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ABSTRACT

Interaction between the midlatitude jet and gravity waves is examined, focusing on the nonnormality of
the underlying linear dynamics, which plays an essential role in processing the wave activity and selecting
structures that dominate wave momentum and energy transport. When the interior of a typical midlatitude
jet is stochastically forced, waves with short horizontal wavelength are trapped inside the jet and deposit
momentum and energy at jet interior critical levels. Longer waves transport momentum and energy away
from the jet, and the resulting momentum flux divergence produces a significant deceleration of the
tropospheric and lower-stratospheric jet. This induced drag is found to depend on the shape of the jet and
on the horizontal wavelength of the excited waves, reaching a maximum at wavelength A, = 20 km and
leading to a deceleration O(1) ms™' day ™! for a stochastic forcing rate of 0.1 W m™? distributed over the
height of the jet. This deceleration is robust to changes in static stability but is reduced when the stochastic
forcing is correlated over too long a time.

Implications of gravity wave absorption for middle-atmosphere circulation are discussed, focusing on
differences implied for acceleration of the winter and summer midlatitude upper-stratospheric jets. The
tropospheric flow is found not only to passively filter transiting waves, but also to amplify portions of the
wave spectrum in conjunction with the distributed forcing, leading to enhanced gravity wave momentum
and energy fluxes in agreement with observations linking middle-atmosphere enhanced variance with

regions of high jet velocities.

1. Introduction

Understanding physical mechanisms sustaining the
statistical equilibrium gravity wave fluxes in the atmo-
sphere presents a challenging problem with many prac-
tical applications including accounting for effects of
gravity waves in large-scale operational models. In this
two-part paper the problem of gravity wave interaction
with jets is studied from the point of view of generalized
stability theory (GST; Farrell and Ioannou 1996), which
provides powerful tools for analysis of wave-mean flow
interactions.

Specifically we investigate how a typical midlatitude
jet interacts with a spectrum of waves produced by forc-
ing within the jet. The forcing term models vorticity and
thermal sources originating from a variety of physical
processes such as convection, shear-induced turbu-
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lence, and processes associated with adjustment toward
balanced flow states. Given that these gravity wave
sources have a wide range of forcing frequencies and
spatial scales, we simplify and generalize our analysis
and its interpretation by obtaining the response of the
jet to all forcing frequencies and scales by parameter-
izing the forcing as white in space and time. While tem-
porally uncorrelated forcing is idealized, it has the ad-
vantage of lacking any bias, allowing the dynamical sys-
tem to select the frequencies and structures with roles
in momentum and energy transport that are intrinsic to
the dynamics.

In Bakas and Ioannou (2007, hereafter Part 1), a
simple model of a finite stably stratified shear region
was studied. This model provided examples of transient
growth and wave-mean flow interaction processes re-
sulting from stochastic forcing. Shear flow was found to
filter, refract, and amplify the excited waves and also to
augment the wave excitation processes by transferring
kinetic energy of the mean shear flow to the waves. In
this second part we use GST to study a two-dimensional
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FI1G. 1. Vertical velocity profile (10), where 8z = 0.59. The dashed line is the profile (2) that fits the
Gaussian structure with two adjacent shear layers of opposite shear.

jet focusing particularly on the perturbation-induced
mean flow tendency. We find that in the statistical
steady-state wave momentum flux divergence produces
a significant net deceleration of the jet. This result is
robust both to changes in the temporal correlation of
the forcing and to changes in static stability.

This paper is organized as follows: We first obtain
closed-form solutions for localized thermal excitation
for both the case of a monochromatic forcing and for
temporally uncorrelated forcing. We then investigate
the response to forcing white in both space and time
and finally examine the sensitivity of the predicted en-
ergy and momentum flux distributions to changes in the
background state and in the temporal correlations of
the forcing. We conclude with a discussion of our re-
sults and their implications for midlatitude jet dynam-
ics.

2. Gravity waves produced by localized thermal
forcing in a jet

The linearized, nondimensional vorticity and ther-
modynamic equations governing the evolution of small
perturbations in a hydrostatically balanced, stratified
atmosphere (cf. Part I) are

(a P ())(V%p) L& o
Yz) . L a4y
TVRCTE \VRi d?
dr 1 4
= — £azdf +d.p+ Re‘V U, (1a)
9 +&a + +ﬁa - Ly
( t \/ﬁ x r(Z))p Né xlvl"_ReS P,
(1b)

in which x, z are the zonal and vertical coordinates
respectively, ¢ is the perturbation streamfunction, and
p is the perturbation density. The operators V> and V*
are defined as V* = 0%ax* + 9%0z* and V* = (V?)?,
respectively. The Richardson number is Ri = NZH?%
V3, the Reynolds number is Re, = p,,H*N,/u, where
is the coefficient of viscosity, and H, V,, and N, are
characteristic values of length, velocity, and inverse
time, taken to be the tropopause height H = 10 km, a
characteristic jet speed V, = 30 ms~! and N, = 0.012
s, respectively, yielding Richardson number Ri = 16.
The Brunt-Viisilid frequency, N, is constant and equal
to its characteristic value N, unless stated otherwise.
The Rayleigh damping r(z) and diffusion terms are rel-
evant to the numerical calculations presented in sec-
tions 3-5, where further details will be provided.
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FIG. 2. Schematic representation of the dependence of propagation characteristics on the values of Ri, k, and ¢'.
(top) For VRi = k we only have type I waves independent of the value of ¢’. (middle) For (Vz)\/ﬁ <k=VRi
types I, 11, and III exist. The numerical values seen correspond to ¢’ = 1/k — 1/VRiand ¢’ = 1/VRi for A, = 20
km (k = ) and Ri = 16. (bottom) For k < (Vz)\/ﬁ we have only type II, III, and IV waves. The numerical values
seen correspond to ¢’ = 1/VRiand ¢’ = 1/k — 1VRi for A, = 62.8 km (k = 1) and Ri = 16.

In Part I, we saw that solving for the excitation of
gravity waves by a thermal forcing harmonic in x and
localized in the vertical was instructive and had the
advantage of allowing a closed-form solution. To per-
form a similar calculation relevant to a Gaussian jet, we
approximate it with the velocity profile

0, for z>2
2—1z, for 1<z<2

vz = Z, for 0<z<1"’ @
0, for z<0

This profile is shown in Fig. 1. It consists of two adja-
cent shear layers on 0 = z = 1 and 1 = z = 2 with shear
of opposite sign in an otherwise motionless atmosphere.
The response of system (1) with this velocity profile to
thermal forcing of the form f(x, z, ) = 8(z — z5)e™® e *,
where z5 = 1 is analyzed in detail in the appendix. A
qualitative description of this response follows.

The excited waves fall into four categories (hence-

forth denoted I-1V), according to the forcing fre-
quency, the horizontal wavenumber k, and the Rich-
ardson number Ri, as sketched in Fig. 2. Type I waves
have both a turning level and a critical level inside one
of the shear regions. Forced waves with negative intrin-
sic phase speeds ¢’ (¢’ is the phase speed relative to the
mean flow at the forcing level) deposit their momentum
at their critical levels, as shown in Fig. 3a. On the other
hand waves with negative intrinsic phase speeds un-
dergo internal reflection at turning levels and do not
produce any net momentum flux (Fig. 3a).

Type II waves have a critical level but not a turning
level inside the shear regions. While negative ¢’ waves
are bounded by their critical levels, type II waves with
positive intrinsic phase speeds evade back reflection
and escape the jet. The waves have downgradient
Reynolds stress leading to energy growth that is not lost
once they enter the constant velocity region as shown in
Part I. To demonstrate this growth, we calculated in
(A9) the outgoing energy flux pw and compared it with
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F1G. 3. Momentum flux distribution with height for the excited waves within the jet for Richardson
number Ri = 16. (a) Type I waves that have both a turning level and a critical level inside one of the
shear regions. The cases shown are waves with phase velocity ¢’ = 0.2 (solid line) and ¢’ = —0.2 (dashed
line). The zonal wavenumber is k = 3. (b) Type II waves that have a critical level but no turning level.
The cases shown are waves with phase velocity ¢’ = 0.16 (solid line) and ¢’ = —0.16 (dashed line). The
zonal wavenumber is £ = 1. (c) Type III waves that have a turning level but not a critical level inside the
jet. The cases shown are waves with phase velocity ¢’ = 0.8 (solid line) and ¢’ = —0.8 (dashed line). The
zonal wavenumber is k = 1. (d) Type IV waves that have neither a critical nor a turning level inside the
jet. The cases shown are waves with phase velocity ¢’ = 0.44 (solid line) and ¢’ = —0.44 (dashed line).
The zonal wavenumber is k = 1. Noted in (b), (c), and (d) are the outgoing energy fluxes, ¢, scaled by

the outgoing fluxes in the case of uniform flow.

the corresponding flux pw, obtained in an equally
forced unsheared flow. The ratio ¢ = pw/pw, = 2.3 for
the waves having ¢’ = 0.16 is shown in Fig. 3b.

Type III waves have a turning level but not a critical
level inside the shear region, and their momentum and
energy flux transport are shown in Fig. 3c. Since the
Reynolds stress is upgradient for these waves, they lose
a part of their energy to the mean flow (¢ = pw/pw, =
0.7 < 1). The rest of the type III waves (¢’ > 0) are
ducted inside the jet waveguide and do not contribute
to the momentum flux budget (Fig. 3c).

Finally, type IV waves having neither a turning nor a
critical level inside the shear region transport energy
and momentum away from the jet as shown in Fig. 3d.

We now extend the above analysis by considering
temporally uncorrelated stochastic forcing distributed
over a narrow region near the jet maximum:

e*[(zfzs)z/az]n(t)’ (3)

flx, z, 1) =™
o m

where z; = 1 and n(¢f) is a 8 correlated white-noise
process. The vertical distribution of the forcing has the
form of a sharp Gaussian (a = 0.025) which retains the
vertical localization of the delta function while avoiding
the divergence of input variance as o — 0 implied by
the Gaussian distribution.! The ensemble mean mo-
mentum and energy fluxes for such localized forcing are
given to a good approximation by

! This is the “infrared catastrophe” problem, appearing when
the forcing has a delta function form in the vertical, and was also
discussed in Part 1.



2312

a
2t _
1.5 A
ST 4
0.5 q
oF i
-60 -40 -20 0 20 40 60

(ww)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 65

[t ()]

10

puw(c’)

10°

-3

FIG. 4. (a) The ensemble mean momentum flux (zw) as a function of height for forcing uncorrelated
in time and for velocity profile (2). The Richardson number is Ri = 16; the zonal wavenumber is k =
1 < (1/2)VRi. The outgoing ensemble mean energy flux (pw) calculated at z = 0, z = 2 and scaled by
the corresponding flux (pw,) for an atmosphere at rest is denoted by ¢. Also shown is the resulting
distribution of the absolute value of (b) momentum flux and (c) energy flux at z = 1.5 across wave phase
speeds for Ri = 16 and k& = 1. The corresponding distribution of fluxes for a motionless atmosphere is

also plotted (dashed lines) for reference.

(). (pw)] = f @) pr) i do. (4)

where

N 1 foc 1 > 2 .
— —[(z—zp“a”] ,—ilz d
e e Z

U= e

1

- 1 e*(szi/wszz)az/ét

T2 /2w :

and uw(w), pw(w) are given by (A8) and (A9) in the
appendix, respectively. The flux (uw) as a function of
height is plotted in Fig. 4a for Ri = 16 and k = 1.
Although temporally uncorrelated forcing equally
excites all frequencies, the dynamics respond primarily
at low intrinsic frequencies, corresponding also to low
intrinsic phase speeds (A2). Therefore type II waves,
which have low intrinsic phase speeds as illustrated in

6712a2/4 _

Q)

the middle and lower panels of Fig. 2, dominate the
response. The large peak of uw and pw for low phase
speeds, plotted in Figs. 4b,c, is attributed to type II
waves with ¢’ > 0. These waves induce a transport of
westerly momentum upward and easterly momentum
downward (Fig. 4a), accompanied by a large radiated
energy flux (¢ = 4) compared to the equally forced
motionless atmosphere case due to amplification of
these waves inside the jet. On the other hand, the ab-
sence in the spectrum of waves with negative intrinsic
frequencies can be traced to critical-level filtering and
mean wind ducting of these waves, which results in de-
position of their momentum inside the jet and induces
the sharp increase of (zww) in the vicinity of z = 1 seen
in Fig. 4a.

In Part I we found that the interaction of the forcing
with the shear augmented the source of wave action
provided by the forcing. To illustrate this effect for the
Gaussian jet as well, we considered the temporally un-
correlated forcing given by (3), distributed over a nar-
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FIG. 5. Relative difference between the wave action fluxes radiated from the jet (4) and
the corresponding fluxes for an equally forced motionless atmosphere (A,) as a function
of nondimensional shear. The wave action fluxes are calculated at z = 2.5 and integrated
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over all positive intrinsic phase speeds. The zonal wavenumber is k = 1.

row region of high mean shear (z5; = 1.5), and calcu-
lated using (4) and (AS8) the emitted wave action fluxes
integrated over all positive intrinsic phase speeds. Since
the upward-propagating waves with ¢’ > 0 are not sub-
ject to critical-level filtering, they conserve their wave
action away from the forcing region. Therefore the
emitted fluxes depend only on the forcing-perturbation
correlation within the forcing region. As the shear in-
creases, nonnormal growth of perturbations within the
forcing region yields larger wave action fluxes com-
pared to an equally forced motionless atmosphere as
shown in Fig. 5.

Even though internal waves can penetrate beyond
reflection levels if their amplitude is sufficiently large
(Sutherland 2000), types I and III waves that have nega-
tive intrinsic frequencies and are ducted are not favored
by the thermal forcing because of their large frequen-
cies, and such nonlinear effects are expected to only
slightly modify the results. In summary, the mean flow

augments the wave action arising from the forcing dis-
tribution and acts both as an amplifier and as a filter for
the emitted waves, and these three effects together de-
termine the features of the momentum and energy flux
distributions.

3. Gravity waves produced by spatially and
temporally uncorrelated forcing in a jet

We turn now to the steady-state energy and momen-
tum fluxes resulting from stochastic excitation uncorre-
lated in both space and time. As in Part I, we express
the perturbation Egs. (1a) and (1b) in the compact form

dx_ A Ff 6

where x = [y(£), p(£)]" is the state vector discretized on
grid points,

@)
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FIG. 6. (a) Distribution with height of the steady-state ensemble mean momentum flux p(zw) for k =
1, Ri = 16, and velocity profile (10). As in Fig. 4, ¢ is the ensemble mean energy flux (pw) calculated
at z = 0 and z = 2 (20 km) and scaled by the corresponding flux (pw,) in the absence of a mean flow.
Also shown is distribution with phase speeds of (b) puw and (c) pw calculated at z = 2.5 (25 km).

is the dynamical operator, F gives the spatial distribu-
tion of the forcing, and f is a vector of & correlated
Gaussian white-noise processes of the form

(flt)f6))y = 8,81, = ). ®)

As a result, each spatial forcing distribution specified
by the columns of F is equally and independently ex-
cited. For spatially uncorrelated forcing, we choose
the columns of F to be H(z) sin[nm(z — 1)] and H(z)

cos[nm(z — 1)] forn = 1,2, ..., where
6*40(2*0.4)27 7<04
H(z) =11, 04=z=<16 9)
6740(z71.6)2 z>1.6

is a tapered hat function restricting the forcing to the jet
region. The forcing distribution is pass-banded at n =
28 to avoid exciting unresolved scales. Numerical tests
with increased resolution showed that the results pre-
sented in this section are not sensitively dependent on
the choice of n. The stochastic forcing rate for each
zonal wavenumber is 0.1 W m™2; this forcing was cho-

sen so that the resulting variance in a motionless atmo-
sphere equals the lower-tropospheric and stratospheric
variance reported in Nastrom and Gage (1985) when
integrated over all horizontal wavelengths.

The nondimensional velocity profile U(z) given by

U(Z) — e—[(z—l)/é}z]2 (10)

is shown in Fig. 1. A sponge layer at the upper and
lower boundaries implemented by Rayleigh damping
(details of which are given in Part I), enforces radiation
conditions. A small amount of diffusion is also intro-
duced (Re, = 10°) to serve as a sink for energy trans-
ferred to unresolved scales.

The resulting ensemble mean steady-state fluxes can
be calculated from integration of uw(w) and pw(w) over
all frequencies:

o

1
[(uw), <pW>]:ZTf [iw(w), pw(w)] dw . (11)

The corresponding equation in the discretized formu-
lation is
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Fi1G. 7. Distribution with height of the steady-state ensemble mean momentum flux p{zw) for velocity
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studied in Part I with zonal wavenumber k = 1. Also shown is the corresponding flux divergence
distribution with height for (d) k = 1, (e) k = 20, and (f) the finite shear layer. The Richardson number

is Ri = 16.

[(uw’), (pw')]
1 (=
=5 j ) { diaglUR(w)FF'RT(w)W'],

diag[PR(w)FF'RY(0)W'} do 12)

where diag denotes the diagonal elements of a matrix (a
derivation of the above equation can be found in Part I)
and { denotes the Hermitian transpose. Alternatively,
these fluxes can be obtained from the correlation ma-
trix C:

t
C = (xx) = f CATIFFTA T g (13)

0
In steady state and for A with all eigenvalues having
negative real part, the asymptotic C, solves the
Lyapunov equation:
AC., + C.A" = —FF", (14)

Pressure p and horizontal and vertical velocities u, w
can be expressed in terms of the state vector x via linear

operators P, U, and W (thus p = Px, u = Ux and w =
Wx) yielding the following expressions for the momen-
tum and energy fluxes respectively:

(uw') = diag(U(xx" )W) = diag(UC_W'),  (15)

(pw') = diag(P(xx"W") = diag(PC_.W').  (16)
The distribution of (zzw) with height is shown in Fig. 6a,
and the similarity with the flux distribution shown in
Fig. 4a indicates the dominance of type II waves for
spatially uncorrelated forcing as well. Moreover, the
enhanced energy fluxes (¢ = 4.8) are a clear manifes-
tation of the dynamical effect of the mean flow in am-
plifying type Il waves with phase lines tilting against the
shear.

Inspection of the distribution of uw and pw with
phase speeds shown in Fig. 6 reveals that waves with
dimensional phase speeds in the range 16 < ¢ < 36
m s~ ! carry most of the energy and momentum out of
the jet and likely play an important role in driving the
upper-atmosphere circulation by depositing this mo-
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FiG. 8. (top) Ensemble mean energy flux (pw) at z = 2.5 (25 km) as a function of zonal
wavenumber k for uncorrelated forcing (solid line), for autocorrelation time of ¢, = 2 min
(dashed line), and 7, = 10 min (dash—dot line). The velocity profile is (10) and the Rich-
ardson number is Ri = 16. (bottom) The corresponding mean momentum flux divergence

in the region of the jet.

mentum as they break at higher altitudes.” This mo-
mentum transport away from the jet also has implica-
tions for the tropospheric and lower-stratospheric flow.
The momentum flux divergence modifies the back-
ground flow, so that a mean velocity acceleration is
induced according to 9,t = —d,uw. The resulting mean
flow tendency for the steady-state momentum flux dis-
tribution shown in Fig. 6a is plotted in Fig. 7d and
shows a large deceleration reaching a maximum in the
wings of the jet. There is almost no acceleration due to
flux divergence in the vicinity of the maximum of the jet
wind speed, as the momentum deposited by trapped
waves balances the momentum carried away from
the jet by radiating waves in that region. The net result
on averaging over the jet is a deceleration of (V%) [3 9,1
dz = —0.7 ms™! day ! for horizontal wavelength
A, = 62.8 km. The mechanism of deceleration by radia-
tion of momentum flux can be verified by looking at the
extreme case of very large horizontal wavenumbers for
which most of the wave activity is in type I waves, which
are trapped inside the jet (see upper panel of Fig. 2).
The (uw) distribution with height is plotted in Fig. 7b
for k = 20 and the resulting mean flow tendency is

2 A more complete discussion about typical midlatitude jet
structures will follow in section 5.

shown in Fig. 7e. We see a strong acceleration in the
vicinity of the jet axis flanked by regions of deceleration
and acceleration in the wings of the jet, yielding the
required zero average wave-induced force. The energy
fluxes and the mean flow tendency shown as a function
of zonal wavenumber in Fig. 8 exhibit a maximum at
wavenumber k = 3. For larger wavenumbers most of
the wave activity is trapped in the jet as discussed above
and lower wavenumbers are attenuated locally by the
small amount of diffusion in the model because of their
small group velocity. To estimate the force exerted on
the jet, we integrate over all horizontal wavelengths in
the range A, € [10, 628] km to obtain a deceleration
of 1 ms~! day ! for the stochastic forcing rate of 0.1
W m 2

The shape of the jet plays an important role in de-
termining the sign of momentum flux radiated away
from each side of the jet. To demonstrate this, we ob-
tained the flux divergence for the case of the stochas-
tically forced shear layer jet studied in Part I. The re-
sulting momentum flux and flux divergence distribu-
tions with height are shown in Figs. 7c,f. The sign of
radiated momentum is the same for both sides, produc-
ing a “dipole structure” of equal acceleration and de-
celeration at the upper and lower parts of the shear
region respectively. The net flux divergence is zero and
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a constant N? are plotted for reference (dashed lines). The Richardson number is Ri = 16 and k = 1.
Phase speed spectra for (c) puw and (d) pw. The corresponding distribution of fluxes for a constant N?
normalized to have the same maximum amplitude as in this case is also plotted (dashed lines) for reference.

the tendency is to reinforce rather than weaken the
shear.

4. Sensitivity tests

The above calculations were performed for an ideal-
ized situation in which the buoyancy frequency is taken
to be constant for the whole domain and the forcing is
assumed to be purely thermal and temporally uncorre-
lated. Sensitivity studies, relaxing the above assump-
tions, are presented in this section.

Assuming the forcing to be purely thermal accounts
only for buoyancy excitation, while other sources also
force vorticity. These include shear-induced turbulence,
unbalanced flows undergoing adjustment, wave break-
ing, and wave-wave interactions. We are interested in
exploring qualitative changes in response to sources
other than thermal without focusing overmuch on the
considerable variability in source characteristics and so
we choose the forcing to stochastically induce vorticity
with the same forcing rate and the same spatial and
temporal correlation as in the thermal forcing case. En-
semble mean flux distributions and phase speed spectra

proved to be insensitive to these changes in the forcing
with only small quantitative differences of about 2% in
the fluxes carried away from the jet.

Changes in static stability across the tropopause can
be modeled by the buoyancy frequency profile

N? = N{2.5 + 1.5 tanh[(z — 1)/0.2]} (17)

that is constant throughout the troposphere with a two-
fold increase at the tropopause. The calculations were
repeated, and in Fig. 9 the resulting vertical distribution
of momentum flux and flux divergence are shown. The
symmetry of vertical momentum transport is broken as
the momentum carried upward is reduced, but the jet
deceleration is robust with larger drag occurring in this
case in the lower stratosphere. Also note that uw and
pw shown as functions of phase speed in Figs. 9c,d, are
weakly influenced by the change in static stability with
a small shift of the peak to a higher phase speed as
waves acquire larger phase speeds for higher static sta-
bility.

In Part I, we found that increase in the temporal
correlation of the forcing had a profound effect on the
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The fluxes are calculated at z = 2.5 (25 km), the Richardson number is Ri = 16, and the velocity profile
used is given in (10). The power spectrum of the temporally correlated forcing F(w) = o*/(a® + ?),
where a = 1/10 min ™", is also plotted (dashed line) for reference and is normalized to have at w = 0 the

maximum value of pw in each case.

emitted fluxes, especially for large zonal wavenumbers.
The dependence of the fluxes and the resulting decel-
eration of the jet on the autocorrelation time of the
forcing ¢, is shown in Fig. 8 for #. = 2 min and ¢z, = 10
min. For low zonal wavenumbers there is adequate
forcing power at the range of frequencies of maximum
response as shown in Fig. 10a, where the pw frequency
spectra are plotted for k = 0.1 along with the power
spectrum of the forcing F(w) = 1/(1 + t?w?). As a re-
sult, the fluxes e-fold for autocorrelation times of the
order of ¢, = 1 h, in contrast to the higher zonal wave-
number case (Fig. 10b, where the pw frequency spectra
is plotted for k = 1), where significant power at the
dominant response frequencies is not available and the
outgoing fluxes and the force exerted on the jet are
reduced.

5. Implications for the Northern and Southern
Hemisphere midlatitude jets: Discussion

Mean wind profiles for the winter and summer mid-
latitude jets taken from the Cooperative Institute for

Research in the Atmosphere (CIRA) reference atmo-
sphere (Fleming et al. 1990) are shown in Fig. 11. The
observations are fit with Gaussian functions of height:

Uyinter(z) = 0.9 exp[—(z — 1.25)*/0.75]

+ 2 exp[—(z — 6.7)/8] (18)
for the winter and
Usummer(z) = eXp[—(Z - 131)2/075]
—25exp[—(z — 7)’/14] (19

for the summer jet, also shown in Fig. 11. The summer
jet is similar within the troposphere and stratosphere to
the Gaussian mean wind profile used in the previous
sections (Fig. 11). In contrast, the winter jet exhibits a
local minimum U,,;, = 12 m s~ ! at z = 25 km enabling
further propagation of waves with phase speeds in the
range [0, U,,;,]- This is illustrated by the presence of
waves with phase speeds 0 < ¢ < 12 ms™ ' in the mo-
mentum phase speed spectra plotted in Fig. 12a. It is
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FIG. 11. (left) Zonal mean wind profile for 40°N January from CIRA (dashed line). The
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Zonal mean wind profile for 40°S January from CIRA (dashed line). The solid line is a
smooth fit to the observations denoted Ug,mmer(2) (see text for details). The thick line in

both panels is the profile shown in Fig. 1.

worth noting that if they do not break convectively at a
lower height, these waves carrying westward momen-
tum can propagate into the mesosphere to drive the
mesospheric circulation, unlike waves with larger phase
speeds transporting westerly momentum that are
bounded by their critical levels to the stratosphere.

The solution for the summer jet is not very different
from that found for the Gaussian jet studied in section
3, with a large outgoing westward momentum flux that
will be deposited at wave-breaking altitudes within the
upper stratosphere and mesosphere and induce a de-
celerative force there (decelerative in the sense that the
force opposes the local mean wind). In both summer
and winter jets the wave flux divergence decelerates the
tropospheric and lower-stratospheric mean flow, as
shown in Figs. 12c,d.

These results can now be related to observational
and modeling studies. Sutherland and Peltier (1995)
also considered the possibility of the mean flow being
affected by emission rather than absorption of waves.
They investigated the conditions necessary for a shear
instability to effectively excite inertia—gravity waves
and examined the robustness of the mechanism under
different conditions. They found that westward gravity
waves are preferentially excited and radiated away, re-

sulting in a deceleration of the tropospheric jet. The
results of our work differ in that our waves are stochas-
tically forced, and shear instability and its required
structure are not assumed.

During the past decade, a wide variety of techniques
have been used to observe the seasonal and geographi-
cal variations in gravity wave activity. These include
rocketsonde measurements (Eckermann 1995), radio-
sonde soundings (Allen and Vincent 1995), and satellite
observations (Fetzer and Gille 1994; Wu and Waters
1996; Tsuda et al. 2000; McLandress et al. 2000) that
have the advantage of providing a global coverage. Al-
though each of these techniques can detect only a small
part of the gravity wave spectrum, most show a corre-
lation of gravity wave activity with the midlatitude jet,
with maximum variance during the season of largest
mean wind velocities.

Alexander (1998) and McLandress et al. (2000) using
ray tracing in conjunction with an assumed source of
waves, showed that wave refraction and observational
filtering result to the observed patterns of variance. In
section 2 it was shown that the interaction of excited
perturbations with the mean flow augments the source
of wave action arising from a spatially localized forcing,
yielding larger momentum and energy fluxes for stron-
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FI1G. 12. Distribution of puw with wave phase speeds at z = 2.5 (25 km) for the (a) winter jet and (b)
summer jet. The corresponding distribution of fluxes for the profile in Fig. 1 (dashed line) is shown for
reference. Also shown is the momentum flux divergence distribution with height for the (c) winter jet
and (d) summer jet. The corresponding distribution for the profile in Fig. 1 (dashed line) is shown for
reference. The Richardson number in all calculations is Ri = 16 and zonal wavenumber is k = 1.

ger shear. This was also verified for the distributed,
spatially uncorrelated forcing and is illustrated in Fig.
13 where the ensemble mean momentum fluxes at z =
2.5 are plotted as a function of the maximum wind
speed of the jet. If instead of momentum flux we mea-
sure variance in the overlying region we find the same
functional dependence on the maximum wind speed of
the jet. This result suggests that the observed correla-
tion of gravity wave activity with wind velocity is at
least in part a result of wave-mean flow interactions in
the presence of forcing, a mechanism not contained in
models that follow ray paths of a spectrum of waves.
This line of thinking suggests identifying forcing dis-
tributions that yield the greatest response, that is, the
properly defined stochastic optimals. We optimized en-
ergy fluxes at z = 25 km and variance within the over-
lying region. Since there were minor differences in the
stochastic optimals when optimizing for variance and
energy fluxes, the results presented in this section cor-
respond to the forcing distributions yielding the great-
est response in terms of energy fluxes. These can be

calculated by eigenanalysis of the matrix B, that is the
solution to the Lyapunov equation:

Al B,.+B.A, +Pw=0, (20)
where

Pw = (M~ "3)'W'MPM ™2, (21)

A, =M"7ZAM 172 (22)

and My is a metric, whose only nonzero element is the
one corresponding to z = 2.5 (a formal derivation can
be found in Part I). Figure 14 shows the structure of the
first stochastic optimal for the summer jet and the win-
ter jet. In both cases, the optimal forcing corresponds to
structures just above the maximum of the jet, indicating
that the vicinity of the jet axis is a region that produces
the greatest contribution to the emitted gravity wave
energy fluxes.

6. Conclusions

Mechanisms determining the statistical equilibrium
gravity wave fluxes in atmospheric jets were studied in
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this paper, using tools provided by generalized stability
theory. Nonnormality of the underlying linear dynam-
ics was found to play an important role in processing
the wave activity and selecting structures that dominate
wave momentum and energy transport. To focus on the
wave-mean flow interactions without introducing a bi-
ased forcing function, the waves were assumed to be
excited by stochastic white-noise forcing.

A GST analysis of a stably stratified two-dimensional
jet was performed. A Gaussian structure for the jet
mean velocity profile was assumed with a maximum
wind speed of 30 m s~' at a 10-km height, and a typical
tropospheric value was chosen for the static stability.
First the jet was approximated by two shear layers al-
lowing closed-form solutions, and in this simple model
the response to a source harmonic in x and localized at
the jet maximum as a delta function in z was obtained.
Waves with short wavelength (A, < 16 km) were found
to be trapped inside the jet and to deposit their mo-
mentum and energy at their critical levels. In contrast,
longer low intrinsic frequency waves produced outgo-
ing momentum and energy transport. This behavior
characterized the case of spatially and temporally un-
correlated forcing of the Gaussian jet as well. Wave
radiation is likely to influence the middle atmosphere

circulation through momentum deposition as well as
the tropospheric and stratospheric flows due to decel-
eration by momentum flux divergence. The induced de-
celeration was found to depend on the shape of the jet
and on the horizontal wavelength of the excited waves
with the fluxes and the resulting average deceleration
reaching a maximum at horizontal wavelength A, = 20
km. The deceleration is reduced when the stochastic
forcing becomes sufficiently highly correlated in time.
However, the reduction of wave fluxes and of the cor-
responding flux divergence depends on the hori-
zontal wavenumber of the excited waves. Red-noise
forcing was found to weakly excite waves with hori-
zontal wavenumber larger than £ = 1 (A, = 63 km)
while lower wavenumbers are relatively unaffected
even for correlation times of the order of half an hour.
There were no significant changes in the wave fluxes
when we considered vorticity forcing instead of diabatic
heating as the source of excitation, while the average
drag was found to be slightly reduced by including the
change of background static stability at the tropopause.
Accordingly, the average deceleration of 1 ms™! day '
produced in the troposphere and lower stratosphere in
the case of spatially and temporally uncorrelated forc-
ing with forcing rate of 0.1 W m~? for each zonal wave-
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number is likely to be reduced in more realistic condi-
tions. An open question that will be addressed in future
work is how the jet equilibrates if we let it respond to
the flow-consistent wave forcing and evolve the
coupled wave field-mean flow system using a quasi-
linear adjustment scheme. Nevertheless, the decelera-
tion appears to be significant, suggesting it be incorpo-
rated to improve parameterizations of gravity wave
drag. This might be implemented by a stochastic buoy-
ancy forcing in the troposphere.

The specific differences in response of the typical
winter and summer midlatitude jets were also exam-
ined. Differences in mean flow effectively determine
through critical-level filtering which gravity waves ra-
diate away and are potentially able to reach the upper
stratosphere and mesosphere. In the typical winter jet
the local minimum of the wind within the stratosphere
allows waves with phase speeds in the range 0 < ¢ <12
ms ' to propagate into the upper stratosphere,
whereas the stratospheric easterlies in the typical sum-
mer jet allow only waves with phase speeds in the range
12 < ¢ <36 ms~ ', which carry westward momentum to
propagate into the stratosphere. However, in all cases

emission of waves induces a momentum flux divergence
resulting in a mean deceleration of the tropospheric
and lower-stratospheric jet stream.

Finally, the link between enhanced gravity wave vari-
ance and high jet speed that is evident in observational
studies was investigated. This observed link is traced
not only to wave refraction and filtering of waves con-
serving wave action but also to nonnormal wave-mean
flow interactions in conjunction with the distributed
forcing that serves as a source of wave action. The
structure of the calculated stochastic optimals reveals
that the region above the jet axis produces the greatest
contribution to the emission of gravity wave energy
fluxes, when adequately excited.
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APPENDIX

Response for Zonal Wave Forcing Localized in the
Vertical

We find the Green’s function for thermal forcing of
the form

£(x,2,0) = 8(z — zg)e ™ e ke,

where z5 = 1.01 for the calculations shown in Figs. 3
and 4 and z5 = 1.5 for the calculations shown in Fig. 5.

(A1)

ily(z—2z0)
Heuz zo,

(z,8) =

iljz
Ae"’,

where ¢ = ¢\/Ri, [, and /, are both the square root of
1/¢* — k2, having R(l)c > 0, 3(1) <0, R(L,)c <0,3(L,)
> 0, respectively, in order to satisfy boundedness or
radiation conditions at z — ¥, u = \/% — Ri,and I, ,

BAKAS AND FARRELL

F\/k(z =2 + OL[k(z — 2 + O]+ G\/k(z — 2 + OI_ Jk(z — 2 + &)],
D\/k(E = DK@ — 2)] + EN/k(E — D)I_ [k(é - 2)],
BV/K(E = I[K(E — 2)] + C\/K(@ — D)I_ [k — 2)],
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Introducing in (1a)-(1b) a monochromatic solution of
the form [y(x, z, 1), p(x, 2, )] = [¥(2), p(z)]e™*e”** and
eliminating p we obtain

d*j Ri d*U 1 AW
@’ ((U(z) CVRP 4 U - eVR) >¢
Ri
" UG — R (A2
the solution of which is
for z=2
for z;=z<2
for 1=z<z;4
for 0=z<1
for z <0,
(A3)

1, and z = 2 and integrating twice (A2) from z = z; to
. . : . .

z = zg yields eight algebraic equations for the ampli-

tudes in (A3), which are expressed in matrix form as

is the modified Bessel function of the second kind of [B:, B,]Y = B;, (A4)
order p.
Continuity of displacement and pressure atz =0,z = where Y = [A, B, C, D, E, F, G, H ]T,
1 —a. —a_ 0
ic —kéda, —a, —kéda_ — a_ 0
0 -b, -b_ b,
0 —-k(1-¢&déb, +b, —k(1—-¢8b_+b_ —k(1—-2¢)8b,+b,
Bi=1 o 0 0 —c, : (AS5)
0 0 0 —kéc,,
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
b_ 0 0 0
—k(1—=¢)8b_ +b_ 0 0 0
B, = —c_ d, d_ o |’ (A6)
—kéc_ kéd. kod_ 0
0 —e, —e_ 1
0 —kéde, + e, —kébe_ +e_ il
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and
B, = [0, 0,0, 1/(ikc?), 0, 0, 0, 0]". (A7)

The coefficients in the equations above are

L= —ie TN/ (2), b =\ 2ol (2),

Ce = \/Z—]"Itu(zf’)7 d. €r = dax,

= Ci7

_ 1. (zl) dI+
2\/_ .
L. . (z,) dl.
b, =—2 = 4 2, — ,
- 2\/5 \/— dZ Zu
+ (Zf) dl .
oc, = - \/Z_f__yL , 6d. = éc.,
2Vz az 1,
de. = —da., z,=ké, z,=k(l—20),

when 0 < ¢ < 2 — z5 When 2 — z5 < ¢ < 1, the
coefficients are

ar = _ieiiuﬁ\/z_llip.(zl)v b. =
L= =i TN 7L (7, de =

Zulip,(zu)v

V2L (2p),

C. =
€+ = vzllip(zl)7
_ +.(z) dl., ]
SLIi — ie+lu77|: [ \/_ ,
2\/_ 2]
1. ,(z,) dl.
NV
2V/z, VaE,
. + (Zf)
8C+ — l‘e+lu77 [ ,
N |: ZV— \/_f Zf
+ (Zf) dIi
8d., = _[ M \/_ 123 ,
2\/_ Zf
I+ (Zl) d]+
de. =—t—=+\/z,—*~| , z,=k¢,
* 2\/1_1 \/—l dz . !
2, = k(1 —0), zp=k(€— zy).

In case 1 < ¢, they are

a. =\zl.,(z), b.=
= \/z_fI:;L(Zf)v d. = c.,

=TT (2\>Z_) Vi

V2,120,
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dl

* (Zu) =+
8b+ — [ 123 ,
- (2\/_ PV
1. ,(z¢) dl
5c+=—< =2 ) 8d. = dc.,
2\/Z_f d y
L. ,(z) dl.
de. =—2 \/——7” , z;=ké,
2V/z, i
iu = k(f - 1)7 k(é - Za)

Otherwise they are

=Vl u(z), b=\ 7,1,z

a.
Ce = lep(zp), de=c., e.=a.,
(Z[) dl .
Sa., = \/__—“ ,
B ZV— z]
1. ,(z,) dl.
&b, = —+=+\z,—=| ,
o Ve
L. (zf) dl.
S = —2L 4 \/7,—2| | 8d. = sc.,
*+ 2\/Z_f f dz 5 *+ *+
e, = —bda., z,=—ké, z,=k(1—2¢),

Zf: k(ZB - 5).

The resulting momentum and energy fluxes are

ww(w) = %m(ﬁw*) = %Sﬁ(ikazdf&*) (A8)

and
1
o) =3 %(p9°)
—ER[—(U/\/E — )i +

iU
k\/ﬁ P ]
1 aa
= SO/~ o],

respectively.

(A9)
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