P0 = \((P - P1)\) /. \ rho \[Rule] 0;\)\), "\n", \(\(Pn = \((P - P1)\)/P0;\)\), "\[IndentingNewLine]", \(Plot[ Pn /. \ {a \[Rule] 8, b \[Rule] 10.67, c \[Rule] \(-0.0975\), m0 \[Rule] 8.35*10^\((\(-8\))\), e \[Rule] 0.11, h \[Rule] 0.001, mi0 \[Rule] 4*Pi*10^\((\(-7\))\), utheta0 \[Rule] 4*^4, r0 \[Rule] 1, Bz0 \[Rule] 1, qc \[Rule] 6, rhomn \[Rule] 0.5}, {rho, 0, 1}]\)}], "Input"], Cell[BoxData[ StyleBox[\( (*\ Axial\ current\ density\ *) \), FontColor->RGBColor[1, 0, 0]]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"(", StyleBox["*", FontColor->RGBColor[1, 0, 0]]}]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox[\(Jz = \((1/\((mi0*R0* rho)\))\) \[PartialD]\_rho\ \((Bz*\((rho^2)\)/q)\)\), FontColor->RGBColor[1, 0, 0]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox["*)", FontColor->RGBColor[1, 0, 0]]}]], "Input"], Cell[BoxData[{ \(\(j = FullSimplify[\((1/\((mi0*R0*rho)\))\) \[PartialD]\_rho\ \((Bz[ rho]*\((rho^2)\)/q[rho])\)];\)\), "\[IndentingNewLine]", \(\(j0 = j /. \ rho \[Rule] 0;\)\), "\n", \(jz = FullSimplify[j/j0]\)}], "Input"], Cell[BoxData[ \(Plot[ jz /. \ {a \[Rule] 8, b \[Rule] 10.67, c \[Rule] \(-0.0975\)}, {rho, 0, 1}]\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ Axial\ current\ *) \), FontColor->RGBColor[1, 0, 0]]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"(", StyleBox["*", FontColor->RGBColor[1, 0, 0]]}]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox[\(I = Integrate[ Pi*\((r0^2)\)*rho*Jzn[a, b, c, mi0, R0, Bz0, rho], {rho, 0, 1}]\), FontColor->RGBColor[1, 0, 0]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox["*)", FontColor->RGBColor[1, 0, 0]]}]], "Input"], Cell[BoxData[ \(Iz = NIntegrate[ Pi*\((1^2)\)*rho*j /. \ {a \[Rule] 8, b \[Rule] 10.67, c \[Rule] \(-0.0975\), Bz0 \[Rule] 1, qc \[Rule] 6, R0 \[Rule] 3, mi0 \[Rule] 4*Pi*10^\((\(-7\))\)}, {rho, 0, 1}]\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ Radial\ Electric\ field\ *) \), FontColor->RGBColor[1, 0, 0]]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"(", StyleBox["*", FontColor->RGBColor[1, 0, 0]]}]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox[\(Er = Btheta*uz - Bz*utheta\), FontColor->RGBColor[1, 0, 0]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox["*)", FontColor->RGBColor[1, 0, 0]]}]], "Input"], Cell[BoxData[ \(Er = FullSimplify[Btheta[rho]*uz[rho] - Bz[rho]*utheta[rho]]\)], "Input"], Cell[BoxData[ \(Plot[ Er /. \ {a \[Rule] 8, b \[Rule] 10.67, c \[Rule] \(-0.0975\), e \[Rule] 0.11, h \[Rule] 0.001, Bz0 \[Rule] 1, qc \[Rule] 6, utheta0 \[Rule] 4*^4, uz0 \[Rule] 1*^5, rhomn \[Rule] 0.5}, {rho, 0, 1}, PlotRange \[Rule] {{0, 1}, {6*^3, \(-6*^3\)}}]\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ The\ shear\ of\ the\ radial\ Electric\ field\ *) \), FontColor->RGBColor[1, 0, 0]]], "Input"], Cell[BoxData[ \(SEr = \[PartialD]\_rho\ Er\)], "Input"], Cell[BoxData[ \(Plot[ SEr /. \ {a \[Rule] 8, b \[Rule] 10.67, c \[Rule] \(-0.0975\), e \[Rule] 0.11, h \[Rule] 0.001, Bz0 \[Rule] 1, qc \[Rule] 6, utheta0 \[Rule] 4*^4, uz0 \[Rule] 1*^5, rhomn \[Rule] 0.5}, {rho, 0, 1}, PlotRange \[Rule] {{0, 1}, {3*^5, \(-3*^5\)}}]\)], "Input"], Cell[BoxData[ RowBox[{ RowBox[{ StyleBox[ RowBox[{"(", StyleBox["*", FontColor->RGBColor[1, 0, 0]]}]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox[\(Shear\ of\ the\ E\[Times]B\), FontColor->RGBColor[1, 0, 0]], StyleBox[" ", FontColor->RGBColor[1, 0, 0]], StyleBox["*)", FontColor->RGBColor[1, 0, 0]]}], "\[IndentingNewLine]", StyleBox[\( (*\ \ omega = \ Norm[\[PartialD]\_rho\ E\[Times]B/B^2]\ *) \), FontColor->RGBColor[1, 0, 0]]}]], "Input"], Cell[BoxData[{ \(\(k1 = \[PartialD]\_rho\ \((\((Er*Bz[rho])\)/\((Bz[rho]^2\ + Btheta[rho]^2)\))\);\)\), "\[IndentingNewLine]", \(\(k2 = \[PartialD]\_rho\ \((\((Er* Btheta[rho])\)/\((\((Bz[rho]^2\ + Btheta[rho]^2)\))\))\);\)\), "\n", \(\(omega = \@\((k1^2\ + k2^2)\);\)\), "\n", \(Plot[ omega /. \ {a \[Rule] 8, b \[Rule] 10.67, c \[Rule] \(-0.00975\), e \[Rule] 0.11, h \[Rule] 0.001, Bz0 \[Rule] 1, qc \[Rule] 6, utheta0 \[Rule] 4*^4, uz0 \[Rule] 1*^5, rhomn \[Rule] 0.5}, {rho, 0, 1}]\)}], "Input"], Cell[BoxData[ \(FindMinimum[\(-omega\) /. \ {a \[Rule] 8, b \[Rule] 10.67, c \[Rule] \(-0.0975\), e \[Rule] 0.11, h \[Rule] 0.001, Bz0 \[Rule] 1, qc \[Rule] 6, utheta0 \[Rule] 4*^4, uz0 \[Rule] 1*^5, rhomn \[Rule] 0.5}, {rho, 0.45}]\)], "Input"] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 685}}, WindowSize->{856, 614}, WindowMargins->{{0, Automatic}, {Automatic, 0}} ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1705, 50, 5075, 138, 290, "Input"], Cell[6783, 190, 111, 2, 30, "Input"], Cell[6897, 194, 113, 2, 30, "Input"], Cell[7013, 198, 481, 10, 110, "Input"], Cell[7497, 210, 111, 2, 30, "Input"], Cell[7611, 214, 435, 13, 32, "Input"], Cell[8049, 229, 171, 4, 53, "Input"], Cell[8223, 235, 134, 2, 30, "Input"], Cell[CellGroupData[{ Cell[8382, 241, 186, 4, 30, "Input"], Cell[8571, 247, 20709, 455, 186, 3484, 238, "GraphicsData", "PostScript", \ "Graphics"], Cell[29283, 704, 130, 3, 29, "Output"] }, Open ]], Cell[29428, 710, 163, 4, 30, "Input"], Cell[29594, 716, 413, 9, 90, "Input"], Cell[30010, 727, 131, 2, 30, "Input"], Cell[30144, 731, 870, 16, 156, "Input"], Cell[31017, 749, 112, 2, 30, "Input"], Cell[31132, 753, 479, 14, 30, "Input"], Cell[31614, 769, 267, 5, 70, "Input"], Cell[31884, 776, 129, 3, 30, "Input"], Cell[32016, 781, 103, 2, 30, "Input"], Cell[32122, 785, 498, 16, 30, "Input"], Cell[32623, 803, 259, 5, 50, "Input"], Cell[32885, 810, 112, 2, 30, "Input"], Cell[33000, 814, 415, 13, 30, "Input"], Cell[33418, 829, 93, 1, 30, "Input"], Cell[33514, 832, 319, 5, 50, "Input"], Cell[33836, 839, 133, 2, 30, "Input"], Cell[33972, 843, 59, 1, 30, "Input"], Cell[34034, 846, 320, 5, 50, "Input"], Cell[34357, 853, 612, 17, 50, "Input"], Cell[34972, 872, 617, 11, 112, "Input"], Cell[35592, 885, 282, 4, 70, "Input"] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)