ΣΥΜΜΕΤΡΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ ΠΛΑΣΜΑΤΟΣ ΜΕ ΔΙΑΤΜΗΜΕΝΗ ΡΟΗ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΤΜΗΜΑ ΦΥΣΙΚΗΣ
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

Γ.Α. Πουλιπούλης

ΙΩΑΝΝÍΝΑ 2005
Αφιερώνεται στους γονείς μου
Every time you look up at the sky, every one of those points of light is a reminder that fusion power is extractable from hydrogen and other light elements and it is an everyday reality throughout the Milky Way Galaxy

Carl Sagan
Ευχαριστίες - Αναγνωρίσεις

Η παρούσα εργασία αποτελεί προϊόν προσωπικής μελέτης και εργασίας με χαρία συμβολή κάτωσων άλλων ανθρώπων. Ολοκληρώνοντας την λοιπόν, νοώθω την ανάγκη να ευχαριστήσω όλους αυτούς που με τον ένα ή τον άλλο τρόπο συνέβαλλαν ουσιαστικά σε αυτήν.

Εκφράζω την ευγνώμονή μου στον επιβλέποντα μου Επίκουρο Καθηγητή του Πανεπιστημίου Ιωαννίνων Χ. Γ.Ν. Θρομουλόπουλο, ο οποίος πρώτα από όλα με την κανόνα του με δάσκαλος με μύση στην επιστημονική πλακτή και με την ερευνητική του πληροφορία με καθοδήγηση με τον καλύτερο δυνατό τρόπο. Επίσης του ευχαριστώ διότι πάντοτε ήταν διαθέσιμος να απαντήσει στις ερωτήσεις μου αλλά και διότι πάντοτε με στήριξη σε οποιοσδήποτε πρόβλημα προέχυσε κατά τη διάρκεια των μεταπτυχιακών μου σπουδών.

I ought a big thanks to Dr. H. Tasso researcher at Max Planck Institute für Plasmaphysik at Garching of Munich, Germany for his very useful critical comments on my work as well as for the long talks on physics and mathematics. It was very beneficial for me to collaborate with such an experienced physicist as he is.

Ευχαριστώ τα μέλη της τριμελούς συμβουλευτικής επιτροπής του Καθηγητή του Πανεπιστημίου Ιωαννίνων Χ. Γ. Παντή και τον Καθηγητή του Εθνικού Μετσόβου Πολυτεχνείου Χ. Κ. Χιτζανάκη που δέχτηκαν αυτά το ρόλο αλλά και για τα χρήσιμα τους σχόλια κατά τη διάρκεια εκπόνησης της διατριβής.

Ευχαριστίες εκφράζω προς τα μέλη της εξεταστικής επιτροπής του Καθηγητή του Πανεπιστημίου Ιωαννίνων Χ. Κ. Αλυσανόραχη, τον Καθηγητή του Πανεπιστημίου Θεσσαλονίκης Χ. Λ. Βλάχο, τον Επίκουρο Καθηγητή του Πανεπιστημίου Ιωαννίνων Χ. Α. Νίντο και τον Επίκουρο Καθηγητή του Πανεπιστημίου Αθηνών Χ. Ι. Τσέκη για την απόφαση τους να συμμετάσχουν σε αυτή την επιτροπή, τα επικοινωνητικά τους σχόλια όσον αφορά την παρούσα εργασία αλλά και τις ιδέες τους για μελλοντική έρευνα.

Τέλος πρέπει να αναφέρω την υποστήριξή μου χαρτί άλλη τη διάρκεια των μεταπτυχιακών μου σπουδών από το Εθνικό Πρόγραμμα Ελεγχόμενης Θερμοπυρηνικής Σύντηξης στα πλαίσια του συμβολαίου ERB 5005 CT 99 0100 του συνδέσμου μεταξύ της Euratom και της Ελληνικής Δημοκρατίας. Η εν λόγω υποστήριξη εκφράστηκε είτε μέσω οικονομικής ενίσχυσης είτε μέσω της δυνατότητας πραγματοποίησης επισκέψεων σε ερευνητικά κέντρα και Πανεπιστήμια. Την τελευταία δυνατότητα αξιοποίησα με την πραγματοποίηση επισκέψεων στο Max Planck Institute für Plasmaphysik στο Μόναχο της Γερμανίας, το οποίο και ευχαριστώ για την φιλοξενία, όπου είχα καρπωρά συνεργασία.
## ΠΕΡΙΕΧΟΜΕΝΑ

3.4 Μετατόπιση Shafranov και μεταβολές πάνω στις μαγνητικές επιφάνειες ........................................... 73
3.4.1 Μετατόπιση Shafranov ........................................... 74
3.4.2 Μεταβολή της πυκνότητας για συμπιεστή ροή ........................................... 76
3.4.3 Μεταβολή της θερμοκρασίας για ασυμπιεστή ροή ........................................... 77
3.5 Συμπεράσματα ........................................... 79

4 Αξιολόγηση συμμετρικής ισορροπίας με ανισοτροπική αγωγιμότητα και τοροειδή ροή ........................................... 83
4.1 Αγωγιμότητα και ισορροπία ........................................... 83
4.2 Αξιολόγηση συμμετρικής ισορροπίας με ανισοτροπική αγωγιμότητα και τοροειδή ροή ........................................... 84
4.3 Ακριβείς λύσεις ........................................... 90
4.3.1 «Συμπιεστή» ροή ........................................... 90
4.3.2 Ασυμπιεστή ροή ........................................... 91
4.4 Επίδραση της ροής και του λόγου ύφες στην ισορροπία ........................................... 93
4.4.1 Συμπεράσματα της αγωγιμότητας ........................................... 96
4.4.2 Ηλεκτρικό πεδίο ........................................... 98
4.4.3 Τοροειδής πυκνότητα ηλεκτρικού ρεύματος ........................................... 100
4.5 Συμπεράσματα ........................................... 101

5 Ανακοίνωση-Συμπεράσματα-Προοπτικές ........................................... 105
5.1 Ανακοίνωση ........................................... 105
5.2 Συμπεράσματα ........................................... 109
5.3 Προοπτικές ........................................... 113
Επιτομή

Στην παρούσα διατριβή μελετώνται στάσεις καταστάσεις ισορροπίας μαγνητικά περιορισμένου πλάσματος που σχετίζονται με την έρευνα στη σύντηξη. Οι καταστάσεις χαρακτηρίζονται στάσεις λόγω του ότι στη μελέτη συμπεριλαμβάνεται ο όρος ροής στην εξίσωση διατήρησης της ορμής. Αυτό γίνεται διότι τα τελευταία χρόνια πολλά πειραματικά αποτελέσματα καταδεικνύουν τον πιθανό ρόλο της ροής στην επίπεδη βελτιωμένο τρόπο περιορισμού στις μηχανές σύντηξης. Συγκεκριμένα, η ροή φαίνεται να συνδέεται με το σχηματισμό φραγμάτων μεταφοράς τα οποία βελτιώνουν τον περιορισμό και αποτελούν τους πιο επιδιοφόρους διαμορφώσεις για την επίπεδη σταθερή και αυτοσυντηρούμενης κατάστασης λειτουργίας των μηχανών. Η μελέτη αποτελείται από τρία μέρη.

Στο πρώτο μέρος εξετάζεται η επίδραση της διατήρησης ταχύτητας ροής και της αντίστροφης μαγνητικής διατήρησης στην ισορροπία πλάσματος με εφαρμογή σε tokamak στο όριο απέρου λόγου ύφες. Η μελέτη πραγματοποιείται στα πλαίσια του μοντέλου των δύο ρευστών. Οι δύο προαναφερόμενες ποσότητες φαίνεται πως σχετίζονται με το σχηματισμό εσωτερικών φραγμάτων μεταφοράς (ITB). Έτσι, εξετάζεται πώς επηρέαζε στα χαρακτηριστικά της πέσης, της τοροειδούς πυκνότητας ηλεκτρικού ρεύματος, του ακτινικού ηλεκτρικού πεδίου και της διατήρησης της ταχύτητας \( \dot{E} \times B = |d/dr (E \times B)/B^2| \). Προκύπτει ότι η μαγνητική διατήρηση και οι διατηρημένες πολωνίδες και τοροειδής συνατόσεις της ταχύτητας ροής έχουν συνεργατικά στο σχηματισμό profile ηλεκτρικού πεδίου και υπερ-επέκταση \( \omega \times B \) συμβατών με αυτά του παρατηρούνται σε πετρίβατα με ITB.

Αντικείμενο του δεύτερου μέρους αποτελεί η επίδραση της ροής στη τοπολογία του μαγνητικού πεδίου σε αξονικά συμμετρικά σχηματισμό στα πλαίσια της ιδιαιτερής μαγνητοδοροθυμογράφους (MHD). Συγκεκριμένα, βρίσκουμε ότι η τοροειδής ροή προκαλεί αλλαγή στη τοπολογία των μαγνητικών επαφικών σχηματισμών tokamak που περιβάλλεται από σύνορα τετραγωνικών πολωνίδων διατήρησης και αποτέλεσμα τη δημιουργία πολωνοειδών σχηματισμών. Περαιτέρω, εξετάζεται ο ρόλος του λόγου ύφες, που σχετίζεται με το τοροειδές σχήμα, σε αυτή την αλλαγή καθώς και στη μετατόπιση Shafranov. Επίσης, πραγματοποιείται μια σύνδεση της μαγνητικής τοπολογίας με το profile το παράγοντας ασφάλειας.

Το τελευταίο μέρος αφορά συμμετρικές καταστάσεις ισορροπίας μαγνητικά περιορισμένον πλάσματος με αναδρομική ηλεκτρική αγωγικότητα και τορειοβολή ροή. Συγκεκριμένα, παράγονται ανηχητικές εξίσωσες ισορροπίας για το εν λόγω σύστημα και αντίστασες ακρίβειας λύσεως. Με βάση τις λύσεις
ΠΕΡΙΕΧΟΜΕΝΑ

αυτές, μελετάται η επίδραση της ροής και του λόγου όψης σε ποσότητες ισορροπίας όπως οι συνιστώσες της ιδικής αντίστασης παράλληλα και κάθετα στο μαγνητικό πεδίο, το ηλεκτρικό πεδίο και η πυκνότητα του ηλεκτρικού ρεύματος.
Abstract

In the present thesis stationary equilibrium states of magnetically confined plasmas of fusion concern are studied. The states are characterized stationary due to the inclusion of the flow term in the momentum equation. The study was motivated from recent experimental evidence clearly indicating that flow may play a role in achieving high confinement modes in fusion devices. Specifically, flow may play a role in the formation of transport barriers associated with improved confinement which seems to be the most prominent configurations for achieving steady self-sustained device operation. The study consists of three parts.

In the first part the impact of sheared flow and reversed magnetic shear, quantities which may play role in the formation of internal transport barriers (ITBs), in plasma equilibrium of a tokamak is examined in the infinite aspect ratio approximation. The study is conducted within the framework of two-fluid model. In particular, it is examined in which way the aforementioned quantities affect the pressure, the toroidal current density, the radial electric field and the shear of the $\vec{E} \times \vec{B}$ velocity, $\omega_{\vec{E} \times \vec{B}} = |d/dr(\vec{E} \times \vec{B}/B^2)|$, profiles. It turns out that the magnetic shear and the sheared toroidal and poloidal velocities act synergetically in producing electric fields and therefore $\omega_{\vec{E} \times \vec{B}}$ profiles compatible with ones observed in discharges with ITBs.

The subject of the second part is the impact of flow in the magnetic topology of axisymmetric equilibrium configurations within the framework of ideal magnetohydrodynamics. We found that the toroidal flow can change the magnetic topology of equilibrium eigenstates of a tokamak plasma bounded by a conducting boundary of rectangular cross-section in forming multitoroidal configurations. The impact of the aspect ratio, related to the toroidicity, on the change of magnetic topology and on the Shafranov shift is further examined. In addition, a connection between the magnetic topology and the profile of the safety factor is established.

The final part concerns axisymmetric equilibrium states of a magnetically confined plasma with anisotropic resistivity and toroidal flow. Specifically, a reduced set of equilibrium equations and respective exact solutions are obtained. On the basis of these solutions the impact of the flow and the aspect ratio on equilibrium quantities such as the resistivity components parallel and perpendicular to the magnetic field, the electric field perpendicular to the magnetic surfaces and the toroidal current density is evaluated.
ΠΕΡΙΕΧΟΜΕΝΑ
Κεφάλαιο 1
Εισαγωγή

Ορισμένα εισαγωγικά στοιχεία που αφορούν το πλάσμα και συνάδεονται με το
θέμα της παρούσας εργασίας αποτελούν το αντικείμενο αυτού του κεφαλαίου.
Συγκεκριμένα, προεισαγωγικά θα δούμε πώς ορίζεται αυτό και θα συζητήσουμε
για την ελεγχόμενη θερμοπυρηνική σύντηξη μια από τις πιο σημαντικές επιδόσο-
χόμενες εφαρμογές του. Επίσης θα παρουσιάσουμε δύο μοντέλα περιγραφής
αυτού, το μοντέλο των δύο ρευστών και τη μαγνητοουδροδυναμική (MHD) που
eίναι και το πιο απλό. Ένα ενδιαφέρον φαινόμενο, η διάχυση Pfirsch-Shlütter,
που συνδέεται με καταστάσεις ισορροπίας, κεντρικό ζήτημα της παρούσας δια-
τριβής, θα μας απασχολήσει στη συνέχεια. Έπειτα, θα αναφερθούμε στους
πρόσφατους βελτιωμένους τρόπους περιορισμού σε σχέση με την έρευνα του
θερμοπυρηνικού πλάσματος σύντηξης. Τέλος, θα δοθεί ο σκοπός, τα βήματα
και το οργανόγραμμα της εργασίας.

1.1 Πλάσμα

1.1.1 Γενικά περί πλάσματος

Το πλάσμα, που θεωρείται ως η τέταρτη κατάσταση της ύλης, ορίζεται σαν
ένα ιονισμένο αέριο που αποτελείται από φορτισμένα και ουδέτερα σωμάτια και
εμφανίζει συλλογική συμπεριφορά, είναι ουγκέ ουδέτερο (quasi-neutral) και για
τα φαινόμενα που λαμβάνουν χώρα σ’ αυτό κυρίως είναι οι ηλεκτρομαγνητικές
δυνάμεις.

Η συλλογική συμπεριφορά είναι απόρροια του γεγονότος ότι οι μεγάλες
εμβέλειες δυνάμεις Coulomb κυριαρχούν και καθορίζουν την κίνηση των σω-
ματιών που αποτελούν το πλάσμα. Απόρροια αυτής είναι π.χ. η διάδοση χυμάτων. Ας θεωρήσουμε δύο περιοχές του πλάσματος Α και Β, όπου λόγω τοπικής διαταραχής εμφανίζονται μικρές ποσότητες περισσότερων φεροτίου και έστω ότι η απόσταση μεταξύ τους είναι r. Η δύναμη Coulomb ανάμεσα στα φορτία των Α και Β μειώνεται σαν 1/r^2, όμως για δεδομένη στερεά γωνία ο όγκος του πλάσματος της Β που επιφέρει στην Α αυξάνει σαν r^3. Κατ' αυτό το τρόπο περιοχές του πλάσματος αλληλεπίδρουν σε μεγάλες αποστάσεις. Η ομοειδής ουδετερότητα εγκατεστείται στο ότι το πλάσμα μακροσκοπικά εμφανίζεται ηλεκτρικά ουδέτερο και χωρίς μεγάλα τοπικά δυναμικά.

Ποσοτικά, κατά πόσο εάν ιονισμένο αέριο θεωρείται πλάσμα καθορίζεται από το μήκος Debye (σελ. 8 της [1]). Το μήκος Debye χαρακτηρίζει την ομόνυμη θωράκιση που έχει να κάνει με την απομόνωση ενός ηλεκτρικού πέδιου που επιδρά στο πλάσμα. Δηλαδή, αν υποθέσουμε ότι μία στο πλάσμα τοποθετηθεί ένα ηλεκτρόνιο που βρίσκεται σε δυναμικό φορτίο, τότε γύρω από το ηλεκτρόνιο θα συγκεντρωθούν σωματίδια με φορτίο αντίθετο από αυτό του ηλεκτρονίου σχηματίζοντας ένα νέροσ. Έτσι, στην περίπτωση που δεν έχουμε θερμική κίνηση το εξωτερικό αυτό δυναμικό θα θωρακιστεί τελείως. Επειδή όμως η θερμοκρασία δεν είναι μηδενική, λόγω της θερμικής κίνησης, κάποια από τα ηλεκτρόνια θα έχουν αρκετή θερμική ενέργεια ώστε να διαπεράσουν το νέροσ. Έτσι θα δημιουργηθεί ηλεκτρικό πέδιο και επομένως η θωράκιση δεν είναι τελείως. Ποσοτικά το βαθμό δυναμικό σαν συνάρτηση της απόστασης r από τη θέση του εξωτερικού δυναμικού θα δίνεται από τη σχέση (δες για παράδειγμα [1] σελ. 8):

\[ \phi(r) = \phi_0 \exp\left( -\frac{r}{\lambda_D} \right), \quad \lambda_D = \sqrt{\frac{Te}{n_i e^2}}, \]

όπου Te είναι η θερμοκρασία και ni η πυκνότητα των ηλεκτρονιών μακριά από το δυναμικό (στην εργασία θα θεωρηθεί ότι όλες οι φυσικές σταθερές έχουν τιμή μονάδα). Βλέπουμε λοιπόν ότι το πάγος του νέροσ, που χαρακτηρίζεται από το μήκος Debye, λD, εξαρτάται από τη θερμοκρασία και την αδιαταράχτη πυκνότητα των ηλεκτρονιών μακριά από το δυναμικό λόγω μικρής αδιάβροχης είναι πολύ πιο ευκίνητα από τα μεγάλης μάζας ίντα. Επίσης, όσα σωματίδια βρίσκονται σε απόσταση r > λD αισθάνονται τη δύναμη Coulomb ελαττωμένη κατά τον παράγοντα exp(−r/λD). Κατά συνέπεια το μήκος Debye είναι ένα μέτρο της εμβέλειας των ηλεκτρονιών δυνάμεων μέσα στο πλάσμα. Σύμφωνα με τα παραπάνω για να θεωρείται ένα ιονισμένο αέριο πλάσμα θα πρέπει οι μακροσκοπικές του διαστάσεις, L, να είναι πολύ μεγαλύτερες από λD. Έτσι ορίζεται ποσοτικά η ομοειδής ουδετερότητα. Οι διαστάσεις του πλάσματος L θα πρέπει να είναι πολύ
1.1. ΠΛΑΣΜΑ

μεγαλύτερες από το μήκος Debye, έτσι ώστε αν εμφανιστούν ηλεκτρικά δυναμικά λόγω τοπικών συγκεντρώσεων φορτίου ή λόγω εξωτερικής παρέμβασης, αυτά να απομονωθούν και να αφήσουν το μεγαλύτερο μέρος πρακτικά ανεπηρεάστο από ηλεκτρικές δυνάμεις. Αυτή η κατάσταση δεν είναι πλήρως ουδέτερη διότι τότε δε θα επενεργούσαν ηλεκτρομαγνητικές δυνάμεις, αλλά τέτοια ώστε να μπορεί να αριστεί η πυκνότητα πλάσματος μέσω της σχέσης:

\[ n_i \approx n_e \approx n \]

Για να είναι αποδεκτό να μιλάμε για θωράκιση καθώς και για να συμβαίνουν φανόμενα συλλογικής συμπεριφοράς θα πρέπει ο αριθμός των ηλεκτρονίων μέσα στη σφαίρα Debye να είναι αρκετά μεγάλος. Αν προσεγγίσουμε το πλάσμα ως ιδανικό αέριο πυκνότητας \( n \), ο αριθμός των σωματίων στη σφαίρα με ακτίνα \( \lambda_D \) είναι:

\[ N_D = n \frac{4}{3} \pi \lambda_D^3. \]

Έτσι η συλλογική συμπεριφορά απαιτεί:

\[ N_D \gg 1 \]

ή ισοδύναμα:

\[ \lambda_D \gg n^{-1/3}. \]

Η τελευταία συνθήκη είναι ισοδύναμη με το γεγονός ότι η δυναμική ενέργεια είναι μικρότερη από την κινητική ώστε η πυκνότητα επανασύνδεσης ιόντων και ηλεκτρονίων να είναι πολύ μικρή και κατά συνέπεια εξασφαλίζει τη διατήρηση της ύλης σε μορφή πλάσματος.

Μία ακόμη συνθήκη είναι απαραίτητη ώστε ένα ιονισμένο αέριο να θεωρείται πλάσμα: Οι χρονισμοί των ροπτωμένων σωματίων με τα ουδέτερα δε να πρέπει να είναι συγκεκριμένοι στην περίπτωση της κίνησης των σωματίων υπακούει σε υδροδυναμικές δυνάμεις και όχι σε ηλεκτρομαγνητικές. Ετσι αν \( \omega \) είναι η συχνότητα ηλεκτρονικών ταλαντώσεων στο πλάσμα που συνδέεται με την αλληλεπίδραση Coulomb (σελ 184 της [1]) και \( \tau \) ο μέσος χρόνος μεταξύ συγκρούσεων των ροπτωμένων με ουδέτερα σωματία, τότε για να θεωρηθεί ένα ιονισμένο αέριο σαν πλάσμα θα πρέπει να ισχύει:

\[ \omega \tau > 1. \]

Συνοψίζοντας, για να χαρακτηριστεί ένα αέριο ως πλάσμα θα πρέπει να ικανοποιούνται οι τρεις παραπάνω συνθήκες:

3
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

1. \( L \gg \lambda_D \)
2. \( N_D \gg 1 \)
3. \( \omega \tau > 1 \)

1.1.2 Ελεγχόμενη Σύντηξη

Η σημαντικότερη επιδιωκόμενη εφαρμογή του πλάσματος είναι η παραγωγή ενέργειας μέσω θερμοπυρηνικών αντιδράσεων σύντηξης. Μεγάλη προσπάθεια καταβάλλεται παγκόσμιως για την επίτευξη ελεγχόμενης και αυτοσυντηρούμενης σύντηξης η οποία θα οικείει στην παραγωγή ενέργειας. Ο πρώτος αντιδραστήρας σύντηξης θα βασίζεται στην αντίδραση:

\[ D + T \rightarrow ^4\text{He} (3.5\text{MeV}) + n (14.1\text{MeV}) \]

και αυτό δίνει η ενεργός διατομή σχέδασης της σε θερμοκρασίες που είναι δυνατό να επιτευχθούν είναι μεγαλύτερη από αυτή άλλων αντιδράσεων σύντηξης. Για να επιτευχθεί ο σκοπός της παραγωγής ενέργειας θα πρέπει στο πλάσμα να επικρατούν συγκεκριμένες συνθήκες όπως αφορά την πυκνότητα, τη θερμοκρασία και το χρόνο περιορισμού της ενέργειας εντός του όγκου του. Ο σκοπός της επίτευξης υψηλής πυκνότητας και θερμοκρασίας καθώς και μεγάλου χρόνου περιορισμού της ενέργειας απαιτεί την εκατομποίηση του κριτηρίου της ανάφλεξης που για την αντίδραση \( D - T \) και για θερμοκρασία 10 keV γράφεται:

\[ n_{TE} \geq 3 \times 10^{14} \text{ cm}^{-3} \text{ sec}. \]

Το ίσον στη σχέση αυτή συνδέεται με την απαίτηση η κατάσταση περιορισμού να συντρέχει από την κινητική ενέργεια των παραγόμενων πυρήνων ήλιου χαλύπτοντας τις απώλειες ενέργειας λόγω ακτινοβολίας και άλλων αιτίων και επιπλέον θερμάνοντας το πλάσμα. Για τον χωρικό περιορισμό του πλάσματος χρησιμοποιούνται χυμώδες ισχυρά μαγνητικά πεδία αλλά και ισχυρές δέσμες laser. Η έρευνα για την θερμοπυρηνική σύντηξη έχει επικεντρωθεί χυρώσει στο μαγνητικό περιορισμό, απότελει σκόπιμο να αναφερθούν κάποια από τα ζευγή αντικειμένων με αρνητικά μέσα του φαινομένου Joule λόγω του ρεύματος που διαρρέει το ίδιο το πλάσμα, με ακτινοβολία καθώς και με εμβολιασμό δεσμών συμπλοκικών. Το θέμα του περιορισμού της ενέργειας έχει τύχει μεγάλης προσοχής τα τελευταία χρόνια με αποτέλεσμα να έχουν αναγνωριστεί βελτιωμένοι τρόποι περιορισμού (improved confinement modes) μέσω φαραγμάτων μεταφοράς όπως η μετάβαση από χαμηλό τρόπο
1.1. ΠΛΑΣΜΑ

περιορισμού σε υψηλό (L-H transition) ή τα εσωτερικά φράγματα μεταφοράς
(Internal Transport Barriers). Οι βελτιωμένοι τρόποι περιορισμού συμβάλλουν
και στο χωρικό περιορισμό του πλάσματος. Περισσότερα στοιχεία για αυτούς
στα εδάφια 1.4.1 και 1.4.2. Το πεδίο έφευγε στη ψυχική πλάσματος σύντηξης
αφορά τον χαμηλομόχλητο καταστάσεων ισορροπίας (με την έννοια της μηχανικής,
αλλά όχι της ηλεκτροδοτικής), τη σταθερότητα αυτών, τη μελέτη φαινομένων
μεταφοράς, τη θέρμανση του, τον ανεφοδιασμό με πυρήνες προς σύντηξη και άλλα
ζητήματα τεχνολογικής ψύξεως όπως για παράδειγμα η δημιουργία ισχυρών
μαγνητικών πεδίων (1-10Γ) ή η ανάπτυξη υλικών κατάλληλων για τα τοιχώματα
του αντίδραστηρα.

Το ζήτημα του χωρικού περιορισμού του πλάσματος σύντηξης ήταν το πρώτο
που παραχώθηκε τους ερευνητές και συγκεκριμένα ο περιορισμός με μαγνητικά
πεδία. Τα πρώτα συστήματα είχαν χιλιοφορική μορφή, ενώ η προσπάθεια
απαλογισμός μειονεκτημάτων, όπως οι απώλειες από τα άκρα τους, οδήγησε σε
χλειστά τοροειδή συστήματα όπως τα tokamak και τα stellarator ή διάφορες
παραλλαγές αυτών. Σήμερα αν και έφευγαν διεξάγεται και στην κατεύθυνση του
περιορισμού με laser περισσότερο υποχρέωνος, όσον αφορά την ελεγχόμενη
σύντηξη, εμφανίζεται ο μαγνητικός περιορισμός. O κύριος υποψήφιος για την
κατασκευή ενός πρότυπου αντίδραστηρα σύντηξης είναι το tokamak (σχήμα
1.1). Το σχήμα του είναι τοροειδές και ορίζονται δύο διευθύνσεις, κατά μήκος
του τόρου η τοροειδές (toroidal) και κάθετα σε αυτή η πολυειδή (poloidal).
Σε σύστημα χιλιοφορικών συντεταγμένων οι δύο διευθύνσεις αντιστοιχούν στις
gωνίες θ και φ αντίστοιχα όπως φαίνεται στο σχήμα 1.2. Ο ωριμός αυτών των
dύο διευθύνσεων συνδέεται με το γεγονός ότι έχει αποδειχτεί η αναγκαιότητα
υπαρξών μαγνητικού πεδίου και στο αυτό υπερυφόλο τοροειδής και στη συνέχεια
επιτυχεί περιορισμό του πλάσματος. Μια παράμετρος που παίζει σημαντικό ρόλο στην
ισορροπία και σταθερότητα των τοροειδών συστημάτων είναι ο λόγος ύψους (aspect
ratio)1 ο οποίος ορίζεται ως το πλήκτρο της τοροειδώς ακτίνας προς την
πολυειδή (δες και σχήμα 1.2):

\[ \alpha = \frac{R}{r} \]

Σε ένα tokamak η τοροειδής συνιστώσα του μαγνητικού πεδίου δημιουρ-
γείται από εξωτερικά πηγά καταστάσεις ισορροπίας και την πολυειδή από τον ηλεκτροκολλητό ρεύμα του πλά-
σματος στην τοροειδή διεύθυνση το οποίο φαινόμενο επαγωγά θεμελίωσα

1 Ο λόγος ύψους ορίζεται ως αριθμητική μεταφράσεις του Αγγλικού. Εναλλακτικά θα μπορούσαν να χρησιμοποιηθούν οι λόγοι ορίζοντων των διστατών ή διάπτωσα
κεφάλαιο 1. Εισαγωγή

Σχήμα 1.1: Σχηματική αναπαράσταση του ITER ενός tokamak που πιστεύεται ότι θα αποτελέσει το προσφέροντος ενός αντίδραστοματικό σύστημα και το οποίο αναμένεται να κατασκευαστεί με παγκόσμια συγχρηματοδότηση.

tο πλάσμα σε αυτή την περίπτωση παίζει το ρόλο του δευτερεύοντος πηνίου ενός μετασχηματιστή. Προφανώς το tokamak λειτουργεί παλιμάκα, πράγμα που δεν είναι επιθυμητό για έναν αντίδραστοματικό παραγωγής ηλεκτρικής ενέργειας γι’ αυτό και πραγματοποιείται έρευνα προς την κατεύθυνση παραγωγής μη επαγωγικού ρεύματος (non-inductive) και κατά συνέπεια επίπεδης σταθερής λειτουργίας (steady state) μέσω χωρίς των βελτιωμένων τρόπων περιορισμού.

Ο μαγνητικός περιορισμός του πλάσματος βασίζεται στην εξισορρόπηση των δυνάμεων που επενδύονται σ’ αυτό από τις μαγνητικές δυνάμεις. Συγκεκριμένα...
Σχήμα 1.2: Η γεωμετρία μιας κλειστής, αξονικά συμμετρικής τοροειδούς διάτα-
ξης με τις διευθύνσεις να εκφράζονται σε κυλινδρικές συντεταγμένες. Ο αξόνας
z είναι ο αξόνας συμμετρίας, θ και φ η τοροειδής και πολοειδής διεύθυνση αν-
tίστοιχα. Οι κλειστές επιφάνειες που φαίνονται στο σχήμα είναι οι μαγνητικές
επιφάνειες. Το χαρακτηριστικό τους είναι το ότι οι δυναμικές γραμμές του
μαγνητικού πεδίου είναι εγκατεμπονικά σ’ αυτές.

να, θεωρώντας την περίπτωση MHD ισορροπίας χωρίς ροή (δει εδάφιο 1.2 για
περισσότερες λεπτομέρειες όσον αφορά το MHD μοντέλο), θα πρέπει να ικα-
νοποιείται η εξίσωση ορμής:

\[ \nabla \cdot \mathbf{J} = \mathbf{j} \times \mathbf{B}, \]

(1.1)

η οποία δηλώνει ότι η δύναμη λόγω της βαθμίδας πέσης πρέπει να εξισορ-
ροπείται από την μαγνητική δύναμη Lorentz. Από αυτή προκύπτει ακόμα ότι
το ρεύμα και το μαγνητικό πεδίο πρέπει να είναι χάθετα ως προς τη βαθμί-
δα πέσης. Σε κυλινδρική γεωμετρία αυτή η εξισορρόπηση είναι στην ακτινική
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

...
1.1. ΠΛΑΣΜΑ

Αστάθειες οι οποίες εμφανίζονται ακόμη και η ειδική αντίσταση του πλάσματος είναι μηδενική.

2. «Αγώνιες αστάθειες» (resistive modes)

Αστάθειες οι οποίες εμφανίζονται στην περίπτωση πεπερασμένης ειδικής αντίστασης. Στις «αγώνιες» αστάθειες περιλαμβάνονται και οι «ιδανικές» μιας και η πηγή της ενέργειας που τροφοδοτεί τις αστάθειες παραμένει όταν ο περιορισμός της μηδενικής ειδικής αντίστασης δεν υπάρχει.

Εδώ ας σημειωθεί ότι η κλίμακα του χρόνου ανάπτυξης των δύο χατηγοριών διαφέρει. Συγκεκριμένα, οι «ιδανικές» αστάθειες έχουν πολύ μικρός χρόνος ανάπτυξης σε σύγκριση με τις «αγώνιες» μιας και για να γίνουν σημαντικά τα φαινόμενα απόδοσης λόγω πεπερασμένης ειδικής αντίστασης απαιτείται κάποιος χρόνος.

Οι μελέτες σταθερότητας μπορούν να πραγματοποιηθούν είτε στα πλαίσια γραμμικής θεωρίας είτε μη γραμμικής. Η μελέτη σταθερότητας βασίζεται στις ακόλουθες τρεις βασικές διαδικασίες:

1. Η «ενεργητική αρχή», κατά την οποία υπολογίζεται η αλλαγή στη δυναμική ενέργεια λόγω μιας μετατόπισης του πλάσματος στο χώρο.

2. Υπολογισμός των ιδιοσυγχρονιών και των ιδιοσυχνοτήτων της της αστάθειας. Το πρόσημο του φανταστικού μέρους της ιδιοσυγχρονότητας καθορίζει την ευστάθεια.

3. Επίλυση της φυσικής εξίσωσης ευστάθειας (το φανταστικό μέρος της ιδιοσυγχρονότητας είναι μηδέν).

Η βασική μέθοδος για να εξεταστεί η μελέτη σταθερότητας ενός συστήματος είναι η εξέταση της συμπεριφοράς διαταραχών από την κατάσταση ισορροπίας. Η γραμμική μελέτη καθορίζεται από την μελέτη της συμπεριφοράς πολύ μικρών διαταραχών γύρω από κατάστασες ισορροπίας που ικανοποιούν τις συνοριακές συνθήκες. Εναλλακτικά στην περίπτωση των «ιδανικών» αστάθειας μπορεί να υπολογιστεί η αλλαγή στη δυναμική ενέργεια που αντιστοιχεί σε μια μετατόπιση του πλάσματος στο χώρο. Σε αυτή την περίπτωση το πλάσμα είναι αστάθεια σε χάθει μετατόπιση που κάνει την αλλαγή στη δυναμική ενέργεια αρνητική.

Εδώ πρέπει να σημειωθεί ότι οι περισσότερες θεωρητικές μελέτες που αφορούν ευστάθεια έχουν πραγματοποιηθεί για στατικές ισορροπίες (δηλαδή χωρίς ροή του πλάσματος). Αυτό συμβαίνει διότι αφενός η σημασία της ροής για την επίπεδη υψηλότερο περιορισμού αναδείχτηκε τα τελευταία είχε
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

χρόνια και αφετέρου διότι το πρόβλημα της σταθερότητας με ροή, ιδιαίτερα σε
ρεαλιστικές γεωμετρίες, παρουσιάζει πάρα πολλές δυσκολίες από μαθηματικής
απόψεως.

Κλείνοντας την αναφορά στις αστάθειες χρίνεται σχόπημα να ανφερθούν ως
παραβεβαίματα χώρων μορφών επικίνδυνων αστάθειών στα toakamak οι παρα-
κάτω:

1. Αστάθεια «kλάμπου» (kink instability), είτε εσωτερική είτε εξωτερική και
οι αντίστοιχες «αγώγμες» «απόσχισης» (tearing mode) και \( m = 1 \) (re-
sistive \( m = 1 \) instability). Ο χαρακτηρισμός ως εσωτερική ή εξωτερική
εξαρτάται από το αν το πλάσμα έρχεται σε επαφή με σταθερό αγώγμο
τοίχωμα ή αν μεταξύ του πλάσματος και του τοιχώματος παραβάλλεται
περιοχή μαγνητικού πεδίου ξενού.

2. Αστάθεια «μπαλονιού» (ballooning modes).

Πρέπει να γίνει σαφές ότι κάποιες αστάθειες είναι πολύ επικίνδυνες για τον πε-
ριορισμό του πλάσματος αρθού, υπό ορισμένες συνθήκες, μπορούν να οδηγήσουν
σε κατάρρευση του συστήματος.

Η ποιότητα του περιορισμού του πλάσματος εκτιμάται μέσω κάποιων παραμέ-
τρων όπως είναι η παράμετρος \( \beta \) και ο παράγοντας ασφάλειας \( q \). Η παράμετρος
\( \beta \) μετράει την εκανόντα του μαγνητικού πεδίου να περιορίσει το πλάσμα στον
επιθυμητό χώρο και είναι ουσιαστικά ο λόγος της πυκνότητας της θερμικής
ενέργειας προς την αντίστοιχη της μαγνητικής ενέργειας. Με τον παράγοντα
ασφάλειας εκτιμάται η ποιότητα του περιορισμού ως προς τη σταθερότητα. Ο
παράγοντας ασφάλειας ορίζεται ως ο αριθμός των περιελείσ ίχων μαγνητικής
δυναμικής γραμμής στη τοροειδή διεύθυνση προς τον αντίστοιχο αριθμό στην
πολεοειδή διεύθυνση στο όριο του \( q \) δυναμική γραμμή πραγματοποιεί \( \rho \) \( υ\) ήλιου στη τοροειδή
dιεύθυνση:

\[
q = \lim_{\text{περιελείσες στη τοροειδή διεύθυνση}} \lim_{\text{περιελείσες στην πολεοειδή διεύθυνση}}
\]

Επειδή οι δυναμικές γραμμές δεν τέμνονται την τιμή του παράγοντα ασφάλειας
eίναι η ίδια για κάθε γραμμή πάνω σε κάθε μια μαγνητική επιφάνεια, δηλαδή \( q \)
eίναι ποσότητα επιφανειας. Ο παράγοντας ασφάλειας συνήθως υπολογίζεται ως
η μεταβολή της μαγνητικής ροής στη τοροειδή διεύθυνση ως προς τη μαγνητική
ροή στην πολεοειδή διεύθυνση με βάση τη σχέση (για μια απόδειξη της σχέσης
ο αναγνώστης παρατηρείται στη βιβλιογραφία [4]):

\[
q(V) \equiv \frac{dV}{d\psi_p}
\]
1.2 ΜΟΝΤΕΛΑ ΠΕΡΙΓΡΑΦΗΣ ΤΟΥ ΠΛΑΣΜΑΤΟΣ ΣΥΝΤΗΣΗΣ

Έχει αποδειχθεί ότι για στατική ισορροπία, δηλαδή ισορροπία χωρίς μαχρο-
σκοπική ροή μάζας, οι τιμές του πρέπει να είναι ίσες ή μεγαλύτερες από τη
μονάδα (όριο Kruskal-Shafranov) [2], ενώ προχωρείτε περαιτέρω [5] καθώς και
αριθμητικά για χιλιονδρική γεωμετρία [6] ότι πρέπει να είναι μεγαλύτερες από
δύο. Το πρόβλημα του παράγοντα ασφάλειας φαίνεται να παίζει ρόλο στο σχημα-
τισμό των εσωτερικών φαινόμενων μεταφοράς. Περισσότερα για αυτό το θέμα
συζητούνται στο εδάφιο 1.4.2.

1.2 Μοντέλα περιγραφής του πλάσματος σύν-
της

Το πλάσμα, εξ’ αυτίς του μεγάλου εύρους συνθηκών πυκνότητας και θερμο-
κρασίας στις οποίες μπορεί να υπάρξει (σχήμα 1.3), κάνει δύσκολη την επίλυ-
γη ενός μοναδικού μοντέλου για την περιγραφή του. Το πλάσμα σύντης, που
αναφέρεται την παρούσα εργασία, είναι ένα κλασσικό, οριστικό μη σχετικιστικό σύ-
στημα. Παρά του χαρακτηρισμού μοντέλου θα πρέπει να χαθοριστούν και
οι αλληλεπιδράσεις που θα συμπεριληφθούν σ’ αυτό. Για παράδειγμα, η βραχυ-
τική δύναμη δεν μπορεί να αγνοηθεί στην περίπτωση του αστροφυσικού πλάσματος,
ενώ στην περίπτωση του εργαστηριακού είναι αμελητέα. Αυτό συμβαίνει διότι
το αστροφυσικό πλάσμα συνήθως έχει πολύ μεγάλη μάζα κάτι που δε συμβαίνει
με το εργαστηριακό όπου οι ηλεκτρομαγνητικές δυνάμεις χωριστούν. Έτσι
tο πόσο επιτυχημένο είναι ένα μοντέλο εξαρτάται από το αν οι απαιτήσεις που
έχουν χρησιμοποιηθεί για την παραγωγή του ικανοποιούν για το υπό μελέτη
σύστημα.

Μια αρχετά ακριβής περιγραφή παρέχει η κινητική θεωρία, στα πλαίσια της
οποίας το πλάσμα μελετάται ως ένα κλασσικό σύστημα με τη διαφορά ότι οι δυ-
νάμεις μεταξύ των σωματιδίων είναι ηλεκτρομαγνητικές φύσεως και όχι μηχα-
νικές. Βασική ποσότητα στα πλαίσια της κινητικής θεωρίας είναι η συνάρτηση
κατανομής ταχυτήτων. Η κινητική θεωρία, αν και δίνει απαντήσεις σε φαινόμε-
να που διαφορετικά δε να μπορούσαν να ερμηνευθούν, όταν εφαρμόζονται σε
ρεαλιστικές γεωμετρίες και πετώντας πολύ δύσκολη την εφαρμογή λόγω
καθαρισμικών δυσκολιών. Χάνοντας σε πληροφορία, αλλά γινόντας το περισσό-
τερο πρακτικά εφαρμόσιμο σε σχέση με το παραπάνω, μπορεί να παραχθεί, για
πλήρως ισομερές πλάσμα, το μοντέλο των δύο ρευστών. Σε αυτό, το πλάσμα
θεωρείται ότι αποτελείται από δύο αλληλοδιάδοχων ρευστά, τα ένα των ίδι-

3Για παράδειγμα η απόδειξη Landau.
Σχήμα 1.3: Διάφορες μορφές πλάσματος συναρτήσει της πυκνότητας και της θερμοκρασίας.

tων και το άλλο των ηλεκτρονίων. Οι εξισώσεις που περιγράφουν το πλάσμα σε αυτό το μοντέλο, γραμμένες σε Gaussian σύστημα μονάδων θέτονται τη ταχύτητα του ωτός και τον άνω έκβολο τα 4π μονάδα, είναι οι ακόλουθες:

1. Εξίσωση διατήρησης της μάζας
\[
\frac{\partial n_\alpha}{\partial t} + \vec{\nabla} \cdot (n_\alpha \vec{v}_\alpha) = 0. \tag{1.2}
\]

2. Εξίσωση διατήρησης της ορμής
\[
n_\alpha m_\alpha \left( \frac{\partial \vec{v}_\alpha}{\partial t} + (\vec{v}_\alpha \cdot \vec{\nabla}) \vec{v}_\alpha \right) = q_\alpha n_\alpha (\vec{E} + \vec{v}_\alpha \times \vec{B}) \vec{\nabla} P_\alpha. \tag{1.3}
\]
3. Μια εξίσωση διατήρησης της ενέργειας ή χαταστατική εξίσωση:

4. Συνθήκη οιονε-ουδετέρωτης

\[ Z_i n_i \approx n_e = n. \]  \hspace{1cm} (1.4)

5. Οι εξισώσεις του Maxwell

\[ \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}. \] \hspace{1cm} (1.5)

\[ \nabla \times \vec{B} = \sum \alpha n_\alpha q_\alpha \vec{v}_\alpha + \frac{\partial \vec{E}}{\partial t}. \] \hspace{1cm} (1.6)

\[ \nabla \cdot \vec{E} = \sum \alpha n_\alpha q_\alpha \] \hspace{1cm} (1.7)

\[ \nabla \cdot \vec{B} = 0, \] \hspace{1cm} (1.8)

όπου ο δείκτης \( \alpha \) χαρακτηρίζει το είδος των σωματιδίων και παίρνει τις τιμές \( i \) για τα ιόντα και \( e \) για τα ηλεκτρόνια, \( d/dt \equiv \partial/\partial t + \vec{v} \cdot \nabla \) είναι η ολική παράγωγος (convective derivative), \( n_\alpha \) είναι η αριθμητική πυκνότητα, \( Z_i \) είναι ο ατομικός αριθμός των ιόντων και \( q_\alpha \) το φορτίο κάθε είδους σωματιδίων. Ο υπόλοιπος συμβολίζει στις εξισώσεις (1.2)-(1.8) είναι ο καινερμένος. Αξίζει να σημειωθεί ότι ο νόμος του Gauss (1.7), ο οποίος αντικαθίσταται από τη συνθήκη οιονε-ουδετέρωτης (1.4), αναφέρεται για λόγους πληρότητας και μπορεί να χρησιμοποιηθεί εκ των υστέρων για τον υπολογισμό της πυκνότητας φορτίου.

Απλοποιώντας περαιτέρω το μοντέλο με ότι αυτό συνεπάγεται όσον αφορά την απόλεια πληροφορίας κατάλληλους στο πιο απλό που ονομάζεται μαγνητοζωνία (MHD), στα πλαίσια του οποίου το πλάσμα αντιμετώπιζε το πλέον ως ένα αγώνιστο ρευστό στο οποίο επενεργούν ηλεκτρομαγνητικές δυνάμεις, όπως είναι ο υδρόγονος.

Οι εξισώσεις που αποτελούν το MHD μοντέλο είναι οι εξής:

1. Εξίσωση διατήρησης της μάζας

\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0. \] \hspace{1cm} (1.9)

2. Εξίσωση διατήρησης της ορμής

\[ \rho \frac{d\vec{v}}{dt} = \vec{J} \times \vec{B} - \nabla P. \] \hspace{1cm} (1.10)
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

3. Μια εξίσωση διατήρησης της ενέργειας ή καταστατική εξίσωση.

4. Ο νόμος του Ohm

\[ E + \vec{v} \times \vec{B} = \vec{H} \cdot \vec{J}. \]  \hspace{1cm} (1.11)

5. Οι εξισώσεις του Maxwell

\[ \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \] \hspace{1cm} (1.12)

\[ \vec{\nabla} \times \vec{B} = \vec{J} + \frac{\partial \vec{E}}{\partial t}, \] \hspace{1cm} (1.13)

\[ \vec{\nabla} \cdot \vec{E} = \rho, \] \hspace{1cm} (1.14)

\[ \vec{\nabla} \cdot \vec{B} = 0, \] \hspace{1cm} (1.15)

όπου \( \rho \) η πυκνότητα μάζας, \( \vec{E} \) η ταναντής της ενέργειας, \( \vec{B} \) αντίστασης του ρευστού και \( \rho \) η πυκνότητα φορτίου. Όπως και στην περίπτωση των δύο ρευστών ο νόμος του Gauss χρησιμοποιείται στον υπολογισμό της κατανομής φορτίου. Σύντομα ο σημειώνεται σχόλιο να γίνουν κάποιες επισημάνσεις όταν αφορά τα μοντέλα των ρευστών. Καταρχάς όποιος αποτελεί καθετόι στο νόμο του Gauss η αναφορά μικρές υποτεχνίες με τις οποίες πραγματοποιούνται διάφορες διεργασίες είναι πολύ μικρές. Επίσης για την παραγωγή των μοντέλων έχει εποπτεύει ότι το πλάσμα η συχνότητα χρούσεων είναι μεγάλη. Αυτή η συνθήκη στο πλάσμα σύντηξης δεν ικανοποιείται μιας και ισχυεί:

\[ \nu_{\text{μ}} \propto T^{-3/2} \]

όπου \( \nu_{\text{μ}} \) η συχνότητα χρούσεων μεταξύ ιόντων και ηλεκτρονίων. Αρα η μεταμορφώσεις κανείς να πει πως η περιγράφη του πλάσματος ως ρευστό αποκλείει το πλάσμα σύντηξης. Παράλληλα αυτά φαίνεται ότι το πλάσμα ισορροπίας περιγράφεται αρχικά λαλά ως ρευστό. Αυτό συμβαίνει διότι κάθετα στο μαγνητικό πεδίο το ρόλο των χρούσεων παίζει η γυροστάθηκη, ενώ όσον αφορά την παράλληλη σε αυτό διεύθυνση, επειδή οι κινήσεις ενδιαφέροντος είναι ασυμμετρές, οι εξίσωσεις ισορροπίας ενέργειας δεν παίζουν σημαντικό ρόλο. Για την παραγωγή του μοντέλου της MHD από αυτό των δύο ρευστών ο αναγνώστης παρατηρείται στις αναφορές [2, 1]. Περισσότερες λεπτομέρειες χειριστικά με τα δύο προαναφερόμενα μοντέλα περιγραφής του πλάσματος μπορούν να βρεθούν στη βιβλιογραφία [2, 1, 7].

14
1.2. ΜΟΝΤΕΛΑ ΠΕΡΙΓΡΑΦΗΣ ΤΟΥ ΠΛΑΣΜΑΤΟΣ ΣΥΝΤΗΧΗΣ

Όπως πραγματέψτηκε και στα δύο μοντέλα περιλαμβάνεται και μία εξίσωση διατήρησης της ενέργειας, η οποία εν γένει είναι πολύπλοκη, ή μια καταστατική εξίσωση. Αυτή απαιτείται ώστε η μελέτη του πλάσματος να γίνει χατά αυτοσυνεπής τρόπο. Σχετικά απλές εξίσωσες ενέργειας με εφαρμογή στο πλάσμα σύντηξης, οι οποίες υποθέτονται και στα πλάσμα της παρούσας εργασίας, είναι οι:

\[
\frac{dS_a}{dt} = 0
\]

και

\[
\frac{dT_a}{dt} = 0,
\]

όπου \(S\) είναι η εντροπία και \(T\) η θερμοκρασία του εκάστοτε ρευστού (υπενθυμίζεται ότι ο διέκτης ο δηλώνει το είδος των σωματιδίων). Αντίστοιχες εξίσωσεις ισχύουν για την περίπτωση της MHD. Η επιλογή ισότητας μαγνητικών επιφανειών δικαιολογείται από το γεγονός ότι κατά μήκος των μαγνητικών γραμμών του πεδίου τα σωματίδια κινούνται χωρίς την επίδραση κάποιας δύναμης, οπότε η θερμική αγωγιμότητα είναι πολύ μεγάλη. Εναλλακτικά, μια καταστατική εξίσωση η οποία επίσης χρησιμοποιείται στις στάσεις καταστάσεως ισορροπίας (καταστάσεις με ροή μάζας) είναι η συνθήκη ασυμπιεστότητας \(\nabla \cdot \vec{v} = 0\).

Όπως αναφέρθηκε πιο πάνω η έρευνα του πλάσματος σύντηξης περιλαμβάνει κυρίως την κατασκευή και μελέτη των χαρακτηριστικών των καταστάσεων ισορροπίας, τη σταθερότητα τους και τη μελέτη ημιομοιών μεταφοράς. Η παρούσα διατριβή αφορά την κατασκευή και μελέτη καταστάσεων ισορροπίας που σχετίζονται με τους βελτιωμένους τρόπους περιορισμού του πλάσματος σύντηξης. Το βασικό χαρακτηριστικό αυτών των ισορροπιών είναι ότι περιλαμβάνουν μαγνητοποιημένη τροχιά μάζας του πλάσματος η οποία φέρεται να παίζει σημαντικό ρόλο στους βελτιωμένους τρόπους περιορισμού. Παρακάτω δίνονται οι εξίσωσεις που περιγράφουν τις εν λόγω καταστάσεις στα πλάσμα των δύο παραπάνω μοντέλων. Αυτές προκύπτουν από τις γενικές εξίσωσεις θετοντάς

\[
\frac{\partial A}{\partial t} = 0,
\]

όπου \(A\) οποιαδήποτε ποσότητα.
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

- Μοντέλο των δύο ρευστών:

\[ \nabla \cdot (n_\alpha \bar{v}_\alpha) = 0, \]  
(1.16)

\[ m_\alpha n_\alpha (\bar{v}_\alpha \cdot \nabla) \bar{v}_\alpha = -\nabla P_\alpha + q_\alpha n_\alpha (\bar{E} + \bar{v}_\alpha \times \bar{B}), \]  
(1.17)

Μια εξίσωση ενέργειας ή καταστατική εξίσωση,

\[ Z, n_i \approx n_e = n, \]  
(1.19)

\[ \nabla \times \bar{E} = 0, \]  
(1.20)

\[ \nabla \cdot \bar{B} = 0, \]  
(1.21)

\[ \nabla \times \bar{B} = \sum_\alpha n_\alpha q_\alpha \bar{v}_\alpha = \bar{J}. \]  
(1.22)

Η τελευταία σχέση αποτελεί στην ουσία δύο ξεχωριστές εξισώσεις. Η μία είναι ο νόμος του Αμπέλου, \( \nabla \times \bar{B} = \bar{J} \), ενώ η δεύτερη, \( \sum_\alpha n_\alpha q_\alpha \bar{v}_\alpha = \bar{J} \) επιτρέπει τον υπολογισμό της πυκνότητας ηλεκτρικού ρεύματος κατά αυτοσυντητικό τρόπο μέσω των ταχυτήτων των ρευστών.

- Μαγνητοδυναμική (MHD):

\[ \nabla \cdot (\rho \bar{v}) = 0, \]  
(1.23)

\[ -\nabla P + \bar{J} \times \bar{B} = \rho (\bar{v} \cdot \nabla) \bar{v}, \]  
(1.24)

Μια εξίσωση ενέργειας ή καταστατική εξίσωση,

\[ \bar{E} + \bar{v} \times \bar{B} = \bar{n} \cdot \bar{J}, \]  
(1.26)

\[ \nabla \times \bar{E} = 0, \]  
(1.27)

\[ \nabla \cdot \bar{B} = 0, \]  
(1.28)

\[ \nabla \times \bar{B} = \bar{J}. \]  
(1.29)

Τονίζεται ότι και στα δύο μοντέλα περιλαμβάνεται στην εξίσωση ορμής ο όρος συναγωγής \( (\bar{v} \cdot \nabla) \bar{v} \) που συνάδεται με τη ροή μάζας. Γι’ αυτό το λόγο οι καταστάσεις ισορροπίας ονομάζονται στάσεις.

Μια σύγκριση των εξισώσεων στάσεων ισορροπίας των δύο μοντέλων οδηγεί στα παρακάτω συμπεράσματα:

1. Στο μοντέλο των δύο ρευστών το ηλεκτρικό πεδίο υπολογίζεται με αυτοσυντητικό τρόπο μέσω της εξίσωσης διατήρησης της ορμής. Στα πλαίσια της MHD αυτό δεν είναι δυνατό διότι η \( \bar{E} \) δεν εμφανίζεται στην (1.24).
2. Στο ίδιο μοντέλο η πυκνότητα ηλεκτρικού ρεύματος υπολογίζεται αυτο-
συνεπώς από την εξίσωση (1.22) μέσω των ταχυτήτων των ιόντων και των ηλεκτρονίων.

Εδώ θα πρέπει να γίνει ένα σχόλιο όσον αφορά το MHD μοντέλο και σχε-
τίζεται το νόμο του Ohm. Πολλές φορές το δεξί μέλος της εξίσωσης (1.26) θεωρείται μηδέν. Αυτό σημαίνει ότι η ειδική αντίσταση του πλάσματος είναι μηδέν. Σε αυτή την περίπτωση το μοντέλο ονομάζεται ιδανικό MHD. Αν και
θα δούμε στο επόμενο εδάφιο ότι η ειδική αντίσταση είναι σημαντική για τη
dιάχυση Pfirsch-Shlütter, το να θεωρηθεί μηδέν είναι, εν γένει, μια καλή προ-
σέγγιση. Αυτό, όταν τα φαινόμενα μεταφοράς που λαμβάνουν χώρα και εξαρ-
tώνται από την ύπαρξη της ηλεκτρικής αντίστασης απαιτούν χρόνο μεγαλύτερο
από αυτόν για τον οποίο πραγματοποιούνται οι περισσότερες μελέτες ισορροπίας
προς και απογοητεύονται (αυτό ήταν περισσότερο ακριβές πριν την ανακάλυψη των
βελτιωμένων τρόπων περιορισμού μιας και τότε δεν υπήρχε ούτε περιμετρικά
η δυνατότητα να παρατηρηθούν τέτοια φαινόμενα μεταφοράς λόγω της μικρής
dιάρκειας των εκπενώσεων). Όλα τα παραπάνω μπορούν να εκφραστούν μέσω
tου νόμου του Spitzer:

$$\eta \propto T_e^{-3/2}.$$  (1.30)

Με βάση την παραπάνω σχέση σε θερμοκρασίες της τάξης των $10^7K$ στις οποίες
βρίσκεται το πλάσμα σύντηξης, η ειδική αντίσταση μπορεί να θεωρηθεί μηδέν.

### 1.3 Διάχυση Pfirsch-Shlütter

Η συζήτηση της διάχυσης αυτής γίνεται εισαγωγικά για να δημιουργήσει στην κα-
τανόληση των καταστάσεων ισορροπίας της MHD με πεπερασμένη ηλεκτρική
αντίσταση που αποτελεί το αντικέχων του καταλαχός 4. Όπως προαναφέρθη-
κε ένα από τα πεδία ενόπλευρον στην έρευνα της φυσικής του πλάσματος
σύντηξης είναι και τα φαινόμενα μεταφοράς. Η απευθείας τα φαινόμενα διάχυσης
χάθεται στις μαγνητικές επιρροές επηρεάζουν άμεσα την πυκνότητα του πλά-
σματος αλλά και το χρόνο περιορισμού της ενεργειας. Τα συμπεράσματα τέσσερα να
εξισορροπήσουν την πέτση και την θερμοκρασία σε όλο τον όγκο του πλάσμα-
τος κινούμενα από το εσωτερικό προς το εξωτερικό (κατά κανόνα στον πυρήνα
είναι μεγαλύτερα). Σημειώνεται επίσης ότι η διάχυση σε χαμηλές θερμοκρασίες
οφείλεται στις ηλεκτρομαγνητικές αλληλεπιδράσεις (χρονώσεις) των συμπερασμάτων
που συνδέονται με την ακτίνα της κίνησης Larmor χάθεται στο μαγνητικό πεδίο
(γάφο-ακτίνα).
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

Η διάχυση λόγω ηλεκτρικής αντίστάσης, στην περίπτωση του MHD μοντέλου, χάθετα στις δυναμικές γραμμές του μαγνητικού πεδίου περιγράφεται από το νόμο του Ohm μαζί με την εξίσωση ορμής που, αγνοώντας τον όρο ροής στην τελευταία, γράφονται:

\[ \vec{E} + \vec{v} \times \vec{B} = \eta \cdot \vec{J} \]  \hspace{1cm} (1.31)

και

\[ \vec{J} \times \vec{B} = \nabla P, \]  \hspace{1cm} (1.32)

όπου η ειδική ηλεκτρική αντίσταση είναι εν γένει ένας ταυτόχρονος τάξης με συνιστώσες \( \eta \parallel \) και \( \eta \perp \) για ρεύμα παράλληλα και χάθετα στο μαγνητικό πεδίο αντίστοιχα.

Η ταχύτητα χάθετα στο μαγνητικό πεδίο προχωρεί παράλληλα το εξωτερικό γνώμονα της (1.31) με το \( \vec{B} \) και χρησιμοποιώντας τη (1.32) ώστε να απαλλαγήθει ο όρος \( \vec{J} \times \vec{B} \):

\[ \vec{v}_\perp = \left( \frac{\vec{E} \times \vec{B}}{B^2} - \eta \frac{\nabla P}{B^2} \right) \]  \hspace{1cm} (1.33)

Ο δεύτερος όρος στο δεύτερο μέλος της (1.33) έχει διαχυτική ρύση, ενώ ο πρώτος είναι η ταχύτητα ολίσθησης (drift velocity) λόγω του ηλεκτρικού πεδίου.

Η ταχύτητα διάχυσης σε ένα χυλικός διατομής χυλινόρο είναι στην αντίστοιχη διεύθυνση, όπως χρησιμοποιώντας χυλινόρες συντεταγμένες (\( r, \theta, z \)) η εξίσωση (1.33) γράφεται:

\[ \nu_r = \frac{1}{B^2} \left( E_\theta B_z - E_z B_\theta - \eta \frac{dP}{dr} \right). \]  \hspace{1cm} (1.34)

Ο όρος

\[ (\nu_r)^{res} = \eta \frac{dP}{dr} \]  \hspace{1cm} (1.35)

είναι η διάχυση λόγω της πεπειραμένης ειδικής ηλεκτρικής αντίστασης.

Η διάχυση λόγω ειδικής ηλεκτρικής αντίστασης σε τοροειδή γεωμετρία είναι περισσότερο περίπλοκη απ' ό,τι σε χυλινόρητη. Ο βασικός λόγος είναι η εξαιρέσιμη ισορροπία της τοροειδούς γεωμετρίας, δηλαδή η εξισορρόπηση της τοροειδούς διακτυλισμούς δύναμης. Αυτή η δύναμη μπορεί να εξισορροπηθεί από μια εσωτερική μαγνητική δύναμη παραγόμενη από ρεύμα οριζόμενο στη ροή του πλάσματος. Αυτή η ροή υπάρχει μόνο στην περίπτωση τοροειδούς γεωμετρίας και απουσιάζει στην αντίστοιχη χυλινόρητη. Το ρεύμα που αποτελείται για την εξισορρόπηση της τοροειδούς διακτυλισμούς δύναμης είναι...
χάθετο στο μαγνητικό πεδίο, δηλαδή είναι ουσιαστικά ένα καταχώρημα ρεύμα, όπως θα εξηγήσουμε στην επόμενη παράγραφο. Αυτό το ρεύμα θα οδηγούσε σε συσσώρευση φορτίου στο πάνω και κάτω τμήμα του σχηματισμού και έτσι θα καταστρεφόταν η ισορροπία. Η συσσώρευση φορτίου αποφεύγεται μέσω ενός ρεύματος εξισορρόπησης το οποίο ρέει κατά μήκος του μαγνητικού πεδίου και έτσι δεν επηρεάζει την ισορροπία δυνάμεων. Η ύπαρξη αυτού του ρεύματος αποδείχθηκε από τους Pfirsch και Schlüter οι οποίοι έδειξαν ότι μέσω της απόσβεσης του, λόγω πεπερασμένης ειδικής αντίστασης, παίζει σημαντικό ρόλο στη διάχυση του πλάσματος σε ένα τόρο.

Ας υπολογίσουμε το ρεύμα Pfirsch-Schlüter χρησιμοποιώντας φυσικά επι- 

χειρήματα. Η πίεση του πλάσματος παραμένει σταθερή πάνω στις μαγνητικές επιφάνειες, αλλά λόγω της τοροειδούς γεωμετρίας η επιφάνεια του πλάσματος είναι μεγαλύτερη στη μεγαλύτερη ακτινική απόσταση $R$ (δες σχήμα 1.2), οπότε προκύπτει μια συνολική δύναμη στη διάχυση της $R$ προς τα έξω:

$$ F \sim \frac{r \, dP}{R \, dr}. $$

Αυτή εξισορροπείται από μια δύναμη $\vec{J} \times \vec{B}$. Έτσι το απαραίτητο χάθετο ρεύμα, $J_h$, που συνδέεται με αυτή τη δύναμη, έχει καταχώρηση συνιστώσα (δες σχήμα 1.4)

$$ J_h \sim -\frac{1}{B} \frac{r \, dP}{R \, dr}. $$

(1.36)

Σχήμα 1.4: Σε αυτό το σχήμα φαίνονται οι σχετικές διευθύνσεις των συνιστώσων των ηλεκτρικών ρευμάτων που σχετίζονται με τη διάχυση Pfirsch-Schlüter.
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

Για να αποφευχθεί η συσσώρευση ψορτών το ρεύμα Pfirsch-Schlüter, $J_{PS}$, παράλληλα στο μαγνητικό πεδίο πρέπει να είναι τέτοιο ώστε η καταχώρηση συνιστά σαν να είναι ίση και αντίθετη με τη $J_{he}$. Αφού αυτή η συνιστώσα είναι:

$$J_{||v} \sim \frac{B_p}{B} J_{PS},$$  \hspace{1cm} (1.37)

όπου $B_p$ είναι το πολοειδές μαγνητικό πεδίο, οι εξισώσεις (1.36) και (1.37) δίνουν:

$$J_{PS} \sim -\frac{1}{B_p R} \frac{dP}{dr}.$$  \hspace{1cm} (1.38)

Η αρχής έκφραση για πλάσμα χωκουλικής διατομής στο όριο πολύ μεγάλου λόγου όψης διαφέρει από τη (1.38) κατά ένα παράγοντα 2 (δες [3]).

Η ταχύτητα ολόθυρης κάθετα στο μαγνητικό πεδίο σε τοροειδή γεωμετρία αντιστοιχεί της (1.34) γράφεται (δες [3]):

$$v_{\perp} = \frac{B_\phi}{B_p} \eta B_{PS} - \frac{\nabla_{\perp} P}{B^2} + \frac{1}{B_p} \left( \frac{\langle E_{\phi} B_{\phi} / B_p \rangle}{(B^2/B_p)} - B_{\phi} - E_{\phi} \right),$$  \hspace{1cm} (1.39)

όπου η μέση τιμή αναφέρεται πάνω σε μια μαγνητική επιφάνεια. Οι τρεις τελευταίοι όροι στο δεξί μέλος αυτής της εξίσωσης αντιστοιχούν στους όρους της βαθύτατης πίεσης και του ηλεκτροικού πεδίου της χυλικορικής περίπτωσης της εξίσωσης (1.34). Ο πρώτος όρος είναι ανάλογος του $J_{PS}$ και δίνει τη διάχυση Pfirsch-Schlüter. Για την αντίστοιχη σχέση της (1.35) παίρνοντας μέση τιμή σε μία μαγνητική επιφάνεια προκύπτει:

$$\left( \frac{\langle v_{\perp} R \rangle_{res}}{R_0} \right) = -\frac{dp/dr}{B^2} \eta_{eff},$$  \hspace{1cm} (1.40)

όπου

$$\eta_{eff} = \eta_{\perp} \left( 1 + 2\frac{\eta_{\parallel}}{\eta_{\perp}} q^2 \right),$$  \hspace{1cm} (1.41)

με $q$ τον παράγοντα ασφάλειας.

Βλέπουμε, λοιπόν, ότι η διάχυση Pfirsch-Schlüter ως αποτέλεσμα παράλληλων ρευμάτων είναι κατά $2\eta^2 \eta_{\parallel} / \eta_{\perp}$ μεγαλύτερη από την χυλικορική συνεισφορά που συνδέεται με κάθετα ρεύματα. Η ύπαρξη τοροειδών ισορροπίας χωρίς διάχυση Pfirsch-Schlüter είναι δυνατή όπως θα φανεί και στην παρούσα εργασία (δες επίσης [8]). Η τοροειδής δακτυλοειδής δύναμη μπορεί να εξισορροπηθεί και μέσω καταχώρησης μαγνητικού πεδίου (πρακτικά αυτό γίνεται στις πειραματικές διατάξεις δες π.χ. [2] σελ. 78). Στην περίπτωση αυτή δεν είναι απαραίτητο το παράλληλο $J_{PS}$.
1.4 ΒΕΛΤΙΩΜΕΝΟΙ ΤΡΟΠΟΙ ΠΕΡΙΟΡΙΣΜΟΥ

1.4.1 ΥΨΗΛΟΣ ΤΡΟΠΟΣ ΠΕΡΙΟΡΙΣΜΟΥ

Ο υψηλός τρόπος περιορισμού (H-mode) και ιδιαίτερα η μετάβαση από χαμηλό τρόπο περιορισμού σε υψηλό (L-H transition) ανακαλύφθηκε σχετικά πρόσφατα σε πείραμα του tokamak ASDEX-Upgrade [14] και είναι ένας από τους πλέον υποσχόμενους βελτιωμένους τρόπους περιορισμού. Πρόκειται για ένα φράγμα μεταφοράς ενέργειας άλλα και σωματιδίων που σχηματίζεται κοντά στην επιφάνεια του πλάσματος (Edge Transport Barrier) και έχει σαν συνέπεια την αύξηση του χρόνου περιορισμού της ενέργειας, τ.ε. κατά έναν παράγοντα 2 ή 3 [15].

Ο σχηματισμός του φράγματος έχει συνδεθεί με μακροσκοπική διατηρητική ταχύτητα της ροής μάζας του πλάσματος και ειδικότερα της πολυειδούς συνιστώσας αυτής η οποία εμφανίζεται συνήθως όταν χρησιμοποιούνται πρόσθετοι
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

μέθοδοι θέρμανσης του με εμβολή ενέργειας ή μάζας. Τα βασικά χαρακτηριστικά του υψηλού τρόπου περιορισμού είναι η αύξηση της χώρης των profile ποσοτήτων όπως η κυκλήματα και η πίεση χοντρά στις επιφάνειες του πλάσματος [16, 17]. Στην ίδια περιοχή ταυτόχρονα εμφανίζεται διατμήματος το profile του ηλεκτρικού πεδίου [18] με αρνητικές τιμές το οποίο αυξάνεται κατά πολύτιμη τιμή κατά ή μετά το σχηματισμό του φράγματος [19], ενώ η τύρβη μειώνεται. Ο υψηλός τρόπος περιορισμού, αν και αρχικά παρατηρήθηκε στο tokamak, έχει επιτυχώς πλέον σε όλους τους τύπους πέρασματα διατμήματος, είτε χλειστή τοπολογίας είτε ανακτήτης. Επιπλέον, η διημορφία του φράγματος φαίνεται ότι δεν επηρεάζεται από το είδος της πρόσθετης θέρμανσης μας και η μετάβαση έχει παρατηρηθεί για πολλούς τρόπους θέρμανσης (ακτινοβολία κυκλοτρονιών, ICRH, ή ηλεκτρονιών, ECRH, εμβολία ουδέτερων διαμόρφων σωματιδίων, NBI, Θηκή). Λόγω των δύο παραπάνω λόγων η αυτί σχηματισμός του φράγματος θα πρέπει να έχει καθολικάτα. Συμβάνει υποψήφιοι ο οποίοι έχει αυτή την καθολικότητα είναι η διατμήμενη ταχύτητα $E \times B$. Αυτή οριζόταν στην ύπαρξη μια μηδενική ηλεκτρικό πεδίου και αντιπροσωπεύει μια κίνηση των στοιχειών όγκων του ρευστού με τις δυναμικές γραμμές του μαγνητικού πεδίου «παγομένες» εντός αυτών των όγκων. Πιστεύεται ότι η αποσύνεθη των δυν-ρεματών από την ταχύτητα $E \times B$ οδηγεί σε μείωση των συνεπειών μεταφοράς στο σχηματισμό φράγματος μεταφοράς και κατ’ επέκταση σε βελτίωση του περιορισμού της ενέργειας. Ένα ερώτημα που απαχόρησε την έρευνα αρχικά ύστερα από να καταστεί δυνατή η ανάπτυξη μιας θεωρίας για την L-H transition είναι η αλληλουχία των γεγονότων κατά το σχηματισμό του φράγματος: Πρώτα μειώνεται η τύρβη και έπειτα πραγματοποιείται η μεταβολή στα profile των ποσοτήτων, συμβαίνει το αντίπαθές ή όλα γίνονται ταυτόχρονα: Μεταρρυθμίσεις που πραγματοποιήθηκαν στο ASDEX [20] αλλά και σε άλλα tokamak [21, 22] δείχνουν ότι πρώτα μειώνονται οι ροές προκαλούμενες από τη τύρβη και έπειτα τα profile των διαφόρων ποσοτήτων αντιδρούν σε αυτή τη μείωση. Αυτό προκύπτει και λόγω των αρχών διατήρησης των σωματιδίων και της ενέργειας αφού θα πρέπει να ηλεκτρικές τοις ρεος κάθετα στις δυναμικές γραμμές του πεδίου να διαρθίζει για κάποιο εύλογο χρονικό διάστημα πριν τα profile αντιδράσουν σε αυτή.

Οπως αναφέρθηκε πιο πάνω, πιστεύεται ότι υπεύθυνη για τη μείωση της τύρβης και τον σχηματισμό του φράγματος μεταφοράς είναι η διατμήμενη ταχύτητα $E \times B$, η οποία εξαρτάται ρητά από το ηλεκτρικό πεδίο οπότε θα πρέπει να μελετηθεί από ποιες ποσότητες εξαρτάται καθώς και η επίδραση τους σε αυτό. Οι ποσότητες από τις οποίες εξαρτάται το ακτινικό (κάθετα στις μαγνητικές
1.4. ΒΕΛΤΙΩΜΕΝΟΙ ΤΡΟΠΟΙ ΠΕΡΙΟΡΙΣΜΟΥ

επιφάνειες) ηλεκτρικό πεδίο προκύπτει από την αντίστοιχη συνιστώσα της εξίσωσης ισορροπίας. Συγχρημάτισα αν αμεληθεί ο όρος μεταφοράς στην εξίσωση (1.17) προκύπτει η σχέση:

\[ E_r = \frac{1}{\eta_\alpha n_\alpha} \nabla P_\alpha - v_\theta B_\phi + v_\phi B_\theta, \]  

(1.42)

όπου \( P_\alpha \) η μερική πίεση, \( v_\theta \) η πολοειδής συνιστώσα και \( v_\phi \) η τοροειδής συνιστώσα της μακροσκοπικής ταχύτητας του ρευστού σωματιδίων \( \alpha \). \( B_\theta \) και \( B_\phi \) είναι η πολοειδής και η τοροειδής συνιστώσα του μαγνητικού πεδίου αντίστοιχα. Από την παραπάνω εξίσωση προκύπτει λοιπόν, ότι η μακροσκοπική ροή του πλάσματος παίζει σημαντικό ρόλο στο ηλεκτρικό πεδίο, όπως και στη ταχύτητα \( \vec{E} \times \vec{B} \) η οποία σχετίζεται με την μετάβαση L-H. Ενώ πρέπει να σημειωθεί ότι στην περίπτωση της ιδανικής MHD ο όρος της βαθμιδας πίεσης αποσώθει από την αντίστοιχη έκφραση για το ηλεκτρικό πεδίο μιας και η τελευταία προκύπτει από το γενικευμένο νόμο του Ohm (Εξ. 1.26):

\[ E_r = v_\phi B_\theta - v_\theta B_\phi. \]  

(1.43)

1.4.2 Εσωτερικά φράγματα μεταφοράς

Όπως αναφέρθηκε πιο πάνω, ο έτερος βελτιωμένος τρόπος περιορισμού του πλάσματος σύντηξης είναι τα εσωτερικά φράγματα μεταφοράς (ITB) και τέτοιες καταστάσεις είναι επιθυμητές και περιλαμβάνονται στα βελτιωμένα σενάρια για τη λειτουργία των tokamak, χωρίς όσον αφορά την επίπεδη σταθερής και όχι παλινδρομική λειτουργίας [23, 24]. Τα ITB είναι σχηματισμοί μέσα στον όγκο του πλάσματος που έχουν παρατηρηθεί σε ακτίνες 0.3r0 < r < 0.8r0, όπου r0 η ακτίνα της πολοειδούς διατομής και εκτείνονται από ένα πολύ μικρό περιοδικό εσωτερικό σε σχέδιο αλόξησης τη διατομής. Το χαρακτηριστικό που τα χάνει πολύ ενδιαφέροντα είναι ότι στην περιοχή εμφάνισης τους ελαττώνεται η διάχυση της ενέργειας καθώς και των σωματιδίων από τον πυρήνα προς την επιφάνεια του πλάσματος και χάτα ουτού το τρόπο βελτιώνεται ο χρόνος περιορισμού των παραπάνω ποσοτήτων. Ένα επιπλέον όφελος που προκύπτει από την εμφάνιση εσωτερικών φραγμάτων μεταφοράς είναι η βελτίωση της ευστάθειας της ισορροπίας. Περισσότερα σε σχηματισμούς τους επιτυγχάνεται με διάφορους τρόπους, όπως είναι η ακτινοβολία του πλάσματος με κατάλληλες συχνότητες χυλοστροφών των ιόντων ή των ηλεκτρονίων, με εμβολιακές διεσμούς ουδέτερων σωματιδίων, με εισαγωγή στερεών δίσκων καυσίμου ή με την κατάλληλη διαμόρφωση του τρόπου περιορισμού. Η εμφάνιση, όμως των φραγμάτων μεταφοράς
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

μπορεί να γίνει και αυθόρμητα μέσω της δημιουργίας ροών εντοπισμένων σε μία μικρή περιοχή της διατομής (zonal flows) λόγω τύρβης. Εν συντομία τα βασικά τους χαρακτηριστικά, όπως και στον υψηλό τρόπο περιορισμού, είναι profile πυκνότητας, θερμοκρασίας και πίεσης με μεγάλη κλίση στην περιοχή του φράγματος [25] και ακτινικά ηλεκτρικά πεδία συνδεόμενα με διατηρημένες ροές μάζας του πλάσματος [26, 27]. Λεπτομερής περιγραφή των βασικών χαρακτηριστικών των ITB γίνεται στην αναφορά [23]. Εκεί θα αναφερθούν κάποια περαφατικά και θεωρητικά αποτελέσματα που αφορούν την εξάρτηση σχηματισμού του φράγματος από διάφορες ποσότητες ισορροπίας.

Ο μηχανισμός που είναι υπεύθυνος για το σχηματισμό των ITB δεν είναι πλήρως κατανοητός, αλλά συνήθως ο σχηματισμός συνδέεται με μη μονοτονικά profile του παράγοντα ασφάλειας 4 [28, 29]. Τα περισσότερα θεωρητικά μοντέλα βασίζονται στην μείωση των φανομένων μεταφοράς προαλούμενα από μικροσατάταιες υποστηρίζοντα από περαφατικές παρατηρήσεις όπου θέσιμον την καταστολή των μικροσατάταιων χοντρά στα φράγματα [30]. Πιστεύεται ότι η ροή μάζας, το ακτινικό ηλεκτρικό πεδίο, η διάτηση του και περισσότερο η διάτηση της ταχύτητας $E \times B$ [30] παίζουν ρόλο στο σχηματισμό των φραγμάτων μέσω της αποστάσεως των καταστάσεων (modes) στις διαδοχικές μαγνητικές επιφάνειες που έχει ως αποτέλεσμα τη μείωση της διάγνωσης προς την επιφάνεια του πλάσματος σωματιδίων και ενέργειας [24, 31, 32]. Στην προστασία επέτευξης σταθερής κατάστασης λειτουργίας του tokamak έχουν επιτευχθεί χρόνοι διατήρησης της ισορροπίας με ITB έως 11 δευτερόλεπτα σε διαφορετικές συνθήκες όπως στο JT–60U [33], στο Tore Supra [34] και στο JET [35].

Είδαμε ότι για την επέτευξη και των δύο βελτιώμενων τρόπων περιορισμού το ηλεκτρικό πεδίο φαίνεται να παίζει ρόλο, είτε το ιόνιο (I-mode) είτε η διατήση του (ITB). Οι σχέσεις (1.42) και (1.43) μας επιτρέπουν να εξετάσουμε εξ αρχής τους παράγοντες από τους οποίους αυτό εξαρτάται. Από τη σχέση (1.42) βλέπουμε ότι στο ηλεκτρικό πεδίο συνεισφέρουν τρεις όροι:

- Ο πρώτος όρος στα πλαίσια του μοντέλου των δύο ρευστών προέρχεται από την μερική πίεση των σωματιδίων τύπου που αποτελούν το πλάσμα. Αυτός ο όρος αποσαφεύει το μοντέλο της MHD.

4Μη μονοτονικό profile του παράγοντα ασφάλειας αναφέρεται σε σχηματισμό με αρνητική μαγνητική διάτηση (magnetic shear). Η μαγνητική διάτηση είναι μέτρο της αλλαγής της κλίσης των δυναμικών γραμμών του μαγνητικού πεδίου από μια μαγνητική επιφάνεια σε άλλη. Αυτή η αλλαγή μπορεί να οφείλεται είτε στη μεταβολή του μέτρου του μαγνητικού πεδίου είτε στη μεταβολή της διεύθυνσης του. Όταν η κλίση αυξάνεται τότε η μαγνητική διάτηση είναι θετική και το αντίστροφο.
1.5. ΣΚΟΠΟΣ ΚΑΙ ΟΡΓΑΝΟΓΡΑΜΜΑ ΤΗΣ ΕΡΓΑΣΙΑΣ

Οι δύο όροι που περιέχουν τη ροή είναι καινοί και στα δύο μοντέλα και συγκεκριμένα:

- Ο πρώτος όρος ροής περιέχει τη τοροειδή συνιστώσα του μαγνητικού πεδίου και την πολυειδή συνιστώσα της ταχύτητας μαχαρασκοπικής ροής.
- Ο δεύτερος όρος ροής περιέχει τη πολυειδή συνιστώσα του μαγνητικού πεδίου και την τοροειδή συνιστώσα της ταχύτητας μαχαρασκοπικής ροής.

Κατά συνέπεια η ροή συνεισφέρει στο ηλεκτρικό πεδίο και χατε επέκταση επηρεάζει με τον ένα ή τον άλλο τρόπο το σχηματισμό των φραγμάτων είτε στην επιφάνεια (H-mode) είτε στο εσωτερικό (ITB) του πλάσματος βελτιώνοντας το χρόνο περιορισμού της ενέργειας και των σωματιδίων. Επομένως είναι ενδιαφέρον να εξεταστεί η επίδραση της μαχαρασκοπικής ροής μάζας τόσο στα πλαίσια της MHD όσο και στα πλαίσια των δύο ρευστών. Μια MHD μελέτη αποτελεί το αντικείμενο του ΜΔΕ [7], ενώ η αντίσταση στα πλαίσια των δύο ρευστών αποτελεί το αντικείμενο του κεφαλαίου 2. Επιπλέον όπως δείχνεται στο κεφάλαιο 4 η ροή μπορεί να αλλάξει τη μαγνητική τοπολογία σε αξιόλογα συμμετρικούς σχηματισμούς.

1.5 Σκοπός και Οργανόγραμμα της Εργασίας

Ο σκοπός της παρούσας εργασίας είναι ο αναλυτικός προσδιορισμός συμμετρικών καταστάσεων tokamak με διαμετρική ταχύτητα ροής και να εξεταστεί η επίδρασή της και του λόγου ύψους, που συνδέεται με τη τοροειδή γεωμετρία (toroidicity), στα χαρακτηριστικά των καταστάσεων αυτών. Τα μοντέλα περιγραφής των πλάσματος που χρησιμοποιούνται στην παρούσα εργασία είναι τα μοντέλα των δύο ρευστών και η MHD (ιδιαίτερη και με πεπερασμένη ειδική ηλεκτρική αντίσταση). Θα πρέπει να διευκρινιστεί ότι παρόλο που τα μοντέλα αυτά περιγράφουν αρκετά καλά το πλάσμα, υπό την έννοια ότι τα συμπεράσματα στα πλαίσια αυτών των μοντέλων είναι γενικά αξιόπιστα, παρουσιάζουν πρακτικό ενδιαφέρον και χρησιμοποιούνται ευρέως οι παρεχόμενοι πληρές περιγραφές. Όπως προσαναφέρθηκε όμως, η επίλυση πιο βασικών μοντέλων, π.χ. ισοθερμικής θεωρίας, στις πολύπλοκες γεωμετρίες των συστημάτων μαγνητικού περιορισμού, τα καθιστά πρακτικά δύσχρηστα. Κύριο της εργασίας αποτελείθηκαν ερευνητικά αποτελέσματα τα οποία χαταδεικνύουν το ρόλο της ροής στο σχηματισμό φραγμάτων μεταφοράς όπως συζήτηθηκε στα εδάφια 1.4.1.
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

και 1.4.2 και κατά συνέπεια στην επίτευξη βελτιωμένου τρόπου περιορισμού που μπορεί να περιλαμβάνεται στη λειτουργία αντιδραστήρων tokamak παραγωγής ενέργειας. Συγκεκριμένα η εργασία έχει τους ακόλουθους τρεις στόχους:

1. Να εξεταστεί η επίδραση της ροής και της αρνητικής μαγνητικής διάτμησης στις παραγοντικές και ευκίνηση σε αυτές τις σχετίζονται με το σχηματισμό φραγμάτων μεταφοράς (ηλεκτρικό πεδίο και διάτμηση του καθώς και ταχύτητα \( E \times B \)) στα πλαίσια του μοντέλου των δύο ρευστών στο όρο απερίοριστο όφης.

2. Να μελετηθεί η επίδραση που έχει το τοροειδή ροή καθώς και ο λόγος ύψους στη μαγνητική τοπολογία ενός αξιοπιστή συμμετρικού συστήματος στα πλαίσια της ιδανικής MHD.

3. Τέλος να παραγινούν ανθρώπινες εξισώσεις ισορροπίας αξιοπιστή συμμετρικού συστήματος στα πλαίσια της MHD με πεπερασμένη αγωγικότητα και αμοιβαία τοροειδής. Να κατασκευαστούν ακριβείς, αναλυτικές λύσεις για tokamak και να εξεταστεί με τη βοήθειά τους η επίδραση της ροής σε διάφορες παραγοντικές ισορροπίες συμπεριλαμβανομένων των συστημάτων \( \eta_{\parallel} \) και \( \eta_{\perp} \) του τον ανατολική ισιώτης ηλεκτρικής αντίστασης.

Πρέπει να σημειωθεί πως η χρησιμοποιούμενη γεωμετρία αν και έχει εφαρμογή στα tokamak διαφέρει από την πραγματική. Αυτό έγινε δηλαδή η εργασία, αν και εναπόθεται με την εφαρμοσμένη έρευνα, σχετικά είναι την κατανόηση βασικών συναρμολογών του μαγνητικού περιορισμού των πλάσματος μέσω της ροής και αρνητικής μαγνητικής διάτμησης στο σχηματισμό φραγμάτων μεταφοράς και προωθήσεων από την ροή, αλλά υπολογιστικής τοπολογίας. Επίσης έγινε η βελτίωση και αναλυτικώς ύψης και γεωμετρίας, μπορεί να μην εκφράζουν πλήρως το σύστημα σε μία περίπλοκη γεωμετρία όπως αυτή των διατάξεων μαγνητικού περιορισμού, όμως περιέχει πολύτιμη πληροφορία για την εφικτή του συστήματος. Βέβαια, η απόδοση της γεωμετρίας υπολογίζεται με το χρησιμοποιούμενο μοντέλο. Οπότε, αυτό το μοντέλο τούτο ισημεριστικά ανάλημα γεωμετρία που υπάρχει με το τοροειδές σχήμα αλλά και το σχήμα της πολυειδούς διατομής. Ως αυτή την περίπτωση όμως, οι εξισώσεις ισορροπίας του μοντέλου των δύο ρευστών θα γίνονται περισσότερα περίπλοκες με πιθανό αποτέλεσμα τη δύσκολη εξαγωγή συμπεριφοράς και τη μη ύπαρξη αναλυτικών λύσεων. Αντίστοιχα, στα κεφάλαια 3 και 4, όπου χρησιμοποιείται το πιο
1.5. ΣΚΟΠΟΣ ΚΑΙ ΟΡΓΑΝΟΓΡΑΜΜΑ ΤΗΣ ΕΡΓΑΣΙΑΣ

απλό μοντέλο της ΜΗΔ η γεωμετρία είναι τορειχίδας. Σε αυτά τα κεφάλαια θα μπορούσε να χρησιμοποιηθεί ελλειπτική πολυειδής διατομή ή σχήματος D, η οποία είναι περισσότερο ρεαλιστική από την ορθογώνια. Το αποτέλεσμα και εδώ θα ήταν η δυσκολία εξαγωγής συμπεριφοράτων αλλά και η μη ύπαρξη ακριβών λύσεων μας και αυτές θα εκφράζονταν σε μορφή σειράς αλλά και λόγω αριθμητικών προσεγγίσεων.

Το χάριο μέρος της εργασίας θα αναπτυχθεί στα επόμενα τρία κεφάλαια ως ακολούθως:

Στο δεύτερο κεφάλαιο, από τις εξισώσεις στάσεως ισορροπίας του μοντέλου των δύο ρευστών θα παραγείται ένα ελαφρά τροποποιημένο, πιο εύχρηστο σύστημα εξισώσεων στο όριο απειρού λόγου όψης του tokamak και κυκλικής πολυειδής διατομής. Σε αυτή την περίπτωση το σύστημα εμφανίζει κυλινδρική συμμετρία. Το profile του παράγοντα ασφάλειας επιλέχθηκε τέτοιο ώστε η μαγνητική διάτμηση να είναι αρνητική στον πυρήνα του πλάσματος. Οι επιμέρους περιπτώσεις που θα εξεταστούν είναι οι εξής:

1. Profile της τορειχίδος συνιστώσας της ταχύτητας ροής είτε Gaussian είτε Χαμηλοφορίας μορφής.

2. Profile της πολυειδούς συνιστώσας της ταχύτητας ροής Gaussian μορφής.

3. Ροή εντοπισμένη είτε σε μία μικρή περιοχή είτε σε σκεδόν όλη την πολυειδή διατομή.

4. Σχετικά προσανατολισμός των συνιστώσων της ταχύτητας ροής τέτοιος ώστε \( \nu_\theta \cdot v_\theta > 0 \) ή \( \nu_\theta \cdot v_\theta < 0 \), όπου \( \nu_\theta \) και \( v_\theta \) η πολυειδής και τορειχίδας συνιστώσα της ταχύτητας ροής αντίστοιχα.

Τα ψηφικά μεγέθη που τα υπολογιστούν για όλους τους δυνατούς συνεπιμοίροι των παραπάνω ποσοτήτων είναι η πίεση, η τορειχίδας πυκνότητα του ηλεκτρικού ρεύματος, το ακτινικό ηλεκτρικό πεδίο και η διάτμηση του καθώς και η διάτμηση της ταχύτητας \( E \times B \). Για τις παραπάνω ποσοτήτες θα εξετάστε την επίδραση της ροής, της διάτμησης της ταχύτητας και της αρνητικής μαγνητικής διάτμησης στις αυτές. Η μελέτη αυτή θα πραγματοποιηθεί μεταβάλλοντας τις μήκη των συνιστώσων της χαράς και το εύρος του profile τους, εφόσον αυτό είναι Gaussian, όσον αφορά την επίδραση της ροής και της διάτμησης της ταχύτητας, αντίστοιχα. Η επίδραση της μαγνητικής διάτμησης θα εξετάστε μέσω της μεταβολής των ελευθερών παραμέτρων του profile του παράγοντα ασφάλειας.
ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

Στο τρίτο κεφάλαιο στα πλαίσια του ιδανικού MHD μοντέλου θα κατα-
σκευαστούν αξιόνοι συμμετρικές ισορροπίες με αμιγώς τοροειδή ροή. Ειδικό-
τερα θα μελετηθεί η επίδραση της ροής στη μαγνητική τοπολογία καταστάσεων
ισορροπίας μαγνητικά περιορισμένου πλάσματος σύντηξης με προφίλ πυκνότη-
τας τοροειδούς ηλεκτρικού ρεύματος που μηδενίζεται στην επιφάνεια του. Θα
eξεταστούν οι ακόλουθες δύο περιπτώσεις ροής:

1. Ασυμπίεστη ροή

2. «Συμπίεστη» ροή, με την έννοια ότι η πυκνότητα μεταβάλλεται στις μα-
γνητικές επιφάνειες

Αρχικά θα γίνει επισκόπηση και σύγχρονη των εξισώσεων ισορροπίας για «συμ-
πίεστη» και ασυμπίεστη ροή με ενιαίο τρόπο και θα παρουσιαστούν αντίστοιχες
ακριβείς λύσεις. Αποδεικνύεται ότι κάθε από ειδικές συνθήκες η εξίσωση ισο-
ροπίας για «συμπίεστη» ροή γίνεται άμεσα σε μορφή με την αντίστοιχη για
ασυμπίεστη ροή. Με βάση τις ακριβείς λύσεις θα κατασκευαστούν ιδιακατα-
στάσεις ισορροπίας ενός μαγνητικά περιορισμένου πλάσματος περιβάλλοντος
από τοχόματα ορθογώνιας διατομής και αυθαιρετού λόγου όψης. Περαιτέρω
θα αποδειχθεί ότι ο λόγος όψης παίζει σημαντικό ρόλο στην ενεργοποίηση της
επίδρασης της ροής στην ισορροπία. Με τη βοήθεια των παραπάνω ιδιακατα-
στάσεων μελετάται η επίδραση της ροής στη μαγνητική τοπολογία και στη
μετατόπιση Shafranov σε συνδύσμο με το λόγο όψης. Επίσης, εξετάζεται η
μεταβολή της πυκνότητας μάζας για «συμπίεστη» ροή και της θερμοκρασίας για
ασυμπίεστη πάνω στις μαγνητικές επιφάνειες και ο πιθανός ρόλος της διάτμησης
της ροής.

Στο τέταρτο κεφάλαιο θα παραχθούν οι εξισώσεις ισορροπίας αξιόνοι συμ-
μετρικής MHD ισορροπίας με αμιγώς τοροειδή ροή και αναπτυγμένη ειδική αν-
τίσταση. Με βάση τις εξισώσεις ισορροπίας θα εξεταστεί γενικά η δυνατότητα
υπαρξης καταστάσεων με ορισμένες συνιστώσες της ειδικής αντίστασης παράλλ
ηλικία και κάθετα στις μαγνητικές επιφάνειες. Ειδικότερα θα κατασκευαστούν
ιδιακαταστάσεις ισορροπίας ενός tokamak με σφαιρικά πολεοδοτή διατομή μέ
σω ακριβών αναλυτικών λύσεων οι οποίες περιγράφουν είτε απλά είτε πολλαπλά
tοροειδείς σχηματισμούς. Στην περίπτωση απλά τοροειδών σχηματισμών θα
μελετηθούν οι χαρακτηριστικά των συνιστώσων της ειδικής αντίστασης, της
tοροειδούς πυκνότητας ηλεκτρικού ρεύματος, του ηλεκτρικού πεδίου και της
διάτμησης του καθέως και η επίδραση της ροής στις παραπάνω ποσότητες ισο-
ροπίας. Αυτή η επίδραση θα εξεταστεί με μεταβολή για «συμπίεστη» ροή των
τομών του αριθμού Mach ως προς την ταχύτητα του ήχου και μιας παραμέτρου

28
1.5. ΣΚΟΠΟΣ ΚΑΙ ΟΡΓΑΝΟΓΡΑΜΜΑ ΤΗΣ ΕΡΓΑΣΙΑΣ

Α για ασυμπίεστη ροή, που συνδέεται με τα προφίλ τυχόντας και χυλικής συχνότητας της ροής.
Τέλος στο πέμπτο κεφάλαιο θα συνοψιστούν τα αποτελέσματα και τα συμπέρασμα της εργασίας και θα προταθούν μερικά ζητήματα για περαιτέρω μελέτη.
Σε αυτό το σημείο χρίνεται σχόπημο να αναφερθεί επιχρησιμοποιών η κύρια συνεισφορά της παρούσας εργασίας στην προαγωγή της κατανόησης φαινομένων που σχετίζονται με τα πλάσμα σύντηξης:

1. Συνεργατικότητα διατηρητικής ροής και αρνητικής μαγνητικής διάτητης στο σχηματισμό εσωτερικών φραγμάτων μεταφοράς.
2. Αναλυτικές και ακριβείς λύσεις των εξισώσεων ισορροπίας της MHD για ασυμπίεστη ροή.
3. Προκαλούμενη από τη ροή αλλαγή στη μαγνητική τοπολογία τοροειδούς σχηματισμού.
4. Παραγωγή ανημένων εξισώσεων MHD ισορροπίας και αναλυτικών ακριβών λύσεων με περαιτερισμένη ειδική αντίσταση και ροή.

ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ
Κεφάλαιο 2

Ισορροπία tokamak με αρνητική μαγνητική διάτμηση και διατμημένη ροή στα πλαίσια του μοντέλου των δύο ρευστών

Σε αυτό το κεφάλαιο θα εξεταστεί η επίδραση της διατμημένης ροής και της αρνητικής μαγνητικής διάτμησης στην ισορροπία πλάσματος με εφαρμογή σε tokamak στο όριο απερίορου όψης. Συγκεκριμένα, θα εξεταστεί το πώς οι δύο προαναφερόμενες ποσότητες επηρεάζουν στα χαρακτηριστικά της πέσης, της τοροειδεύς (αξονικής) πυκνότητας ηλεκτρικού ρεύματος, του ακτινικού ηλεκτρικού πεδίου και της διάτμησης της ταχύτητας $E \times B$.

2.1 Διατμημένη ροή, αρνητική μαγνητική διάτμηση και εσωτερικά φράγματα μεταφοράς

Οι εκκενώσεις πλάσματος στις περαφυλλικές διατάξεις με εσωτερικά φράγματα μεταφοράς (ITB), πέρα από το βελτιωμένο περιορισμό της ενέργειας και των σωματιδίων, εμφανίζουν και άλλα επιθυμητά χαρακτηριστικά όπως το μεγάλο ποσοστό, επί του συνολικού ρεύματος, μη δημιουργούμενου επαγωγική ηλε-
ΚΕΦΑΛΑΙΟ 2. ΣΥΟΡΡΟΠΙΑ ΤΟΚΑΜΑΚ ΜΕ ΑΡΝΗΤΙΚΗ ΜΑΓΝΗΤΙΚΗ ΔΙΑΟΡΘΩΣΗ ΚΑΙ ΔΙΑΟΡΘΩΜΕΝΗ ΡΟΗ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΥΣΤΩΝ

τρικού ρεύματος (bootstrap current). Το παραπάνω χαρακτηριστικό ενσωχεί την προσπονήτης σταθερής λειτουργίας tokamak που είναι επιθυμητή για έναν αυτόματο ορισμό σύντηξης. Τα εσωτερικά φράγματα μεταφοράς, όπως είδαμε στο κεφάλαιο 1, συνδέονται συνήθως με μη μονοτονικά profile του παράγοντα ασφάλειας που αντιπαραγόντα σε χαταστάσεις περιορισμού με αρνητική μαγνητική διάτμηση [28, 29] και τα εξωτερικά χαρακτηριστικά τους είναι profile πίεσης με μεγάλη κλίση στην περιοχή του φράγματος [25] και ακτινικό λεκτρικό πεδίο του οποίου ο σχηματισμός σχετίζεται με διατμημένη ροή [26, 27]. Ο ακριβής τρόπος σχηματισμού των ITB δεν είναι πλήρως κατανοητός και τα περισσότερα θεωρητικά μοντέλα, υποστηρίζονται και από τις πειραματικές παρατηρήσεις, βασίζονται στην μείωση της ρευστότητας λόγω των μικροσταθείων, σε συνδυασμό με αρνητική μαγνητική διάτμηση, s < 0, διατομημένη ροή, ακτινικό λεκτρικό πεδίο, E, τη διάτμηση του, E' = dE/dr, και τη διάτμηση της ταχύτητας E × B,

\[
\omega E \times B = \left| \frac{d}{dr} \left( \frac{E \times B}{B^2} \right) \right|, \tag{21}
\]

η οποία θεωρείται και η πιο σημαντική ποσότητα για το σχηματισμό του φράγματος. Συγκεκριμένα, αυτό συμβαίνει όταν η ταχύτητα E × B μπορεί να αυξηθεί σε μείωση της έντασης των διακυμάνσεων της τύβης, ακόμη και στην πλήρη καταστάση τους, ή να μειώσει το μήκος συγκεκριμένου τους [30]. Παράλογα που υπάρχουν πειραματικές παρατηρήσεις που υποστηρίζουν αυτό το σενάριο, υπάρχουν και άλλες αντιφατικές με αυτές με αποτέλεσμα να μην είναι σαφές το κατά πόσο η αρνητική μαγνητική διάτμηση ή η διατομημένη ροή παίζει σημαντικότερο ρόλο στο σχηματισμό του φράγματος. Τα θεωρητικά και πειραματικά δεδομένα ανακεφαλαιώθηκαν πρόσφατα στις αναφορές [30] και [42].

2.2 Κυλινδρική ισορροπία στα πλαίσια του μοντέλου των δύο ρευστών

Οι χαταστάσεις ισορροπίας ενός ιδανικού, ουδέτερου πλάσματος, στα πλαίσια του μοντέλου των δύο ρευστών περιγράφονται από το ακόλουθο σύνολο
2.2. ΚΤΛΙΝΔΡΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΥΣΤΩΝ

εξισώσεων (ο αναγνώστης παραπέμπεται επίσης στο εδάφιο 1.2):

\[ \nabla \cdot (n_a \vec{v}_a) = 0, \]  
\[ m_a n_a (\vec{v}_a \cdot \nabla) \vec{v}_a = -\nabla P_a + q_a n_a (\vec{E} + \vec{v} \times \vec{B}), \]  
\[ \vec{v}_a \cdot \nabla T_a = 0, \]  
\[ Z_i n_i \approx n_e = n, \]

\[ \nabla \times \vec{E} = 0, \]  
\[ \nabla \cdot \vec{B} = 0 \]
\[ \nabla \times \vec{B} = \sum_a n_a q_a \vec{v}_a = \vec{J}, \]

όπου ο δείκτης α δηλώνει το είδος των σωματιδίων (α = i για τα ιόντα και e για τα ηλεκτρόνια), \( n_a \) είναι η αριθμητική πυκνότητα του ρευστού, που συνδέεται με τη σχέση οιονεί συγκεκριμένη (2.5), \( q_a \) το φορτίο του κάθε είδους σωματιδίων με \( Z_i \) τον ατομικό φορτίο. Ο υπολογισμός συμβολισμού είναι ο καθιερωμένος.

Η εξίσωση ενέργειας (2.4) συνδέεται με το γεγονός της πολύ μεγάλης θερμικής αγωγιμότητας κατά μήκος του \( B \). Κατά συνέπεια η θερμοκρασία γίνεται σταθερή πάνω στις μακρινές επιφάνειες σε μικρή θερμική χλίμακα χρόνου. Η προαναφερόμενη εξίσωση ενέργειας είναι κατάλληλη ευκολότερα για τα ηλεκτρόνια.

Αυτό διότι λόγω της μικρής τους μάζας σε σχέση με τα ιόντα τα ηλεκτρόνια μπορούν να κινηθούν πολύ πιο γρήγορα. Εναλλακτικά, για τα ιόντα, κανείς μπορεί να χρησιμοποιήσει μια αδιαβατική εξίσωση ενέργειας:

\[ \vec{v}_i \cdot \nabla P_i + \gamma P_i \nabla \cdot \vec{v}_i = 0. \]

Συγχρόνως, το σύστημα εξισώσεων στα πλαίσια του ΜΗΔ μοντέλου (Εξ. (1.23)-(1.29)) με το αντίστοιχο στα πλαίσια του μοντέλου των δύο ρευστών παρατηρούμε ότι το τελευταίο πλεονεκτεί σε δύο σημεία: i) Η εξίσωση ορμής περιέχει το ηλεκτρικό πεδίο και έτσι η συνεισφορά της βαθμίδας πίεσης στο \( \vec{E} \) μπορεί να υπολογιστεί από αυτή την εξίσωση (η οποία συνεισφορά δεν υπάρχει στα πλαίσια του ΜΗΔ μοντέλου διότι το ηλεκτρικό πεδίο υπολογίζεται από το νόμο του Ohm, \( \vec{E} + \vec{v} \times \vec{B} = 0 \)) και ii) Η πυκνότητα ρεύματος \( \vec{J} \) συνδέεται με αυτοσυνεπεία τρόπο με τις ταχύτητες των ρευστών του κάθε είδους σωματιδίων (Εξ. (2.8)).

Το σύστημα υπό μελέτη είναι ένα αξιονικά συμμετρικό, τοροειδούς σχήματος πλάσμα χυλικής διατομής, περιμεσμένο από μαγνητικό πεδίο στο όριο απειρού λόγου όψης. Σε αυτό το όριο το πλάσμα μπορεί να θεωρηθεί χυλιδικά.
Σχήμα 2.1: Η κυλινδρική γεωμετρία του υπό μελέτη πλάσματος ραίνεται σε αυτό το σχήμα καθώς και οι σχετικές διευθύνσεις με τη χρήση σύστημας κυλινδρικών συντεταγμένων.

(αξονική) συνιστώσας, $B_z$ και πολυειδή (αξιμοθηκώσης) $B_\theta$. Αντίστοιχα και η ροή έχει τοροειδή και πολυειδή συνιστώσα της ταχύτητας, ενώ το ηλεκτρικό πεδίο είναι ακτινικό. Λόγω της συμμετρίας χάθει υπογεία συμμετρίας μόνο από την ακτινική απόσταση $r$. Κατ’ επέκταση οι εξισώσεις (2.2), (2.4) [ή εναλλακτικά η (2.9)], (2.6) και (2.7) αισθητοποιούνται ταυτότικα. Περαιτέρω,
2.2. ΚΥΛΙΝΔΡΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΣΤΩΝ

η ροή για κάθε είδος σωματιδίων είναι ασυμπίεστη \((\nabla \cdot \vec{v}_i = 0)\). Με βάση τα παραπάνω 6 από τις 12 βασικές ποσότητες που περιέχονται στο σύνολο των εξισώσεων (2.2)-(2.8) παραμένουν ελεύθερες και μπορούν να περιγράφονται. 

Προσθέτοντας τις εξισώσεις ορμής (2.3) για το ιοντικό και το ηλεκτρονικό ρευστό προχώρησε η ΜΗΔ εξίσωση διατήρησης ορμής:

\[
\frac{d}{dr} \left( P + \frac{B_z^2 + B_\theta^2}{2} \right) + (1 - M_\theta^2) \frac{B_z^2}{r} = 0, \quad (2.10)
\]

όπου

\[
M_\theta \equiv \left[ \frac{n_i m_e v_{i\theta}^2 + n_e m_e v_{e\theta}^2}{B_\theta^2} \right]^{1/2}
\]

είναι ο πολοειδής αριθμός Mach. Λόγω της συμμετρίας η τοροειδής συνιστώσα καθώς και οι διατήρησες της ταχύτητας (τορειοδύναμης και πολοειδούς) δεν εμφανίζονται στην (2.10). Είναι βασικότερο να χρησιμοποιήσουμε την (2.10) αντί της (2.3) για τα ηλεκτρόνια. Έτσι τώρα το ελαφρό το απλό σύστημα των εξισώσεων ισορροπίας αποτελείται από τις (2.2), (2.3), (2.4) για τα ιοντικά μόνο και τις (2.5), (2.6), (2.7) και (2.10). Εκφράζοντας την πολοειδή συνιστώσα του μαγνητικού πεδίου \(B_\theta\) μέσω του παράγοντα ασφάλειας,

\[
q = \frac{r B_z}{R_0 B_\theta},
\]

με \(2\pi R_0\) να αντιστοιχεί στο μήκος της στήλης του πλάσματος (δες σχ. 2.1) και εισάγοντας την χανωνοποιημένη ακτίνα \(\rho = r/r_0\), με \(r_0\) να αντιστοιχεί στην επιφάνεια του πλάσματος η εξ. (2.10) γράφεται στη μορφή

\[
P'(\rho) = -B_z(\rho) B'_\theta(\rho) \left[ 1 + \left( \frac{\rho}{q(\rho)} \right)^2 \right] + \left[ M_\theta^2(\rho) + s(\rho) - 2 \right] \rho \left( \frac{B_z(\rho)}{q(\rho)} \right)^2. \quad (2.11)
\]

Εδώ \(\epsilon = r_0/R_0\) είναι ο αντίστροφος λόγος ύψης και

\[
s(\rho) = \frac{r}{q} \frac{dq}{dr}
\]

η μαγνητική διάτηση.

Αναμείνεται ότι ο στοιχειοθετημένος περιομετικός αποτελεσμάτων που αφορούν σχηματισμούς με ITB περιγράφονται τις ποσότητες \(q, B_z, v_{i\theta}, v_{e\theta}\) και \(n\) ως ακολουθώς:
ΚΕΦΑΛΑΙΟ 2. ΣΟΡΡΟΠΙΑ ΤΟΚΑΜΑΚ ΜΕ ΑΡΝΗΤΙΚΗ ΜΑΓΝΗΤΙΚΗ ΔΙΑΤΜΗΣΗ ΚΑΙ ΔΙΑΤΜΗΜΕΝΗ ΡΟΗ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΤΣΤΩΝ

Profile του \( q \) που αντιστοιχεί σε διαμόρφωση με αρνητική μαγνητική μαγνητική διάτμηση:

\[
q(\rho) = q_c \left( 1 - \frac{3\Delta q}{q_c} \frac{\rho^2}{r_{min}^2} + \frac{2\Delta q}{q_c} \frac{\rho^3}{r_{min}^3} \right),
\]

(2.12)

όπου \( q_c = q(r = 0) \), \( r_{min} \) η θέση του ελάχιστου, \( q_{min} \), του profile και \( \Delta q = q_c - q_{min} \). Το σχήμα του profile του \( q \) καθορίζεται δίνοντας κατάλληλες τιμές στα \( q_{min}, \Delta q \) και \( r_{min} \). Εδώ πρέπει να σημειωθεί ότι η μαγνητική διάτμηση \( |s| \) είναι ανάλογη του \( \Delta q \), επομένως καθώς το \( \Delta q \) πάει μικρότερες τιμές η μαγνητική διάτμηση αυξάνει και τα περιβάλλοντα ταμή και στις δύο περιπτώσεις όπου \( s > 0 \) και \( s < 0 \). Ένα profile του \( q \) συμβατό με πειραματικά αποτελέσματα φαίνεται στο σχήμα 2.2.

![Profile](image)

Σχήμα 2.2: Profile του παράγοντα ασφάλειας \( q \) παραγόμενο με βάση την εξίσωση (2.12) συμβατό με πειραματικά μετρήματα στο tokamak JT-60U [43] (σχήμα 10 σε αυτή την αναφορά).

Profile τοροείδους μαγνητικού πεδίου:

\[
B_z = B_{z0} \left[ 1 + \delta(1 - \rho^2) \right]^{1/2},
\]

(2.13)

όπου \( B_{z0} \) το τοροειδές μαγνητικό πεδίο κενού και η παράμετρος \( \delta \) συνδέεται με τις μαγνητικές ιδιότητες του πλάσματος, δηλ. για \( \delta < 0 \) το πλάσμα είναι
2.2. ΚΤΛΙΝΔΡΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΥΣΤΩΝ

dιαμαγνητικό.
Profile της πολεοδούς συνιστώσας της ταχύτητας των ιόντων Gaussian σχήματος:

\[ v_{i\theta} = 4v_{i\theta 0}(1 - \rho) \exp \left( - \frac{(\rho - \rho_{\text{min}})^2}{h} \right) \]  
(2.14)

όπου η παράμετρος \( h > 0 \) σχετίζεται με τη διάτμηση της ταχύτητας, δηλαδή η \( |v'_{i\theta}| \) συζητάται όταν το \( h \) παράγει μικρότερες τιμές, ενώ το \( v_{i\theta 0} \) καθορίζει το ακρότατο του profile.
Είναι κυριοσειρές (peaked) profile με το μέγιστο στο μαγνητικό άξονα για τη τοροειδή συνιστώσα της ταχύτητας:

\[ v_{iz} = v_{iz 0}(1 - \rho)^3 \]  
(2.15)

eίναι Gaussian μορφής παρόμοιο με αυτό της πολεοδούς συνιστώσας (Εξ. (2.14)). Ας σημειωθεί επίσης ότι δεν παρατηρείται αλλαγή στα αποτελέσματα εάν χρησιμοποιηθεί εναλλακτικά του (2.15) ένας κυριοσειρές profile της μορφής:

\[ v_{iz} = v_{iz 0}(1 - \rho) \exp \left( - \frac{\rho^2}{h} \right) \]

Profile της αριθμητικής πυκνότητας:

\[ n = n_0(1 - \rho^3)^3 \]  
(2.16)

Επιπλέον η πίεση των ιόντων μπορεί να εκφραστεί συναρτήσει της αριθμητικής πίεσης μέσω της σχέσης:

\[ P_i = \lambda P \]  
\[ 0 < \lambda < 1 \]  
(2.17)

Αφού σε tokamak ισχύει ότι \( M_\theta < 0.1 \), ο όρος \( \rho \) στη (2.11) είναι διαταρακτικός γύρω από τη στατική ισορροπία, \( M_\theta = 0 \), και γι' αυτό μπορεί να αγνοηθεί. Πρέπει να σημειωθεί ότι στη συνηθισμένη παράδειγμα η χυλική πολεοδούς διαταρακτική ή γειτονικά συμμετρικά πλάσμα δυστυ σ' αυτές ο όρος \( \rho \) εξαρτάται από τη διάτμηση της \( \rho \) η οποία σε ορισμένες περιπτώσεις μπορεί να γίνεται πολύ μεγάλη (δες για παράδειγμα την εξίσωση (23) για κυλινδρική ισορροπία της αναφοράς [44] και για αξονικά συμμετρικά άκρως συμπίεστη ισορροπία την εξίσωση (22) της αναφοράς [45]). Στα πλαίσια της θεώρησης αυτής είναι δυνατό να υπολογιστούν με αυτοσυντετερωμένη τρόπο οι ακόλουθες ποσότητες: το πολεοδό αριθμητικό κέδρο, \( B_\theta = e \rho B_z/q \), η μαγνητική διάτμηση, \( s = (r/q)(dq/dr) \), τη πυκνότητα του ηλεκτρικού ρεύματος μέσω του νόμου του Αμπέλε, η πίεση με ολοκλήρωση της
(2.11) και θέτοντας \( P(1) = 0 \) (δηλαδή απαιτώντας τη πίεση στην επιφάνεια του πλάσματος να μη διαμορφωθεί), οι μερικές πίεσεις των ιόντων και των ηλεκτρόνων, \( P_i = \lambda P \) και \( P_e = (1 - \lambda)P \) αντίστοιχα, το ηλεκτρικό πεδίο μέσω της (2.3) για τα ιόντα:

\[
E_r(\rho) = \frac{1}{Z_i e \nu_{in}(\rho)} \frac{dP_i(\rho)}{d\rho} + v_{iz}(\rho)B_\phi(\rho) - v_{i\theta}(\rho)B_z(\rho),
\]

(2.18)

η διάτμηση του,

\[
E'_r = \frac{d}{d\rho}E_r(\rho),
\]

και το \( \omega_{E \times B} \) μέσω της (2.1). Επίσης, οι συναπτώσεις της ταχύτητας του ηλεκτρονικού ρευστού μπορούν να υπολογιστούν από τη σχέση \( \vec{J} = ne(\vec{v}_i - \vec{v}_e) \). Ο όρος της βαθμίδας της πίεσης στην (2.18) μπορεί να προσθέσει εναλλακτικά το μοντέλο των δυο ρευστών, στα πλαίσια του ιδιοκλό Hall-MHD μοντέλου το οποίο περιλαμβάνει το γενικεμένο νόμο του Ohm:

\[
\vec{E} + \vec{v} \times \vec{B} = \frac{1}{en}(\vec{J} \times \vec{B} - \vec{\nabla} P_e).
\]

(2.19)

Αγνοώντας στην Hall-MHD εξίσωση ορμής τον όρο ροής (επιλογή του αντίστοιχα σε \( M_\theta = 0 \) στην παρούσα θέωρηση), ο όρος \( \vec{J} \times \vec{B} \) στη (2.19) μπορεί να εκφραστεί συναρτήσει της βαθμίδας της αλυκής πίεσης ως:

\[
\vec{J} \times \vec{B} = \vec{\nabla} P = \vec{\nabla}(P_i + P_e).
\]

Τότε η εξίσωση (2.19) οδηγεί στη (2.18).

Η πιο σύνετα περιγραφόμενη διαδικασία και οι προενιθές υπολογισμοί απο- σκοπούν στην αναλυτική επίλυση του συστήματος των εξισώσεων ισορροπίας του μοντέλου των δύο ρευστών. Οι υπολογισμοί πραγματοποιήθηκαν αναλυτικά με την ανάπτυξη κατάλληλου προγράμματος [46] στο πακέτο Mathematica 5.0.

Από μια προκαταρκτική εξέταση της (2.18) προκύπτει ότι πέραν της εξάρτησης της \( E_r \) και \( E'_r \) από την \( s \) μέσω του όρου \( dP_i/d\rho \) (δες εξ. (2.11)) εξάρτηση από τη μαγνητική διάτμηση εμφανίζεται και λόγω του όρου \( v_{iz} e' \) από της \( \omega_{E \times B} \) μεταξύ της πίεσης \( \omega_{E \times B} \) από τον παράγοντα \( q \). Αυτή η εξάρτηση από τη \( s \) είναι ισχυρότερη για το \( \omega_{E \times B} \), μιας και η συναπτώσα \( B_\theta \) πολλαπλασιάζεται ολοκληρωτικά το \( E_r \), όπως θα φανεί λεπτομερώς στο εδάφιο 2.3.3. Αυτές οι παρα- τηρήσεις οδηγούν στο συμπέρασμα ότι υπάρχει συνεργατική επίδραση της ροής
και της μαγνητικής διάτμησης στο $E_r$, στο $E_r'$ και κατ’ επέκταση στο $\omega_{\phi,\theta}$. Στο επόμενο εδάφιο θα παρουσιαστούν αποτελέσματα που δεν είναι δυνατό να επιτευχθούν στα πλαίσια της MHD. Για MHD αποτελέσματα ο αναγνώστης παρατηρεί τα στις αναφορές [7, 47].

2.3 Αποτελέσματα

Για κάποιες από τις παραμέτρους χρησιμοποιήθηκαν οι ακόλουθες τιμές: $B_{z0} = 1T$, $\delta = -0.00975$, $Z_i = 1$, $v_0 = 1m/s$, $R_0 = 3m$, $n_0 = 5 \times 10^{19}\text{part./m}^3$ $\lambda = 0.6$. Η επιλογή για το $q_{min} \geq 2$ έγινε διότι με βάση πειραματικά αποτελέσματα για $q_{min} < 2$ ισχυρή MHD δραστηριότητα καταστρέφει τον περιορισμό πιθανόν λόγω αστάθειας διπλού αποσχηματισμού (double tearing mode) [42]. Παρόμοια αποτελέσματα βρέθηκαν αριθμητικά για μονοαίοτητα κυλινδρικής ισορροπίας με κοίλο profile του ρεύματος στην αναφορά [6]. Επιπλέον σε εκκενώσεις στο JET με αρνητική μαγνητική διάτμηση βρέθηκε συσχετισμός μεταξύ του σχηματισμού ITB και ακεραίων τιμών του $q_{min}$ (2 ή 3) [48]. Η χρησιμοποίηση των παρατητών τιμών των παραμέτρων, οι οποίες είναι σχετικές με τις αντίστοιχες πειραματικές εξεισωσίες πως οι τιμές των πειραματικών ποσοτήτων θα είναι και αυτές σχετικές με τις πειραματικές. Οι παραδείγματα αναφέρονται ότι το μέγιστο της τοραειδής πυκνότητας ηλεκτρικού ρεύματος παρίει την τιμή $5MA/m^2$ και για αμιγώς τοραειδή χορωδειδής μορφής ταχύτητα ροής η μέγιστη τιμή του ηλεκτρικού πεδίου είναι 13kV, τιμές που είναι ίδιες τάξες μεγέθους με πειραματικά αποτελέσματα σχηματισμόν με ITB [28, 26]. Η τιμή του ηλεκτρικού πεδίου είναι συμβατή και με τη σχέση ωστόσο συμπεριλήφθηκε και στις εξεισώσεις των τοραειδών ρεύματων.

Η επίδραση της μαγνητικής διάτμησης και της ροής στα χαρακτηριστικά της ισορροπίας μελετήθηκε μέσω της μεταβολής των παραμέτρων $\Delta q$, $q_{min}$, $r_{min}$, $h$, $v_{i0}$ και $v_{i0}$ σε εύρος $(4-14)$, $(2-3)$, $(0.5-0.6)$, $(0.001-0.01)$, $(10^5 - 10^6) m/s$ και $(10^4 - 10^5) m/s$ αντίστοιχα, από το $q_e = q_{min} + \Delta q$ μεταβάλλεται σε εύρος 6 εως 16. Επιπλέον, η σχέση κλίμακας $M^2_e \approx M^2_b$, τυπική για tokamak, εξισωσίεται με $B_s \approx 10B_0$ και $v_{i0} \approx 10v_{i0}$ [49, 50]. Η επίδραση της μεταβολής της μαγνητικής διάτμησης, μέσω της αντίστοιχης του $\Delta q$, μελετήθηκε χρησιμώς σταθερά τα $r_{min}$ και $q_{min}$, ενώ η επίδραση της τιμής των $r_{min}$ και $q_{min}$ εξετάστηκε με σταθερό $\Delta q$.

Πρότασια αναφερομένα συνοπτικά κάποια χαρακτηριστικά των profile της πίεσης και της τοραειδής πυκνότητας ρεύματος, τα οποία παρακέντυχον όμοια με τα αντίστοιχα της MHD μελέτης. Το profile της ολικής πίεσης, και κατ’ επέ-
ΚΕΦΑΛΑΙΟ 2. ΣΩΡΟΠΟΙΑ ΤΟΚΑΜΑΚ ΜΕ ΑΡΝΗΤΙΚΗ ΜΑΓΝΗΤΙΚΗ ΔΙΑΤΜΗΣΗ ΚΑΙ ΔΙΑΤΜΗΜΕΝΗ ΡΟΗ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΥΣΤΩΝ

...κτύπηση της πίεσης των ιόντων και των ηλεκτρονίων, είναι χαρακτηριστικά μικρή με το μέγιστο στο μαγνητικό όξον και για $s < 0$ αυξάνεται η κλίση του χαός η $|s|$ αυξάνεται, όπως προκύπτει και από την (2.11) (σχ. 2.3). Επιπλέον από...

\[
P(\rho)/P(0) \quad \Delta q = 4 \quad --
\]

\[
P(\rho)/P(0) \quad \Delta q = 14 \quad ---
\]

Σχήμα 2.3: Profile της πίεσης, για δύο τιμές της παραμέτρου $\Delta q$, κανονικοποιημένα ως προς τη τιμή της $P$ στο μαγνητικό όξον.

...ή τη (2.11) προκύπτει ότι η κλίση του profile αυξάνει χαμάς το πλάσμα γίνεται περισσότερο διαμαγνητικό, δηλαδή όταν το $B$, συνδέεται με τη τιμή του $\delta$ παίρνει μεγαλύτερες τιμές. Το profile της πυκνότητας τοροειδώς ρεύματος, $J_z$, εμφανίζεται χαμάς με το μέγιστο του στην περιοχή του $q_{\min}$, όπως φαίνεται και στο σχήμα 2.4. Αυτά τα χαρακτηριστικά έχουν παρατηρηθεί σε εκκενώσεις με ITB [30] και είναι επιβεβαιωμένα για το σχηματισμό φραγμάτων. Επιπλέον για $s > 2$ παρατηρείται μια ανισότροπη στην $J_z$ στην περιοχή όπου $s > 0$. Αυτό το χαρακτηριστικό συζητείται περαιτέρω στις αναφορές [7, 47]. Στο σημείο αυτό μπορεί να αναφέρεται ότι ένα ισχυρό κριτήριο σταθερότητας για ισορροπία με ανισόμετρη πυκνότητα ρεύματος στην εξώτατη πλευρά του πλάσματος και μονοτονικά αυξανόμενο profile του $q$ παρήχθη στην αναφορά [51].

Παρακάτω θα παρουσιαστούν τα αποτελέσματα που αφορούν την επίδραση της μαγνητικής διάτμησης και της ροής, ξεκινώντας σε κάθε μια από τις ποσότητες $E_r$, $|E'_r|$ και $\omega_{E_x B}$. 

40
2.3. ΑΠΟΤΕΛΕΣΜΑΤΑ

![Graph](image)

Σχήμα 2.4: Profile της τοροειδούς πυκνότητας ρεύματος για δύο τιμές του \( \Delta q \) τα οποία επιδεικνύουν το χαρακτηριστικό και την αντιστροφή στην εξώτατη περιοχή του πλάσματος. Η χαρακτηριστική των τιμών πραγματοποιήθηκε ως προς τη μέγιστη τιμή του \( J_z \) για \( \Delta q = 4 \).

2.3.1 Ηλεκτρικό πεδίο \( (E_r) \)

Στο ηλεκτρικό πεδίο συνεισφέρουν οι όροι της βαθμιάς πίεσης, \( \nabla P_i \), της τοροειδούς συνιστώσας της ταχύτητας, \( v_z \) και της πολοειδούς συνιστώσας της, \( v_\theta \), που αντιστοιχούν στον πρώτο, δεύτερο και τρίτο όρο της (2.18). Κάθε ένας από αυτούς τους όρους έχει συνεισφορά διαφορετική στην τιμή του ηλεκτρικού πεδίου, όπως φαίνεται στο σχήμα 2.5. Αυτό το αποτέλεσμα έχει βρεθεί και περατώθηκε στην αναφορά [30], ενώ τα εποικίστηκαν οι αποτελέσματα με διαφορετικό τρόπο στην [52] (σχήμα 4 στην αυτή). Όπως είναι εμφανές από την (2.18) το \( E_r \) εξαρτάται γραμμικά από τις \( v_z \) και \( v_\theta \) με τη συνολική συνεισφορά της ροής ωστόσο, να εξαρτάται από το σχετικό πρόσθιο των \( v_z, v_\theta \) και \( B_z \). Το σχήμα ενός τυπικού profile του \( E_r \) εμφανίζει ένα ακρότατο στην περιοχή που βρίσκεται το \( q_{min} \), όπως φαίνεται και στο σχήμα 2.5.

Η αύξηση της \( |s| \) μέσω της αύξησης του \( \Delta q \) προκαλεί αύξηση και στο ακρότατο του \( |E_r| \) (σχ. 2.6). Ανάλογα με τη διεύθυνση της ταχύτητας της ροής (τοροειδής ή πολοειδής) και το σχήμα του profile της, μεταβολή του \( \Delta q \) από 4 σε 14 αυξάνει τις τιμές του μεγίστου του \( |E_r| \) από 5.6% για αμφίως πολοειδή
ΚΕΦΑΛΑΙΟ 2. ΣΩΡΟΠΟΙΑ ΤΟΚΑΜΑΚ ΜΕ ΑΡΝΗΤΙΚΗ ΜΑΓΝΗΤΙΚΗ ΔΙΑΤΜΗΣΗ ΚΑΙ ΔΙΑΤΜΗΜΕΝΗ ΡΟΗ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΥΣΤΩΝ

Σχήμα 2.5: Profile των όρων \( \nabla P_i \), \( v_{iz} \) και \( v_{i\theta} \) του ηλεκτρικού πεδίου, από τα οποία φαίνεται ότι και οι τρεις συνεισφορές είναι της ίδιας τάξης μεγέθους. Ολα τα profile είναι χανονικοποιημένα ως προς το αχρότατο του όρου της βαθμίδας πένθης.

ροή εκατ. 48% για αμμωδή χορημοειδή τοροειδή ροή. Τατουάζεται εδώ ότι η εξάρτηση του ηλεκτρικού πεδίου από την \( \psi \) προέρχεται από τους όρους \( \nabla P_i \) και \( v_{iz} \). Η μετατόπιση του σημείου του \( q_{min} \) (χρησιμοποιείται σταθερά τα \( \Delta q \) και \( q_{min} \)) προς την επιφάνεια του πλάσματος αυξάνει το μέγεθος της απόλυτης τιμής του ηλεκτρικού πεδίου όπως φαίνεται στο σχήμα 2.7. Ποσοτικά, μετατόπιση του \( r_{min} \) από το 0.5 στο 0.6 οδηγεί σε αύξηση του μεγίστου του \( E_r \) από 36% εως 70%. Επιπλέον η θέση του μεγίστου (το οποίο βρίσκεται στην περιοχή του \( r_{min} \)) μετατόπιζεται και αυτό προς τα έξω. Κρατώντας το \( \Delta q \) σταθερό και αυξάνοντας τη τιμή του \( q_{min} \) μειώνεται τη τιμή του μεγίστου του \( |E_r| \) (σχ. 2.8). Ποσοτικά για αύξηση του \( q_{min} \) από 2 σε 3 με \( \Delta q = 4 \) και \( r_{min} = 0.5 \) η μείωση είναι στο εύφορο 12%-40%, πάντα σε συνάρτηση με τη διεύθυνση της ροής και το σχήμα του profile των συνιστώσων της. Περαιτέρω, η αύξηση της διάτμησης της ροής (μέσω της μείωσης του \( h \) από 0.1 σε 0.001) αφήνει το αχρότατο του \( E_r \) πρακτικά ανεπικρατεί στις περισσότερες περιπτώσεις που εξετάστηκαν.

2.3.2 Διάτμηση του ηλεκτρικού πεδίου (\( E_r' \))

Τα βασικά χαρακτηριστικά της διάτμησης του ηλεκτρικού πεδίου είναι η συνεισφορά ίδιας τάξης μεγέθους από τους τρεις όρους (\( \nabla P_i \), \( v_{iz} \) και \( v_{i\theta} \)) όπως και
Σχήμα 2.6: Αύξηση της χανονικοποιημένης τιμής του αχρότατου του ηλεκτρικού πεδίου λόγω της αύξησης του $\Delta q$ για $q_{\text{min}} = 4$, $r_{\text{min}} = 0.5$, Gaussian σχήμα του profile της $v_{iz}$ και $v_{i0} = 0$.

στην περίπτωση του ηλεκτρικού πεδίου (σχ. 2.9) καθώς και η ύπαρξη δύο αχρότατων εκατέρωθεν του σημείου $r_{\text{min}}$ αντιθέτου πρόσημου (σχ. 2.10). Αύξηση της $|s|$ οδηγεί σε αύξηση των δύο μεγάλτων της $E_0$ στην πλευρότητα των περιπτώσεων διευθύνσεως και σχήματος profile των ταχύτητων της ροής που εξετάστηκαν με την αύξηση στην περιοχή $s > 0$ να είναι μεγαλύτερη από αυτή στην περιοχή $s < 0$ (σχ. 2.10). Για αρμόδιους συνδυασμούς των συνιστώσων της ταχύτητας, όμως το ένα αχρότατο αυξάνεται, ενώ το άλλο μειώνεται. Μια τέτοια περίπτωση με τορουετή κορυφωτήρια συνιστώσα και πολύευθη συνιστώσα φαίνεται στο σχήμα 2.11.

Οσον αφορά την εξάρτηση της τιμής του αχρότατου της διάτμησης του ηλεκτρικού πεδίου από τη θέση του $q_{\text{min}}$ προέκυψε ότι καθώς το $r_{\text{min}}$ παίρνει μεγαλύτερες τιμές, το ίδιο συμβαίνει και με τη τιμή του αχρότατου, ενώ και η θέση του τελευταίου μετατοπίζεται προς τα έξω (σχ. 2.12). Εξάρτηση αποτελεί η περίπτωση τορουετής συνιστώσας με Gaussian profile και μη μηδενικής πολυευθύς συνιστώσας της ταχύτητας της ροής. Ποσοτικά, η αύξηση της τιμής του αχρότατου κυμαίνεται μεταξύ 8% και 42% και εξαρτάται από τη διεύθυνση της ροής καθώς και από το σχήμα των profile των συνιστώσων της ταχύτητας της. Η αύξηση του $q_{\text{min}}$ οδηγεί σε μείωση του αχρότατου του $E_0$ στην περιοχή $s > 0$ σε όλες τις περιπτώσεις ροής που εξετάστηκαν, ενώ στην περιοχή $s < 0$ αυτό συμβαίνει όταν $v_{i0} = 0$ (σχ. 2.13). Αυξάνοντας τη διάτμηση της ταχύ-
Σχήμα 2.7: Η παρατηρούμενη αύξηση της απόλυτης τιμής του αχρότατου του ηλεκτρικού πεδίου, όταν αυξάνεται η τιμή του \( r_{\text{min}} \) που αντιστοιχεί στη θέση του ελαχιστού του παράγοντα ασφάλειας. Επιπλέον, η θέση του αχρότατου μετατοπίζεται προς τα έξω. Για το σχήμα χρησιμοποιήθηκαν οι ακόλουθες τιμές των παραμέτρων: \( q_{\text{min}} = 2, \Delta q = 4 \), ενώ η ροή είναι αμιγώς τοροειδής χορυστείους σχήματος. Τα profile είναι χανονκοποιημένα ως προς το αχρότατο της περίπτωσης \( r_{\text{min}} = 0.5 \).

tητας της ροής τα μέγιστα της \( |E'_{r}| \) αυξάνουν επίσης σε όλες τις περιπτώσεις ροής που εξετάστηκαν (σχ. 2.14). Για αμιγώς είτε τοροειδή ή πολοειδή ροή με profile ταχύτητας Gaussian σχήματος, αύξηση της απόλυτης τιμής του μεγίστου της ταχύτητας κατά έναν παράγοντα αυξάνει τα μέγιστα της \( |E'_{r}| \) κατά τον ίδιο παράγοντα. Περαιτέρω, για αμιγώς τοροειδή ή αμιγώς πολοειδή ροή η αντιστροφή της διεύθυνσης της ροής προκαλεί αλλαγή στα πρόσθια των αχρότατων της \( E'_{r} \). Επιπλέον αυτή η αντιστροφή οδηγεί σε i) αύξηση και των δύο τοπικών μεγίστων της \( |E'_{r}| \) για Gaussian σχήματος \( v_{12} \), ii) αύξηση του μεγίστου στην περιοχή όπου \( s > 0 \) και μείωση στην περιοχή \( s < 0 \) για τοροειδή ταχύτητα της ροής και iii) μείωση των δύο μεγίστων για αμιγώς πολοειδή ροή. Ας σημειωθεί ότι για αμιγώς τοροειδή ροή με profile ταχύτητας Gaussian σχήματος η αύξηση του μεγίστου της \( |E'_{r}| \) στην περιοχή \( s > 0 \), λόγω της αντιστροφής της ροής, είναι μεγαλύτερη απ’ ότι στην \( s < 0 \).
**Σχήμα 2.8:** Σε αυτό το σχήμα φαίνεται η παρατηρούμενη μείωση του μεγιστου του profile του κανονικοποιημένου $|E_r|$ όταν το $q_{\text{min}}$ αυξάνει, για $\Delta q = 4$, $r_{\text{min}} = 0.5$, χορυσμική $v_{iz}$ και Gaussian σχήματος εντοπισμένο profile για την $v_{\theta}$ ($h = 0.001$).

**Σχήμα 2.9:** Profile των συνεργασών των όρων $\nabla P$, $v_{iz}$ και $v_{\theta}$ στη διάτμηση του ηλεκτρικού πεδίου, $E_r'$, από τα οποία φαίνεται ότι οι τρεις συνεισφορές είναι της ίδιας τάξης μεγέθους. Το profile της $v_{iz}$ είναι χορυσμικής, ενώ όλα τους είναι κανονικοποιημένα ως προς το αχρόνιτο του όρου $\nabla P$ στην περιοχή όπου $s < 0$.  

45
Σχήμα 2.10: Αύξηση των χανονικοποιημένων μεγίστων του profile του $|E'_r|$ λόγω της αύξησης της μαγνητικής διάτμησης. Τα σχήματα αντιστοιχούν σε χορυφωδή $v_{iz}$ και $v_{id} = 0$.

Σχήμα 2.11: Αύξηση του ακρότατου της $E'_r$ στην περιοχή $s > 0$ λόγω της αύξησης του $\Delta q$. Τα profile λήφθηκαν για χορυφωδή $v_{iz}$ και $v_{id} \neq 0$ και είναι χανονικοποιημένα ως προς το ακρότατο στην περιοχή $s < 0$ για $\Delta q = 4$.

2.3.3 Διάτμηση της ταχύτητας $\vec{E} \times \vec{B}$ ($\omega \vec{E} \times \vec{B}$)

Το profile της διάτμησης της ταχύτητας $\vec{E} \times \vec{B}$ (Εξ. (2.1)) εμφανίζει δύο τοπικά μέγιστα, το ένα στην περιοχή $s < 0$ και το άλλο στην περιοχή $s > 0$ (σχ. 2.15).
Σχήμα 2.12: Αύξηση των ακροτάτων του $|E_r'|$ καθώς το $r_{min}$ παίρνει μεγαλύτερες τιμές για $q_{min} = 2$, $\Delta q = 4$, και για αμβιό τορικού δρόμο με profile ταχύτητας χορτοφειδούς σχήματος. Επιπλέον φαίνεται η μετατόπιση των ακροτάτων προς τα εξω. Τα profile είναι κανονικοποιημένα ως προς το ακρότατο της $E_r'$ για $r_{min} = 0.5$.

Μεγαλύτερο από τα δύο είναι αυτό που βρίσκεται στην περιοχή που η χλίση της πίεσης είναι μεγαλύτερη. Η επίδραση της μαγνητικής διάτμησης στην $\omega_{E \times B}$ είναι αυξημένη από την αντίστοιχη MHD περιπτώση και αυτό λόγω του όρου $\nabla P$, του ηλεκτρικού πεδίου ($E_x$ (2.18)). Συγκεκριμένα για σταθερό $B_z$, τυχαία $q$, $v_z$ και $v_\theta$, η εξίσωση (2.1) στο σήμερο $E'_r = 0$ δίνει:

$$\omega_{E \times B} = \left| \omega_{E \times B-MHD} - \frac{\lambda (1 - s)(2 - s)B_\phi \rho_e}{Z_{enqr_0^2 \rho^2 + z^2}} \right|,$$

(2.20)

όπου

$$\omega_{E \times B-MHD} = \frac{(1 - s)\left( \frac{v_{th}}{q} - v_{th} \right)}{r_0^2 q \left( 1 + \left( \frac{z}{r_0} \right)^2 \right)} .$$

(2.21)

Ο πρώτος όρος της (2.20) προφέρεται από τους όρους $v_z$ και $v_\theta$ του $E_r$, ενώ ο δεύτερος από τον όρο της βαθμιάς πίεσης του ηλεκτρικού πεδίου στην (2.18) που συνδέεται με τη (2.21). Ο δείκτης MHD χρησιμοποιείται για να δηλώσει την ομοιότητα της (2.21) με την αντίστοιχη MHD εξίσωση (18) του εξής: 47
Σχήμα 2.13: Μείωση του ακρότατου της $\left| E'_c \right|$ στην περιοχή $s < 0$ για αμιγώς τοροειδή ροή με Gaussian profile της ταχύτητας λόγω της αύξησης του $q_{\text{min}}$. Για τη συγκεκριμένη περίπτωση ροής η μεταβολή του άλλου ακρότατου στην περιοχή $s > 0$ είναι αμελητέα.

στην αναφορά [47]. Είναι εμφανές ότι στην (2.20) η εξάρτηση του $\omega^{\epsilon \times B}$ από την $s$ λόγω του όρου $\nabla P$ είναι ανάλογη του $(1-s)(2-s)$, ενώ λόγω των όρων της ροής ανάλογη του $1-s)$. Κατά συνέπεια, η εξάρτηση από την $s$ είναι ισχυρότερη απ’ ότι στην ΜΗΔ περίπτωση, λαμβάνοντας υπ’ όψη ότι η συνεισφορά του εκάστοτε όρου είναι της ίδιας τάξης μεγέθους (κάτι που ισχύει για όλο το profile όπως φαίνεται στο σχήμα 2.16). Επιπλέον, η συνεισφορά του εκάστοτε όρου σε απόλυτη τιμή είναι μεγαλύτερη για $s < 0$ απ’ ότι για $s > 0$. Εδώ ας σημειωθεί ότι, αν και για tokamak ισχύει η σχέση χλίμακας, $v_{iz} \approx 10v_{\|}$, οι συνεισφορές των όρων ταχύτητας, είναι της ίδιας τάξης μεγέθους λόγω της ύπαρξης του παράγοντα $\rho/q$ στην (2.21). Επίσης, αύξηση της ταχύτητας της ροής, μέσω της αύξησης των $|v_{iz}|$ ή $|v_{\|}|$, κατά ένα παράγοντα, διατηρούντας τη σχέση χλίμακας, οδηγεί σε αύξηση των μεγίστων τιμών της $\omega^{\epsilon \times B}$ κατά τον ίδιο παράγοντα.

Η επίδραση της μαγνητικής διάτμησης, μέσω του $\Delta q$, και της ροής στη $\omega^{\epsilon \times B}$ είναι παράμορφα με την αντίστοιχη επίδραση στην $E'_c$. Συγκεκριμένα:

1. Αύξηση της $|s|$ οδηγεί σε αύξηση των μεγίστων της $\omega^{\epsilon \times B}$ στην πλειο-
Σχήμα 2.14: Η αύξηση των μεγέθων της $|E'_c|$ οφελούμενη στην αύξηση της διάτμησης της ταχύτητας της ροής στην περίπτωση που η τοροειδής συνιστώσα της ταχύτητας έχει Gaussian σχήμα, ενώ η πολοειδής συνιστώσα είναι μηδενική. Τα profile είναι χανονισοποιημένα ως προς το ακρότατο στην περιοχή όπου $s > 0$ για $h = 0.001$.

Σχήμα 2.15: Σε αυτό το σχήμα φαίνεται ένα τυπικό profile της διάτμησης της ταχύτητας $\vec{E} \times \vec{B}$, $\omega_{E \times B}$, για αμιγάς πολοειδή ροή, χανονισοποιημένο ως προς το μέγιστο στην περιοχή $s > 0$.

νότητα των περιπτώσεων που εξετάστηκαν (σχ. 2.17). Στις υπόλοιπες το ένα μέγιστο αυξάνεται, ενώ το άλλο μειώνεται (σχ. 2.18). Σε ποια
Σχήμα 2.16: Προφίλ των όρων \( \nabla P_i \), \( v_{iz} \) και \( v_{i\theta} \) που συνεισφέρουν στη \( \omega e_{xB} \) και επιδεικνύουν το γεγονός ότι οι τρεις συνεισφορές είναι από της ίδιας τάξης μεγέθους. Η τοροειδής ταχύτητα της ροής έχει χαρακτηριστικές σχήματα. Η κανονικοποίηση πραγματοποιήθηκε ως προς το μέγεθος του όρου \( \nabla P_i \) στην περιοχή \( s < 0 \).

Σχήμα 2.17: Αύξηση των μεγέθων της \( \omega e_{xB} \) λόγω της αύξησης της μαγνητικής διάτμησης. Και οι δύο συναπόσποντες της ταχύτητας της ροής έχουν profile Gaussian σχήματος.
2.3. ΑΠΟΤΕΛΕΣΜΑΤΑ

περιοχή (s < 0 ή s > 0) αυτό συμβαίνει εξαιτία της κατεύθυνσης της ροής και το σχήμα του profile της ταχύτητας της.

Σχήμα 2.18: Αύξηση του μεγέθους του ω_{E\times B} στην περιοχή s < 0 και μείωση στην s > 0 λόγω της αύξησης του Δq. Τα profile λήφθηκαν για Gaussian v_{iz} και v_{θ} = 0 και είναι κανονικοποιημένα ως προς το μέγιστο στην περιοχή s < 0 για Δq = 4.

2. Η μετατόπιση του r_{min} προς την επιφάνεια του πλάσματος οδηγεί στην αύξηση της τιμής των μεγίστων της ω_{E\times B} στις ίδιες περιπτώσεις με την Ε_{θ}, ενώ συμπεράνεται και από μετατόπιση προς την ίδια κατεύθυνση του profile, όπως φαίνεται στο σχήμα 2.19.

3. Αύξηση του q_{min} προκαλεί i) μείωση του μεγέθους στην περιοχή s > 0 σε όλες τις περιπτώσεις ροής και ii) αύξηση του μεγέθους στην περιοχή s < 0 για v_{θ} ≠ 0 (σχ. 2.20).

4. Όσο αυξάνεται η διάτμηση της ταχύτητας της ροής τόσο αυξάνονται και οι τιμές των μεγίστων της ω_{E\times B} σε όλες τις περιπτώσεις του εξετάστηκαν, όπως φαίνεται στο σχήμα 2.21.

5. Τελευταία, οι τιμές της ω_{E\times B} εξαρτώνται από το σχετικό προσανατολισμό των v_{iz}, v_{θ} και B_{z}, όπως προκύπτει από τις εξισώσεις (2.20) και (2.21). Συγκεκριμένα i) αντίστροφη της Gaussian σχήματος τοροειδούς
Σχήμα 2.19: Αύξηση των μεγίστων της ω_{E×B} λόγω της μετατόπισης προς τα έξω της θέσης του q_{min} για αμφίδρομη τοροειδή ροή με ταχύτητα Gaussian σχήματος.

συνιστώσας της ταχύτητας της ροής οδηγεί σε αύξηση των μεγίστων της ω_{E×B} (σχ. 2.22) ii) το μέγιστο στην περιοχή s > 0 αυξάνεται, ενώ αυτό στην περιοχή s < 0 μειώνεται για χορυσσειδή τοροειδή ταχύτητας ροής και iii) μειώνονται και τα δύο μέγιστα για αμφίδρομη πολεοειδή ροή.

2.4 Συμπεράσματα

Σε αυτό το κεφάλαιο μελετήθηκε η ισορροπία tokamak με αρνητική μαγνητική διάταξη και διατηρημένη ταχύτητα ροής στο σφαιρικό απόριο λόγω της περιοχής του μοντέλου των δύο ρευστών. Η μελέτη βασίστηκε σε ένα ελαφρώς απλοποιημένο σύστημα εξισώσεων στο οποίο η εξίσωση αρμής του ηλεκτρονικού ρευστού αντικαταστάθηκε από την αντίστοιχη του MHD μοντέλου. Ανανέωση του όρου ροής σε αυτή την εξίσωση (διότι σε κυλινδρική γεωμετρία είναι πολύ μικρό για tokamak) και περιγράφοντας τα profile ξείδευσης του πολεοειδούς μαγνητικού πεδίου, B_z, του παράγοντα ασφάλειας, q, της τοροειδούς και πολεοειδούς συνιστώσας της ταχύτητας του ιονικού ρευστού, v_i, και v_θ, της συσκευής, n_i και της πίεσης των ιοντών ως μέρος της ολικής πίεσης, {P_i} = {λP}, κατασκευάζουμε αναλυτικές λύσεις. Με χρήση των λύσεων αυτών υπολογίστηκαν με αυτοσυνεπή τρόπο οι ακόλουθοι παράγοντες ισορροπίας: P (και χατ' επέκταση η P_i και η πίεση του
Σχήμα 2.20: Αύξηση του μεγέθους της $\omega_{E \times B}$ στην περιοχή $s < 0$ καθώς το $q_{\text{min}}$ αυξάνεται, στην περίπτωση που και οι δύο συνιστώσες της ταχύτητας της ροής έχουν profile Gaussian σχήματος. Στη συγκεκριμένη περίπτωση η μεταβολή του μεγέθους στην περιοχή $s > 0$ είναι πολύ μικρή. Τα profile είναι κανονικοποιημένα ως προς το μέγιστο της $\omega_{E \times B}$ στην περιοχή $s > 0$ για $q_{\text{min}} = 3$.

ηλεκτρονικού ρευστού $P_e = (1 - \lambda) P$, η πυκνότητα τοροειδώς ρεύματος, το ακτινικό ηλεκτρικό πεδίο, $E_e$, η διάτμηση του, $E'_e$ και η διάτμηση της ταχύτητας $\vec{E} \times \vec{B}$, $\omega_{E \times B}$. Θεωρήθηκε Gaussian σχήματος profile για την πολοειδή συνιστώσα της ταχύτητας ροής, $v_{th}$, και είτε Gaussian είτε χορωθειούσων σχήματος για τη τοροειδή συνιστώσα, $v_s$. Για την περίπτωση αρνητικής μαγνητικής διάτμησης εξετάστηκε η επίδραση της μαγνητικής διάτμησης, $s$, και της ροής στα χαρακτηριστικά της ισορροπίας μεταβάλλοντας τις ακόλουθες παραμέτρους: το $\Delta \psi$ ως προς την οποία είναι ανάλογη η $s$, το $q_{\text{min}}$ (ελάχιστο του profile του $q$), η θέση του $r_{\text{min}}$, τα αχρότατα των συνιστώσων της ταχύτητας, $v_{th0}$ και $v_{so0}$ και την παράμετρο $h$ η οποία όταν μειώνεται αυξάνεται η διάτμηση της ταχύτητας της ροής. Τα συμπεράσματα συνοψίζονται ως εξής:

1. Αυξάνεται η κλίση του profile της πίεσης στην περιοχή $s < 0$.

2. Το profile της τοροειδώς πυκνότητας ηλεκτρικού ρεύματος, $J_z$, είναι χούλι και εμφανίζει αντιστροφή στην εξωτερική πλευρά όπου $s > 2$ και

53
ΚΕΦΑΛΑΙΟ 2. ΣΥΡΡΟΠΙΑ ΤΟΚΑΜΑΚ ΜΕ ΑΡΝΗΤΙΚΗ ΜΑΓΝΗΤΙΚΗ ΔΙΑΤΜΗΣΗ ΚΑΙ ΔΙΑΤΜΗΜΕΝΗ ΡΟΗ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΥΣΤΩΝ

Σχήμα 2.21: Η παρατηρούμενη αύξηση στα μέγιστα της $\omega_{EB}$ λόγω της αύξησης της διάτμησης της ταχύτητας της ροής στην περίπτωση κορυφοειδούς σχήματος $v_{iz}$ και $v_{\theta} \neq 0$. Η κανονικοποίηση πραγματοποιήθηκε ως προς το μέγιστο της $\omega_{EB}$ στην περιοχή $s > 0$ για $h = 0.1$.

Σχήμα 2.22: Αύξηση των μεγιστών της $\omega_{EB}$ λόγω της αντιστροφής της το- ροειδούς συνιστώσας της ροής Gaussian σχήματος.
3. Το profile του $|E_r|$ έχει ένα μέγιστο στην περιοχή $s < 0$, ενώ τα profile των $|E'_r|$ και $\omega_{E_{xB}}$ έχουν άδυν μέγιστα, το ένα στην περιοχή $s < 0$ και το άλλο στην περιοχή $s > 0$.

4. Η συνεισφορά των όρων $\nabla P_i$, $v_{iz}$ και $v_{iB}$ στα $E_r$, $E'_r$, $\omega_{E_{xB}}$ (με τη συνεισφορά λόγω $\nabla P_i$ να λείπει στην περιπτώση του MHD μοντέλου) είναι της ίδιας τάξης μεγέθους.

5. Η μαγνητική διάτμηση επηρεάζει τα $E_r$ και $E'_r$ τόσο ρητά μέσω του όρου $\nabla P_i$, όσο και έμμεσα μέσω του αντίστοιχου $v_{iz}$, ενώ όσον αφορά την $\omega_{E_{xB}}$ η εξάρτηση επεκτείνεται και λόγω του όρου $v_{iB}$. Η ρητή εξάρτηση από την $s$ είναι ισχυρότερη από ό,τι η έμμεση. Συγκεκριμένα, για $B_z = \text{σταθερή} \ η \ συνεισφορά \ του \ όρου \ \nabla P_1 \ στην \ \omega_{E_{xB}}$ στο σημείο του $E'_r = 0$ είναι ανάλογη του $(1 - s)(2 - s)$ (Εξ. (2.20)), ενώ η συνεισφορά λόγω των όρων $r$ είναι ανάλογη του $(1 - s)$ (Εξ. (2.21)).

6. Αύξηση της $s$ έχει σαν αποτέλεσμα την αύξηση του μεγίστου του $|E_r|$ σε όλες τις περιπτώσεις που εξετάστηκαν. Επίσης το μέγιστο των $|E'_r|$ και $\omega_{E_{xB}}$ αυξάνεται στην πλευρά γύρω από την περιοχή των περιπτώσεων που εξετάστηκαν. Όταν είτε η τοροειδής συνατότασα και η πολυειδής αναφορά ή μία την επίδραση της άλλης είτε όταν η ταχύτητα ροής είναι αμφοτέρως τοροειδής και χωροφωνίας, η αύξηση είναι μεγαλύτερη στην περιοχή $s > 0$. Επίσης σε συνάρτηση με την διεύθυνση και το σχήμα του profile της ταχύτητας ροής η αύξηση χωριάεται μεταξύ 56.4% και 323%.

7. Όσο πιο μεγάλη τιμή παίρνει το $r_{min}$ τόσο μεγαλύτερα τα μέγιστα των $|E_r|$, $|E'_r|$ και $\omega_{E_{xB}}$.

8. Όσο μεγαλύτερο το $q_{min}$ (με σταθερό $\Delta q$) τόσο μικρότερο το μέγιστο του $|E_r|$, αλλά τόσο μεγαλύτερα τα μέγιστα των $|E'_r|$ και $\omega_{E_{xB}}$ στην περιοχή $s > 0$.

9. Μεγαλύτερη ταχύτητα ροής, λόγω μεγαλύτερων τιμών των $|v_{iz}|$ και $|v_{iB}|$, οδηγεί σε ανάλογη αύξηση των αχρότατων των $E_r$, $E'_r$ και $\omega_{E_{xB}}$.

10. Όσο μεγαλώνει η διάτμηση της ταχύτητας ροής τόσο μικρώνεται ασθενώς το αχρότατο του $E_r$, αλλά τόσο αυξάνονται τα μέγιστα των $|E'_r|$ και $\omega_{E_{xB}}$. 

55
ΚΕΦΑΛΑΙΟ 2. ΣΩΡΟΠΙΑ ΤΟΚΑΜΑΚ ΜΕ ΑΡΝΗΤΙΚΗ ΜΑΓΝΗΤΙΚΗ ΔΙΑΤΜΗΣΗ ΚΑΙ ΔΙΑΤΜΗΜΕΝΗ ΡΟΗ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΩΝ ΔΥΟ ΡΕΤΣΤΩΝ

11. Τα $E_r$, $E'$ και $\omega_{E \times B}$ εξαρτώνται από το σχετικό προσανατολισμό των $v_z$, $v_\theta$ και $B_z$.

Κλείνοντας αυτό το κεφάλαιο πρέπει να αναφέρουμε ως γενικό συμπέρασμα πως, όπως και στην περίπτωση του MHD μοντέλου, στο πλαίσιο του μοντέλου των δύο ρετστών η μαγνητική διατμήση και η διατμημένη ταχύτητα ροής (τοροειδής και πολεοειδής) δρούν συνεργατικά στα $E_r$, $E'$ και $\omega_{E \times B}$ τα οποία φαίνεται ότι παίζουν ρόλο στο σχηματισμό ITB. Όμως η επίδραση της μαγνητικής διατμήσης σε αυτές τις ποσότητες είναι εμβαθυνότερη από ότι στην περίπτωση του MHD μοντέλου λόγω του όρου $\nabla P_i$ που υπάρχει σε αυτές.
Κεφάλαιο 3

Επίδραση της ροής στη μαγνητική τοπολογία αξονικά συμμετρικών καταστάσεων ισορροπίας

Σε αυτό το κεφάλαιο θα εξεταστεί η επίδραση της ροής στη τοπολογία του μαγνητικού τεδίου. Συγχρηματίζοντας, θα μελετηθεί η προκαλούμενη από τη τοροειδή ροή αλλαγή στη τοπολογία των μαγνητικών επιφανειών, αξονικά συμμετρικού σχηματισμού για τετραγωνική πολυειδή διατομή στα πλαίσια του μοντέλου της ιδανικής μαγνητουδροδυναμικής. Περαιτέρω θα εξεταστεί και ο ρόλος του λόγου ύψους σε αυτή την αλλαγή.

3.1 Ροή και μαγνητικές επιφάνειες

Όπως αναφέρθηκε ήδη, σχεδόν όλα τα σενάρια για την βελτιωμένη λειτουργία του tokamak περιλαμβάνουν ροή. Επιπλέον, μία πιθανή μαγνητική τοπολογία στατικής ισορροπίας με ανεστραμμένη πυκνότητα ρεύματος στον τορέως του πλάσματος έχει ήδη μελετηθεί στις αναφορές [53, 54]. Αυτή περιλαμβάνει πολυτοροειδείς σχηματισμούς μη έντονων μαγνητικών επιφανειών. Έπειτα, αξονικά συμμετρικές ισορροπίες με ροή στα πλαίσια της MHD έχουν μελετηθεί κατά χόρον τα τελευταία χρόνια. Συγχρηματίζοντας, καταστάσεις ισορροπίας με ισόθερμες μαγνητικές επιφάνειες και τοροειδή ροή χαλών και ασυμπίεστη ροή τυχαίς διεύθυνσης έχουν μελετηθεί στις εργασίες [55] και [43] αντίστοιχα. Εδώ να
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΤΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ

σημειώθηκε ότι η τοροειδής ροή, αν και λόγω συμμετρίας είναι εγγενώς ασυμπίε-
στη, για την ισορροπία με ισόθερμες μαγνητικές επιφάνειες μπορεί να θεωρηθεί
συμπιεστή υπό την έννοια ότι η πυκνότητα μάζας δεν παραμένει σταθερή πάνω
στις επιφάνειες αυτές. Αντίστοιχες αρχείες λύσεις των εξισώσεων ισορροπίας
κατασκευάστηκαν στις αναφορές [55, 56, 57] και [45]–[58] ενώ εξετάστηκε και η
επίδραση της ροής σε διάφορα χαρακτηριστικά της ισορροπίας. Επιπλέον στην
αναφορά [50] έχει γίνει επεξεργασία της λύσης Solonov [60, 61] σε μή περιορι-
σμένο ασυμπίεστο και βρέθηκε ότι η ροή και η διάμετρηση της μπορούν
να αλλάξουν την μαγνητική τοπολογία. Συγκεκριμένα, πέραν του μαγνητικού
έξονα του σχηματισμού Solonov εμφανίζεται και ένα σημείο X (δείχνει 11
της Αναφ. [50]).

3.2 Εξισώσεις ισορροπίας και λύσεις

Όπως είδαμε στο πρώτο κεφάλαιο το σύστημα των εξισώσεων (1.23)–(1.29)
περιγράφει ισορροπία πλάσματος στα πλαίσια του μαγνητοδιόρθωσιμου μον-
tέλου.

Σε αυτό το κεφάλαιο θα αναπαραχθούν οι εξισώσεις ισορροπίας αξονικά
συμμετρικού ιδανικού πλάσματος με αμιγώς τοροειδή ροή. Ας δούμε ξεκινητικά
τι σημαίνει ο χάση όρος της παραπάνω πρότασης. Η αξονική συμμετρία (Σχ.
1.2), όπου δηλαδή η μη εξάρτηση από τη γωνία φ σε κυλινδρικές συντεταγμένες,
έχει εφαρμογή στις περιφρακτικές διατάξεις tokamak χωδώς και σε παραλλαγές
αυτών όπου ο σχηματισμός αντιστροφής πεδίου (reversed field configuration)
και τα σpheromak. Η εκμετάλλευση της συμμετρίας οδηγεί στην υιοθέτηση
κυλινδρικού συστήματος συντεταγμένων (R, φ, z), με τον άξονα z να αντιστοι-
χεί στον άξονα συμμετρίας. Το πλάσμα αναφέρθηκε ως ιδανικό, πράγμα που
σημαίνει ότι ορισμένη χρονική κλίμακα στην οποία εξετάζεται η ισορροπία είναι
μικρότερη από την Ομιχή (resistive) και αφετέρου η θερμοκρασία του είναι πολύ
ψηλή (kT_e = 10K eV), όπως βάση του νόμου του Spitzer (ξ. (1.30)) η εδι-
κή αντίσταση μπορεί να θεωρηθεί μηδενική. Όσον αφορά τη τοροειδή ροή, αυτή
περιλαμβάνεται σε όλα τα σενάρια επέκτασης βελτιωμένου τρόπου περιορισμού
και συγκεκριμένα φέρεται να συνδέεται τόσο με τη μετάβαση από χυμηλό σε
ψηλό τρόπο περιορισμού όσο και με το σχηματισμό εσωτερικών φραγμάτων
μεταφοράς.

Ξαναγράφουμε εδώ τις εξισώσεις ισορροπίας του ιδανικού ΜΗΔ για λόγους
3.2. ΕΞΙΣΩΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ ΚΑΙ ΛΥΣΕΙΣ

πληρότητας και ευκολίας του αναγνώστη:

\[ \vec{\nabla} \cdot (\rho \vec{v}) = 0, \quad (3.1) \]

\[-\vec{\nabla} P + \vec{J} \times \vec{B} = \rho (\vec{v} \cdot \vec{\nabla}) \vec{v}, \quad (3.2)\]

Μια εξίσωση ενέργειας ή καταστατική εξίσωση,

\[ \vec{E} + \vec{v} \times \vec{B} = 0, \quad (3.3) \]

\[ \vec{\nabla} \times \vec{E} = 0, \quad (3.4) \]

\[ \vec{\nabla} \cdot \vec{B} = 0, \quad (3.5) \]

\[ \vec{\nabla} \times \vec{B} = \vec{J}, \quad (3.7) \]

ενώ ισχύει και η παραχάτω που εφαρμόζει την αξονική συμμετρία

\[ \frac{\partial A}{\partial \phi} = 0, \quad (3.8) \]

όπου \( A \) είναι οπωσδήποτε βαθμωτή ποσότητα.

Η εξίσωση ενέργειας ή η καταστατική εξίσωση που είναι απαραίτητη ώστε το σύστημα να κλείσει (Εξ. (3.3)) παραμένει απροσδιόριστη. Αυτό γίνεται για να παρουσιαστεί η ανάλυση κατά έναν ενοποιημένο τρόπο. Ο προσδιορισμός της θα γίνει όταν θα είναι απαραίτητος για την περαιτέρω πρόοδο της ανάλυσης, οπότε ανάλογα με την επιλογή θα διαφοροποιηθούν και οι εξισώσεις.

Για τη συγκεκριμένη συμμετρία το μαγνητικό πεδίο μπορεί να γραφεί με τη βοήθεια δύο βαθμωτών συναρτήσεων \( \psi(R, z) \) και \( I(R, z) \) στη μορφή:

\[ \vec{B} = I \vec{\nabla} \phi + \vec{\nabla} \times \vec{\nabla} \psi, \quad (3.9) \]

όπου η συνάρτηση \( I \) συνδέεται με το πολοειδές ηλεκτρικό ρέμα, ενώ η \( \psi \) είναι η πολοειδής συνάρτηση μαγνητικής ροής. Η τελευταία είναι ιδιαίτερα σημαντική μας και η τιμή της καθορίζει τις μαγνητικές επιφάνειες. Η εξίσωση (3.9) εξασφαλίζει ότι η απόλυση του μαγνητικού πεδίου είναι μηδέν όπως απαιτεί η εξίσωση (3.6). Αντίστοιχα η τοριειδής ταχύτητα ροής μπορεί να γραφεί μέσω μιας συνάρτησης \( K(R, z) \) ως:

\[ \rho \vec{v} = K \vec{\nabla} \phi. \quad (3.10) \]

Με βάση την εξίσωση (3.9) το ηλεκτρικό ρέμα μέσω του νόμου του Αμπέλε, (3.7), γράφεται:

\[ \vec{J} = \Delta^* \psi \vec{\nabla} \phi - \vec{\nabla} \phi \times \vec{\nabla} I, \quad (3.11) \]
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΙΣΟΡΡΟΠΙΑΣ

όπως Δ* είναι ο ελλειπτικός τελεστής ο οποίος ορίζεται ως $R^2 \nabla \cdot (\nabla / R^2)$.

Στη συγκεκριμένη γεωμετρία τρεις μεταξύ τους ανεξάρτητες διευθύνσεις μπορούν να επελεγούν ως αξολούθος: κατά μήκος της τοροειδούς διεύθυνσης, κατά μήκος του μαγνητικού πεδίου και κάθετα στις μαγνητικές επιφάνειες. Η προβολή της εξίσωσης διατήρησης της ομηρίας (3.2) και του νόμου του Ohm (3.4) στις παραπάνω διευθύνσεις, οδηγεί στην αναγνώριση ορισμένων ποσοτή-
των οι οποίες παραμένουν σταθερές πάνω στις μαγνητικές επιφάνειες ενώ και το σύστημα μετατρέπεται σε ένα απλούστερο. Συγκεκριμένα, η προβολή της εξίσωσης ομηρία κατά μήκος της τοροειδούς διεύθυνσης (-$\nabla \phi$) δίνει

$$\nabla \phi \cdot (\nabla \psi \times \nabla I) = 0, \quad \text{(3.12)}$$

από την οποία προκύπτει ότι συνάρτηση $I$ είναι ποσότητα επιφάνειας, δηλαδή $I = I(\psi)$. Επίσης, εκφράζοντας το ηλεκτρικό πεδίο μέσω του ηλεκτροστατικού

$$\nabla \cdot (\psi \times \nabla I) = 0, \quad \text{(3.13)}$$

Δύναμει, η συναπόλαυση του νόμου του Ohm κατά μήκος του μαγνητικού πεδίου $\vec{B}$ οδηγεί στην εξίσωση

$$\vec{B} \cdot \nabla \Phi = 0.$$  \hspace{1cm} \text{(3.14)}$$

για να ισχύει η εξίσωση (3.14) θα πρέπει:

$$\frac{d\Phi}{d\psi} = \frac{K}{\rho R^2},$$  \hspace{1cm} \text{(3.15)}$$

όμως, όπως είδαμε από την εξίσωση (3.13), το ηλεκτροστατικό δυναμικό είναι ποσότητα επιφάνειας, κατεξής επίσης η παράγοντας του ως προς $\psi$, οπότε το ίδιο θα πρέπει να ισχύει και για την ποσότητα στο δεξί μέλος της (3.15). Έτσι η ποσότητα

$$\frac{K}{\rho R^2} \equiv \omega = \frac{d\Phi}{d\psi},$$  \hspace{1cm} \text{(3.16)}$$

η οποία είναι η χωνωτική συχνότητα της ροής μάζας του πλάσματος είναι ποσότητα επιφάνειας $\omega = \omega(\psi)$.  \hspace{1cm} 60
3.2. ΕΞΙΣΩΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ ΚΑΙ ΛΥΣΕΙΣ

Με τη βοήθεια των εξισώσεων (3.12)-(3.16) η προβολή της εξίσωσης ορμής κατά μήκος του μαγνητικού πεδίου και κάθετα στις μαγνητικές επιφάνειες παράγει αντίστοιχα:

\[
\nabla P \nabla \left( \frac{\omega^2 R^2}{2} \right) \cdot \vec{B} = 0, \quad (3.17)
\]

\[
|\Delta^* \psi + II'| |\nabla \psi| + R^2 \left[ \nabla P - \theta \nabla \left( \frac{R^2}{2} \right) \right] \cdot \nabla \psi = 0, \quad (3.18)
\]

όπου ο τόνος δηλώνει παραγόντη ως προς ψ.

Το παραπάνω σύστημα των πεπλεγμένων εξισώσεων (3.17)-(3.18) καθορίζει πλήρως την ισορροπία. Η πρώτη εξίσωση είναι τύπου Bernoulli που συναντάται στην υδροδυναμική, ενώ η δεύτερη αντιστοιχεί στην εξίσωση Grad-Shröter-Shafranov της στατικής περίπτωσης (δες για παράδειγμα [2]). Για να απλοποιηθεί το παραπάνω σύστημα είναι πλέον απαραίτητη η υποθέσεις μιας συγκεκριμένης εξίσωσης ενέργειας ή καταστατικής εξίσωσης. Αυτή η επιλογή θα βασίστει σε φυσικά επιχειρήματα.

Λόγω της μη άσκησης δύναμης στα σωματίδια κατά μήκος των δυναμικών γραμμών του μαγνητικού πεδίου η θερμική αγωγιμότητα παράλληλα στο μαγνητικό πεδίο είναι πάρα πολύ μεγάλη. Κατά συνέπεια οι μαγνητικές επιφάνειες μπορούν να θεωρηθούν ισόθερμες, δηλαδή \( T = T(\psi) \). Χρησιμοποιώντας το νόμο των ιδανικών αερίων \( P = \lambda T \) και αναγνωρίζοντας ότι η ποσότητα μέσα στις αγκύλες στην εξίσωση (3.17) είναι μια ποσότητα επιφάνειας μπορεί αυτή να ολοκληρωθεί και να δώσει

\[
P = \rho_0(\psi) \left( \frac{\omega^2 R^2}{2\lambda T} \right), \quad (3.19)
\]

όπου, όπως φαίνεται, η ποσότητα \( \rho_0(\psi) \) είναι η πίεση απουσία ροής (\( \omega = 0 \)) η οποία είναι ποσότητα επιφάνειας. Αυτή είναι συνεπής με το γεγονός ότι στη στατική ισορροπία οι ισοβαρικές επιφάνειες ταυτίζονται με τις αντίστοιχες μαγνητικές. Παρουσία ροής, η πίεση όπως και η πυκνότητα μάζας, λόγω του νόμου των ιδανικών αερίων, δεν είναι σταθερές πάνω στις μαγνητικές επιφάνειες, όταν οι τελευταίες είναι ισόθερμες. Η μη σταθερότητα της πυκνότητας πάνω στις μαγνητικές επιφάνειες υπονοείται από τον όρο «συμπεριπτώση». Αν και η πυκνότητα, εκτός από τη θερμοκρασία παραμένει σταθερή πάνω στις μαγνητικές επιφάνειες τότε αναγκαστικά αυτές είναι και ισοβαρικές. Σε αυτή την περίπτωση η ισορροπία έχει χαρακτηριστικά παρόμοια με αυτά της στατικής ισοδύναμικής [62]. Η τελευταία ικανοποιεί τη συνθήκη \( B = B(\psi) \), όπου \( B \) το μέτρο του μαγνητικού πεδίου και δεν αντιστοιχεί σε tokamak μιας και το
κεφάλαιο 3. Επίδραση της ροής στη μαγνητική
tοπολογία αξονικά σύμμετρικών καταστάσεων
ισορροπίας

τοροειδές μαγνητικό πεδίο, \( B_0 \), μηδενίζεται πάνω στο μαγνητικό άξονα. Από
τα παραπάνω προκύπτει λοιπόν ότι έστω και μια μικρή μεταβολή της πυκνότη-
tας μάζας πάνω στις μαγνητικές επιφάνειες είναι απαραίτητη για την ύπαρξη
ισορροπίων tokamak με ισοθερμικές μαγνητικές επιφάνειες και ροή.

Αντικαθιστώντας την πίεση στην εξίσωση (3.18) με την εξίσωση της (3.19)
η πρώτη γίνεται

\[ \Delta^* \psi + II' + R^2 \left[ P'_s + P_\phi \frac{R^2}{2} \left( \frac{\omega}{\lambda T} \right)' \right] \exp \left( \frac{\omega^2 R^2}{2 \lambda T} \right) = 0. \quad (3.20) \]

Αυτή είχε παραχωρεί αρχικά στην αναφορά [55].

Εναλλακτικά, χανείς θα μπορούσε να θεωρήσεις ασυμπίεστη ροή,

\[ \nabla \cdot \mathbf{v} = 0. \quad (3.21) \]

\( \Sigma \) αυτή την περίπτωση μέσω της εξίσωσης (3.1) προκύπτει ότι η πυκνότη-
tας μάζα είναι ποσότητα επιφάνειας, \( \rho = \rho(\psi) \). Χρησιμοποιώντας αυτό το χαρα-
κτηριστικό, το νόμο των ιδανικών αερίων και το γεγονός ότι η ποσότητα μέσα
στις αγκύλες της εξίσωσης (3.17) είναι ποσότητα επιφάνειας, όπως αρχικά και
στην περίπτωση ισοθερμικούs μαγνητικών επιφανειών και ολοκληρώνουντας αυτή
την εξίσωση προκύπτει

\[ P = P_s(\psi) + \frac{R^2 \omega^2}{2}, \quad (3.22) \]

όπου και εδώ η ποσότητα \( P_s(\psi) \) αντιστοιχεί στην πίεση απουσία ροής. Αντι-
καθιστώντας την πίεση από την εξίσωση (3.22) στην (3.18) προκύπτει

\[ \Delta^* \psi + II' + R^2 P'_s + \frac{R^4}{2} (\omega^2)' = 0. \quad (3.23) \]

Αυτή αποτελεί ειδική περίπτωση της εξίσωσης για αξονικά συμμετρικά ισορροπία
με ασυμπίεστη ροή τυχαίας διεύθυνσης που εξήκυθη αρχικά στην αναφορά [45].
Θα πρέπει να σημειωθεί ότι κατ' αντίστοιχα με την «συμπίεστη» περίπτωση είναι
απαραίτητη η θερμοκρασία πάνω στις μαγνητικές επιφάνειες ενός tokamak να
μην είναι σταθερή όπως εξήγησε πιο πάνω.

Οι εξισώσεις (3.20) και (3.23) περιέχουν τέσσερις ποσότητες επιφάνειας
από τις οποίες τρεις είναι ξονής. Συγχρονίστηκαν οι \( P_s, I \) και \( \omega \) είναι ξονής, ενώ
η τέταρτη ποσότητα είναι \( T \) και \( \rho \) για τη «συμπίεστη» και την ασυμπίεστη
περίπτωση αντίστοιχα. Συγχρονίζοντας τις δύο εξισώσεις φαίνεται ότι ο όρος ροής
στην (3.20) εξαρτάται μετά από το \( \omega \) και την \( T \) μέσω του όρου \( \omega^2 / \lambda T \) και της

62
3.2. ΕΞΙΣΩΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ ΚΑΙ ΛΥΣΕΙΣ

παραγώγου αυτού ως προς \( \psi \) (δηλαδή τη διάτμηση του), ενώ μόνο η διάτμηση του όρου ροής \( \omega^2 \) εμφανίζεται στην εξίσωση (3.23). Περαιτέρω, αν και η συναρτητική εξάρτηση από τους όρους ροής είναι διαφορετική, οι εξισώσεις (3.20) και (3.23) γίνονται παρόμοιες στο όρο \( \omega^2/\mu T \ll 1 \). Αυτό μπορεί να γίνει εύκολα αναπτύσσοντας το εκθετικό στην (3.20),

\[
\exp\left(\frac{\omega^2 R^2}{2\mu T}\right) = 1 + \frac{\omega^2 R^2}{2\mu T} + \cdots,
\]

και κρατώντας στην ανάπτυξη μόνο τον πρώτο όρο, δηλαδή τη μονάδα. Για όρο ροής χωρίς διάτμηση, \( (\omega^2/\mu T)' = 0 \), απαιτείται και ο πρώτης τάξης όρος ώστε να διατηρηθεί η ομαδότητα. Τα παραπάνω σημαίνουν ότι για αρκούντως χαμηλές συχνότητες περιστροφής του πλάσματος ή/και πολύ υψηλές θερμοκρασίες το πλάσμα τένει να συμπεριφέρεται ως ασυμπίεστο.

Για να επιλυθούν αναλυτικά οι εξισώσεις θα πρέπει να γραμμικοποιηθούν με κατάλληλη επιλογή των ελευθέρων ποσοτήτων επιφανείας. Εδώ θα χρησιμοποιηθούν οι ακόλουθες επιλογές:

1. «Συμπιεστή» ροή

Οι παρακάτω επιλογές έγιναν για να γραμμικοποιηθεί η (3.20) [56, 57]:

\[
I^2 = I_0^2 + I_1^2 \psi^2,
P_a = 2P_0 \psi^2,
\frac{\omega^2}{\lambda T} = \frac{\gamma M_0^2}{R_0^2} = \sigma \phi.
\]

Εδώ \( I_0/R \) είναι το τοροειδές μαγνητικό πεδίο χενών (αποστασία πλάσματος), \( \pi \) το παράμετρος \( I_1 \) προσδιορίζει τις μαγνητικές ιδιότητες του πλάσματος, ενώ \( P_0, \gamma \) και \( M_0 \) είναι μια παράμετρος πίεσης, ο λόγος των ειδικών θερμοκρασιών και ο αριθμός Mach ως προς τη ταχύτητα του ήχου σε κάθε σημείο αναφοράς (\( z = 0, R = R_0 \) αντίστοιχα). Το σημείο \( R_0 \) θα προσδιορίζεται αργότερα.

Εισάγοντας τις παραπάνω επιλογές στην εξίσωση (3.20) αυτή γραμμικοποιείται και επιδεικνύεται αναλυτική λύση της μορφής \( R(R)z(z) \) με βάση τη μέθοδο του χωρισμού των μεταβλητών. Επιλέγονται περαιτέρω τα συνδετικά διαχωρισμοί να είναι ίσοι με \( I_1 R_0 \) η λύση γράφεται στη μορφή:

\[
\psi(x, y) = C_1 \left[ J_0 \left( \frac{2\tau \sqrt{e_1 M_0^2 x^2 / 2}}{\gamma M_0^2} \right) + C_2 Y_0 \left( \frac{2\tau \sqrt{e_1 M_0^2 y^2 / 2}}{\gamma M_0^2} \right) \right] \cos(R_0 I_1 y),
\]

(3.25)
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΣΥΝΔΡΟΜΙΑΣ

όπου \( x = R/R_0 \) και \( y = z/R_0 \), ενώ \( J_0 \) και \( Y_0 \) είναι οι συναρτήσεις Bessel μηδενικής τάξης πρώτου και δευτέρου είδους αντίστοιχα και \( \tau^2 = 4P_0R_0^4 \).

Στο μέρος της λύσης στη \( z \) διεύθυνση, που αποτελείται στη γενική περίπτωση από γραμμικό συνδυασμό ημιτόνου και συνημτόνου, επιλέγοντας έτσι ώστε η λύση να είναι συμμετρική ως προς το μεσοεπίπεδο \( z = 0 \). Οι δύο σταθερές \( C_1 \) και \( C_2 \) προκύπτουν από την υλοκλήρωση του ακτινικού μέρους της (3.20).

2. Ασυμμετρία ροή

Σε αυτή την περίπτωση πραγματοποιήθηκαν οι παρακάτω επιλογές για τη γραμμικοποίηση της (3.23):

\[
I^2 = I_0^2 + I_1^2\psi^2, \quad P_s = 2P_0\psi^2, \quad (\phi\omega^2)' = \left[\frac{K^2}{\partial R^4}\right]' = 2A\psi.
\] (3.26)

Η τρίτη των εξισώσεων (3.26) μαζί με τη (3.15) συνδέουν την παράμετρο \( \lambda \) με το profile της πυκνότητας μάζας και του ηλεκτρικού πεδίου κάθετα στις μαγνητικές επιφάνειες, συγκεκριμένα με τις τιμές αυτών και τη διάτμηση τους. Η πολυκότητα του ηλεκτρικού πεδίου, \( \vec{E} \), καθώς και η παραπάνω διάτμηση επιτρέπουν στην παράμετρο \( \lambda \), σε αντίδοκαστικό με την \( M_0 \) της οποίας η διάτμηση είναι μηδέν, να παρέχει έτε θετικές ή επί αρνητικές τιμές. Επίσης, την παράμετρο \( \lambda \) έχει διαστάσεις, ενώ ο αριθμός \( \lambda \) είναι αδιάστατος.

Η λύση που προκύπτει με χωρισμό μεταβλητών από την γραμμικοποιημένη (3.23) μέσω των επιλογών (3.26) εκφράζεται μέσω των συναρτήσεων Airy πρώτου και δευτέρου είδους, \( Ai \) και \( Bi \), αντίστοιχα ως [58]:

\[
\psi(x, y) = C_1 \left\{ Ai \left[ \left( \frac{AR_0}{4} \right)^{-2/3} \left( \frac{AR_0^6}{4} x^2 - P_0R_0^4 \right) \right] \right. \\
+ C_2Bi \left[ \left( \frac{AR_0}{4} \right)^{-2/3} \left( \frac{AR_0^6}{4} x^2 - P_0R_0^4 \right) \right] \cos (R_0I_1y),
\] (3.27)

όπου και εδώ η λύση είναι συμμετρική ως προς το μεσοεπίπεδο \( z = 0 \).
3.3 Πολυτοροειδείς σχηματισμοί και ροή

Σε αυτό το εδάφιο με βάση τις λύσεις (3.25) και (3.27) θα εξεταστεί η μαγνητική
tοπολογία στάσεων καταστάσεων tokamak στο οποίο το πλάσμα περιβάλλεται
από αγώγια τοιχώματα ορθογώνιας διατομής, όπως φαίνεται στο σχήμα 3.1.

![Diagram](image_url)

Σχήμα 3.1: Σε αυτό το σχήμα φαίνεται η πολυειδής διατομή του συνόρου του
πλάσματος. Ο λόγος όθης φαίνεται ως \( R_0/b \). Οι πολικές συντεταγμένες \((r, \theta)\)
χρησιμοποιούνται για τον υπολογισμό μεταβολών πάνω στις μαγνητικές επιφάνειες.

Πρέπει να σημειωθεί ειδίκευση ότι πιο ρεαλιστικά σύνορα, όπως κυκλικά ή σχήματος
D, απαιτούν λύσεις εκφρασμένες σε μορφή σειράς με κατάλληλη επιλογή των
συντεταγμένων, ώστε να εκανονοποιούνται οι συνοριακές συνθήκες. Σε αυτή την
περίπτωση, όμως, ισχυρίζομαι να αναγνωρίσω κάποια χαρακτηριστικά της ισορροπίας, καθώς και η αρχής μελέτη της επίδρασης της ροής
σε αυτή εξαίτου του πεπερασμένου αριθμού όρων της σειράς που θα χρησιμο-
ποιούνται, ενώ και τα αριθμητικά σφάλματα που υπεισέχουν θα έπαιξαν ακόμη
πιο δύσκολο αυτό το ύφος. Μια λύση στα παραπάνω προβλήματα αποτελεί η
αριθμητική επίλυση των εξισώσεων, στην παρούσα εργασία όμως, επικρατεί
η εφέση αναλυτικών και αριθμητικών λύσεων.

Για να εφαρμοστούν οι συνοριακές συνθήκες θεωρείται ότι η εξώτητα κλει-
δημαγγιακή επιφάνεια συμπίπτει με τα τοιχώματα ορθογώνιας διατομής οπότε
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΣΩΡΩΠΙΑΣ

οι λύσεις θα πρέπει να iκανοποιούν τις ακόλουθες σχέσεις στις δύο ανεξάρτητες
dιευθύνσεις x και y

\[ \psi(y_\pm) = 0 \]  \hspace{1cm} (3.28)
 και

\[ \psi(x_\pm) = 0, \]  \hspace{1cm} (3.29)

όπου \( y_\pm = \pm a/R_0 \) και \( x_\pm = 1 \pm b/R_0 \). Ετσι, το πρόβλημα της ισορροπίας
gίνεται, από μαθηματική άποψη, ένα πρόβλημα συνωριακών συνθηκών οι ιδιο-
καταστάσεις του οποίου καθορίζονται από την απάτηση για ικανοποίηση των
(3.28) και (3.29) από τις (3.25) και (3.27). Επιβάλλονται την συνθήκη (3.28)
στο μέρος των λύσεων που εξαρτάται από τη \( z \) συμμετρία, το οποίο είναι κινονό
gια συμπεπτή και ασυμπέπτη το ροή, προκύπτει για τις ιδιοτήτες \( \psi \) σχέση:

\[ I^1 = \frac{1}{a}(\ell \pi - \frac{\pi}{2}), \ell = 1, 2, \ldots \]  \hspace{1cm} (3.30)

για την ποσότητα \( I \) η οποία συνδέεται με την συνάρτηση του πολυειδούς ρεύ-
ματος \( I(\psi) \). Οι αντίστοιχες ιδιωσυναρτήσεις αντιστοιχούν σε σχηματισμούς
με \( \ell \) μαγνητικούς δύος κατακόρυφα στον δύο δεύτερο συμμετρία του tokamak (z
διέωδες). Αντίστοιχα, η συνθήκη (3.29) εφαρμόζεται στο μέρος των ισόσιων
που εξαρτάται από τη συμμετρία \( R \). Σε αυτό το μέρος περιέχεται ο παράγοντας
ροής, δηλαδή είπε αριθμός Mach, \( M_0 \), είπε το παράμετρος \( A \) για τη συμπεπτή
cαι ασυμπέπτη συρρήτση αντιστοιχα. Επομένως, η επίδραση της ροής στην
ισορροπία μέσω των ισόσιων (3.25) και (3.27) θα εμπεριέχεται στο μέρος τους
που αφορά τη διεύθυνση \( R \). Επιπλέον, των παραμέτρων ροής περιέχεται και η
παράμετρος πλάτης \( P_0 \). Για να διευκολυνθεί η περιστέρι συζήτηση ειδικεύεται το
σύμβολο \( F \) που αντιπροσώπευε είπε το \( M_0 \) είπε το \( A \). Αυτός ο συμβολισμός
είναι εξαρτικό χρήσιμο για την παρουσίαση αποτελεσμάτων τα οποία είναι ανε-
ξάρτητες της συμπεπτής. Εφόσον υπάρχουν δύο ελεύθερες παραμέτρους, \( F \)
cαι \( P_0 \), υπάρχουν εναλλακτικές δυνατότητες για τον υπολογισμό των ιδιοτήτων
μέσω της (3.29). Ετσι, είναι δυνατό να καθοριστούν ιδιοτήτες ροής οι οποίες είναι
συναρτήσεις της \( P_0 \) που παραμένει ελεύθερη, \( F^n(P_0) \) \( n = 1, 2, \ldots \), ή
αντίστοιχα ιδιοτήτες πλάτης \( P^n(F) \) με την \( F \) ελεύθερη. Αυτή η παραμετρική
εξάρτηση ανεξάρτητη της δυνατότητας των ιδιοτήτων σε σχέση με τη στατική
περίπτωση και χάνει το φόρση αυτών ευρύτερο. Επίσης, οι ιδιοτήτες εξαρτώνται
από τις λειτουργικές διαστάσεις \( R_0 \) και δ, αλλά όχι από το \( a \) όπου τη μήκη
αυτά επιδεικνύονται στο σχήμα 3.1, όπως τα αποτελέσματα είναι ανεξάρτητα
από το λόγο επιμέλειας \( a/b \). Οι σταθερές ως ολοκλήρωσης \( C_1 \) και \( C_2 \) των εξι-
σώσεων (3.25) και (3.27) χρησιμοποιούνται για την χαρακτηριστική της \( \psi \) ως
3.3. ΠΟΛΥΤΟΡΩΕΙΔΕΙΣ ΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΡΟΗ

προς το μαγνητικό άξονα και για την ικανοποίηση της συνοριακής συνθήκης (3.29) αντίστοιχα. Όπως προκύπτει από τους ορισμούς (3.24) και (3.26) η παράμετρος \( A \) έχει διαστάσεις σε αντιστοιχική με τον αριθμό Mach, \( M_0 \), ο οποίος είναι αδιάστατο μέγεθος. Χαρακτηριστικά, σε αντίστοιχη με την κανονικοποίηση ως προς τη μονάδα \( 1kg/(m^2s^2) \), με βάση τα παραπάνω υπολογίζονται αριθμητικά ιδιοτήτες \( F^n(P_0) \) και \( P_0^n(F) \). Για δεδομένη τιμή του \( P_0 \) οι \( F^n \) ικανοποιούν για όλη \( n \) την ακμάλωση σχέση διάταξης \( F^{n+1} > F^n \). Αντίστοιχα, σε παρόμοια σχέση ικανοποιούται από τις \( P_0^n \) για δεδομένη τιμή της \( F \).

Οι αντίστοιχες ιδιοσυναρτήσεις αντιπροσωπεύουν σχηματισμούς με \( n \) μαγνητικούς άξονες κατά μήκος της διεύθυνσης \( R \). Με βάση τα παραπάνω η ολική λύση \( \psi_{in} = Z_0(z)R_n(R) \) αντιστοιχεί σε πολυτορωειδείς σχηματισμούς με \( \ell \times n \) μαγνητικούς άξονες.

Ένας στατικός σχηματισμός με δύο άξονες παράλληλα στη διεύθυνση \( z \) μελετήθηκε στην [63]. Τονοπλιστέεται ότι παράλληλα στον άξονα συμμετρίζονται οι λύσεις που παρουσιάζονται δεν έχουν εξάρτηση από τη διεύθυνση \( \omega \), όπου η δυνατότητα τολμηρότερων συμμετριών μεταξύ του άξονα είναι ανεξάρτητη της ύπαρξης \( \rho \). Έτσι, το ενώσιμο θα επιταχύσει στο μέρος της λύσης κάθετα στον άξονα συμμετρίας.

Για λόγους απλοποίησης και χωρίς να χάνεται η γενικότητα, η μελέτη θα περιοριστεί στην ιδιοσυνάρτηση \( \psi_{in} \) η οποία περιγράφει πολυτορωειδείς σχηματισμούς με \( n \) μαγνητικούς άξονες κατά μήκος του επιπέδου \( z = 0 \). Σαν παράδειγμα σχηματισμό με δύο μαγνητικούς άξονες που αντιπροσωπεύεται \( \psi_{12} \) γράφεται στο σχήμα 3.2 στην περίπτωση συμπίεσης της \( \rho \). Πολυτορωειδείς σχηματισμοί στη στατική περίπτωση αναλύονται με το σχήμα τοσ 3.2 μελετήθηκαν στις αναφορές [53] και [54] σε συνδυασμό με χώρια profile πυκνότητας ρεύματος τα οποία μπορούν να γίνουν αρνητικά στον πυρήνα του πλάσματος και κατ’ επέκταση να αντιστραφεί η φορά του ρεύματος. Σε αυτή την περίπτωση η αντιστροφή είναι δυνατή λόγω του ότι οι μαγνητικές επιφάνειες δεν είναι ενισχητές. Προφανώς στη στατική περίπτωση είναι δυνατό να έχουμε μόνο ιδιοτήτες της πίεσης. Παρουσία στη ροή εξετάστηκαν ιδιοκαταστάσεις της βασικής ιδιοτήτης της πίεσης \( P_0^n(F) \) μεταβαλλόμενες συνεχώς την παράμετρο \( F \) με σημείο εκκίνησης της τιμής της στατικής περίπτωσης \( P_0^n(F) \approx 0 \). Εδώ πρέπει να σημειωθεί ότι για συμπίεση ροή \( A = 0 \) δε σημαίνει απαραίτητα ότι το αντιστοιχεί στη στατική περίπτωση λόγω της τρίτης εξίσωσης της επιλογής (3.26) η οποία περιλαμβάνει και τη διάταξη της \( \rho \). Μεταβαλλόμενες συνεχώς την παράμετρο \( F \) παρατηρήθηκαν σημεία μετάβασης \( F_m \) (\( m = 1, 2, \ldots \)) στα οποία αλλάζει η μαγνητική τοπολογία μέσω του σχηματισμού ενός επιπλέον μαγνητικού άξονα (ο δείκτης \( m \) εδώ υποδηλώνει σημείο μετάβασης και δεν πρέπει να συγχέεται με τον εκθέτη \( n \) που αντιστοιχεί στην τάξη της ιδιοτήτης).
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΣΥΡΡΟΠΙΑΣ

Σχήμα 3.2: Ο σχηματισμός διπλού μαγνητικού άξονα της ιδιωσυνάρτησης $\psi_1$ με ιδιωτική $M^2_0 = 1.692$ για λόγο άφης $\alpha = 3$.

Στο σχήμα 3.3 δείχνεται μια ακολούθια γραφημάτων που αναστοιχεί σε σχηματισμούς που πάρθηκαν μεταβάλλοντας την παράμετρο $A$. Συγκριτικά, εκτιμώντας, όπως αναφέρθηκε από μια τιμή χοντά στη στατική ένας απλά τοροειδής σχηματισμός προκύπτει με ιδιωτική $P_{11}^0 (A = 0.009)$ με ιδιωσυνάρτηση $\psi_{11} (\Sigma \psi$. 3.3(a)). Μεταβάλλοντας την παράμετρο ροής αι ιδιωτικές της πέσης μειώνονται και ο σχηματισμός ως σύνολο μετατοπίζεται προς τα έξω και συμπέστηκε στην εξωτερική του πλευρά (Σχ. 3.3(b)). Έπειτα καθώς η παράμετρος δεμένη η πρώτο σημείο μετάβασης $A_1 = -0.01$, με αντίστοιχη ιδιωτική της πέσης $P_{11}^0 (A = A_1)$, ένας δεύτερος μαγνητικός άξονας σχηματίζει στην εξωτερική πλευρά του ήρθη υπάρχοντος προσαλόνεται τη μετατόπιση του τελευταίου προς το εσωτερικό (Σχ. 3.3(c)). Το γεγονός του σχηματισμού του νέου μαγνητικού άξονα στην εξωτερική πλευρά του υπάρχοντος σχηματισμού φαίνεται από την φορά του πολωδίους μαγνητικού πεδίου, όπως αυτή προκύπτει από το πρόσημο της ψ μόλις πριν και αμέσως μετά το σχηματισμό του νέου μαγνητικού άξονα. Αφού πριν αυτό το σχηματισμό η ψ δεν είναι μηδέν, ο νέος μαγνητικός άξονας
Σχήμα 3.3: Σε αυτό το σχήμα φαίνεται μια ακολουθία γραφημάτων η οποία δείχνει την ημιστιακή εξέλιξη του σχηματισμού των μαγνητικών επιφανειών καθώς μειώνεται η παράμετρος A στην ασυμπλέγμενη περίπτωση και για λόγο ύφους α = 3. Οι τιμές της A για κάθε γράφημα είναι (a) A = 0.09, (b) A = −0.01, (c) A = −0.02, (d) A = −0.1, (e) A = −0.122, (f) A = −0.2.

αντιστοιχεί στο μαγνητικό νησί όπου η ψ έχει αντίθετο πρόσημο και το οποίο με τη σειρά του αντιστοιχεί σε περιοχή όπου η φορά του ηλεκτρικού ρεύματος αντιστρέφεται (Σχ. 3.4). Σε διαφορετική περίπτωση θα προέκυπτε ασυνέχεια στην πολυεδρή ροή κατά τη διάρκεια της μετάβασης μιας και μόλις πριν τη μετάβαση θα ήταν θετική και διάφορη του μηδενός, ενώ αμέσως μετά αρνητική και διάφορη του μηδενός, επίσης. Συνεχίζοντας περαιτέρω την αύξηση της ροής (μείωση της παραμέτρου A) το εξώτερο μαγνητικό νησί μεγαλώνει σε έκταση και ο σχηματισμός στο σύνολο του μετατοπίζεται προς τα έξω ως το επόμενο σημείο μετάβασης A2 = −0.1 με αντίστοιχη ιδιότητα P_0^2(A = A_2) (Σχ. 3.3(d)) στο οποίο, όπως και πριν, δημιουργείται ένας επιπλέον μαγνητικός άξονας στην
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ

Σχήμα 3.4: Τα πρόσημα της συνάρτησης πολυειδούς μαγνητικής ροής $\psi$ στο επίπεδο $y = 0$ μόλις πριν και αμέσως μετά την πρώτη μετάβαση χαρακτηρίζονται στα γραφήματα (a) και (b) αντίστοιχα. Οι αντίστοιχες τιμές της παραμέτρου ροής $A$ είναι $-0.01$ και $-0.02$, ενώ ο λόγος όφης είναι 3.

eξωτερική πλευρά του υπάρχοντος σχηματισμού. Έτσι τώρα υπάρχουν τρία μαγνητικά νησία (Σχ. 3.3 (ε)) τα οποία και πάλι μετατοπίζονται προς τα έξω χαθώς η ροή αυξάνεται (Σχ. 3.3(β)). Το τρίτο μαγνητικό νησί σχηματίζεται στην εξωτερική πλευρά του υπάρχοντος σχηματισμού για τους προαναφερόμενους λόγους που αυτό συμβαίνει και κατά το σχηματισμό του δεύτερου. Αυτή η διαδικασία συνεχίζεται μέχρι τη δημιουργία πολυτοροειδούς σχηματισμού με ένα μαγνητικό νήσιο. Ανάλογα, πολυτοροειδείς σχηματισμοί είναι δυνατό να προκύψουν και για συμπεστή ροή. Αυτή η διαδικασία μπορεί να θεωρηθεί ως μια μεταστατική «εξέλιξη» των ιδιοκαταστάσεων πίεσης της ισορροπίας του πλάσματος χαθώς αυξάνεται η ροή (μια οπτική προσέγγιση της «εξέλιξης» αυτής μπορεί να βρεθεί στην ισοσκελίδα [64]). Το παράπανο μπορεί να διευκρινιστεί περαιτέρω θεωρώντας ότι κάθε μεταβολή της ροής είναι τόσο μικρή ώστε να μη διαταραχθεί σε μεγάλο βαθμό το πλάσμα, ενώ και ο χρόνος μεταξύ κάθε τέτοιας μικρής μεταβολής της ροής είναι αρκετά μεγάλος ώστε το πλάσμα να βρίσκεται και πάλι σε κατάσταση ισορροπίας. Βέβαια αυτή η «εξέλιξη» δεν είναι δυνατή για στατικές ισορροπίες, αν και εκεί μπορούμε να έχουμε πολυτοροειδείς σχηματισμούς, μιας και δεν υπάρχει χάπια ψυχική παράμετρος της οποίας η συνεχής μεταβολή να προκαλεί αλλαγές στη μαγνητική τοπολογία, όπως είναι η ροή στο υπό μελέτη σύστημα. Εναλλακτικά στην παραπάνω μεθοδολογία είναι δυνατό, μεταβάλλοντας την παράμετρο πίεσης $P_0$, να προκύψουν σημεία μετάβασης $(P_0)_m$ τα οποία να αντίστοιχουν σε ιδιοτήτες ροής. Άν και η δεύτερη αυτή εναλλακτική προσέγγιση πολυτοροειδών σχηματισμών είναι αποδεκτή από
3.3. ΠΟΛΤΟΡΟΕΙΔΕΙΣ ΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΡΟΗ

Θεωρητική σχολιά, από άποψη περαματικού ενδιαφέροντος η πρώτη προσέγγιση είναι περισσότερο επιθυμητή λόγω της δυνατότητας άμεσου ελέγχου της ροής.

Ποσοτικά, για λόγο όψες $\alpha = 3$ και συμπιεστική ροή της ταχύτητα που αντιστοιχεί στην πρώτη μετάβαση από απλά σε διπλά τορειογια ικανότητα είναι της τάξης των $10^5$ m/s. Ταχύτητες αυτής της τάξης μεγέθους έχουν παρατηρηθεί σε tokamaks, οπότε είναι δυνατή η περαματική παρατήρηση της αλλαγής στη μαγνητική τοπολογία.

Όπως έχει αναφερθεί η ροή φαίνεται να συνδέεται με το σχηματισμό φραγμάτων μεταφοράς τα οποία είναι συνδεδεμένα και με το profile του παράγοντα ασφάλειας και κατ’ επέκταση με το αντίστοιχο του ηλεκτρικού ρεύματος. Περαιτέρω, το αρνητικό πρόσημο της συνάρτησης πολοειδώς μαγνητικής ροής $\psi$ στο απλά τορειογια ικανότητα (δείχνει 3.4) υποθέτοντας ότι το ρεύμα αντιστρέφει φορά. Λόγω των παρατάσεων είναι ενδιαφέρον να εξετάσουμε το profile του παράγοντα ασφάλειας για απλά και διπλά τορειογια ικανότητα. Η σχέση του χρησιμοποιήθηκε για αυτό τον υπολογισμό είναι η ακόλουθη [4]:

$$ q(\psi) = \frac{I(\psi)}{2\pi} \int_c \frac{1}{R^2 |B_{pol}|} \, dl, $$ (3.31)

όπου η ολοκλήρωση πραγματοποιείται κατά μήκος της καμπύλης $c$ η οποία είναι η τομή μιας μαγνητικής επιφάνειας με την πολοειδή διατομή. Ο υπολογισμός πραγματοποιήθηκε αριθμητικά με την ανάπτυξη κατάλληλης ρούτινας στο πακέτο Mathematica 5.0. Για απλά τορειογια ικανότητα το $q$ αυξάνεται μονοτονικά από το μαγνητικό άξονα προς την επιφάνεια του πλάσματος (Σχ. 3.5 (a)). Επίσης, η τιμή πάνω στο μαγνητικό άξονα μπορεί να υπολογιστεί από την αναλυτική σχέση [4]:

$$ q_{ma} = \frac{I(\psi)}{R} \left[ \frac{\partial^2 \psi}{\partial R^2} \frac{\partial^2 \psi}{\partial z^2} \right]^{-1/2} \bigg|_{z=0,R=R_{ma}}, $$ (3.32)

που για το profile του σχήματος 3.5(a) ($\alpha = 3$, $P_0 = 12kPa$ και $M_0 = 1.234$) δίνει $q_{ma} = 1.29$.

Πραγματοποιώντας τον υπολογισμό του παράγοντα ασφάλειας για διπλά τορειογια ικανότητα (Σχ. 3.5(b)) παρατηρείται ότι διατηρεί τα χαρακτηριστικά για απλά τορειογια, δηλαδή εμφανίζει ελάχιστο στους μαγνητικούς άξονες και αυξάνεται καθώς και αυξάνεται απομακρύνεται από αυτούς. Η ύπαρξη δύο μαγνητικών άξονων όμως, οδηγεί στην εμφάνιση ενός μεγίστου ενός του όγκου του πλάσματος στο σημείο όπου τα δύο μαγνητικά νησία συνδέονται. Αυτό το σχήμα
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ 
ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΆΣΕΩΝ 
ΙΣΟΡΡΟΠΙΑΣ

Σχήμα 3.5: Profile του παράγοντα ασφάλειας στο μεσοεπίπεδο $y = 0$ για (a) απλά και (b) διπλά τορική χρηματισμό. Τα σχήματα αντιστοιχούν σε $\alpha = 3$, $P_0 = 12kPa$, και αριθμούς Mach $(a) M_0 = 1.234$ και $(b) M_0 = 1.692$. Η μέγιστη τιμή στο γράφημα (b) αντιστοιχεί στο σημείο όπου τα δύο μαγνητικά νησιά συναντώνται. Εδώ πρέπει να σημειωθεί ότι η ευθεία γραμμή στο γράφημα (a) αντιπροσωπεύει ένα τιμή που λόγω αριθμητικών διακολών δεν έγινε δυνατό να υπολογιστεί. Παρόλα αυτά η τιμή του $q$ στο μαγνητικό άξονα μπορεί να υπολογιστεί από την αναλυτική σχέση (3.32) η οποία για της συγκεκριμένες τιμές των παραμέτρων δίνει $q_{ma} = 1.29$.

tου profile οδηγεί στην εμφάνιση δύο περιοχών αρνητικής μαγνητικής διάτμησης εκατέρωθεν του μεγάλου και έως τους μαγνητικούς αξιών. Με βάση τα παραπάνω, οι διπλά τορικές σχηματισμοί, που στη συγκεκριμένη περίπτωση έχουν ως γενεσιουργό αίτιο τη ροή, συνδέονται με διαμορφώσεις αρνητικής μαγνητικής διάτμησης. Δηλαδή, η ροή φαίνεται να μπορεί να αλλάξει τη μαγνητική τοπολογία σχηματισμών ώστε αυτό να εμφανίζουν περιοχές με αρνητική μαγνητική διάτμηση.

Εξετάζοντας την επίδραση του λόγου ύψους, που όπως ειπώθηκε εμφανίζονται στην R συνιστώσα των λύσεων, παρατηρείται ότι στο όριο πολύ μεγάλου λόγου ύψους η ροή δεν μπορεί να επιφέρει αλλαγή στη μαγνητική τοπολογία κι αυτό διότι σε αυτό το όριο η τορική συνιστώσα της ροής δεν εμφανίζεται στις εξισώσεις ισορροπίας ανεξάρτητα της συμπιεστότητας. Συγκεκριμένα, για χυλινόρικα συμμετρικό πλάσμα με τυχαία πολοειδή διατομή οι αντιστοιχείς των (3.17) και (3.18) εξισώσεις παίρνουν την μορφή:

\[
\begin{align*}
\vec{B} \cdot \nabla P &= 0 \quad (3.33) \\
\nabla^2 \psi + \left( P + \frac{B^2}{2} \right)' &= 0. \quad (3.34)
\end{align*}
\]
3.4. ΜΕΤΑΤΟΠΙΣΗ SHAFRANOV ΚΑΙ ΜΕΤΑΒΟΛΕΣ ΠΛΑΝΩ ΣΤΙΣ ΜΑΓΝΗΤΙΚΕΣ ΕΠΙΦΑΝΕΙΕΣ

Αυτές τις προκύπτουν από τις (16) και (17) της αναφοράς [44] στην περίπτωση που η πολεοδομή ροή μηδενίζεται (F' = 0). Προφανώς σε αυτή την περίπτωση όπως προκύπτει από την εξίσωση (3.33) η πίστη γίνεται ποσότητα επιφάνειας.

Εφόσον στην ακραία περίπτωση που ο λόγος όψης τείνει στο άπειρο η ροή δεν επηρεάζει την ισορροπία, ενώ υπάρχει εξάρτηση όταν είναι πεπερασμένος, είναι αναμενόμενο τη μετάβαση του να επηρεάζει τις ιδιοτήτες καθώς και τα σημεία μετάβασης. Εξετάστηκε λοιπόν ποσοτικά, η εξάρτηση των ιδιοτήτων και των σημείων μετάβασης από το λόγο όψης, α, μεταβάλλοντας την τιμή του. Τα αποτελέσματα συναφίζονται στα εξής:

1. Οι ιδιοτήτες P_0^m και F^m παίρνουν μικρότερες τιμές όσο ο λόγος όψης ελαττώνεται. Για παράδειγμα, για α = 3 και α = 2 οι αντίστοιχες ιδιοτήτες πρώτης τάξης είναι M_0^2 = 2.8 και M_0^2 = 2.3 αντίστοιχα.

2. Όσο μικρότερο το α τόσο μικρότερα τα σημεία μετάβασης (M_0)^m και A_m (για κάθε m). Για παράδειγμα για α = 3 και α = 2 οι αντίστοιχες τιμές του αριθμού Mach της πρώτης μετάβασης είναι (M_0)^1 = 1.692 και (M_0)^1 = 1.338, ενώ για την περίπτωση ασυμπίεστης ροής τα αντίστοιχα σημεία της πρώτης μετάβασης είναι A_1 = -0.083 και A_1 = -0.448.

Όπως έχει γίνει εμφανές από τα παραπάνω αποτελέσματα οι ταχύτητες των σημείων μετάβασης εμπίπτουν, εν γένι, στην υποχρήτικη περιοχή. Παραματικά, ταχύτητες σε αυτή την περιοχή έχουν μετρηθεί στις αναφορές [65] και [66]. Λόγω όμως, της παραπάνω εξάρτησης των σημείων μετάβασης από το λόγο όψης, είναι δυνατό τα σημεία μετάβασης να βρεθούν στην υποχρήτικη περιοχή για κατάλληλα μικρές τιμές του α. Έτσι, σε αυτή την περίπτωση (συμπιεστής ροής) οι μεταβάσεις μπορούν να παρατηρηθούν ευκολότερα σε σφαιρικά tokamak καθώς η ελάχιστη τιμή του πρώτου σημείου μετάβασης του αριθμού Mach (M_0)^1 είναι 0.62 και αντίστοιχα σε συμπιεστές τορουάδες (α = 1).

3.4 Μετατόπιση Shafranov και μεταβολές πάνω στις μαγνητικές επιφάνειες

Σε αυτό το εδάφιο εξετάζεται η επίδραση της ροής και του λόγου όψης στη μετατόπιση Shafranov ιδιακαταστάσεων με ένα μαγνητικό άξονα. Επίσης εξετάζεται και η επίδραση των παραπάνω στα profile και στις διαστάσεις πάνω στις μαγνητικές επιφάνειες της πυκνότητας και της θερμοκρασίας για συμπιεστή και ασυμπιεστή ροή αντίστοιχα.
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΩΝ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ

3.4.1 Μετατόπιση Shafranov

Η μετατόπιση Shafranov μετρά την απόσταση του μαγνητικού άξονα από το γεωμετρικό κέντρο της πολυειδούς διατομής. Δηλαδή, αν \( R_0 \) είναι η θέση του γεωμετρικού κέντρου (δες σχ. 3.1) και \( R_{m.a.} \) η θέση του μαγνητικού άξονα, τότε η μετατόπιση Shafranov ορίζεται ως \( \Delta R = R_{m.a.} - R_0 \), εκφρασμένη μέσω των κανονικοποιημένων μεταβλητών, όταν \( \Delta \xi \equiv x_{m.a.} - 1 \. Τα αποτελέσματα μπορούν να συνοψιστούν ως εξής:

1. Καθώς ο αριθμός Mach, \( M_0 \), αυξάνεται ή η παράμετρος \( A \) μειώνεται, η μετατόπιση Shafranov αυξάνεται. Αυτό το αποτέλεσμα περιγράφει ποσιτικά στο εδάφιο 3.3 όταν αναφέρθηκε η μετατόπιση του σχηματισμού προς το εξωτερικό καθώς η ροή αυξάνει. Η αύξηση στην μετατόπιση Shafranov δίνεται ποσιτικά στους πίνακες 3.1 και 3.2.

<table>
<thead>
<tr>
<th>( M_0 )</th>
<th>Μετατόπιση Shafranov</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.054</td>
</tr>
<tr>
<td>0.4</td>
<td>0.058</td>
</tr>
<tr>
<td>0.6</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Πίνακας 3.1: Η μετατόπιση Shafranov, \( \Delta \xi = x_{m.a.} - 1 \), για διάφορες τιμές του αριθμού Mach και λόγο όψης \( \alpha = 3 \).

<table>
<thead>
<tr>
<th>( A )</th>
<th>Μετατόπιση Shafranov</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
<td>0.045</td>
</tr>
<tr>
<td>0.006</td>
<td>0.049</td>
</tr>
<tr>
<td>-0.001</td>
<td>0.055</td>
</tr>
</tbody>
</table>

Πίνακας 3.2: Η μετατόπιση Shafranov, \( \Delta \xi = x_{m.a.} - 1 \), για διάφορες τιμές της παραμέτρου ροής \( A \) και λόγο όψης \( \alpha = 3 \).

Εδώ πρέπει να σημειωθεί ότι στην περίπτωση ασυμπίεστης ροής, για μεγάλες θετικές τιμές της παραμέτρου \( A \), η μετατόπιση Shafranov μπορεί να γίνει αρνητική. Σαν παράδειγμα, αναφέρεται ότι για \( \alpha = 3 \) και \( A = 0.09 \) η μετατόπιση είναι \(-0.0274\). Αυτό σημαίνει ότι οι μαγνητικές επιφάνειες σε αυτή την περίπτωση είναι μετατοπισμένες προς το εσωτερικό του τόρου. Τέτοια αρνητική μετατόπιση υπολογίστηκε στην αναφορά [67] για

74
3.4. ΜΕΤΑΤΟΠΙΣΗ ΣHAFRANOV ΚΑΙ ΜΕΤΑΒΟΛΕΣ ΠΛΑΝΩ ΣΤΙΣ ΜΑΓΝΗΤΙΚΕΣ ΕΠΙΦΑΝΕΙΕΣ

πολοειδή ροή. Επίσης, μείωση της μετατόπισης Shafranov από κατάλληλο profile τοροειδούς ροής παρατηρήθηκε στην αναφορά [68] στην οποία μελετήθηκαν σορροπίες στο όριο μεγάλου λόγου όψης. Σύμφωνα με την παρούσα εργασία, πιθανό ρόλο στην μετατόπιση Shafranov φαίνεται να παίζουν η θερμοκρασία και η πυκνότητα για συμπίεση και ασυμπίεστη ροή αντίστοιχα.

2. Όσο μικρότερος ο λόγος όψης τόσο μεγαλύτερη η μετατόπιση Shafranov. Αυτό δείχνεται στους πίνακες 3.3 και 3.4 για δύο διαφορετικές τιμές της παράμετρου $P_0$.

<table>
<thead>
<tr>
<th>Λόγος όψης</th>
<th>Μετατόπιση Shafranov</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.092</td>
</tr>
<tr>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>1.5</td>
<td>0.209</td>
</tr>
</tbody>
</table>

Πίνακας 3.3: Η μετατόπιση Shafranov, $\Delta \xi \equiv x_{m.a.} - 1$, για $P_0 = 12$ kPa και διάφορες τιμές του λόγου όψης στην περίπτωση συμπίεστης ροής.

<table>
<thead>
<tr>
<th>Λόγος όψης</th>
<th>Μετατόπιση Shafranov</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.053</td>
</tr>
<tr>
<td>2</td>
<td>0.140</td>
</tr>
<tr>
<td>1</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Πίνακας 3.4: Η μετατόπιση Shafranov, $\Delta \xi \equiv x_{m.a.} - 1$, για $P_0 = 110$ kPa και διάφορες τιμές του λόγου όψης στην περίπτωση ασυμπίεστης ροής.

Όπως προαναφέρθηκε, μελετήθηκαν επίσης οι μεταβολές της πυκνότητας και της θερμοκρασίας κατά μήκος των μαγνητικών επιφανειών για συμπίεση και ασυμπίεστη ροή αντίστοιχα. Οι μεταβολές εξετάστηκαν στην περίπτωση ιδιωκαταστάσεων με ένα μαγνητικό άξονα. Για τον υπολογισμό χρησιμοποιήθηκαν πολλές συντεταγμένες $(r, \theta)$ (σχ. 3.1). Οι χαρακτηριστικές συντεταγμένες $(x, y)$ συναρτάται των $(r, \theta)$ εκφράζονται μέσω των σχέσεων:

$$x = 1 + \frac{r}{R_0} \cos \theta, \quad y = \frac{r}{R_0} \sin \theta.$$
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΣΩΡΟΠΙΑΣ

Πάνω σε μια μαγνητική επιφάνεια, \( \psi(r, \theta) = \sigma \omega \). μπορεί να υπολογιστεί αριθμητικά μέσω της ύδωρυφάρτησης \( \psi_0 \), η εξάρτηση της \( r \) από τη γωνία \( \theta \), δηλαδή η \( r = r(\theta) \). Με βάση αυτή τη σχέση, υπολογίζονται η πυκνότητα και η θερμοκρασία σαν συνάρτηση της γωνίας \( \theta \). Τα αποτελέσματα αυτών των υπολογισμών παρουσιάζονται παρακάτω.

3.4.2 Μεταβολή της πυκνότητας για συμπιεστή ροή

Είδαμε ότι αν η θερμοκρασία είναι ποσότητα επιφάνειας, τότε η πυκνότητα δεν είναι. Η εξάρτηση της θερμοκρασίας από τη συνάρτηση \( \psi \) επιλέχθηκε έτσι ώστε αφενός να συμφωνεί με πειραματικά αποτελέσματα και αφετέρου να υπάρχει ελευθερία στον καθορισμό ορισμένων χαρακτηριστικών του profile της:

\[
T(\psi) = T_0 \psi^k, \quad (3.35)
\]

όπου η παράμετρος \( k \) καθορίζει το σχήμα του profile και η σταθερά \( T_0 \) σχετίζεται με τη θερμοκρασία πάνω στο μαγνητικό άξονα. Έτσι, με τη βοήθεια της (3.19) προχωράει ότι η πυκνότητα δίνεται από τη σχέση:

\[
\varrho = \frac{2P_0}{T_0} \exp \left( \frac{\gamma M_0^2 x^2}{2} \right) \psi^{2-k}. \quad (3.36)
\]

Εξετάζοντας την επίδραση της παραμέτρου \( k \) παρατηρείται ότι για \( k < 2 \) το profile της πυκνότητας έχει χαμηλού βαθμού μορφή, το οποίο καθώς αυξάνεται ο αριθμός Mach μετατοπίζεται προς την εξωτερική πλευρά του σχηματισμού (Σχ. 3.6(a)). Για \( k > 2 \), το profile γίνεται καθιστή του οποίου το ελάχιστο μετατοπίζεται προς το εσωτερικό καθώς ο αριθμός Mach πάει μεγαλύτερες τιμές (Σχ. 3.6(b)). Χρησιμοποιώντας την εξίσωση (3.36) για τον υπολογισμό της πυκνότητας πάνω στις μαγνητικές επιφάνειες προκύπτει ότι αυτή εμφανίζεται μια μέγιστο στην περιοχή όπου οι επιφάνειες είναι συμπληρωμένες (μικρότερες τιμές της γωνίας \( \theta \) και μειώνεται καθώς οι μαγνητικές επιφάνειες γίνονται λιγότερο συμπληρωμένες (μεγαλύτερες τιμές της γωνίας \( \theta \)) (Σχ. 3.7). Επιπλέον στο σχήμα 3.7 φαίνεται ότι η διαχώριση μειώνεται καθώς αυξάνεται η ροή. Για \( M_0 = 1 \), μία τιμή σχετική με πειράματα σε μηχανές σύντηξης, η διαχώριση είναι 4%. Εδώ πρέπει να σημειωθεί ότι η μεταβολή του \( k \) δεν επηρεάζει καμία μεταβολή στη διαχώριση παρά μόνο μια μετατόπιση του σχήματος παράλληλα στον άξονα \( \theta \).
3.4. ΜΕΤΑΓΟΠΙΣΗ SHAFRANOV ΚΑΙ ΜΕΤΑΒΟΛΕΣ ΠΛΑΘ ΣΤΙΣ ΜΑΓΝΗΤΙΚΕΣ ΕΠΙΦΑΝΕΙΕΣ

Σχήμα 3.6: Profile της πυκνότητας χανονικοποιημένης ως προς το μαχνητικό άξονα στο μεσοεπίπεδο \( z = 0 \) για \( \alpha = 1 \) και \( \alpha = 3 \) και σε κάθε περίπτωση για δύο διαφορετικές τιμές του αριθμού Mach. Οι οποίες δίνονται στα σχήματα. Ο σχηματισμός είναι απλά τοροειδής με λόγο άψης \( \alpha = 3 \).

Σχήμα 3.7: Η πυκνότητα κατά μήκος μιας μαχνητικής επιφάνειας χανονικοποιημένη ως προς το μαχνητικό άξονα στα συνάρτηση της γωνίας \( \theta \) για δύο τιμές του αριθμού Mach φαίνεται σ' αυτό το σχήμα. Ο λόγος άψης είναι \( \alpha = 3 \) και το profile της πυκνότητας στο μεσοεπίπεδο \( z = 0 \) είναι κοιλό (\( \kappa = 3 \)).

3.4.3 Μεταβολή της θερμοκρασίας για ασυμπίεστη ροή

Κατ' αντιστοιχία με την περίπτωση συμπίεστης ροής η συνάρτηση πυκνότητας για ασυμπίεστη ροή βασίζεται σε πειραματικά αποτελέσματα αλλά και στη
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΣΩΡΡΟΠΙΑΣ

dυνατότητα ελέγχου, μέσω παραμέτρου, του σχήματος του profile της:

\[ \theta(\psi) = \theta_0 \psi^\kappa, \]  

(3.37)

όπου, όπως και για τη θερμοκρασία στη περίπτωση συμπιεστής ροής, η παράμετρος κ ελέγχει το σχήμα του profile και η στάθμη \( \theta_0 \) δίνει τη τιμή της πυκνότητας πάνω στο μαγνητικό άξονα.

Με τη βοήθεια της (3.22) προκύπτει για τη θερμοκρασία:

\[ T = \frac{2P_0}{\theta_0} \left( 2P_0 + \frac{AR^2}{2} x^2 \right) \psi^{2-\kappa}. \]  

(3.38)

Η εξάρτηση του σχήματος του profile της θερμοκρασίας από την παράμετρο \( \kappa \) είναι άμεσα με αυτή της πυκνότητας για συμπιεστή ροή. Αναλογικά, για \( \kappa < 2 \) το profile έχει κυριαρχησεί Φορμή, ενώ για \( \kappa > 2 \) καλλιεργεί. Η αύξηση της ροής (μείωση της παραμέτρου \( A \)) οδηγεί σε μία μετατόπιση του profile κατά μήκος του άξονα \( x \) προς την εξωτερική πλευρά του σχηματισμού, όπως και για την πυκνότητα για συμπιεστή ροή. Τα παραπάνω γίνονται στο διάγραμα 3.8. Κατά

![Diagram](image)

Σχήμα 3.8: Profile της θερμοκρασίας, κανονικοποιημένη ως προς το μαγνητικό άξονα, στο μεσοπείπεδο \( z = 0 \) για \( \kappa = 1 \) και \( \kappa = 3 \) και σε κάθε περίπτωση για δύο τιμές της παραμέτρου \( A \), οι οποίες χαρακτηρίζονται στη γραφήματα. Ο σχηματισμός είναι απλά θροειδής με λόγο ύψους \( \alpha = 3 \).

μήκος μιας μαγνητικής επιφάνειας η θερμοκρασία εμφανίζει ένα μέγιστο του οποίου η θέση εξαρτάται από το πρόσημο της παραμέτρου ροής \( A \). Συγκεκριμένα, για \( A > 0 \) το μέγιστο βρίσκεται στη θέση όπου οι μαγνητικές επιφάνειες είναι περισσότερο συμπιεσμένες, ενώ για \( A < 0 \) το μέγιστο είναι στην αντίθετη πλευρά όπου οι μαγνητικές επιφάνειες είναι λιγότερο συμπιεσμένες. Αυτή η
3.5. ΣΥΜΠΕΡΑΣΜΑΤΑ

συμπεριφορά είναι διαφορετική από την περίπτωση της συμπεριφοράς ροής, όπου η διαχύμανση της πυκνότητας εμφανίζει το μέγιστο στην πλευρά του οποίου μαγ-γητικές επιφάνειες είναι περισσότερο συμπεριφορές. Αυτή η διαφοροποίηση αποτελεί ένδειξη ότι η διάταξη της ροής παίζει ρόλο. Για τη σχετική με πε-γραμματικά δεδομένα, τιμή \( A = 0.01 \) η διαχύμανση της θερμοκρασίας είναι 4\%. Επίσης, αυτή η διαχύμανση πάντα αυξάνει όταν η απόλυτη τιμή της παραμέτρου \( A \) μεγαλώνει (Σχήμα 3.9). Η επίδραση της παραμέτρου \( K \) στη διαχύμανση της θερμοκρασίας είναι όμως με αυτή στη διαχύμανση της πυκνότητας.

\[
\frac{T}{T_\alpha}\]

\( A = 0.01 \)

\( A = 0.001 \)

\( A = -0.006 \)

Σχήμα 3.9: Η θερμοκρασία κατά μήκος μιας μαγνητικής επιφάνειας χαλκο-κοπριμένη ως προς το μαγνητικό άξονα σαν συνάρτηση της γωνίας \( \theta \) για τρεις τιμές της παραμέτρου \( A \) ρωτάται σε αυτό το σχήμα. Ο λόγος ύψους είναι \( \alpha = 3 \) και το profile της πυκνότητας στο μεσοπέπτεδο \( z = 0 \) είναι χοίλο (κ = 3).

3.5 Συμπεράσματα

Σε αυτό το κεφάλαιο ιδιοκταστάσεις ισορροπίας ενός μαγνητικός περιορισμέ-νου πλάσματος με τοροείδη ροή, του οποίου η πολυειδής διατομή περιβάλλεται από τομέα αρθρογόνου σχήματος, εξετάστηκαν στα πλαίσια του ιδιωκιο
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟΛΟΓΙΑ ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ

ΜΗΔ μοντέλο. Τόσο συμπιεστή ροή, που συνδέεται με σταθερή θερμοκρασία αλλά μεταβαλλόμενη πυκνότητα πάνω στις μαγνητικές επιφάνειες, όσο και συμπίεστη ροή με σταθερή πυκνότητα, αλλά μεταβαλλόμενη θερμοκρασία πάνω σε αυτές εξετάστηκαν στη βάση των αντίστοιχων ανθρώπινων εξειδικεύσεων ισορροπίας [(3.20) και (3.23)] και ακριβών λύσεων τους [(3.25) και (3.27)]. Η επίδραση της ροής στη μαγνητική τοπολογία των ύδατοκλαστήσεων εξετάστηκε μέσω των παραμέτρων \( M_0 \) και \( A \), οι οποίες συνδέονται με τις ποσότητες \( \omega^2/T \) για συμπίεστη και \( \omega^2 \) για ασυμπίεστη ροή αντίστοιχα. Οι ακριβείς λύσεις στη συμπιεστή περίπτωση δεν περιέχουν τη διάτμηση της ροής \( [(\omega^2/T)' = 0] \), ενώ οι αντίστοιχες στην ασυμπίεστη την περίεχουν \( [(\omega^2)' \neq 0] \). Επιπλέον, όταν \( \omega^2/T \ll 1 \) η συμπιεστή εξίσωση παράγει παράμορφα μορφή με την ασυμπίεστη, ηδή, το πλάσμα συμπεριφέρεται ως ασυμπίεστο.

Λόγω της ροής, κανείς μπορεί να θεωρήσει είτε ιδιωτικές πίεσης, \( (P_0)^n \) \( n = 1, 2, \ldots \) με την παράμετρο ροής \( F \) να παραμένει ελεύθερη \( F \) αντιστοιχεί στο \( M_0 \) ή στην \( A \), είτε ονταλακτικά ιδιωτικές ροής \( F^n \) με ελεύθερη \( P_0 \). Για δεδομένη \( F \) στην πρώτη περίπτωση και δεδομένη \( P_0 \) στη δεύτερη, οι ιδιωτικές χαρακτηριστικές της ανιχνευτικής περιέχουν τις ανιχνευτικές πρώτης \( P_0^{n+1} > P_0^n \) και δεύτερης \( F^{n+1} > F^n \). Οι αντίστοιχες ανιχνευτικές για την πολυενώτη μαγνητική ροή θα μπορούν να περιγράψουν πολυτροπικές σχηματισμούς με n μαγνητικός άξονας κατά κάποιον το μεσοπιεστέο \( z = 0 \). Όταν \( M_0 \) αυξάνεται ή \( A \) μειώνεται κατά συνεχή τρόπο, υπάρχουν σημεία μετάβασης \( F_m \) \( m = 1, 2, \ldots \) στα οποία σχηματίζεται ένας επιπλέον μαγνητικός άξονας. Εναλλακτικά, το ίδιο μπορεί να συμβεί με συνεχή μεταβολή της παραμέτρου πίεσης \( P_0 \) απότομα υπάρχουν σημεία μετάβασης \( P_0 \) \( m \) που συνδέονται με ιδιωτικές της ροής. Αυτή η αλλαγή στη μαγνητική τοπολογία, δυνατή μόνο διαρκής ροής, συνδέεται με τα γεωμετρικά χαρακτηριστικά του σχηματισμού και ιδιαίτερα με το λόγο όψης. Συγκεκριμένα, στο σημείο άνοιγμα λόγω ούσης οι άνθρωπες εξειδικεύσεις ισορροπίας είναι ανεξάρτητες της ροής. Η παραπάνω διάκριση σε μεταβατικές μπορεί να θεωρηθεί ως μια ημιτονική εξέλιξη του πλάσματος, λόγω συνεχούς αλλαγής της ροής διαμέσου ιδιωκαταστάσεων πίεσης, ή εναλλακτικά λόγω συνεχούς μεταβολής της πίεσης διαμέσου ιδιωκαταστάσεων ροής. Ο λόγος όψης, οποιας που συνδέεται με την τοροειδή γεωμετρία, ευρεία επηρεάζεται και, κατά κάποιο τρόπο, ενεργοποιεί την επίδραση της ροής στην ισορροπία, επιβάλλοντας στη σημεία μετάβασης. Συγκεκριμένα, όσο μικρότερο είναι η αρχή η τιμή του \( (M_0)_m \) στη συμπιεστή περίπτωση \( A_m \) στην ασυμπίεστη. Επιπλέον, το profile του παράγοντα ασφάλειας, στην περίπτωση απλά τοροειδών σχηματισμών, έχει περιοχές όπου η κίνηση του είναι αρνητική και κατ΄ επέκταση η μαγνητική διάτμησή σε αυτές είναι αρνητική. Το παραπάνω σε αντιδιαστολή με την περίπτωση απλά τοροειδών σχηματισμών.
3.5. ΣΥΜΠΕΡΑΣΜΑΤΑ

όπου το profile του παράγοντα ασφάλειας είναι μονοτονικό.

Επιλέον, εξέταστηκε η επίδραση της ροής και του λόγου όψης, $\alpha$, στη με-
τατόπιση Shafranov και υπολογίστηκε η διακύμανση της πυκνότητας και της
θερμοκρασίας πάνω στις μαγνητικές επιφάνειες για συμπεπτή και ασυμπεπτή
ροή αντίστοιχα, στην περίπτωση απλά τοροειδών σχηματισμών. Αυτές οι δια-
κυμάνσεις είναι απαραίτητες για την ύπαρξη στάσεων ισορροπίας tokamak. Τα
συμπεράσματα που προέκυψαν συνοψίζονται παρακάτω:

1. Η μετατόπιση Shafranov (a) αυξάνεται καθώς $M_0$ παίρνει μεγαλύτερες
και η $A$ μικρότερες τιμές και (b) αυξάνεται καθώς $\alpha$ παίρνει μικρότερες
τιμές. Επιλέον για θετικές αρχικές μεγάλες τιμές της $A$ η μετατόπιση
μπορεί να γίνει αρνητική.

2. Για ροές παράτηρομενες ή σφιχτές στα παράμετρα σύντηξης η διακύμανση
της πυκνότητας για συμπεπτή ροή και της θερμοκρασίας για ασυμπεπτή
ροή πάνω στις μαγνητικές επιφάνειες είναι περίπου 4%.

3. Η διακύμανση της πυκνότητας μειώνεται καθώς $M_0$ παίρνει μεγαλύτερες
tιμές, ενώ η διακύμανση της θερμοκρασίας αυξάνεται καθώς $|A|$ παίρνει
μεγαλύτερες τιμές.

4. Οι τιμές της πυκνότητας και της θερμοκρασίας για $A > 0$ είναι μεγαλύτε-
ρες στην περιοχή όπου $\alpha$ μαγνητικές επιφάνειες είναι περισσότερο συμ-
πεπεισμένες. Για $A < 0$ όμως, οι τιμές της θερμοκρασίας είναι μεγαλύτερες
στην περιοχή όπου οι μαγνητικές επιφάνειες είναι λιγότερο συμπεπεισμένες.
Αυτή η διαφορά είναι πιθανό να οφείλεται στη μη μηδενική διάμετρης της
ασυμπεπτής ροής που εξετάσαμε.

5. Οι διακυμάνσεις της πυκνότητας και της θερμοκρασίας είναι ανεξάρτητες
του profile αυτών. Δηλαδή, παραμένουν σχεδόν ίδιες είτε το profile είναι
χορωδιαίς είτε κολό.
ΚΕΦΑΛΑΙΟ 3. ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΣΤΗ ΜΑΓΝΗΤΙΚΗ ΤΟΠΟЛОΓΙΑ ΑΞΟΝΙΚΑ ΣΤΗ ΣΥΜΜΕΤΡΙΚΗ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ
Κεφάλαιο 4

Αξονικά συμμετρική ισορροπία με ανισοτροπική αγωγιμότητα και τοροειδή ροή

Σε αυτό το κεφάλαιο θα μελετηθούν καταστάσεις ισορροπίας αξονικά συμμετρικού, μαγνητικά περιορισμένου πλάσματος, με ανισοτροπική αγωγιμότητα και τοροειδή ροή. Συγκεκριμένα, θα παραχθούν ανησυχίες εξισώσεις ισορροπίας για το εν λόγω σύστημα και αντίστοιχες αρχικές λύσεις. Έπειτα, θα μελετηθεί η επίδραση της ροής και του λόγου ύφες σε ποσότητες της ισορροπίας, όπως οι συνιστώσες της ειδικής αντίστασης, παράλληλα και κάθετα στο μαγνητικό πεδίο, το ηλεκτρικό πεδίο και η πυκνότητα ηλεκτρικού ρεύματος.

4.1 Αγωγιμότητα και ισορροπία

Η πλευρυθρία των μελετών ισορροπίας, μέχρι πρόσφατα, αφορούσαν πλάσματα με μηδενική ηλεκτρική ειδική αντίσταση και μηδενική μαχροσκοπική ροή του πλάσματος οι οποίες ικανοποιούν την εξίσωση Grad-Schlüter-Shafranov. Διαπιστώθηκε όμως, ότι η πεπερασμένη αγωγιμότητα και η ροή είναι σημαντικές (κεφ. 1). Πέρα από τον προφανή της ρόλο στην Όμιχλ θέρμανση του πλάσματος, η πεπερασμένη αγωγιμότητα συνδέεται με τη σταθερή λειτουργία των αντιβασικής κύκλωσης, μας και σ’ αυτούς η κλίμακα χρόνου είναι πολύ μεγαλύτερη από την αντίσταση της MHD με πολύ μεγάλη αγωγιμότητα. Επιπλέον, ο ελάχιστος δυνατός αριθμός πηγών μάζας και ορμής είναι άλλη μια παράμετρος που πρέπει να ληφθεί υπόψη στην μελέτη ισορροπιών.


4.2 Αξιονικά συμμετρικά ισορροπία με ανισοστροφική αγωγικότητα και τοροειδή ροή

Σε αυτό το εδάφιο θα εξαχθούν ανεξάρτητες εξισώσεις ισορροπίας για ένα αξιονικά συμμετρικό, μαγνητικά περιορισμένο πλάσμα, με ανισοστροφική ειδική αντίσταση και τοροειδή μακροομαστική ροή. Η διάδοση θα παρουσιαστεί κατά έναν κυκλώμα τρόπο, υπό την έννοια ότι κάποια συγκεκριμένη εξίσωση διατήρησης της ενέργειας ή καταστατική εξίσωση δεν υιοθετείται από την αρχή, αυτό θα γίνει όταν θα είναι αναγκαίο.
4.2 ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΗ ΙΣΟΡΡΟΠΙΑ ΜΕ ΑΝΙΣΟΤΡΟΠΙΚΗ ΑΓΩΓΗΜΟΤΗΤΑ ΚΑΙ ΤΟΡΟΕΙΔΗ ΡΟΗ

Οι αρχικές MHD εξισώσεις ισορροπίας είναι οι ακόλουθες:

\[ \nabla \cdot (\varphi \vec{v}) = 0, \]
\[ -\nabla P + \vec{J} \times \vec{B} = \varphi (\vec{v} \cdot \nabla) \vec{v}, \]
\[ \text{Μια εξίσωση ενέργειας ή χαταστατική εξίσωση,} \]
\[ \vec{E} + \vec{v} \times \vec{B} = \eta_\parallel \nabla \cdot \vec{J} + \eta_\perp \vec{J}_\perp, \]
\[ \nabla \times \vec{E} = 0, \]
\[ \nabla \cdot \vec{B} = 0, \]
\[ \nabla \times \vec{B} = \vec{J}, \]

όπου
\[ \eta = \begin{pmatrix} \eta_\parallel & 0 \\ 0 & \eta_\perp \end{pmatrix} \]

είναι ο τανυστής της ειδικής αντίστασης. Οι δείκτες \( \parallel \) και \( \perp \) δηλώνουν διεύθυνση παράλληλα και κάθετα στο μαγνητικό πεδίο \( \vec{B} \). Με βάση τον παραπάνω συμβολισμό η πυκνότητα του ηλεκτρικού ρεύματος γράφεται ανάλογα:

\[ \vec{J}_\parallel = (\vec{J} \cdot \vec{b}) \vec{b} \]

και

\[ \vec{J}_\perp = \vec{b} \times (\vec{J} \times \vec{b}) = \vec{J} - \vec{J}_\parallel, \]

όπου \( \vec{b} = \vec{B}/B \). Η διαδικασία που ακολουθείται είναι η αναγνώριση κάποιων ποσοτήτων επιφάνειας (δηλαδή ποσοτήτων που παραμένουν σταθερές πάνω στις μαγνητικές επιφάνειες) και η παραγωγή ενός ανημμένου συστήματος εξισώσεων ισορροπίας μέσω της προβολής της εξίσωσης διατήρησης της ορμής (4.2) και του νόμου του Ohm (4.4) στην τοροειδή την πολυειδή διεύθυνση (ή ισοδύναμα παράλληλα στο μαγνητικό πεδίο) και κάθετα στις μαγνητικές επιφάνειες. Αν και η διαδικασία είναι κατ' αρχήν όμοια με την αντίσταση του κεφαλαίου 3, παρουσιάζει αξιώλογες διαφορές λόγω μη μηδενικής ηλεκτρικής αντίστασης. Για παράδειγμα σημαντική πληροφορία προκύπτει από μια ολοκληρωτική μορφή της (4.4). Για το λόγο αυτό η διαδικασία παραγωγής των ανημμένων εξισώσεων ισορροπίας θα εκτεθεί με κάποια λεπτομέρεια τονίζοντας τις διαφορές.

Το σύστημα υπό μελέτη είναι αξονικό συμμετρικό και σε χιλιοδρικές συντεταγμένες \( R, \phi, z \) ο άξονας \( z \) αντιπροσωπεύει τον άξονα συμμετρίας. Λόγω συμμετρίας όλες οι ποσότητες δεν εξαρτώνται από τη τοροειδή γωνία \( \phi \), ενώ η τοροειδής ταχύτητα της ροής μάζας, το μαγνητικό πεδίο (το οποίο πρέπει να
κανονικεί την εξίσωση (4.6)) και η πυκνότητα του ηλεκτρικού ρεύματος μέσω του νόμου του Αμπέρε (4.7) εξισώζονται με τη βοήθεια των ελεύθερων συναρτήσεων \( K(R, z) \), \( \psi(R, z) \) και \( I(R, z) \) ως:

\[
\vec{v} = K \nabla \phi, \quad (4.9)
\]
\[
\vec{B} = I \nabla \phi + \nabla \phi \times \nabla \psi, \quad (4.10)
\]
\[
\vec{J} = \Delta^* \psi \nabla \phi - \nabla \phi \times \nabla I. \quad (4.11)
\]

Η συνάρτηση \( \psi \) καθορίζει τις μαγνητικές επιφάνειες (\( \psi = \text{σταθ.} \)) και ο ελλειπτικός τελεστής \( \Delta^* \) ορίζεται ως \( \Delta^* = R^2 \nabla \cdot (\nabla / R^2) \).

Από την προηγούμενη της εξίσωσης ορμής (4.2) στη τορειοδίχη διεύθυνση προχύπτει η σχέση:

\[
\nabla \phi \cdot (\nabla \psi \times \nabla I) = 0, \quad (4.12)
\]

που συνεπάγεται ότι η συνάρτηση \( I \) είναι σταθερή πάνω στις μαγνητικές επιφάνειες και χαμηλή επέκταση είναι συνάρτηση μόνο της \( \psi \), δηλαδή είναι ποσότητα επιφάνειας \( I = I(\psi) \). Σε απτικοπάρκο λοιπόν με την περίπτωση ροής παράλληλης στο μαγνητικό πεδίο [8], οι επιφάνειες ρεύματος στην περίπτωση τοροειδώς ροής συμπίπτουν με τις μαγνητικές επιφάνειες, ανεξάρτητα από την καταστατική εξίσωση.

Ολοκληρώνοντας το νόμο του Ohm (Εξ. 4.4) κατά μήκος μιας χαμηλής \( c \), η οποία ορίζεται ως η τομή μιας τυχαίας επιφάνειας ρεύματος με το πολυείδες επίπεδο, προχύπτει η εξίσωση:

\[
\int_c \vec{E} \cdot d\ell + \int_c (\vec{v} \times \vec{B}) \cdot d\ell = \int_c (\vec{\eta} \cdot \vec{J}) \cdot d\ell, \quad (4.13)
\]

ώτου \( d\ell = \nabla \phi \times \nabla \psi / |\nabla \phi \times \nabla \psi| \) είναι το μοναδιαίο διάνυσμα κατά μήκος της χαμηλής \( c \). Αφού στην ισορροπία ισχύει ότι \( \partial \vec{B} / \partial t = 0 \), το πρώτο ολοκλήρωμα στον αριστερό μέλος της (4.13) με τη βοήθεια της (4.5) μπορεί να επιλέγεται λόγω του θεωρημάτος του Stokes. Επλέον, το δεύτερο ολοκλήρωμα στο πρώτο μέλος μπορεί να επιλέγεται λόγω της τορειοδίχης διεύθυνσης της ροής. Ωστόσο για να οριστούν οι ισόλεικες (4.13) θα πρέπει και το ολοκλήρωμα στο δεξίο της μέλους να μπορεί να επιλεγεί. Για να ισχύει όμως αυτό και αφού \( \vec{c} \) είναι τυχαία, οι γραμμές ρεύματος της \( \vec{J}_{pol} \) είναι χλειστές, ένθετες (υποθέτουμε ότι οι επιφάνειες ρεύματος συμπίπτουν με τις μαγνητικές επιφάνειες) και επιλέον ισχύει \( \nabla \cdot \vec{J} = 0 \) (δηλαδή δεν υπάρχουν πηγές ρεύματος χάνοντας στις μαγνητικές επιφάνειες), θα πρέπει η ολοκληρωτική ποσότητα να μπορεί να επιλεγεί. Άρα θα πρέπει να ισχύει τοπικά:

\[
(\vec{\eta} \cdot \vec{J}) \cdot d\ell = (\vec{\eta} \cdot \vec{J}_{pol}) = 0. \quad (4.14)
\]
4.2 ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΗ ΙΣΟΡΡΟΠΙΑ ΜΕ ΑΝΙΣΟΤΡΟΠΙΚΗ
ΑΓΩΓΙΜΟΤΗΤΑ ΚΑΙ ΤΟΡΟΕΙΔΗ ΡΟΗ

Για ισοτροπική ειδική αντίσταση, \( \eta = \eta_\parallel \), η εξίσωση (4.14) συνεπάγεται ότι η
πολοειδής πυκνότητα ρεύματος πρέπει να μηδενίζεται. Παρουσία ανισοτροπίας
όμως, μη μηδενική πολοειδή πυκνότητα ηλεκτρικού ρεύματος είναι δυνατή, λόγω
του ότι το τοροειδές ηλεκτρικό πεδίο μπορεί να δημιουργήσει ρεύμα στην
πολοειδή διεύθυνση. Στη συνέχεια του κεφαλαίου θα θεωρηθεί ότι στην ισορροπία η πολοειδή ηλεκτρικό ρεύμα είναι μη μηδενικό.

Εκφράζοντας το ηλεκτρικό πεδίο στην πολοειδή διατομή μέσω του ηλεκτρο-
στατικού δυναμικού, \( \vec{E}_{pol} = -\nabla \Phi \), η συνιστώσα του νόμου του Ohm (4.4) στην
πολοειδή διεύθυνση, λαμβάνοντας υπόψη και την (4.14) γράφεται:

\[
\nabla \times (\nabla \Phi \times \nabla \psi) = 0. \tag{4.15}
\]

Η σχέση αυτή συνεπάγεται ότι το ηλεκτροστατικό δυναμικό είναι ποσότητα
επιφανείας, \( \Phi = \Phi(\psi) \) αρα το \( \vec{E}_{pol} \) είναι χάδετο στις μαγνητικές επιφάνειες.
Το ολίκο ηλεκτρικό πεδίο μπορεί να εκφραστεί, χατ' αναλογία με τις υπόλοιπες
ποσότητες, μέσω μιας συνιστώσας στη τοροειδή διεύθυνση και μιας άλλης στην
πολοειδή ως:

\[
\vec{E} = V_c \nabla \phi + \vec{E}_{pol} = V_c \nabla \phi - \Phi' \nabla \psi,
\]

όπου \( 2\pi V_c \) είναι το σταθερό τοροειδών εξωτερικό ηλεκτρικό δυναμικό, ενώ ο
τόνος δηλώνει διαφορά \( \omega \) προς τη συνάρτηση \( \psi \). Λαμβάνοντας υπόψη τα
παραπάνω, η συνιστώσα της (4.4) χάθει στις μαγνητικές επιφάνειες (δηλαδή
παράλληλα στη διεύθυνση \( \nabla \psi \)) έγινε:

\[
(\Phi' - \frac{K}{\varrho R^2})|\nabla \psi|^2 = 0, \tag{4.16}
\]

οπότε η ποσότητα

\[
\frac{K}{\varrho R^2} = \omega = \Phi', \tag{4.17}
\]

η οποία αναγνωρίζεται ως η κυκλική συχνότητα, είναι ποσότητα επιφανείας
\( \omega = \omega(\psi) \). Από την εξίσωση (4.14) και τη συνιστώσα του νόμου του Ohm στη
τοροειδή διεύθυνση προχύπτουν αντίστοιχα οι εξίσωσεις:

\[
-\frac{\Delta \eta}{(BR)^2} (I \Delta^* \psi - I' |\nabla \psi|^2) - \eta_\perp I' = 0, \tag{4.18}
\]

\[
V_c = \frac{\Delta \eta I}{(BR)^2} (I' |\nabla \psi|^2 - I \Delta^* \psi) + \eta_\perp \Delta^* \psi, \tag{4.19}
\]

87
ΚΕΦΑΛΑΙΟ 4. ΑΧΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΑ ΙΣΟΡΡΟΠΙΑ ΜΕ ΑΝΙΣΟΤΡΟΠΙΚΗ ΑΙΩΝΙΟΤΗΤΑ ΚΑΙ ΤΟΡΟΕΙΔΗ ΡΟΗ

όπου $\Delta \eta = \eta_\perp - \eta_\parallel$. Οι οποιεσδήποτε λύσεις ισορροπίας θα πρέπει να είναι συμβατές με τις εξίσωσες (4.18) και (4.19), οι οποίες μπορούν να λυθούν ως προς $\eta_\perp$ και $\eta_\parallel$ και να δώσουν:

$$\eta_\perp = \frac{V_c}{\Delta^* \psi + II'},$$

$$\eta_\parallel = \eta_\perp \left(1 + \frac{I'(BR)^2}{I\Delta^* \psi - I'|\nabla \psi|^2}\right).$$

(4.20)

(4.21)

Με τη βοήθεια των ποσοτήτων επιφάνειας $I(\psi)$, $\Phi(\psi)$ και $\omega(\psi)$ οι συνιστώσες της εξίσωσης ορμής παράλληλα στο μαγνητικό πεδίο και κάθετα στις μαγνητικές επιφάνειες παίρνουν τη μορφή:

$$\left[\nabla \frac{P}{\varrho} - \frac{\omega^2 R^2}{2}\right] \cdot \vec{B} = 0,$$

$$[\Delta^* \psi + II']|\nabla \psi|^2 + R^2 \left[\nabla P - \omega^2 \nabla \left(\frac{R^2}{2}\right)\right] \cdot \nabla \psi = 0,$$

(4.22)

(4.23)

αντίστοιχα. Λόγω της αξονικής συμμετρίας και της τοροειδούς διεύθυνσης της ροής, οι παραπάνω εξίσωσες δεν περιέχουν την ειδική αντίσταση και είναι άμεσα σε μορφή με τις αντίστοιχες της περίπτωσης με ημιδεννική ειδική αντίσταση που παρουσιάστηκαν στο κεφάλαιο 3 (Εξ. 3.17 και 3.18), οπότε και τα περαιτέρω βήματα εως την απόκτηση ακριβών λύσεων είναι άμεσα. Θα παρουσιαστούν ως τόσο και είδος συνιστώσα για λόγους πληρότητας και ευκολίας του αναγνώρισής της την περαιτέρω συνέχιση της ανάλυσης είναι απαραίτητη η μονοθέτηση μιας εξίσωσης διατήρησης της ενέργειας ή χαρακτηρικής εξίσωσης. Λόγω της μεγάλης θερμικής αγωγιμότητας κατά μήκος του μαγνητικού πεδίου, ισότιμες μαγνητικές επιφάνειες, $T = T(\psi)$, είναι μια δυνατή επιλογή για πλάσμα με εφαρμογή στην ελεγχόμενη συντήρηση. Σε αυτή την περίπτωση και θεωρώντας το νόμο των ιδανικών αερίων, $P = \lambda T$, από την ολοκλήρωση της (4.22) προκύπτει:

$$P = P_s(\psi) \exp \left(\frac{\omega^2 R^2}{2\lambda T}\right),$$

(4.24)

όπου $P_s(\psi)$ είναι η πίεση απουσία ροής. Με τη βοήθεια της (4.24) η εξίσωση (4.23) ανθεί στην τελική «συμβατική» εξίσωση

$$\Delta^* \psi + II' + R^2 \left[P_s' + P_s \frac{R^2}{2} \left(\frac{\omega^2}{\lambda T}\right)^2\right] \exp \left(\frac{\omega^2 R^2}{2\lambda T}\right) = 0.$$

(4.25)
4.2. ΑΞΩΝΙΚΑ ΣΤΥΜΜΕΤΡΙΚΗ ΣΩΡΟΠΠΙΑ ΜΕ ΑΝΙΣΟΤΡΟΠΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΚΑΙ ΤΟΡΟΕΙΔΗ ΡΟΗ

Εναλλακτικά μπορεί να υιοθετηθεί ως καταστατική εξίσωση η συνήθης ασυμπιεστότητα:

\[ \nabla \cdot \mathbf{v} = 0. \]  

(4.26)

Συνεπώς, από την εξ. (4.1) συνεπάγεται ότι η πυκνότητα είναι ποσότητα επιφανείας, \( \rho = \varrho(\psi) \), και μπορεί να εξαχθούν οι αντίστοιχες εξισώσεις για την \( P \) και την \( \psi \) με τρόπο ανάλογο της περίπτωσης «συμπιεστής» ροής:

\[ P = P_s(\psi) + \frac{R^2 \omega^2}{2} \]  

(4.27)

\[ \Delta^* \psi + II' + R^3 P_s' + \frac{R^4}{2} (\varrho \omega^2)' = 0. \]  

(4.28)

Η εξίσωση (4.28) είναι όμοια με μια ειδική περίπτωση της εξίσωσης αξονικά συμμετρικής ισορροπίας για ασυμπιεστή ροή τυχαίας διεύθυνσης που εξήρθη στην αναφορά [45] για ιδιανικό πλάσμα.

Αφού οι εξισώσεις (4.25) και (4.28) λυθούν ως προς \( \psi \), οι συνιστώσεις της ειδικής αντίστασης υπολογίζονται από τις (4.20) και (4.21). Μια εξέταση των εξισώσεων (4.20) και (4.21) οδηγεί στο συμπέρασμα ότι, όπως και στην περίπτωση ροής παράλληλης στο μαγνητικό πεδίο [8], οι συνιστώσεις της ειδικής αντίστασης, \( \eta_1 \) και \( \eta_2 \), δεν μπορούν να είναι σταθερές πάνω στις μαγνητικές επιφάνειες. Συγκεκριμένα, λύνοντας τις (4.25) και (4.28) ως προς \( \Delta^* \psi \) και αντικαθιστώντας τις (4.20) και (4.21) προκύπτει ότι οι συνιστώσεις \( \eta_1 \) και \( \eta_2 \) εξαρτώνται ρητά και από το \( R \) και το \( |\nabla \psi| \) όσον αφορά το \( \eta_1 \) επιπρόσθετα της \( \psi \). Παράλληλα, όπως θα δούμε στο εδάφιο 4.4, τα προφίλ των συνιστώσων της ειδικής αντίστασης έχουν σχήμα παρόμοιο με την περίπτωση που η ειδική αντίσταση οφείλεται στις χρονικές μεταξύ των σωματιδίων (collisional-like), δηλαδή παρουσιάζουν ένα ελάχιστο στην περιοχή του μαγνητικού άξονα, πάνω πολύ μεγαλύτερα τιμής στην επιφάνεια του πλάσματος και ισχύει ότι \( \eta_2 > \eta_1 \).

Συνοψίζοντας αυτό το εδάφιο, η MHD ισορροπία αξονικά συμμετρικού πλάσματος με ανισοτροπική ειδική αντίσταση και τοροειδή ροή εκφράζεται μέσω μιας ελλειπτικής διαφορικής εξίσωσης για τη συνάρτηση πολεοιδίων μαγνητικής ροής (Εξ. (4.25) για «συμπιεστή» ροή και Εξ. (4.28) για ασυμπιεστή), με εξίσωση τύπου Bernoulli για την πίεση και αυτοσυνεπεις εκφράσεις για τις συνιστώσεις της ειδικής αντίστασης \( \eta_1 \) και \( \eta_2 \). Οι εξισώσεις (4.25) και (4.28) περιέχουν τέσσερις ποσότητες επιφανείας τρεις από τις οποίες, δηλαδή οι \( P_s \), \( I \) και \( \omega \), είναι κονές. Η τέταρτη είναι η θερμοκρασία, \( T \), για την περίπτωση «συμπιεστής» ροής και την πυκνότητα, \( \varrho \), για την περίπτωση ασυμπιεστής. Επιπλέον, ας σημειωθεί ότι για μηδενική ροή οι εξισώσεις (4.25) και (4.28) ανάγονται στην εξίσωση Grad-Schlüter-Shafranov.
4.3 Ακριβείς λύσεις

Γραμμικοποιημένες μορφές των (4.25) και (4.28), σε συνδυασμό με κατάλληλη επιλογή των ελευθερών ποσοτήτων επιφανείας που περιέχονται στις αυτές, μπορούν να λυθούν αναλυτικά. Στα επόμενα δύο υποεδάφη θα εξεταστούν οι δύο επιλογές καταστατικής εξίσωσης που προαναφέρθηκαν (ισόθερμες μαχητικές επιφάνειες και ασυμπίεστη ροή).

4.3.1 «Συμπιεστή» ροή

Οι ελευθερές ποσότητες επιφανείας επιλέχθηκαν, και αναλογία με τις αντίστοιχες της περίπτωσης ιδιαίτερου πλάσματος του κεφαλαίου 3, ως εξής:

\[
I^2 = I_0^2 + I_0^2 \psi^2, \\
R^2 = 2P_0 \psi^2, \\
\frac{\omega^2}{\lambda T} = \frac{\gamma M_0^2}{R_0^2} = \text{σταθερά.}
\]

(4.29)

Η φυσική σημασία της χάρη παραμέτρου είναι όμως με αυτή που έχει η χάρη μα στο κεφαλαίο 3, δηλαδή \( I_0/R \) είναι το τοροειδές μαχητικό πεδίο κενού, η παράμετρος \( I_1 \) χαρακτηρίζει τις μαχητικές ιδιότητες του πλάσματος, \( P_0, \gamma \) και \( M_0 \) είναι μια παράμετρος πίεσης που χαρακτηρίζει την πίεση στο μαχητικό άξονα, ο λόγος των εδώσων θερμοκηπίων και ο αριθμός Μαχ ως προς τη ταχύτητα του ήχου σε συγκεκριμένο σημείο \( z = 0, R = R_0 \), με το \( R_0 \) να ορίζεται αργότερα, αντίστοιχα.

Με χρήση των παραπάνω επιλογών των ελευθερών ποσοτήτων επιφανείας, η εξίσωση (4.25) επιδείκνυται αναλυτική λύση με βάση τη μέθοδο του χωρισμού των μεταβλητών της μορφής \( R(R), Z(z) \), όταν η σταθερά διαχωρισμού επιλεγεί ίση με \( R_0 I_1 \). Η συμπιεστική ως προς το μεσοεπίπεδο \( z = 0 \) λύση παίρνει τη μορφή:

\[
\psi(x, y) = C_1 \left[ J_0 \left( \frac{2\tau \sqrt{\frac{e^{-\gamma M_0^2}}{2}}}{\gamma M_0^2} \right) + C_2 Y_0 \left( \frac{2\tau \sqrt{e^{-\gamma M_0^2}}}{\gamma M_0^2} \right) \right] \cos(R_0 I_1 y),
\]

(4.30)

όπου \( x = R/R_0 \) και \( y = z/R_0 \), \( J_0 \) και \( Y_0 \) είναι οι μηδενικής τάξης πρώτου και δευτέρου είδους συναρτήσεις Bessel αντίστοιχα και \( \tau = 4I_0 P_0 \).
4.3.2 Ασυμμετρία ροή

Σε αυτή την περίπτωση η επιλογή των ποσοτήτων επιφάνειας έγινε ως εξής:

\[
I^2 = I_0^2 + I_1^2 \psi^2, \\
P_s = 2P_0 \psi^2, \\
(\omega^2)' = \left[ \frac{K^2}{\psi R^4} \right]' = 2A \psi.
\] (4.31)

Από τη τρίτη των εξισώσεων (4.31) και σε συνδυασμό με την (4.17) προκύπτει ότι η παράμετρος \( A \) συνδέεται με την πυκνότητα, το ηλεκτρικό πέδιο και τη μεταβολή στα profile τους (διάτμησης) κάθετα στις μαγνητικές επιφάνειες \((\omega^2)' \neq 0\). Αμβλύνοντας υπόψη την πολυκότητα του ηλεκτρικού πεδίου \( E_{pol} \) και τη διάτμηση του, από τις οποίες εξαρτάται η παράμετρος ροής, συμπεραίνουμε ότι η \( A \) μπορεί να πάρει είτε θετικές είτε αρνητικές. Αυτή η δυνατότητα είναι σημαντική διαφορά σε σχέση με την περίπτωση «συμμετρίας» ροής στην οποία ο όρος ροής (4.29) δεν εξαρτάται από τη διάτμηση \((\omega^2/\lambda T)' = 0\). Επίσης, ας σημειωθεί ότι αντίθετα με το \( M_0 \), η \( A \) είναι διαστατική ποσότητα.

Μια αναλυτική λύση μέσω της μεθόδου χωρισμού των μεταβλητών εκφράζεται μέσω των συναρτήσεων \( Ai \) και \( Bi \) ως:

\[
\psi(x, y) = C_1 \left[ Ai \left( \frac{AR_0}{4} \right)^{-2/3} \left( \frac{AR_0^6}{4} x^2 - P_1 R_0^4 \right) \right] + C_2 Bi \left( \frac{AR_0}{4} \right)^{-2/3} \left( \frac{AR_0^6}{4} x^2 - P_1 R_0^4 \right) \cos (R_0 I_1 y). \] (4.32)

Με βάση τις λύσεις (4.30) και (4.32) ενδιαφέρομαστε για στάσεις καταστάσεις tokamak στο οποίο το πλάσμα περιορίζεται από αγώνια τοιχώματα τετραγωνικής διατμήσης, όπου φαίνεται στο σχήμα 3.1.

Επιπλέον, υποθέτουμε ότι το τοίχωμα συμπίπτει με την εξώτατη μαγνητική επιφάνεια. Άρα, το μαγνητικό πέδιο είναι εφαρμοσμένο στο τοίχωμα και η πίεση πρέπει να μηδενίζεται σε αυτό. Συνεπώς, η \( \psi \) θα πρέπει να ικανοποιεί τις ακόλουθες συνθήκες:

\[
\psi(y_\pm) = 0 \] (4.33)

και

\[
\psi(x_\pm) = 0, \] (4.34)
κεφάλαιο 4. Αξονικά σύμμετρικά ισορροπία με 
ανισοτροπική ασημιστή και τοροειδή ροή

όπου \( y_\pm = \pm a/R_0 \) και \( x_\pm = 1 \pm b/R_0 \). Ετσι η ισορροπία γίνεται πρόβλημα συνοριακών συνθηκών. Οι ιδιοκαταστάσεις προσδοκίζονται από την εφαρμογή των (4.33) και (4.34) στις (4.30) και (4.32). Συγκεκριμένα, εφαρμόζοντας την (4.33) στο μέρος των λύσεων που εξαρτάται από τη ε συντεταγμένη, το οποίο είναι χωρό για «συμπίεση» και ασυμπίεστη ροή, προκύπτουν οι ιδιοτήτες:

\[
I_1^\ell = \frac{1}{a} \left( \ell \pi - \frac{\pi}{2} \right), \quad \ell = 1, 2, \ldots
\]

(4.35)

για την παράμετρο \( I_1 \) η οποία, όπως είδαμε, σχετίζεται με τη συνάρτηση πολυειδούς πυκνότητας ρεύματος \( I(\psi) \). Οι αντίστοιχες ιδιοσυναρτήσεις συνδέονται με σχηματισμούς που έχουν \( \ell \) μαγνητικούς άξονες παράλληλα στον άξονα συμμετρίας. Αντίστοιχα, η συνθήκη (4.34) εφαρμόζεται στο μέρος των λύσεων στην \( R \) διεύθυνση. Λόγω της ροής αυτό το χομάτιο περιέχει τις παραμέτρους \( M_0 \) για «συμπίεστη» ροή και \( A \) για ασυμπίεστη, πλέον της παραμέτρου πίεσης \( P_0 \). Ετσι λοιπόν, μέσω της συνθήκης (4.34) είναι δυνατό να προσδοκηστούν είτε ιδιοτήτες ροής και συνάρτηση της παραμέτρου πίεσης \( P_0 \), \( F^n(P_0) \) με \( n = 1, 2, 3, \ldots \) και \( F \) να αντιστοιχεί είτε στην \( M_0 \) είτε στην \( A \), ή εναλλακτικά ιδιοτήτες πίεσης και συνάρτηση της αντίστοιχης παραμέτρου πίεσης \( P_0^\ell(F) \). Οι παράμετροι \( C_1 \) και \( C_2 \) χρησιμοποιούνται για την κανονικοποίηση της \( \psi \) ως προς το μαγνητικό \( \dot{\xi} \) και την κανονικοποίηση της συνθήκης (4.34) αντίστοιχα. Οι ιδιοσυναρτήσεις \( \psi \) της συνάρτησης με τις \( F^n(P_0) \) (ή \( P_0^\ell(F) \)) αντιστοιχούν σε σχηματισμούς με \( n \) μαγνητικούς άξονες κάθετα στον \( \dot{\xi} \) συμμετρίας. Συνεπώς, οι συνολικές ιδιοσυναρτήσεις \( \psi_{en} = Z_0(z)R_n(R) \) περιγράφουν πολυτοροειδείς σχηματισμούς με \( \ell \) και \( n \) μαγνητικούς άξονες.

Με βάση τις παραπάνω λύσεις, μπορεί να εξεταστεί η επίδραση της ροής στις συνιστώσες της ειδικής αντίστασης \( \eta_\parallel \) [Εξ. (4.20)] και \( \eta_\parallel \) [Εξ. (4.21)] στο ηλεκτρικό πεδίο κάθετα στις μαγνητικές επιρροές \( \dot{E}_{pol} = -\nabla \Phi = -\Phi \nabla \psi \) και στην πυκνότητα του τοροειδούς ρεύματος \( \dot{J}_0 \) [Εξ. (4.11)] για «συμπίεση» και ασυμπίεστη ροή. Πρέπει να τονιστεί εδώ ότι η επίδραση της ροής συνδέεται άμεσα με το τοροειδές σχήμα και αυτό δίνει στο άρμο μολύ μεγάλου λόγου ύψους, οι εξισώσεις ισορροπίας δε περιέχουν την \( \dot{\varepsilon} \) συναστάση της ροής ανεξάρτητα της συμπίεστης. Όπως, για κυλινδρικό πλάσμα τυχαία διατομή οι εξισώσεις αντίστοιχες των (4.22) και (4.23) γράφονται:

\[
\bar{B} \cdot \nabla P = 0
\]

(4.36)

\[
\nabla^2 \psi + \left( P + \frac{B^2}{2} \right)' = 0.
\]

(4.37)
4.4 Επίδραση της ροής και του λόγου ύφες στην ισορροπία

Οι ποσότητες μέσω των οποίων θα εξεταστεί η επίδραση της ροής και του λόγου ύφες στην ισορροπία είναι οι συνατότητες της αγωγικότητας, και θα εξεταστεί η επίδραση της ροής μέσω της μεταβολής των παραμέτρων ροής που μπορεί να επηρεάσει την ισορροπία. Για κάθε τιμή του αριθμού Mach, η απόδοση του καμακτήτρων ανοιγμάτων είναι μεταβολή παραμέτρων, ενώ η απόδοση των παραμέτρων ροής μπορεί να τροφοδοτηθεί από την χρήση της είδος νεύρων, καθώς και από την χρήση των αναλυτικών μεθόδων. Καθώς και από την χρήση των αναλυτικών μεθόδων.
Σχήμα 4.1: Η ιδιωσυνάρτηση \( \psi_1 \) για λόγο όψης \( \alpha = 3 \) και για «συμπευστή» ροή μέσω της οποίας εξετάζεται η επίδραση της ροής στην ισορροπία.

*Ενημερωθείτε περαιτέρω στο κεφάλαιο.*
Σχήμα 4.2: Ένα σύνολο γραφικά προσθέτει την ταλάντωση των profile της $\sigma_\perp$ στο μέσοπεπίπεδο $z = 0$, χαρακτηριστικά ως προς μια σταθερή τιμή $\sigma_\parallel$, για «συμπεστή» ροή όταν η τιμή της συνάρτησης $\psi$ στο μαγνητικό άξονα εξαρτάται από τη ροή και ο αριθμός Mach αυξάνεται: a) $M_0 = 0.1$, b) $M_0 = 0.2$, c) $M_0 = 0.5$ και d) $M_0 = 0.6$. Ο λόγος όψης είναι $\alpha = 2$.

λες ποσοτικές αλλαγές στις περισσότερες φυσικές ποσότητες για μεγάλες τιμές του $M_0$ ($M_0 \approx 1$) ή μικρές τιμές της παραμέτρου $A$ ($A \approx -0.01$) και έτσι πάλι, νότατα υπερεκτιμάται η επίδραση της ροής. Επιπλέον ας σημειωθεί ότι, εκτός από την αγωγιμότητα, η αύξηση του $M_0$ έχει ποιοτικά το ίδιο αποτέλεσμα στην ισορροπία και στις άλλες φυσικές ποσότητες που εξετάστηκαν με την μείωση της παραμέτρου $A$.

Τα αποτελέσματα που αφορούν τα χαρακτηριστικά των ποσοτήτων $\sigma_\perp$, $\sigma_\parallel$, $E_{pol}$ και $J_\phi$ μικρώς και η επίδραση της ροής και του λόγου ύφες $\sigma$ αυτές παρουσιάζονται στα επόμενα υποεξάρτημα.
4.4.1 Συνιστώσες της αγωγιμότητας

Τα profile των συνιστωσών της αγωγιμότητας στην πολυειδή διατομή, έχουν σχήμα παρόμοιο με αυτό που θα είχαν αν οφείλονταν σε κρούσεις μεταξύ των χρονικών διαστήματων, δηλαδή έχουν μέγιστο στην περιοχή που βρίσκεται ο μαγνητικός άξονας, μηδενίζοντας στο σύνορο και στις περισσότερες περιπτώσεις μειώνεται στο σχήμα 4.3 για «συμπιεστή» ροή και στο σχήμα 4.4 για ασυμπίεστη. Στην στατική περίπτωση και για λόγο όφες α = 3 προχωρεί Δσ/σ|| = (σ|| − σ⊥)/σ|| = 0.2122, ενώ για τη συνήθη κλίμακα στην περίπτωση σφαιρικής αντιστροφής πεδίου (reversed field pinch), B0 ≈ Br, η τιμή αυτή διπλασιάζεται. Επίσης, για α = 3, αύξηση του αριθμού Mach από 0.1 σε 0.7 έχει σαν αποτέλεσμα μια ποσοστιαία μείωση του Δσ κατά 4%, ενώ μείωση της A από -0.001 σε -0.01 επιφέρει αύξηση στο Δσ κατά 3.4%

![Profile 

Σχήμα 4.3: Σε αυτό το γράφημα φαίνεται το σχήμα του profile των συνιστωσών στην πολυειδή διατομή. Επίσης, φαίνεται και η αύξηση της τιμής των μέγιστων των συνιστωσών στα χωδώς και η μετατόπιση τους προς τα έξω για «συμπιεστή» λόγω της αύξησης του αριθμού Mach M0.

Περαιτέρω, η αύξηση του αριθμού Mach ή της παραμέτρου A συνεπάγεται αύξηση στις τιμές των μέγιστων των συνιστωσών της αγωγιμότητας. Συγκεκριμένα, για α = 3, αύξηση του M0 (από 0.1 σε 0.7) οδηγεί σε ποσοστιαία αύξηση των μέγιστων των στα χωδώς κατά 9% και 7% αντίστοιχα. Φαίνεται ασυμπίεστη ροή οι αντίστοιχες μείωσεις, λόγω της αναφερόμενης μεταβολής του A (από
Σχήμα 4.4: Σε αυτό το γράφημα φαίνεται το σχήμα του profile χαλώς και η μείωση της τιμής των μεγίστων των συνιστώσων σ_⊥ και σ_|| λόγω της μείωσης των τιμών του A για ασυμπίεστη ροή. Επίσης είναι εμφανείς ότι το σήμερα του μεγίστου μένει ανεπτυσσόμενο από την παράμετρο ροής A.

-0.001 σε -0.01) και για α = 3 είναι 27% και 33%. Εξετάζοντας την επίδραση της ροής στο σήμερα του μεγίστου, παρατηρούμε ότι χαλώς ο αριθμός Mach, M₀, αυξάνεται, η θέση του μεγίστου μετατοπίζεται προς τα εξω σε σχέση με τον άξονα συμμετρίας. Αντίθετα, κατά τη μεταβολή του A η θέση του μεγίστου παραμένει σχεδόν ανεπτυσσόμενη [70] (δες σχ. 4.3 και 4.4). Για παράδειγμα, στην περίπτωση που ο λόγος ύφους είναι 3 η θέση του μεγίστου της συνιστώσας σ_⊥ μετατοπίζεται από το σήμερα 1.119 στο 1.151 (για μεταβολή του M₀ από το 0.1 στο 0.7 όπως πάντα).

Το επόμενο βήμα ήταν η μελέτη της επίδρασης του λόγου ύφους στις συνιστώσες της αγωγιμότητας. Τα παρακάτω αποτελέσματα αφορούν την επίδραση του ύφους στη μείωση του λόγου ύφους. Συγκεκριμένα, η μείωση του Δσ γίνεται μεγαλύτερη όταν το M₀ αυξάνεται. Αντίθετα, τόσο μικρότερη γίνεται η αύξηση του Δσ όσο το A μειώνεται. Περαιτέρω, η αύξηση των τιμών των μεγίστων των συνιστώσων σ_⊥ και σ_|| που αντιστοιχεί στην αύξηση είτε του M₀ είτε της A γίνεται μεγαλύτερη. Επίσης, η μετατόπιση των θέσεων των μεγίστων αυξάνει για την αντίστοιχη αύξηση του M₀. Τα παραπάνω γίνονται ποι εκάθαρα εάν τα παρακάτω αποτελέσματα για α = 2 συγχρονούν με αυτά που παρουσιάστηκαν πιο πάνω για α = 3:

- Η μείωση του Δσ για «συμπίεστη» ροή είναι 13%.
4.4.2 Ηλεκτρικό πεδίο

Η χωκλική συγνότητα, η οποία όπως είδαμε είναι ποσότητα επιφάνειας, μπορεί να επιλεγεί ως:

\[ \omega = \omega_0 \psi^n, \]

όπου η παράμετρος \( n \) χρησιμοποιείται για τον έλεγχο του σχήματος του profile. Το ηλεκτρικό πεδίο στην πολυειδή διατομή δίνεται από τη σχέση \( E_{pol} = -\Phi \nabla \psi \), η οποία με τη βοήθεια της (4.17) γίνεται:

\[ E_{pol} = -\omega_0 \psi^n \nabla \psi. \]

Από αυτή τη σχέση προκύπτει ότι το profile του \( E_{pol} \) στην πολυειδή διατομή εμφανίζει δύο τοπικά ακρότατα, εντός του όγκου του πλάσματος, εκτείνοντας του μαγνητικού άξονα με αντίθετο πρόσημο. Το τελευταίο χαρακτηριστικό μπορεί να αναγνωριστεί και από έναν απλό έλεγχο της (4.30), μεα στη μια πλευρά του σχηματισμού η παράγωγος της \( \psi \) είναι θετική, ενώ στην άλλη αρνητική. Αυτό το σχήμα του profile έχει παρατηρηθεί σε πειράματα με εσωτερικά φράγματα μεταφοράς. Profile του \( |E_{pol}| \) στο μεσοεπίπεδο \( y = 0 \) φαίνεται στο σχήμα 4.5. Η αύξηση του \( M_{0} \) ή η μείωση της \( \Lambda \), οδηγεί σε αύξηση των τιμών των δύο τοπικών ακροτάτων με αυτό που βρίσκεται εξωτερικά του μαγνητικού άξονα να αυξάνεται περισσότερο, σε σχέση με αυτό που βρίσκεται μεταξύ άξονα συμμετρίας και μαγνητικού άξονα. Περαιτέρω, οι θέσεις των μεγαλύτερων μετατοπίζονται προς τα έξω. Για «συμπειστή» ροή τα αποτελέσματα
Σχήμα 4.5: Profile της απόλυτης τιμής του ηλεκτρικού πεδίου στο μεσοεπίπεδο \( z = 0 \) για «συμπιεστή» ροή. Στο γράφημα ραίνεται η αύξηση των τοπικών μεγίστων του \( E_{\text{pol}} \). Ειδικότερα για το μέγιστο στην εσωτερική πλευρά η αύξηση είναι μικρότερη απ’ ότι γι’ αυτό στην εξωτερική πλευρά του σχηματισμού. Επίσης, είναι εμπιστευτική η μετατόπιση της θέσης των μεγίστων προς τα έξω σε σχέση με τον αξόνα συμμετρίας καθώς ο αριθμός Mach αυξάνει από 0.1 σε 0.8. Το σημείο μεταξύ των δύο ακροτάτων όπου \( E_{\text{pol}} = 0 \) αντιστοιχεί στη θέση του μαγνητικού άξονα. Στα σχήματα χρησιμοποιήθηκαν οι ακόλουθες τιμές των παραμέτρων: \( \alpha = 2 \) και \( n = 3 \).

Αυτά επιδεικνύονται στο σχήμα 4.5. Ποσοτικά, για \( \alpha = 3 \) οι μέγιστες τιμές του profile του \( |E_{\text{pol}}| \) αυξάνονται κατά 4% για «συμπιεστή» ροή (αύξηση του \( M_0 \) από 0.1 σε 0.7) και κατά 5.6% για ασυμπιεστή (μείωση της \( A \) από -0.001 σε -0.01). Ωστόσο μειώνεται ο λόγος όφης τόσο μεγαλώνει η αύξηση των μεγίστων και η μετατόπιση της θέσης τους. Σε υποκείμενα ως αναφερθεί ότι για \( \alpha = 2 \) η αύξηση του μεγίστου του \( |E_{\text{pol}}| \) γίνεται 15% στη «συμπιεστή» περίπτωση με τη μεγαλύτερη αύξηση να παρατηρείται για τιμές του \( M_0 \) μεγαλύτερες από 0.8. Αντίστοιχα, το ποσοστό της αύξησης στην περίπτωση ασυμπιεστή ροής ανέρχεται σε 9%. Η παράμετρος \( n \) που σχετίζεται με το profile της κυκλικής συγκρότησης, \( \omega \), επιδρά στις τιμές των ακροτάτων καθώς και στο σχήμα του profile του πολοειδούς ηλεκτρικού πεδίου. Συγκεκριμένα, καθώς οι τιμές της \( n \) αυξάνονται τα μέγιστα του \( |E_{\text{pol}}| \) παίρνουν μικρότερες τιμές, ενώ το σχήμα του
κεφάλαιο 4. αξονικά συμμετρικά ισορροπία με ανίσοτροπική αιωνιότητα και τοροειδή ρόη

profile γίνεται περισσότερο εντοπισμένο και εμφανίζει μεγαλύτερη κλίση (Σχ. 4.6), πράγμα που σημαίνει ότι η διάταξη του ηλεκτρικού πεδίου, που ορίζεται ως $S_{E_r} = \partial E_r / \partial x$, αυξάνεται.

Σχήμα 4.6: Profile του ηλεκτρικού πεδίου στο μεσοπέδιο $z = 0$ για $\alpha = 3$, $M_0 = 0.4$ και δύο τιμές της παραμέτρου $n$: $n = 1$ και $n = 3$.

4.4.3 Τοροειδής πυκνότητα ηλεκτρικού ρεύματος

Η τοροειδής συνιστώσα της πυκνότητας του ηλεκτρικού ρεύματος, όπως συνεπάγεται από την εξίσωση (4.11), δίνεται από τη σχέση:

$$J_\phi = \frac{1}{R} \Delta^* \psi.$$  (4.40)

Με βάση την παραπάνω σχέση προκύπτει ότι το profile του $J_\phi$ είναι χαμηλούς μορφώς, με το μέγιστο του στην περιοχή του μαγνητικού άξονα, ενώ μηδενίζεται στην επιφάνεια του πλάσματος (Σχ. 4.7). Η επίδραση της ροής στο $J_\phi$ είναι παρόμοια με την επίδραση που η πρώτη έχει στο $E_{pol}$, δηλαδή καθώς το $M_0$ αυξάνεται ή η $A$ μείωνται, το μέγιστο του profile του $J_\phi$ αυξάνεται και η θέση του μετατοπίζεται προς το εξωτερικό του σχηματισμού. Επίσης, η μείωση του λόγου ύψης ενισχύει και σ' αυτή την περίπτωση την επίδραση του
Σχήμα 4.7: Profile της τοροειδούς πυκνότητας ηλεκτρικού ρεύματος στο μεσαίο υπόπτερο \( z = 0 \) στην περίπτωση «συμπιεστής» ροής. Συγκρίνοντας τις δύο καμπύλες φαίνεται η αύξηση του μεγέθους του και η μετατόπιση προς τα έξω της θέσης του με την αύξηση του αριθμού Mach, \( M_0 \), από το 0.1 στο 0.8. Ο λόγος όψης επιλέχθηκε \( \alpha = 2 \).

έχει η ροή. Συγκεκριμένα, για \( \alpha = 3 \) και \( \alpha = 2 \) η μέγιστη τιμή της πυκνότητας ρεύματος αυξάνεται κατά 8% και 35.5% αντίστοιχα, για «συμπιεστής» ροή. Οι αντίστοιχες τιμές στην περίπτωση ασυμπιεστής ροής είναι 5.6% και 18%.

4.5 Συμπεράσματα

Σε αυτό το κεφάλαιο μελετήσαμε την ΜΗΔ ισορροπία ενός άξονικα συμμετρικού, μαγνητικά περιορισμένου πλάσματος με ανισοτροπική ειδική αντίσταση και τορειοδή ροή. Η μοναδική εξωτερική πηγή ενέργειας ήταν η σταθερή τοροειδής εξωτερική τάση. Η ισορροπία χαρακτηρίζεται στάσιμη λόγω του ότι ο όρος ροής στην εξίσωση ορμής δε θεωρείται αμελητέος. Επιπλέον, στην ισορροπία δεν υπάρχει διάχυση Pfirsch-Schlüter ex κατασκευής (δεν υπάρχει συνιστώσα της ροής χάθεται στις μαγνητικές επιφάνειες). Το ηλεκτρικό πεδίο, σε αντιδιαστολή με την περίπτωση ροής παράλληλη στο μαγνητικό πεδίο, εμφανίζει και μια μήδενικη συνιστώσα, \( E_{pol} \), χάθετα στις μαγνητικές επιφάνειες. Η
meléthē peri lámbanētai «symmipéstē» roh μe metaβληtē symvōnta, allá staθerē ϑeromochrasiā páw stis μaghntikēs epiφanēies kai asumπmēstē roh μe staθerē symvōnta, allá metaβληtē ϑeromochrasiā páw s’ autēs. Proékumei òti ois kathastásies isopropías kathorizōntai apó mia exiōssē Bernoulli gia tēn píse (Eζ. (4.24) kai (4.27)), mia eksapetiá diáforikē eξisōsē γi tēn súnurtēse poluoiódos μaghntikēs rohēs (Eζ. (4.25) kai (4.28)) kathws kai dúo sχēmatiç gia tis súnurtásōs tis exiōsson antíaσtasths káthea kai παράλληla stō μaghntikō pedio, η (Eζ. (4.20)) kai η (Eζ. (4.21)) antistoiχh. Lōgoi tis exiōsson sωmatiās kai tis diáuthynsēs tis rohēs, oi exiōssēs isopropías einan órmoes me tis antistoiχh tis iðánikhς MHD tōs xeruapaliōs 3 (Eζ. (3.17) kai (3.18)).

Eπīsēs, proékumei òti tē eπiδραsēs tis rohēs energopoietā mevōn ótōn o schmatiσμός einai toροητής kai autò idioi oi ananhmēnes exiōssēs isopropías sthēn περιπτώση xulīνης sωmatiās diēuexeisōs tōn ρόρος hēs.

H isopropía toksanakī plásmatos, to oπoio einai περιορισμένo sthēn polosēdhi diakotē apó agōγhē taixhmatā orphugōnou schēmatos, melētēthēkie mésoi iðiounarkthēnai isopropías pou proékumpan apò exiōssēs kai sψoγhēs sthēn περιπτώση «symmipéstē» kai asumπmēstē rohēs. Autēs ois iðiounarcthēnes turorhōn na perigráphōn eite apλa eite polλa polrosēδ schmatiσμων. Γia apla toροητες schmatiσmous ezeústakhan tα xaracteristikēs tōn sunisWTωn tis agiōmmhētōn, s⊥ kai s∥, to ρελητρικό pedio sthēn polosēdhi dieυthunsi, Epol, kaihōs kai h toροητής symvōnta tou ρελητρικού ῥεύμatos kai melētēthēke h eπiδραsēs tis rohēs kai tou lóγου όψης se autēs. H eπiδραsēs tis rohēs melētēthēke mésoi tis metαbholhς tōn parramētron rohēs, dih. to arithmou Mach ωs proς tη tαχυτητη tis ἁχρηστης rohēs kai tης παραμετρον Α, pou schetiketa me tη symvōnta mazas, to ρελητριστικό υναμικο kai to profile tōs kathēs sthēs μaghntikēs epiφanēies gia asumπmēstē. Pēra apò tēn agōghēs óti h melētē pragmatopoushēke gia apla toροητες schmatiσmous, ois iðiounarkiσhēnes htnan xanovnikoinvmenes ētai ότα na tη tαµη tουs τάνω sthēn μaghntikō āzonas na einai staθerē kai ish me monαda, anevēkhtēta tis rohēs. Autō ēgōn na aπoφρηχθη ἡ μη διακολουθήση, apò ψωstikē skopē, talantwstēs tōn posotithōn upo melētē lōgō tis antistoiχhς talantwsths tōn lύseωn. Eπιπλην, gia na upārchei xōnē bōsē sýnxrasis tōn apotelesmαtōn gia symπmēstē kai asumπmēstē rohē, ληφθη ἡ tαµη ἢ tης metαbholhς tōn parramētron rohēs na antistoiχh kai tēn idia tαµή tōn πρώτηs tāξηs iðiotoymōn tis πίσης.

Pαρόλo pou ois sūnuntásōs tis agiōmmhētōs dein turorhōn na einai staθerēs tānō sthēs μaghntikēs epiφanēies (autō προκύπτει apō mia γενική eξίσωσι tōn eξίσωσωn isopropías) tē profile échōn se γενικές γραμμές σχήμα υμνοi
με της περίπτωσης που αυτές οφείλονται στις χρονικές μετατάσεις των σωματιδίων (collisional-like), δηλαδή παρουσιάζουν μέγιστο στην περιοχή του μαγνητικού άξονα, μηδενίζονται στην επιφάνεια του πλάσματος και στις περισσότερες περιπτώσεις ισχύει ότι $\sigma_\parallel > \sigma_\perp$. Η επίδραση της ροής στις συνιστάσεις της αγωγομοντής εξαρτάται από την «συμπιεστότητα». Συγγενεία, η τιμή του μεγίστου του profile των συνιστώσων $\sigma_\perp$ και $\sigma_\parallel$ αυξάνεται, καθώς ο αριθμός Mach αυξάνει και η θέση των μεγίστων μετατοπίζεται προς το εξωτερικό του σχηματισμού, ενώ καθώς η παράμετρος A μειώνεται, οι τιμές των μεγίστων μειώνονται επίσης και η θέση τους παραμένει πρακτικά ανεξήγητη. Επίσης, όσο μεγαλύτερος ο $M_0$ τόσο μικρότερη η διαφορά $\sigma_\parallel - \sigma_\perp$, ενώ όσο μικρότερη η A τόσο μεγαλύτερη αυτή η διαφορά. Για δεδομένη τιμή της παραμέτρου ροής, όσο μικρότερος ο λόγος ύφες τόσο μικρότερη η τιμή του μεγίστου των profile των $\sigma_\parallel$ και $\sigma_\perp$ στην περίπτωση «συμπιεστότητα» ροής, ενώ για ασυμπίεστη ροή οι τιμές των μεγίστων γίνονται μεγαλύτερες. Παίδευονται αύξηση του $M_0$ (μείωση της A), η οποία όπως είδαμε αντιστοιχεί στην ίδια μεταβολή της τιμής των πρώτης τάξης ιδιοτήτων της πίεσης $P_0$, όσο μειώνεται ο λόγος α τόσο αυξάνεται (μειώνεται) η μεταβολή των $\sigma_\parallel$, $\sigma_\perp$ και της διαφοράς $\sigma_\parallel - \sigma_\perp$.

Το profile του $|\vec{E}_{pol}|$, στην περίπτωση που η κυκλική συχνότητα ροής, $\omega$, έχει profile χωροφοινικός μορφής με μέγιστο στον μαγνητικό άξονα και μηδενίζεται στην επιφάνεια του πλάσματος, στην πολεοδομή διατηρείται όρος μέγιστος εκατέρωθεν του μαγνητικού άξονα αντίθετου προσθήμου και μηδενίζεται στο σύνορο. Επιπλέον, όταν το μέγιστο της $\omega$ γίνεται μεγαλύτερο και το σχήμα του profile πιο εντοπισμένο, το profile του $|\vec{E}_{pol}|$ γίνεται επίσης περισσότερο εντοπισμένο, ενώ αντίθετα η τιμή των μεγίστων μειώνεται. Το profile της τοροαιδούς πυκνότητας ηλεκτρικού ρεύματος, $J_\phi$, έχει χωροφοινική μορφή με το μέγιστο στην περιοχή του μαγνητικού άξονα και μηδενίζεται στο σύνορο. Καθώς ο $M_0$ αυξάνεται η $A$ μειώνεται, τα τοπικά μέγιστα των profile των $|\vec{E}_{pol}|$ και $J_\phi$ παίρνουν μεγαλύτερες τιμές, ενώ οι θέσεις τους μετατοπίζονται προς το εξωτερικό του σχηματισμού. Για δεδομένη τιμή του $M_0$ καθώς ο $A$ μειώνεται τόσο αυξάνεται η τιμή του μεγίστου του $|\vec{E}_{pol}|$, ενώ μειώνεται η αντίστοιχη του $J_\phi$. Αντίθετα, για δεδομένη τιμή της A όσο μικρότερος ο $\alpha$ τόσο μεγαλύτερη η τιμή του μεγίστου του $|\vec{E}_{pol}|$ και μικρότερη η της $J_\phi$. Τελικά, για αύξηση του $M_0$ ή μείωση της $\alpha$, όσο μικρότερος ο λόγος ύφες τόσο μεγαλύτερη η μεταβολή του μεγίστου του $|\vec{E}_{pol}|$ και του $J_\phi$ καθώς επίσης και της θέσης τους.

Πιοτικά, εκτός από τις συνιστάσεις της αγωγομοντής, η επίδραση της ροής στο $\vec{E}_{pol}$ και στο $J_\phi$ είναι ανεξάρτητη από την «συμπιεστότητα». Η εξάρτηση των αποτελεσμάτων για τις $\sigma_\perp$ και $\sigma_\parallel$ από την «συμπιεστότητα» πιθανόν να οφει...
ΚΕΦΑΛΑΙΟ 4. ΑΞΟΝΙΚΑ ΣΥΜΜΕΤΡΙΚΗ ΙΣΟΡΡΟΠΙΑ ΜΕ ΑΝΙΣΟΤΡΟΠΙΚΗ ΑΠΩΜΟΤΗΤΑ ΚΑΙ ΤΟΡΩΙΔΗ ΡΟΗ

λεται στο γεγονός ότι η ασυμπίεστη λύση (4.32) έχει άρρητο ροή με μη μηδενική διάτμηση, σε αντίθεση με τη λύση (4.30) για «συμπίεστη» ροή. Ποσοτικά για \( \alpha = 2 \) η αύξηση του \( M_0 \) από 0.1 σε 0.5, ή η μείωση της \( A \) από -0.001 σε -0.006 έχει σαν αποτέλεσμα μια μεταβολή σε όλες τις ποσότητες (\( \sigma_\perp, \sigma_\parallel, \vec{E}_{pol} \) και \( J_\phi \)) μικρότερη από 10%.
Κεφάλαιο 5

Ανακεφαλαίωση-
Συμπεράσματα-Προοπτικές

Σε αυτό το κεφάλαιο θα πραγματοποιηθεί μια ανακεφαλαίωση της εργασίας και θα παρασιτιστούν συνοπτικά τα χειρότερα αποτελέσματά της. Επίσης, θα προταθούν επεκτάσεις που θα μπορούσαν να οδηγήσουν στην χαλάτερη κατανόηση της ισορροπίας μαγνητικά περιορισμένου πλάσματος, με εφαρμογή στις διατάξεις σύντηξης, που αποτέλεσε αντικείμενο της παρούσας διατριβής και ειδικότερα στην επίδρασή που έχει η μακροσκοπική ροή μάζας και η απόσβεση λόγω ηλεκτρικής αντίστασης στην ισορροπία.

5.1 Ανακεφαλαίωση

Το πρώτο χίονι μέρος της εργασίας αφορά τη μελέτη στάσεων ισορροπίας tokamak στο όριο απελουθούμενης ροής (κυλινδρικού πλάσματος). Σε αυτή την προσέγγιση αγνοούνται αφενός η επίδραση του τοροειδούς σχήματος καθώς και της επιμήκυυσης (επιλέγονται κυλινδρική ρολογιδή διατρομή). Τα χύρια χαρακτηριστικά της ισορροπίας είναι η αρνητική μαγνητική διάταξη και η διατηρημένη ταχύτητα ροής, που συνδέονται με το σχηματισμό εσωτερικών φαρμάκων μεταφοράς. Η μελέτη πραγματοποιήθηκε στα πλαίσια του μοντέλου των δύο ρευστών. Για τη μελέτη χρησιμοποιήθηκε ένα ελαφρώς απλούστερο σύστημα εξισώσεων για τα δύο ρευστά, στο οποίο η εξίσωση ορμής για το ηλεκτρονικό ρευστό αντικαταστάθηκε από την αντίστοιχη του MHD μοντέλου. Ο όρος ροής στη συγκεκριμένη εξίσωση αγνοήθηκε, με αυτό και σε κυλινδρική γεωμετρία για tokamak είναι πολύ μικρός. Έπειτα, περιγράφηκαν έξι ελεύθερες ποσότη-
κεφάλαιο 5. ανακεφαλαίωση-συμπερασματα-προοπτικές

tes, μετά από επιστημευτική μελέτη πειραματικών αποτελεσμάτων με εσωτερικά φράγματα μεταφοράς και έγινε δυνατός ο υπολογισμός, με αυτόσωνετή τρόπο, ορισμένων ποσοτήτων ισορροπίας που θεωρούνται σημαντικές για το σχηματισμό του φράγματος. Οι ποσότητες των οποίων τα profile περιγράφουν είναι: το τοποστήριο μαγνητικο κέντρο, ο παράγοντας ασφάλειας, το αντιστοιχείο σε διαμόρφωση αρνητικής διαίρεσης και η αρνητική πυκνότητα. Όσοι αφορά τα profile των συνιστώσων της προγώρισης της ταχύτητας ροής του αντικειμένου ευρετού στην τοποστήριο και πολοστήρι διεύθυνση και αυτά επιλέγοντα έτσι ώστε να υπάρχει συμφωνία με αντίστοιχα πειραματικά. Ειδικότερα για την τοποστήρι συνιστώσα χρησιμοποιήθηκαν δύο profile, ένα Gaussian σχήματος και ένα πολυοστού (με το μέγιστο στον άξονα συμμετρίας). Αντίστοιχα, για την πολοστήρι συνιστώσα επιλέγηκε Gaussian profile. Στην περίπτωση που το profile είναι Gaussian το μέγιστο του συμπλήτει με το ελάχιστο του παράγοντα ασφάλειας. Επιπλέον, η παραγωγική παράμετρου του Gaussian profile επιτρέπει τον έλεγχο της εκτάσεως στην πολοστήρι διατομή, που καταλαμβάνει τη ροή. Ετσι αυτή μπορεί να είναι επίσης εκτεταμένη σε σχεδόν όλη τη διατομή είτε εντοπισμένη σε ένα πολύ μικρό μέρος αυτής. Με βάση τις περιγραφές των παραπάνω ποσοτήτων βρέθηκαν αναλυτικές λύσεις των εξισώσεων ισορροπίας και υπολογιστήκαν η ολική πίεση του πλάσματος καθώς και οι μερικές πίεσες των δύο ρευστών, με- αυ των σχέσεων \( P_0 = \lambda P \) και \( P_1 = (1-\lambda)P \) όπου \( P \) η ολική πίεση, τη τοποστήρια πυκνότητα ηλεκτρικού ρεύματος, το ηλεκτρικό πεδίο, η διάταξη του και η διάτμηση της ταχύτητας \( \bar{E} \times \bar{B} \). Έπειτα και ειδικότερα για τις τρεις τελευταίες ποσότητες, που σερβούνται να συνδέονται με τα σχηματισμούν φαρμακητών μεταφοράς, εξετάστηκε η επίδραση που έχει σε αυτές η μαγνητική διάτμηση \( s \) για σχηματισμούς με μη μονωτικό προφίλ του παράγοντα ασφάλειας (αρνητικής μαγνητικής διάτμησης) καθώς και η διάτμηση των ταχύτητας ροής. Ωστόσο αφορά τη μελέτη της επιδράσης της διάτμησης αυτή πραγματοποιήθηκε με μεταβολή της παραμέτρου \( \Delta q = q - q_{\min} \) όπου \( q \) και \( q_{\min} \) οι τιμές του παράγοντα ασφάλειας στον άξονα και στο ελάχιστο του profile, ως προς την οποία η διάτμηση είναι ανάλογη με τη μεταβολή του \( q_{\min} \) καθώς και της θέσης αυτού. Αντίστοιχα οι παράμετροι που μεταβληθήκαν κατά τη μελέτη της επιδράσης της ροής είναι τα αριθμότα των profile και η παραμέτρου που ελέγχει την εκτάση της στην πολοστήρι διατομή. Συγκεκριμένα, αλλάζοντας αυτή την παράμετρο και κάνοντας τη ταχύτητα ροής από εκτεταμένη σε εντοπισμένη αυτό έχει ως αποτέλεσμα την αύξηση της διάτμησης της.

Στο δεύτερο χώρο μέρος μελετήθηκε τη ισορροπία ενός αξονικής συμμετρί-κου, μαγνητικής περιορισμού πλάσματος, με τοποστήρι ροή, περίληπτο από
αγώγυμα τοιχώματα ορθογώνιου σχήματος στην πολύεδρη διατομή, στα πλαίσια του ιδικού MHD μοντέλου. Αρχισαμοποιήσαμε την αξιολογία συμμετρία του συστήματος, το συγκεκριμένο διεύθυνση της ροής, το γεγονός ότι η απόκλιση
του μαγνητικού πεδίου πρέπει να είναι μικρό και προβλέπεται την εξίσωση ορι
μής και το γενικευμένο νόμο του Οιμι στις τρεις ανεξάρτητες διευθύνσεις κάθε πρώτα ολοκληρώματα αναγνωρίζονται ως ποσότητες επιφανειών και προσκύπτουν κάποιες απλούστερες εξισώσεις. Στις εξισώσεις του μοντέλου πρέπει να περι
λαμβάνεται και μια καταστατική εξίσωση ώστε το σύστημα να είναι κλειστό. Στην παρούσα εργασία χρησιμοποιήσαμε ιδίου επιλογές: η πρώτη είναι η μαγ
ητικές επιφάνειες να είναι υπόθεση, που έχει σαν συνέπεια η πυκνότητα μάζας να μην είναι σταθερή πάνω στις μαγνητικές επιφάνειες και η δεύτερη
επιλογή είναι να θεωρηθεί ασυμπίεστη ροή, οπότε η πυκνότητα προκύπτει στα
θερη πάνω στις μαγνητικές επιφάνειες, αλλά η θερμοκρασία μεταβάλλεται. Στην
πρώτη περίπτωση, η ροή θεωρείται συμπίεστη υπό την έννοια ότι η πυκνότητα
tα δεν είναι σταθερή πάνω στις μαγνητικές επιφάνειες. Με τη βοήθεια των
επιλογών αυτών και των πρώτων ολοκληρωμάτων έγινε αναγωγή των αρχικών
εξισώσεων συρροπίας σε απλούστερες. Εφαρμόζοντας τις συναφείς συνθήκες στην
πολυεδρική διατομή το πρόβλημα, από μαθηματικής απόλυσης, γίνεται
πρόβλημα ιδιωτικών και με βάση αναλυτικές και ακριβείς λύσεις1 εξετάστηκε η
επίδραση της ροής, «συμπίεστη» και «ασυμπίεστη», καθώς και του λόγου ύψους,
ως μέτρο εκτίμησης του τοροειδούς σχήματος, στη μαγνητική τοπολογία της
συρροπίας. Πέραν αυτής μελετήθηκε η επίδραση που έχει η ροή και ο λό
γος ύψους στη μετατόπιση Shafranov, που μετρά την απόσταση του μαγνητικού
άξονα από το γεωμετρικό κέντρο, καθώς και στα profile της πυκνότητας για
«συμπίεστη» και της θερμοκρασίας για ασυμπίεστη ροή. Σε όλες τις περιπτώ
σεις η μελέτη της επίδρασης της ροής πραγματοποιήθηκε με τη μεταβολή του
αριθμού Mach, Μ0, ως προς τη ταχύτητα του ήχου για «συμπίεστη» ροή και
μικρός παραμέτρου, Α, που σχετίζεται με την πυκνότητα, την κυκλική συγκέντρωση
περιστροφής του πλάσματος και τις διαμόρφωσή τους για ασυμπίεστη και την
εύρεση της αντίστοιχης ιδιοτήτως της πίεσης μηδενικής τάξης. Επίσης, υπολο
gιάστηκε και το profile του παράγοντα ασφάλειας και βρέθηκε ένας συσχετισμός
μεταξύ αρνητικής μαγνητικής διάτμησης και μαγνητικής τοπολογίας και κατ′
επέκταση ροής.

1Οι λύσεις είναι ακριβείς και αναλυτικές εξ’ αυτίς της συγκεκριμένης επιλογής του ορθο
γωνιού σχήματος των αγαθήματος τοιχώματος. Η επιλογή περισσότερο μεσοτικού σχήματος
(για παράδειγμα ελλιπτικού) θα είχε ως αποτέλεσμα οι αναλυτικές λύσεις να μην είναι ακριβείς, αφού η αντιπροσώπηση των συμφωνιών συνθηκών θα απαιτούσε την έκφραση
αυτών σε μορφή σειράς.
ΚΕΦΑΛΑΙΟ 5. ΑΝΑΚΕΦΑΛΑΙΩΣΗ-ΣΥΜΠΕΡΑΣΜΑΤΑ-ΠΡΟΟΠΤΙΚΕΣ

Στο τρίτο χίλιο μέρος εξετάστηκε η MHD ισορροπία αξονικά συμμετρικού πλάσματος, με ανισοτροπική εισχυρή αντίσταση και αμιγώς τοροειδή ροή. Η ισορροπία, ακριβώς λόγω της συγκεκριμένης διεύθυνσης της ροής, είναι ενεργώς απαλλαγμένη από διάχωρη Pfirsch-Schlüter. Ως μοναδική εξωτερική ενέργεια θεωρήθηκε η σταθερή εξωτερική ηλεκτρική τάση στη τοροειδή διεύθυνση. Όπως και στο δεύτερο μέρος, το πλάσμα θεωρήθηκε περίκλειστο από αγώνισμα τοιχώματα ορθογώνιου σχήματος στην πολεοδόμη διατομή. Με βάση τις εξισώσεις ισορροπίας, γενικά εξετάστηκε η δυνατότητα υπαρξής καταστάσεων με ομογενείς, σε σχέση με τη τιμή τους πάνω στις μαγνητικές επιφάνειες, συνιστώσες της εισχυρής αντίστασης, παράλληλη και κάθετα στις μαγνητικές επιφάνειες. Ειδικότερα, κατασκευάστηκαν ιδιωτικά συστήματα ισορροπίας τοκο-μακρινών αναλυτικών λύσεων2, οι οποίες περιγράφονταν είτε απλά είτε πολλαπλά τοροειδες σχηματισμούς, για δύο περιπτώσεις καταστατικής εξέλιξης, ίδια με τις αντίστασες του δεύτερου μέρους της χώρας εργασίας. Η διαδικασία που ακολουθήθηκε ώστε να επιτευχθεί ο παραπάνω σκοπός, καίτοι βασίζεται σε παρόμοια βήματα με αυτή του δεύτερου μέρους, παρουσιάζει πρόσθετες δυσκολίες λόγω της μη μηδενικής εισχύρης ηλεκτρικής αντίστασης. Λόγω της συμμετρίας και της διεύθυνσης της ροής, οι ανησυχίες εξισώσεων ισορροπίας είναι όμοιες με τις αντίστασες της περίπτωσης του ιδανικού MHD μοντέλου που παρουσιάστηκαν στο δεύτερο χίλιο μέρος της εργασίας. Με βάση λοιπόν, τις αναλυτικές και ακριβείς λύσεις και για απλά τοροειδες σχηματισμούς μελετήθηκαν τα χαρακτηριστικά των συνιστώσων της αγωγιμότητας του ηλεκτρικού πεδίου και της τοροειδούς πυκνότητας του ηλεκτρικού ρεύματος. Επίσης, εξετάστηκε η επίδραση που έχει η ροή, η φύση αυτής, «συμπίεση» ή ασυμπίεση, καθώς και η επίδραση του λόγου ύψους στα profile των παραπάνω ποσοτήτων. Η επίδραση της ροής μελετήθηκε μέσω της μεταβολής του ατιμήτου Mach ως προς την ταχύτητα του ήχου, για «συμπίεση» ροή και μιας παραμέτρου που σχετίζεται με την πυκνότητα, την κυκλική συγνότητα και τις διατιμήσεις τους για ασυμπίεση και εύρεση της αντίστοιχης γωνίας της πίεσης μηδενικής τάξης όπως και στην περίπτωση του δεύτερου μέρους.

2Οι λύσεις είναι ακριβείς και αναλυτικές εξ’ αστίας της συγκεκριμένης επιλογής του ορθογώνιου σχήματος των αγωγιμών τοιχώματων.
5.2 Συμπεράσματα

Ανάλογα με το προηγούμενο εδάφιο και στο παρόν θα παρουσιαστούν συνοπτικά τα χαρακτηριστικά συμπεράσματα της εργασίας, αντίστοιχα με τα τρία κεφάλαια του κύριου μέρους.

Όσον αφορά την κυλινδρική ισορροπία του πρώτου κεφαλαίου του κύριου μέρους της εργασίας (κεφ. 2) τα συμπεράσματα συνοψίζονται ως εξής:

1. Το profile της πίεσης των δύο ρευστών είναι χαροφρειδιώς σχήματος και η αύξηση της απόλυτης τιμής της μαγνητικής διάτμησης αυξάνεται, κατ’ απόλυτη τιμή, την κίνηση του.

2. Το profile της τοροειδούς πυκνότητας ηλεκτρικού ρεύματος είναι κυκλικό με το μέγιστο στην περιοχή του \( q_{\text{min}} \) και για κατάλληλες τιμές των παραμέτρων του \( q \) μπορεί να γίνει αρνητικό στην περιοχή εξωτερικά του \( q_{\text{min}} \) πράγμα που σημαίνει ότι το ρεύμα ανυποτερείται.

3. Το ηλεκτρικό πεδίο εμφανίζεται ένα αχρότατο στην περιοχή του \( q_{\text{min}} \). Η έκφραση του \( E_r \) αποτελείται από τρεις συνεισφορές, η πρώτη οφείλεται στη βαθμιά πίεσης, ενώ οι άλλες δύο στις συνιστώσες της ταχύτητας \( v_0 \) και τοροειδούς, \( v_z \). Η συνεισφορά καθενός από τους τρεις όρους είναι της ίδιας τάξεως μεγέθους. Η εξάρτηση από τη μαγνητική διάτμηση του ηλεκτρικού πεδίου είναι εικονοτερη λόγω του όρου της βαθμιάς πίεσης από την προφορά των όρων \( v_0 \). Η αύξηση της μαγνητικής διάτμησης \( v_0 \) αυξάνεται από αποτέλεσμα την αύξηση του αχρότατου σε όλες τις περιπτώσεις ταχύτητας \( q \) που εξετάστηκαν. Όσο η θέση \( E_r \) του ελαχιστού παράγοντα αφότερας μετατρέπεται προς το εξωτερικό το άξονα αυξάνεται η τιμή του μεγέθους, ενώ το δεύτερο συμβαίνει στην περιοχή \( s > 0 \) όσο αυξάνει η τιμή του \( q_{\text{min}} \). Όσο αυξάνεται η ταχύτητα \( v_0 \) και \( t \) αυξάνεται το αχρότατο του ηλεκτρικού πεδίου, ενώ όσο αυξάνεται η διάτμηση της ταχύτητας \( q_{\text{min}} \) γίνεται ελαφρός. Επίσης οι τιμές του πεδίου εξαρτώνται από το σχετικό προσανατολισμό των \( v_{iz}, v_{r0} \) και \( B_z \).

4. Η διάτμηση του ηλεκτρικού πεδίου, \( E_r \), και η διάτμηση της ταχύτητας \( \dot{E} \times B \), \( \omega_{exB} \), έχουν όμοια χαρακτηριστικά και θα παρουσιαστούν με ενιαίο τρόπο. Συγκεκριμένα, τα profile των \( |E_r| \) και \( \omega_{exB} \) εμφανίζουν δύο μέγιστα εκτεταμένη του \( q_{\text{min}} \). Όπως και στο \( E_r \), περιέχουν τη συνεισφορά τριών όρων, ένα λόγω της βαθμιάς πίεσης και άλλους δύο λόγω των συνιστώσων της ταχύτητας \( q \). Η συνεισφορά και των τριών είναι
της ιδιαί τάξης μεγέθους. Η αύξηση της απόλυτης τιμής της μαγνητικής διάτμησης έχει σαν αποτέλεσμα την αύξηση των μεγιστών της $|E|^2$ και $\omega_{E\times B}$ στην πλευρόντα των περιπτώσεων που εξετάστηκαν. Όσο όμως η θέση του $q_{min}$ μετατοπίζεται προς τα εξώ τόσο αυξάνονται τα μέγιστα της διάτμησης του ηλεκτρικού πεδίου και της διάτμησης της ταχύτητας $E \times B$. Όταν αυξάνεται η τιμή του $q_{min}$, διατηρούνται τα $\Delta q$ και $r_{min}$ σταθερά, τόσο αυξάνονται οι τιμές των μεγιστών των $|E|^2$ και $\omega_{E\times B}$ στην περιοχή $s > 0$. Αύξηση του μέτρου της ταχύτητας ροής, ή της διατμήσης της έχει σαν αποτέλεσμα την αύξηση των μεγιστών των δύο διατμήσεων υπό συνθήκη, ενώ και αυτές εξαρτώνται από το σχετικό προσανατολισμό των $v_{iz}, u_{iz}$ και $B_z$. Ειδικότερα, για τη διατμήση της ταχύτητας $E \times B$, πρέπει να τονιστεί ότι η επίδραση της μαγνητικής διάτμησης είναι αγχόριτη σε αυτή την περίπτωση, από ότι στην περίπτωση του MHD μοντέλου, όπως προσκύνησε και από την αναλυτική σχέση (2.20). Αυτό οφείλεται στον όρο της βαθμίδας πίεσης το οποίος λειτεί στην περίπτωση του MHD μοντέλου.

Συνοψίζοντας θα λέγαμε πως η μαγνητική διάτμηση και η διατμήμενη ταχύτητα ροής (τοροειδής και πολοειδής) δρούν συνεργατικά στα $E$, $E'$ και $\omega_{E\times B}$, τα οποία φαίνεται ότι παίζουν ρόλο στο σχηματισμό εσωτερικών φερμάτων μεταφοράς.

Περνώντας στο δεύτερο κεφάλαιο του χιμήν μέρους (χερ. 3) της εργασίας που αφορά αξιοπιστία συμμετρική ισορροπία με τοροειδή ροή στα πλαίσια του ιδιαίτερου MHD μοντέλου, τα χίμια συμπεράνθηκαν πουρούν να συνοψιστούν ως εξής:

1. Η ισορροπία περιγράφεται πλήρως από μια εξίσωση Bernoulli και μια ελειπτική διαφορική εξίσωση με μερικές παραγώγους για τη συνάρτηση πολοειδούς μαγνητικής ροής, που περιέχει επίσης και την παράμετρο της πίεσης. Στο όριο που ο ύψος της χωλικής συννότητας προς τη θερμοκρασία γίνεται πολύ μικρός, η ελειπτική διαφορική εξίσωση για «συμπιεστή» ροή παίρνει παράλληλα μορφή με αυτή για ασυμπιεστή.

2. Έγινε παραγωγή ακριβών λύσεων, οι οποίες για «συμπιεστή» ροή έχουν μηδενική διάτμηση της ροής, ενώ για ασυμπιεστή μη μηδενική.

3. Μεταξύ αλλαγάτων τις παραμέτρους ροής, αριθμού Mach, $M_\infty$ και $A$ για τη «συμπιεστή» και ασυμπιεστή περίπτωση αντίστοιχα και υπολογίζοντας την ιδιότητα πρότις τάξης της πίεσης βρέθηκαν σημεία μετάβασης, στα
5.2. ΣΥΜΠΕΡΑΣΜΑΤΑ

οποία σχηματίζεται ένας επιπλέον μαγνητικός άξονας στο εξωτερικό μέρος του ήδη υπάρχοντος σχηματισμού.

4. Αυτή η αλλαγή στην μαγνητική τοπολογία είναι δυνατή μόνο για τοροειδείς σχηματισμούς και αυτό διότι στο όρο απείρου λόγου όψης, οπότε η γεωμετρία γίνεται κυλινδρικά συμμετρική, η ροή δεν εμφανίζεται στις εξισώσεις ισορροπίας.

5. Αύξηση του \( M_0 \) ή μείωση της \( A \) αυξάνει την μετατόπιση Shafranov.

6. Για σταθερή τιμή της παραμέτρου ροής, όσο μεγαλύτερος ο λόγος όψης τόσο μικρότερη η μετατόπιση Shafranov.

7. Οι διαχωμάνσεις της πυκνότητας και της θερμοκρασίας πάνω στις μαγνητικές επιφάνειες αυξάνουν, καθώς τα \( M_0 \) και \( |A| \) παίρνουν μεγαλύτερες τιμές.

8. Η πυκνότητα και η θερμοκρασία για \( A > 0 \) είναι μεγαλύτερες στην περιοχή όπου οι μαγνητικές επιφάνειες είναι περισσότερο συμπιεσμένες, ενώ για \( A < 0 \) συμβαίνει το αντίστροφο, οπότε η θερμοκρασία είναι μικρότερη εκεί που οι μαγνητικές επιφάνειες είναι συμπιεσμένες.

9. Το profile του παράγοντα ασφάλειας για απλά τοροειδείς σχηματισμούς είναι μονότονο, ενώ για διπλά τοροειδείς σχηματισμούς έχει το σχήμα που έχει παρατηρηθεί σε περάματα με αρνητική μαγνητική διάταξη και εσωτερικά οράματα μεταφοράς.

Τελικά, όσον αφορά το τρίτο κεφάλαιο του χώρου μέρους της εργασίας (κεφ. 4) τα συμπεράσματα συνοψίζονται ως εξής:

- Η ισορροπία περιγράφεται πλήρως από μια εξίσωση Bernoulli και μια ελαστική διαφορική εξίσωση με μερικές παραγώγους για τη πολυειδή συνάρτηση μαγνητικής ροής, που περιέχει επίσης και την παραμέτρου πίεσης και δύο αυτοσυνεπεις σχέσεις για τις συνιστώσες της εδώκης αντίστασης. Οι δύο πρώτες εξίσωσεις, λόγω της αξιολογήσεως συμμετρίας και της τοροειδούς διεύθυνσης της ροής, είναι διόμεικες με τις αντίστοιχες της ιδανικής ΜΗΔ του κεφαλαίου 3 και ισχύουν τα συμπεράσματα που αναφέρθηκαν εκεί.
ΚΕΦΑΛΑΙΟ 5. ΑΝΑΚΕΦΑΛΑΙΩΣΗ-ΣΥΜΠΕΡΑΣΜΑΤΑ-ΠΡΟΟΠΤΙΚΕΣ

• Οι συνιστώσες της ειδικής αντίστασης, παράλληλα και κάθετα στο μαγνητικό πεδίο, δεν μπορεί να είναι σταθερές πάνω στις μαγνητικές επιφάνειες. Παρά το γεγονός αυτό, το σχήμα του profile τους είναι ίδιο με αυτό ειδικής αντίστασης οριοθέτησης σε χρούσες (ειδική αντίσταση Spitzer), δηλαδή εμφανίζουν ελάχιστο στην περιοχή του μαγνητικού άξονα και παράγουν πολύ μεγάλες τιμές στην επιφάνεια του πλάσματος, για απλά τοποθέτει σχηματισμούς.

• Η ροή έχει επίδραση στην ισορροπία μόνο όταν το σχήμα είναι τοποθετεί και αυτό διότι στο όριο πολύ μεγάλου λόγου ύψους η ροή δεν εμφανίζεται στις εξετάσεις ισορροπίας.

Τα παρακάτω συμπεράσματα για το ηλεκτρικό πεδίο, τη τοποθέσια πυκνότητα ηλεκτρικού ρεύματος και τις συνιστώσες της αγωγομότητας (σ = 1/η) αφορούν απλά τοποθετεί σχηματισμούς, κανονιστικοποιημένη συνάρτηση πολεοθούς μαγνητικής ροής (μια κανονιστικόποιηση που έγινε ώστε να αποφεύγει μια μη δικαιολογημένη, από φυσική ύποψη, ταλάντωση των τιμών της με τη μεταβολή των παραμέτρων ροής), για το ίδιο εύρος των ύψων της πίεσης για «συμπιέστη» και ασυμπίστητη ροή και για profile της κυκλικής συχνότητας χορωσειδές με το μέγιστο στο μαγνητικό άξονα και μηδενικό στην επιφάνεια.

1. Το profile του ηλεκτρικού πεδίου ισορροπίας |\(E_{pol}\) στην ισορροπία διατομή έχει δύο μέγιστα ακτέρων ή του μαγνητικού άξονα και μηδενίζεται στην επιφάνεια. Όταν το μέγιστο της κυκλικής συχνότητας μεγαλώνει και το profile της γίνεται πιο εντοπισμένο, το profile του |\(E_{pol}\) γίνεται πιο εντοπισμένο επίσης, ενώ οι τιμές των μεγάλων μικράνουν.

2. Το profile του \(J_y\) είναι χορωσειδές με το μέγιστο στο μαγνητικό άξονα και μηδενίζεται στην επιφάνεια.

3. Καθώς ο \(M_0\) αυξάνει ή η \(M\) μικράνει, τα τοπικά μέγιστα των \(E_{pol}\) και \(J_y\) αυξάνουν επίσης και το profile τους μετατοπίζονται προς τα έξω σε σχέση με τον άξονα συμμετρίας.

4. Τα μέγιστα των \(\sigma_{||}\) και \(\sigma_{\perp}\) αυξάνουν και η θέση τους μετατοπίζεται προς τα έξω καθώς ο \(M_0\) αυξάνεται, αλλά μειώνονται και η θέση τους παραμένει πρακτικά ανεπηρεάστης καθώς η \(A\) μειώνεται. Επίσης, όσο μεγαλύτερος ο \(M_0\) τόσο μικρότερη η διαφορά \(\sigma_{||} - \sigma_{\perp}\), αλλά όσο μικρότερη η \(A\) τόσο μεγαλύτερη αυτή η διαφορά.
5. Για δεδομένη τιμή του $M_0$, όσο μικρότερος ο λόγος όψης τόσο μικρότερα τα μέγιστα των $σ_{||}$, $σ_⊥$ και $J_φ$, αλλά τόσο μεγαλύτερα τα μέγιστα του $|E_{pol}|$.

6. Για δεδομένη τιμή της $A$, όσο μικρότερος ο λόγος όψης τόσο μεγαλύτερα τα μέγιστα των $σ_{||}$, $σ_⊥$ και $|E_{pol}|$, αλλά τόσο μικρότερο το μέγιστο του $J_φ$.

7. Για αύξηση του $M_0$, ή ισοδύναμα μείωση της $A$, όσο μικρότερος ο λόγος όψης τόσο μεγαλύτερη η μεταβολή των μεγίστων του $|E_{pol}|$ και $J_φ$ και $σ_{||}$ και η μετατόπιση της θέσης τους. Όσον αφορά τη συμπεριφορά των συνιστωσών της αγωγιμότητας αυτή εξαρτάται από τη συμπεριφορά της: όσο μικρότερος ο λόγος όψης i) τόσο μεγαλύτερη η μεταβολή των μεγίστων των $σ_{||}$, $σ_⊥$ και $σ_{||} - σ_⊥$ όταν ο $M_0$ αυξάνει αλλά ii) τόσο μικρότερη η μεταβολή των μεγίστων των τριών παρατάσεων ποσοτήτων όταν η $A$ μείωνεται.

Συνοψίζοντας, τα κύρια σημεία της εργασίας είναι τα ακόλουθα:

1. Συνεργατικότητα διατημένης ροής και αρνητικής μαγνητικής διάτμησης στο σχηματισμό εσωτερικών φραγμάτων μεταφοράς.

2. Εύρεση αναλυτικών και ακριβών λύσεων των εξισώσεων ισορροπίας της MHD για ασυμπίεστη ροή.

3. Προκαλούμενη από τη ροή αλλαγή στη μαγνητική τοπολογία τοροειδούς σχηματισμού.

4. Παραγωγή ανηχητικών εξισώσεων και αναλυτικών λύσεων MHD ισορροπίας με πεπερασμένη ειδική αντίσταση και ροή.

### 5.3 Προοπτικές

Είναι ενδεικτική να γίνουν στο μέλλον οι ακόλουθες επεκτάσεις της παρούσας εργασίας:

1. Να επεκταθεί η μελέτη αλλαγής της μαγνητικής τοπολογίας και σε άλλου τύπου ισορροπίες όπως αυτή με ασυμπίεστη ροή και σταθερή πίεση πάνω στις μαγνητικές επιφάνειες, ή με ασυμπίεστη ροή τυχαίας διεύθυνσης.
ΚΕΦΑΛΑΙΟ 5. ΑΝΑΚΕΦΑΛΑΙΩΣΗ-ΣΥΜΠΕΡΑΣΜΑΤΑ-ΠΡΟΟΠΤΙΚΕΣ

Με προκαταρκτική εξέταση του προβλήματος αυτού έγινε στην αναφορά [71].

2. Να περιληφθεί στη μελέτη του τέταρτου κεφαλαίου και άλλος όρος απόδοσης, πέραν της ηλεκτρικής αγωγιμότητας, όπως το ιξώδες στην εξίσωση ορμής. Επίσης, η μελέτη να πραγματοποιηθεί στα πλαίσια του πιο θεμελιώδους μοντέλου της ιδανικής MHD συμπεριλαμβάνοντας τον όρο Hall στο νόμο του Ohm. Η πιθανότητα ότι είναι πιο εύκολο να μελέτηθει η επίδραση χάθη όρου ζευγωστά στην ισορροπία, πριν επιχειρηθεί να συμπεριληφθούν όλοι οι όροι.

3. Να επεξεργαθεί η μελέτη του τρίτου κεφαλαίου σε διπλά τοροειδής σχηματισμούς, με τους μαγνητικούς άξονες παράλληλα ή κάθετα στον άξονα συμμετρίας.

4. Να βρεθούν μη γραμμικές, αναλυτικές και ακριβείς λύσεις των εξισώσεων ισορροπίας του ιδανικού MHD μοντέλου αρχικά για απλές γεωμετρίες, για παράδειγμα στο όριο πολύ μεγάλου λόγου ύψους. Αυτό διότι κατ’ αρχήν, για άξονικά συμμετρικό σύστημα το πρόβλημα είναι εξαιρετικά δύσκινο.

5. Να μελετηθούν οι καταστάσεις ισορροπίας του τρίτου και τέταρτου κεφαλαίου ως προς τη σταθερότητα τους. Αυτό είναι εφικτό να γίνει σε λίγες περιπτώσεις μιας και δεν υπάρχει καθιερωμένη θεωρία σταθερότητας με ροή.
Βιβλιογραφία

[9] H. Tasso, Lectures on Plasma Physics, Report IFUSP/P-181, LFP-8, Universidade de São Paulo, Instituto de Física, São Paulo (1979), p. 27. See EPAPS Document No. E-PHPAEN-10-027306 for Lectures on Plasma Physics. A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.


[64] http://users.uoi.gr/me00584/plasma.htm


[69] Πα σ = 2 και πολύ μικρές αλγεβρικές τιμές της A (π.χ. A ≤ −0.08) ισχύει ότι σ∥ < σ⊥.

[70] Για να είμαστε τελείως ακριβείς καθώς η A μειώνεται η θέση του μεγίστου πρώτα μετατοπίζεται προς τα έξω και έπειτα προς τα μέσα, όταν η A πάρνει αρχικά μικρές αλγεβρικές τιμές.