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ABSTRACT

Interaction of internal gravity waves with a horizontal shear flow in the absence of potential vorticity

perturbations is investigated making use of closed-form solutions. Localized wave packet trajectories are

obtained, the energy growth mechanisms occurring are identified, and the potential role of perturbation

growth in wave breaking is assessed.

Regarding meridional propagation, the wave packet motion is limited by turning levels where the waves

are reflected and trapping levels where the waves stagnate. Regarding perturbation energy amplification, two

growth mechanisms can be distinguished: growth due to advection of zonal velocity and growth due to

downgradient Reynolds stresses. The three-dimensional perturbations producing optimal energy growth

reveal that these two mechanisms produce large and robust amplification of zonal velocity and/or density and

vertical velocity, potentially leading to shear or convective instability.

For large static stability, amplification of density perturbations in conjunction with vertical orientation of

the constant phase lines close to the trapping level potentially leads to a convective collapse of the wave

packet near the trapping level, in agreement with existing direct numerical simulation studies. For lower

static stability and for waves with phase lines oriented horizontally, growth due to advection of zonal velocity

dominates, leading to rapid growth of streamwise streaks within the localized wave packet and potentially to

shear instability.

1. Introduction

One of the important roles of the internal gravity

wave field is its contribution to oceanic small-scale

mixing. Even though there have been a large number of

attempts to quantify the rates at which the internal wave

field produces mixing in the ocean (for reviews, see

Garrett and Munk 1979; Gregg 1989; Staquet and

Sommeria 2002), we still lack an adequate understand-

ing of both the sources of internal wave energy and the

rate at which it is dissipated. Mechanisms of gravity

wave generation and growth leading to breaking are

examined in this work by studying the evolution of small

perturbations in a stably stratified, horizontally sheared

flow. In this first part, we concentrate on the interaction

of gravity waves with shear, while in the companion

paper (Bakas and Farrell 2009, hereafter Part II) the

focus is on the interaction between potential vorticity

perturbations and gravity waves.

Interaction of internal gravity waves with horizontally

inhomogeneous oceanic currents has been investigated

observationally (Frankignoul 1974; Ruddick and Joyce

1979) and experimentally (Thorpe 1981). Theoretical

studies addressing this problem typically employ a lin-

ear analysis and the Wentzel–Kramers–Brillouin (WKB)

approximation (Bretherton 1966; Olbers 1981; Badulin

and Shrira 1993) or a weakly nonlinear analysis (Brown

and Stewartson 1982). For example, Samodurov (1974) and

Miropol’skiy (1974) considered the effect of a vertically

constant but horizontally varying buoyancy frequency

on internal wave propagation. They found that waves

are trapped near locations where the intrinsic frequency

approaches the Brunt–Väisälä frequency, analogous

to the trapping by a critical level in a vertical shear.

Analogous behavior of gravity waves near trapping

levels will be a focal point of this study as well.

Internal wave trapping in a baroclinic shear flow that

is in thermal wind balance with a horizontal density

gradient in a stably stratified fluid was studied by Olbers
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(1981). He showed using the WKB approximation that

wave energy focuses at depths where Brunt–Väisälä

frequency maxima occur, and evidence for such a trap-

ping mechanism in the Lomonosov Current was pro-

vided by Badulin et al. (1990). Olbers (1981) further

showed that as a wave approaches its trapping level,

both its wavelength and group velocity in the direction

of the inhomogeneity decay to zero. Consequently,

the wave vector approaches the horizontal inhomoge-

neity direction and the intrinsic frequency tends to the

Brunt–Väisälä frequency. The trapping level is never

reached in the WKB limit, and both wave amplitude

and wave energy density increase without bound in

the inviscid limit. These conclusions were confirmed by

exact solutions of the model problem (Erokhin and

Sagdeev 1985).

Further insight into wave behavior near the trapping

level was obtained by linearizing about a barotropic

horizontal parallel shear flow (Ivanov and Morozov

1974). For a wave train, concentration of wave energy

due to group velocity reduction near the trapping level

results in a local energy growth leading to breaking

(Badulin et al. 1990). Staquet and Huerre (2002), using

direct numerical simulations of an inertia–gravity wave

packet approaching a dynamical barrier, verified that

breaking is possible in the trapping plane neighborhood

even for a wave packet. However, they found that

breaking is caused by an increase in density and vertical

velocity that cannot be attributed to wave packet energy

accumulation. Because breaking occurred regardless of

whether the flow supported exponential instabilities,

this result links wave breaking to transient nonnormal

growth. Such algebraic growth was found by Kalashnik

et al. (2006) in numerical integrations of the linearized

equations governing the evolution of small perturba-

tions in a meridionally varying shear flow on an f plane.

Because breaking of gravity waves near the trapping

level occurs regardless of rotational effects, the Coriolis

acceleration will be neglected in this work. Instead, we

focus on an inertial frame of reference and extend the

analysis of Kalashnik et al. (2006), identifying all the

transient growth mechanisms occurring and investigat-

ing, in addition, their role in wave breaking. To achieve

this goal, we use the tools provided by the generalized

stability theory (GST) developed by Farrell and Ioannou

(1996), a mathematical framework for addressing tran-

sient perturbation growth. We perform a generalized

stability analysis of a linear three-dimensional model

with a barotropic horizontal shear flow U 5 U(y)î and

a constant Brunt–Väisälä frequency. In this first part, we

consider an unbounded constant shear flow allowing

closed-form solutions to the initial value problem and

investigate the problem of wave packet propagation and

mean flow interaction for perturbations without initial

potential vorticity. We also find the structures that

amplify most in energy and discuss the implications of

these optimal structures for wave breaking. In Part II,

we study the interaction between vorticity perturbations

and internal gravity waves.

This paper is organized as follows: in section 2, we

describe the linear evolution equations for perturba-

tions in a stratified, barotropic horizontal shear flow.

Sections 3 and 4 describe the growth mechanism and

propagation of zonally independent perturbations and

of perturbations in the strong stratification limit, respec-

tively. The synergy between the two mechanisms for

growth is studied in section 5, while the optimal growing

perturbations are identified in section 6. The intuition

gained and the analytical results obtained are used in

section 7 to study the interaction of localized wave

packets with the shear flow. We finally end with a brief

discussion and our conclusions in section 8.

2. Formulation

a. Evolution equations for three-dimensional
perturbations

Consider a flow with mean zonal velocity U(y) vary-

ing only in the meridional direction in a hydrostatically

balanced, stratified ocean of background density r 5 rm 1

r0(z), where rm is the mean density and r0(z) is the

variation of the background density with depth. Velocity

perturbations superposed on the background flow in the

zonal, meridional, and vertical direction are (u, y, w),

respectively. Density and pressure perturbations super-

posed on the mean density and pressure fields are (r, p),

respectively. The linearized, nondimensional momen-

tum, thermodynamic, and continuity equations gov-

erning the evolution of small perturbations are

(›t 1 U(y)›x) u 1
dU

dy
y 5 � ›xp� r(y)u 1

1

Re
=2u, (1)

(›t 1 U(y)›x)y 5 � ›yp� r(y)y 1
1

Re
=2y, (2)

(›t 1 U(y)›x)w 5 � ›zp� Sr � r(y)w 1
1

Re
=2w,

(3)

(›t 1 U(y)›x)r 5
N2

N2
0

w� r(y)r 1
1

Re
=2r, (4)

›xu 1 ›yy 1 ›zw 5 0. ð5Þ

Time is nondimensionalized by 1/a, where a is the shear

and the horizontal and vertical scales are non-

dimensionalized by L 5 V0/a, where V0 is a typical
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mean flow velocity. Pressure and density are non-

dimensionalized by rmV2
0 and rmV0N2

0/ag, respectively,

where g is the gravitational acceleration and N0 is a

characteristic value of the Brunt–Väisälä frequency. The

Brunt–Väisälä frequency N, defined as N2 5 2(g/rm)

(dr0/dz), is constant and taken to be equal to its char-

acteristic value N2 5 N2
0. The nondimensional static sta-

bility and the Reynolds number are defined as S 5

N2
0/a2 and Re 5 rmLV0/m, respectively, where m is the

coefficient of viscosity. The Prandtl number has been

chosen to be one, thus the coefficient of kinematic vis-

cosity n 5 m/rm equals the coefficient of density diffu-

sion. The Rayleigh damping terms r(y) are only relevant

to the numerical calculations presented in Part II, where

further details will be provided.

We first take advantage of the continuity equation to

reduce the number of partial differential equations to

three. Taking the divergence of momentum Eqs. (1), (2),

and (3), and using continuity equation (5), we obtain the

diagnostic equation for the perturbation pressure:

=2p 5 � 2
dU

dy
›xy � dr

dy
y � S›zr. (6)

Eliminating pressure from (1), (3) we obtain the evo-

lution equation for the meridional component of vor-

ticity z 5 ›zu 2 ›xw:

›t 1 U›x 1 r � 1

Re
=2

� �
z 5 � dU

dy
›zy 1 S›xr. (7a)

Applying the Laplacian operator to (2) and eliminating

pressure using (6) yields

›t 1 U›x 1 r � 1

Re
=2

� �
=2y 5

d2U

dy2
›x �

dr

dy
›y

 !
y

1 S›2
yzr. (7b)

Finally, applying the operator (›2
x 1 ›2

z) to (4) and using

continuity equation (5) and the definition of z yields

›t 1 U›x 1 r � 1

Re
=2

� �
(›2

x 1 ›2
z)r 5 � ›xz � ›2

yzy.

(7c)

We thus obtain the system (7) that determines the ev-

olution of the meridional component of vorticity z,

meridional component of velocity y, and perturbation

density r.

b. Perturbation dynamics in the convected frame
of reference

Consider an inviscid, unbounded, constant shear flow

U(y) 5 y in the absence of Rayleigh damping (r 5 0). It is

useful to transform system (7) into the convected coor-

dinate frame of reference (Phillips 1966), which is moving

with the background flow (j 5 x 2 yt), and seek solutions

of the form [z, y, r] 5 [ẑ(t), ŷ(t), r̂(t)]eikx1i(l�kt)y1imz with

time-varying meridional wavenumber l 2 kt. Substituting

this solution form reduces the original partial differential

equations to the following set of three ordinary differen-

tial equations:

dẑ

dt
5 � imŷ 1 ikSr̂ �K(t)2

Re
ẑ, (8a)

dŷ

dt
5

2k(l � kt)

K(t)2
ŷ 1

m(l � kt)S

K(t)2
r̂ �K(t)2

Re
ŷ, (8b)

dr̂

dt
5

ik

k2 1 m2
ẑ �m(l � kt)

k2 1 m2
ŷ �K(t)2

Re
r̂, (8c)

where K(t)2 5 k2 1 m2 1 (l 2 kt)2 is the square of the

time-dependent total wavenumber of the plane wave.

Even though (8) is a self-contained system and its so-

lution can be accurately determined by numerical in-

tegration, it is instructive to reduce it to a single second-

order differential equation by taking advantage of po-

tential vorticity conservation for an inviscid flow, as this

separates the growth processes considered in this study

from growth processes due to gravity wave–vorticity

wave interaction considered in Part II. We first use the

continuity equation (5) and the definition of z to express

the vertical component of potential vorticity q 5 ›xy 2

›yu 1 ›zr of a single Fourier component in terms

of ẑ, ŷ, and r̂:

q̂ 5 �m(l � kt)

k2 1 m2
ẑ 1

ikK(t)2

k2 1 m2
ŷ 1 imr̂

" #
.

It can be readily shown from (8) that

q̂(t) 5 q̂(0)e
�(1/Re)

Z t

0

K(s)2ds
. (9)

Combining Eqs. (8b), (8c), and (9), we obtain the second-

order differential equation for r̂:

d2r̂

dt2
1 Sv(t)2

1 ka(t) 1
K(t)4

Re2

(

1
(l � kt)

Re
[a(t)K(t)2 � 2k]

�
r̂

1 (l � kt)a(t) 1
2K(t)2

Re

" #
dr̂

dt
5� ika(t)

m
q̂(t), (10)

where
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a(t) 5
2km2

[k2 1 (l � kt)2]K(t)2
, (11)

v(t)2
5

k2 1 (l � kt)2

K(t)2
. (12)

The solution of the homogeneous restriction of (10)

consists of transient gravity waves, whereas the par-

ticular solution involves the interaction between the

propagating gravity waves and potential vorticity per-

turbations. It is therefore instructive to study the solu-

tion to the homogeneous restriction of (10) and the

particular solution separately. In this work we con-

centrate on the solution of the homogeneous equation;

that is, we hereafter consider only perturbations with

q̂(0) 5 0. The particular solution along with the inter-

action between vorticity perturbations and gravity

waves is studied in Part II.

c. Perturbation energy density and energetics

To understand the transient growth mechanisms, we

consider the transfers of energy between waves and the

mean flow. The perturbation energy density, defined as

E 5 (1/4)(u2 1 w2 1 y2) 1 (S/4)r2, evolves according

to

dE

dt
5

dT

dt
1

dV

dt
5 (�uy � S rw) 1 (S rw)

� 1

Re
[ (=u)2

1 (=y)2
1 (=w)2

1 S(=r)2 ] 5

� uy � 1

Re
[ (=u)2

1 (=y)2
1 (=w)2

1 S(=r)2 ],

(13)

where T 5 (1/4)(u2 1 w2 1 y2), V 5 (S/4)r2 are the ki-

netic and potential energy density, respectively, and the

overbar denotes an average over space. Therefore,

perturbation energy grows due to the downgradient

Reynolds stress term uy. Note that even though the

buoyancy flux term rw does not contribute to net en-

ergetics, it is responsible for energy exchange between

the kinetic and potential forms.

Before we treat the evolution of three-dimensional

perturbations, it is instructive to consider two separate

limits permitting closed-form solutions and illuminating

the basic growth mechanisms in shear flow as well as the

propagation characteristics of wave packets.

3. Growth of zonally independent solutions

Consider first the limit of zonally uniform solutions

(k 5 0) in an inviscid flow. The Lagrangian zonal ve-

locity of these roll solutions is conserved (Moffat 1967;

Ellingsen and Palm 1975; Landahl 1980). Such perturba-

tions can therefore grow by advection of mean zonal

velocity by perturbation spanwise velocity to regions of

lower/higher mean zonal velocity. For an unstratified flow,

the vertical and meridional perturbation velocities are

constant, leading to a continuous advection and to lin-

ear growth of zonal velocity (Farrell and Ioannou 1993).

In the presence of stratification, vertical motion is

opposed by the buoyancy force, and growth of roll

perturbations in a vertical shear is limited by stratifica-

tion to E O(1/Ri) (Bakas et al. 2001). For roll pertur-

bations in a stratified meridional shear, meridional and

vertical velocities satisfy the continuity equation y 5

2(m/l)w. Therefore, for large m/l—that is, if the phase

lines are almost horizontal—a small vertical motion

will correspond to large meridional advection of zonal ve-

locity leading to large zonal velocity growth. The solu-

tion of (10) for the time-dependent Fourier components

in this case is

ẑ(t) 5
1

2

im2

l
r̂(0)� m

v0
ŷ(0)

� �
eiv0t

1
1

2

im2

l
r̂(0) 1

m

v0
ŷ(0)

� �
e�iv0t, (14)

ŷ(t) 5
1

2
ŷ(0) 1

mv0

il
r̂(0)

h i
eiv0t

1
1

2
ŷ(0)�mv0

il
r̂(0)

h i
e�iv0t, (15)

r̂(t) 5
1

2
r̂(0)� l

imv0
ŷ(0)

� �
eiv0t

1
1

2
r̂(0) 1

l

imv0
ŷ(0)

� �
e�iv0t, (16)

where

v0 5 l
ffiffiffi
S
p

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 1 m2

p
, (17)

yielding the general solution

[z(y, z, t), y(y, z, t), r(y, z, t)]

5
1

2p

Z ‘

�‘

Z ‘

�‘

[ẑ(t), ŷ(t), r̂(t)]eimz1ilydldm, (18)

where

[ẑ(0), ŷ(0), r̂(0)] 5
1

2p

Z ‘

�‘

Z ‘

�‘

[z(y, z, t 5 0),

y(y, z, t 5 0), r(y, z, t 5 0)] e�ily�imzdydz.

All Fourier components oscillate with the frequency, v0

satisfying the dispersion relation of a gravity wave in the

(y, z) plane. The two terms in (14)–(16) therefore represent
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two counterpropagating waves in the (y, z) plane. The

structure and evolution of an initial localized per-

turbation y(y, z, t 5 0) 5 Aye�y2/(dy)2

cos (mz) cos (ly),

where Ay is a chosen amplitude, are calculated using

numerical quadrature of the Fourier integral (18) and

are shown in Figs. 1, 2. This localized initial perturba-

tion consists of a roll type of circulation in the (y, z)

plane (Fig. 1) with meridional velocity leading zonal

velocity by a quarter of a wavelength in the vertical, and

it subsequently evolves as two counterpropagating co-

herent wave packets.

Its energy evolution found by numerical quadrature

of the Fourier integral

E(t) 5
1

8p

Z ‘

�‘

Z ‘

�‘

1

m2
[jẑ(t)j2 1 (l2 1 m2)jŷ(t)j2

1 Sm2jr̂(t)j2]dldm (19)

is plotted in Fig. 2. Initially, an oscillation due to wave

interference is observed, but as the counterpropagating

wave packets separate in space (Fig. 2), the energy as-

ymptotes to a constant large value. Further investiga-

tion of (19) reveals that this energy growth can be traced

to zonal velocity growth due to roll advection as de-

scribed in the beginning of this section. This observation

suggests that roll perturbations propagating within a

shear region can produce large streamwise velocity

perturbations that may lead to breaking through shear

instability. It is therefore of interest to identify the

perturbations leading to the largest energy growth both

FIG. 1. Structure at t 5 2 of the wave packet with initial structure y(y, z, t 5 0) 5 Aye�y2/(dy)2

cos (mz) cos (ly). Shown are the velocity field in the (y, z) plane (vectors) and zonal velocity,

u (contours). The contour interval is 1/2 and negative values are dashed. Static stability is S 5 1,

(l, m) 5 (5, 20), dy 5 1.25, and Ay is such that the initial wave packet has unit energy. Formation

of zonal velocity perturbations potentially leading to shear instability is a prominent feature of

this solution.

FIG. 2. Evolution of the wave packet shown in Fig. 1. (top) Real

part of zonal velocity u at z 5 0 for t 5 6.5 (solid line) and t 5 136

(dashed line). (bottom) Energy of the wave packet as calculated by

numerical quadrature of (19).
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during the initial evolution when there is wave inter-

ference and at the final stage of wave spatial separation.

The maximum growth that can be achieved provides a

measure of the strength of the growth mechanism due to

advection, and the optimal perturbations identify the

structures that are expected to dominate perturbation

dynamics in the linear limit and to develop regions

susceptible to wave breaking.

In appendix A we obtain closed-form solutions for the

optimal roll perturbations maximizing energy growth at

a specified time Topt, which can be chosen to be within

the time interval either of wave interference or wave

spatial separation. That is, for a plane wave perturba-

tion of given wavenumbers, (l, m), we calculate the

initial conditions leading to maximum energy Elm
opt(Topt)

at the specified time Topt under the constraint of unit

initial energy. The optimal perturbations are then ob-

tained by calculating the wavenumbers (l, m) maxi-

mizing Elm
opt. In the case of wave interference, the energy

growth Elm
opt given by (A2) is plotted in Fig. 3 as a

function of m/l for S 5 1 and S 5 20. Apart from local

minima and maxima for low values of the tilt m/l,

growth increases and asymptotes to approximately T2
opt

for m/l / ‘, as meridional advection for a given vertical

motion is maximized when the phase lines are almost

horizontal. The optimal initial perturbations producing

this growth for m/l / ‘ are velocity perturbations. Also

note that even though the optimal growth is obtained

for perturbations having m/l tending to infinity in the

inviscid limit, 90% of the maximum growth Elm
opt is

reached at m/l ; 15
ffiffiffiffi
S.
p

Therefore, in realistic viscous

flows in which diffusion attenuates short wavelength

disturbances, the roll mechanism is expected to be more

effective for lower static stability. In the case of wave

spatial separation, the optimal perturbations have again

almost horizontal phase lines (m/l� 1) and the optimal

initial conditions are velocity perturbations leading to an

overall energy increase of Elm
opt ; 1 1 m2/(2l2S), which is

independent of the optimization time (as long as this is

chosen to be within the time interval of wave spatial

separation). In summary, growth of zonal velocity due to

roll advection is larger for low static stability and for

nearly horizontal initial velocity perturbations.

4. Growth of perturbations in the strong
stratification limit

We now investigate the energy growth and propaga-

tion properties of perturbations varying weakly in the

vertical. Consider Eq. (10) in the absence of diffusion:

d2r̂

dt2
1 (l � kt)a(t)

dr̂

dt
1 [Sv(t)2

1 ka(t)]r̂ 5 0. (20)

The leading large time asymptotic behavior of pertur-

bations is easily determined. The horizontal velocity

components decay to zero, while vertical velocity and den-

sity oscillate with the nondimensional Brunt–Väisälä

frequency (ŵ, r̂) ; e6i
ffiffiffi
St
p

, indicating the existence of a

trapping level, as discussed in the introduction. Intro-

ducing r̂(t) 5 ~r(t)v(t) and reorganizing terms in (20),

we obtain

d2~r

dt2
1 Q(t)~r 5 0, (21)

where

Q(t) 5 Sv(t)2

1
k2m2[3k2(k2 1 m2) 1 2k2(l � kt)2 � (l � kt)4]

[k2 1 (l � kt)2]2[k2 1 m2 1 (l � kt)2]2
.

(22)

For (m/k)� S1/2, Q is a slowly varying function of time

fjQ0/Q3/2jO[(m/k)/S1/2]� 1g and a WKB analysis can

be applied to (21). The WKB solution to (21) is

~r 5 Q(t)�1/4e
6i
R t

0

ffiffiffiffiffiffiffiffi
Q(s)

p
ds

. (23)

For (m/k)�S1/2, Q(t) 5 Sv(t)2
1 O[(m/k)/S1/2], and

(23) reduces to

r̂ 5 v(t)Q(t)�1/4e
6i
R t

0

ffiffiffiffiffiffiffiffi
Q(s)

p
ds

5 S�1/4
ffiffiffiffiffiffiffiffiffi
v(t)

p
e

6i
ffiffi
S
p R t

0
v(s)ds

1 O[(m/k)/S1/2]. ð24Þ

FIG. 3. The maximum energy growth Elm given by (A2) as a

function of m/l for static stability S 5 1 (solid line) and S 5 10

(dashed line). The optimizing time is Topt 5 10 and the upper

bound 1 1 T2
opt is shown by the thick line.
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We define F 5 (m/k)/S1/2 as an inverse stratification

parameter that also depends on the vertical orientation

of perturbations. Therefore, for (m/k) � S1/2 (F � 1),

the solution consists of internal gravity waves with

time-dependent meridional wavenumber ~l 5 l � kt and

time- dependent Doppler-shifted frequency
ffiffiffi
S
p

v(t),

satisfying the internal wave dispersion relation with the

instantaneous value of the time-dependent meridional

wavenumber. The approximate solution (24) to O(F) is

remarkably accurate for F , 0.3, whereas for F O(1) the

relative error is around 30%.

Consider now a wave packet of initial perturbations

consisting of a spread Dl of wave vectors about a central

vector l0 subject to |Dl|/|l0|� 1. We calculate in appendix

B the solution for such a localized perturbation along

with the evolution of its group velocity and energy. We

show that the initial perturbation evolves into two

counterpropagating coherent wave packets, whose me-

ridional displacement and group velocity as a function

of time are

ŷ(t) 5 ŷ(0) 6

ffiffiffi
S
p

k0
[v(l0, t)� v(l0, 0)], (25)

cgy
5

dŷ

dt
5

6m2
0(l0�k0t)

ffiffiffi
S
p

[k2
0 1(l0�k0t)2]1/2[k2

0 1m2
0
1(l0�k0t)2]3/2

,

(26)

where the plus and minus signs correspond to the two

counterpropagating wave packets.

From (25) and (26) we can see that under the as-

sumption of a positive zonal wavenumber k0, an initial

disturbance with positive central meridional wave-

number l0 propagates northward (southward) for times

t , l0/k0, reaching the maximum (minimum) latitude

ŷmax 5 6

ffiffiffi
S
p

k0

k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 1 m2
0

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 1 l2
0

k2
0 1 m2

0 1 l2
0

vuut
0
B@

1
CA,

then the motion reverses and the packet asymptotically

approaches the latitude

ŷ‘ 5 6

ffiffiffi
S
p

k0
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 1 l2
0

k2
0 1 m2

0 1 l2
0

vuut
0
@

1
A, (27)

southward (northward) of its original position. On the

other hand, an initial disturbance with negative l0
propagates southward (northward) all the way to the

minimum (maximum) latitude of (27). The trajectory of

the center of the wave packet for both cases is shown in

Fig. 4.

The ultimate wave packet latitudinal displacement ŷ‘

coincides with the trapping level of a monochromatic

wave with wavenumber k0 5 (k0, l0, m0). If ytl is the

distance of the wave packet from the trapping level, it is

easily shown by using (25), (27) that ~l 5 l � kt ; y�1/2
tl

and cgy
; y3/2

tl as ytl / 0. Similarly, if yrl is the distance of

the wave packet from the turning level, it can be shown

that ~l 5 l � kt ; y1/2
rl and cgy

; y1/2
rl as yrl / 0. We have

thus recovered the results reported in Staquet and

Huerre (2002), who used the ray-tracing method in the

WKB limit. Note, however, that the approximation to

(20) for F � 1 and, consequently, the wave packet

analysis does not fail near the turning point, in contrast to

the WKB theory used in the ray-tracing method that

becomes invalid near the turning level. Finally, it is worth

noting that internal waves can propagate beyond their

turning level due to nonlinear interactions between

waves and wave-induced flow (Sutherland 2000), an ef-

fect that is not accounted for in our linearized analysis.

The wave packet energy evolves according to (see

appendix B for details)

E(t)

E(0)
5

v(l0, t)

v(l0, 0)
5

(k2
0 1 m2

0 1 l2
0)[k2

0 1 (l0 � kt)2]

(k2
0 1 l2

0)[k2
0 1 m2

0 1 (l0 � kt)2]

( )1/2

.

(28)

For an initial positive l0/k0, the Reynolds stress uy

is upgradient up to time ty 5 l0/k0, when the packet

FIG. 4. Location of the center of the wave packet ŷ(t) [given by

(25)] with time. Static stability is S 5 100 and the central wave-

number is (k0, l0, m0) 5 (1, 7, 5) (solid line) and (k0, l0, m0) 5

(1, 27, 5) (dashed line). The thick solid line denotes the trapping

level for both cases, and the trajectory segments in which energy

amplification and decay occur are also noted. Only the path of one

of the two counterpropagating wave packets is shown [the one

corresponding to the plus sign in (25)]. The path of the other wave

packet is the one shown here, only reflected about the y 5 0 axis.
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reaches its turning level. Consequently, because the

energy evolves according to (13), we have energy decay

during northward/southward propagation. For later

times t . ty, the Reynolds stress is downgradient, leading

to energy growth. On the other hand, for a negative

l0/k0, the Reynolds stress is downgradient and we have

monotonic energy growth during the whole time of

propagation. The phases of energy amplification and

decay are also noted in Fig. 4. In both cases we have

energy growth as the wave packet approaches the

trapping level (for t / ‘) and its energy asymptotes to a

constant value

E(t)

E(0)
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1

m2
0

k2
0 1 l2

0

,

s

which is larger than its initial energy. Because almost all

of the growth attained is due to density and vertical

velocity amplification, it may lead to convectively un-

stable regions and wave breaking. We assess here the

possibility of breaking of three-dimensional perturba-

tions. We consider the ratio of maximum perturbation

density gradient measured by n2 5 2(g/rm)|›r/›z| to

the background Brunt–Väisälä N2
0 5 �(g/rm)dr0/dz,

which is given by

n2

N2
0

5 m0r̂j j.

Convective overturning may occur whenever n2/N2
0 . 1.

The largest density amplification occurs near the trap-

ping level and leads to

n2

N2
0

5 m0r̂j j5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(l0, t! ‘)

v(l0, 0)

s
m0r̂(x, z, y, 0)

�����
�����

5 1 1
m2

0

k2
0 1 l2

0

 !1/4

m0r̂(x, z, y, 0)

������
������.

We observe that for a given initial perturbation ampli-

tude, WKB theory to O(F) predicts that perturbations

with phase lines oriented almost horizontally are more

susceptible to convective instability. This result is robust

and holds even for F O(1) as will be shown in the sequel.

5. Synergy between the two growth mechanisms

Having studied in the previous sections the limits

isolating the two different energy growth mechanisms of

perturbations in a stratified meridional shear flow, we

now treat the general case in which growth occurs both

due to downgradient Reynolds stresses and due to ad-

vection of zonal velocity. Consider first the case of a

wave with phase lines tilted with the shear in the hori-

zontal (l/k , 0). The solution is obtained by numerical

integration of (8) in the absence of diffusion, and the

energy evolution of the plane wave is given in terms of

the Fourier amplitudes ẑ, ŷ, and r̂ by

Ê 5
1

4(k2 1 m2)
[jẑj2 1 K(t)2 jŷj2 1 S(k2 1 m2) jr̂j2].

(29)

A typical energy evolution in the inviscid limit is shown

in Fig. 5 for a three-dimensional perturbation with ini-

tial wavenumbers (k, l, m) 5 (1, 25, 10) and (k, l, m) 5

(1, 25, 50). For m 5 10, growth of zonal velocity due to

advection, which is proportional to m/(l 2 kt), is weak

and energy evolution closely follows that predicted by

(28) for (m/k) � S1/2. For the case with m 5 50, the

oscillations shown in Fig. 5 are solely due to zonal ve-

locity increase, indicating the presence of the roll

mechanism. The oscillating behavior of the energy is

due to wave interference, a consequence of the plane

wave perturbations considered in this section. Because

the meridional wavenumber is decreasing linearly with

time in this case, m/(l 2 kt) decreases monotonically

and rapidly, and the roll mechanism is important only

during the early perturbation development, as illus-

trated by the decaying amplitude of oscillations with

time. It is also worth noting that the oscillations are

superposed on the energy increase due to Reynolds

stresses alone, shown by the thick line, illustrating that

the overall result is a superposition of the growth ob-

tained by each of the mechanisms operating alone.

Thus, zonal velocity and density amplifications occur

independently, with the former being prevalent during

the early stage of wave evolution and the latter for large

times.

Consider now the case of waves with phase lines tilted

against the shear in the horizontal (l/k . 0). A typical

energy evolution in the inviscid limit is shown in the

middle of Fig. 5 for the example of initial wavenumbers

(k, l, m) 5 (1, 5, 10). The meridional wavenumber de-

creases linearly with time and becomes zero at ty 5 l/k.

We therefore expect the roll mechanism to be important

for times t ; ty. For initial conditions [ŷ(0), r̂(0)] 5

(1, 0), amplification of u due to advection coincides with

upgradient Reynolds stresses for t ; ty, leading to a

further decay. For later times t . 2l/k, the wave leans

with the shear, m/(l 2 kt) becomes small, resulting in

a weak roll mechanism effect, and energy evolution

is determined by the downgradient Reynolds stresses

alone. However, in this case, gradual amplification after

t . 2l/k is unable to compensate for the rapid loss at

times t ; ty and energy density is overall decreased. For

488 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39



[ŷ(0), r̂(0)] 5 (1, 0.5), the Reynolds stresses near t ; ty
are negative and amplification of u leads to a rapid

energy density growth that is significantly enhanced at

large times compared to the energy density growth

arising only from the kinetic energy source associated

with downgradient Reynolds stresses. Unlike in the case

of a wave with phase lines tilted with the shear in the

horizontal, in this case, with phase lines tilted against

the shear, energy due to zonal velocity amplification is

transferred through pressure work and buoyancy fluxes

into the other velocity and density fields and about half

of the amplified energy is in potential energy form. The

resulting large density perturbations could potentially

lead to convective instability.

The benefit from the synergism between downgradient

Reynolds stresses and growth due to zonal advection is

also evident for low values of static stability, for which

the roll mechanism is stronger, as discussed in section 3.

As illustrated in the bottom of Fig. 5, energy growth of

waves with l/k . 0 is larger than the corresponding

energy growth of waves with opposite horizontal tilt

(l/k , 0), for which the two mechanisms are operating

alone. In this case, though, only part of the amplified

zonal velocity is converted into density perturba-

tions. This results in very large zonal velocity pertur-

bations during the initial stage of evolution that decay

with time as m/(l 2 kt) decreases monotonically. These

perturbations could therefore lead to the formation

of dynamically unstable regions if they persist long

enough.

6. Optimal perturbations

a. Method of determining optimal perturbations

As discussed in the previous section, the roll mecha-

nism and the Reynolds stresses and the synergy between

them leads to amplification of zonal velocity or poten-

tial energy of plane wave perturbations that may result

in breaking through shear or convective instability. It

is therefore of interest to determine an upper bound

for such transient amplifications and the initial pertur-

bations yielding this growth. We thus calculate in this

section the initial conditions yielding the largest growth

of zonal velocity or density over a specified time inter-

val Topt. This optimization time, Topt, is chosen using

physical considerations, such as the time scale over

which perturbation growth is limited by disruption due

to turbulent fluctuations or by the initiation of breaking.

Because we do not have a priori knowledge of this

timescale, we chose it to be within a range of physically

plausible values. A complete analysis proceeds from

first using (9) [for q̂(0) 5 0] to express r̂ in terms of

ẑ and ŷ and then writing (8a), (8b) in the compact form:

dx

dt
5 B(t)x, (30)

where x is the column vector x 5 [ẑ, ŷ]Tand B(t) is

B(t) 5

kS(l � kt)

k2 1 m2
�K(t)2

Re
� ik2SK(t)2

m(k2 1 m2)
� im

� imS(l � kt)2

(k2 1 m2)K(t)2

2k(l � kt)

K(t)2
� kS(l � kt)

k2 1 m2
�K(t)2

Re

2
66664

3
77775.

The solution of (30) is given by x(t) 5 F(t)x(0), where

x(0) is the initial state and F(t) is the finite time prop-

agator mapping the initial perturbation to its state at

time t.

To address the possibility of dynamic and convective

instability separately, we perform two optimization

calculations. We seek the initial perturbation of unit

energy leading to the largest growth in specified time

Topt of u2 and r2, respectively. To achieve this, we define

three positive definite matrices:

FIG. 5. (top) Energy evolution of a plane wave with (k, l, m) 5

(1, 25, 50) (solid line) and (k, l, m) 5 (1, 25, 10) (dashed line) as

given by (29). The initial conditions are [ŷ(0), r̂(0)] 5 (1, 0) and

the static stability is S 5 20. The energy evolution given by (28) for

m 5 50 is also shown (thick line). The corresponding curve for m 5

10 coincides with the dashed line and is not shown. (middle) En-

ergy evolution of a plane wave with (k, l, m) 5 (1, 5, 10) given by

(29) for initial conditions [ŷ(0), r̂(0)] 5 (1, 0.5) (solid line) and

[ŷ(0), r̂(0)] 5 (1, 0) (dashed line). Static stability is S 5 20 and the

energy evolution given by (28) for m 5 10 is also shown (thick

line). (bottom) Energy evolution of a plane wave with (k, l, m) 5

(1, 5, 25) (solid line) and (k, l, m) 5 (1, 25, 25) (dashed line) for

initial conditions [ŷ(0), r̂(0)] 5 (1, 0) and static stability S 5 1. In

all cases, the initial vorticity perturbation is such that the initial

vertical component of potential vorticity is zero and the pertur-

bation amplitude is normalized to yield unit initial energy.
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for which perturbation initial energy, square of zonal

velocity, and potential energy are given by the Euclidean

inner products: E(0) 5 x(0)yM0x(0), (1/4)jû(t)j2 5

x(0)yMux(0), (S/4)jr̂(t)j2 5 x(t)yMrx(t), respectively,

where y denotes the complex conjugate.

For a given set of wavenumbers, (k, l, m), singular-

value decomposition of M1/2
i F(Topt)M

�1/2
0 5 UiSiV

y
i ,

where i is either u or r, Ui and Vi are unitary matrices,

and Si is a diagonal matrix with positive elements or-

dered by growth, identifies the optimal perturbation

xopt as the first column of M�1/2
0 Vi (Farrell and Ioannou

1996). The square of the largest singular value is the

largest of zonal velocity growth [(1/4)jûklm
opt (Topt)j2] or

potential energy growth [(S/4)jr̂klm
opt (Topt)j2] (depending

on the optimization) that can be achieved over the

specified time interval Topt by any initial plane wave of

unit energy with wavenumbers (k, l, m). The pertur-

bation growing the most is then obtained numerically by

a descent algorithm determining the wavenumbers (k, l,

m), maximizing (1/4)jûklm
opt (Topt)j2 or (S/4)jr̂klm

opt (Topt)j2,

and the corresponding growth is (1/4)jûj2max 5

maxklm [(1/4)jûklm
opt (Topt)j2] and (S/4)jr̂j2max 5 maxklm

[(S/4)jr̂klm
opt (Topt)j2], respectively.

b. Growth and characteristics of optimal
perturbations

Optimization calculations in this section are per-

formed for a viscous flow, as viscosity prevents unreal-

istically small perturbations from emerging as optimals.

Because there is no intrinsic space scale for an un-

bounded shear flow, the Reynolds number in this sec-

tion is prescribed for a given coefficient of viscosity on

perturbations having unit zonal wavenumber (k 5 1).

Perturbations with larger zonal scale can be interpreted

as evolving in a flow with a correspondingly higher

Reynolds number.

The optimal growth for u and r as a function of op-

timizing time is shown in the left- and right-hand sides

of Fig. 6, respectively, for static stability S 5 1 and S 5

20 and for Re 5 104 and Re 5 106. Robust growth is

found for both values of static stability, suggesting that

waves can easily grow to breaking amplitude due to

interaction with the mean flow. Low values of static

stability favor zonal velocity growth, as the roll mech-

anism is stronger in this case, while amplification of

density perturbations is larger for strongly stratified

flows.

In all cases considered, the optimal perturbations

have phase lines oriented against the shear in the hori-

zontal (l/k . 0) to benefit from the synergy between the

two growth mechanisms. For large optimizing times, the

optimal perturbations for zonal velocity growth have an

initial horizontal tilt l/k # Topt such that the plane wave

assumes a cross-stream orientation (~l/k 5 l/k� t 5 0)

at a time t # Topt to benefit from the synergy between

downgradient Reynolds stresses and roll mechanisms

occurring at t ; l/k, and the initial energy is almost

evenly distributed among u, y, w, and r. For small op-

timizing times, m/l is large and the initial energy is al-

most all in meridional velocity maximizing the benefit

from growth due to advection of u.

On the other hand, the perturbations producing op-

timal density growth have an orientation utilizing the

interplay between Reynolds stresses and advection of

zonal velocity for transient growth while allowing

enough time for the buoyancy fluxes to convert part of

the kinetic energy growth attained to potential energy,

as discussed in section 5. Therefore, their initial hori-

zontal tilt l/k is rather small and weakly dependent on

Topt, such that kinetic energy amplification occurs early,

while their orientation in the (y, z) plane is almost

horizontal and the initial energy is predominantly in

M0 5
1

4(k2 1 m2)

1 1
Sl2

k2 1 m2
� ikS(k2 1 l2 1 m2)l

m(k2 1 m2)

ikS(k2 1 l2 1 m2)l

m(k2 1 m2)
(k2 1 l2 1 m2) 1

k2S(k2 1 l2 1 m2)2

m2(k2 1 m2)

2
66664

3
77775,

Mu 5
1

4(k2 1 m2)2

m2 �ikm(l � kt)
ikm(l � kt) k2(l � kt)2

� �
,

Mr 5
S

4(k2 1 m2)2

(l � kt)2 � ik(l � kt)K(t)2

m

ik(l � kt)K(t)2

m

k2K(t)4

m2

2
6664

3
7775,
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meridional velocity to benefit from the synergy of the

two growth mechanisms.

7. Growth of wave packets

In this section we study the evolution of spatially lo-

calized wave packets to investigate whether the energy

growth obtained depends sensitively on the wave in-

terference that arises from plane wave solutions.

We consider a localized initial density and velocity

perturbation of the form

[y(x, y, z, t 5 0), r(x, y, z, t 5 0)]

5 [A, 1]eik0x1im0z1il0y�(y/dy)2

, (31)

where dy defines the meridional extent of the pertur-

bation and A is a chosen amplitude, and a vorticity

perturbation

z(x, y, z, t 5 0)

5
idy

2m0

ffiffiffiffi
p
p

Z ‘

�‘

(m0 1 Ak0)(k2
0 1 m2

0) 1 Ak0l2

l

e�dy2(l�l0)2
/41ily, 1ik0x1im0zdl, (32)

such that the initial potential vorticity is zero. This lo-

calized perturbation evolves as

[z(x, y, z, t), y(x, y, z, t), r(x, y, z, t)]

5
1ffiffiffiffiffiffi
2p
p

Z ‘

�‘

[ẑ(t), ŷ(t), r̂(t)] eik0x1im0z1i(l�k0t)ydl, (33)

where ẑ(t), ŷ(t); r̂ tð Þ
	 


are solutions to (8) (in the ab-

sence of diffusion) with initial conditions

[ẑ(0), ŷ(0), r̂(0)]

5 i
(m0 1 Ak0)(k2

0 1 m2
0) 1 Ak0l2

lm0
, A, 1

" #

3
dyffiffiffi

2
p e�dy2(l�l0)2/4, (34)

whereas its energy evolves as

E 5
1

8p(k2
0 1 m2

0)

Z ‘

�‘

f
��ẑ(t)

��2 1 [k2
0 1 m2

0

1 (l � k0t)2]jŷ(t)j2 1 S(k2
0 1 m2

0)jr̂(t)j2gdl. (35)

The initial conditions are such that the perturbations are

localized and evolve as two counterpropagating wave

packets. The wave packet amplitude is normalized to

FIG. 6. (left) Optimal growth of zonal velocity (1/4) uj j2max as a function of the optimization time Topt for

S 5 1 (solid line) and S 5 20 (dashed line) and for Reynolds number (top left) Re 5 104 and (bottom left)

Re 5 106. (right) Optimal growth of potential energy (S/4) rj j2max as a function of the optimization time

Topt for S 5 1 (solid line) and S 5 20 (dashed line) and for Reynolds (top right) number Re 5 104 and

(bottom right) Re 5 106.
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yield unit initial energy, and the evolution is calculated

using numerical quadrature of the Fourier integrals

(33), (35).

We first choose static stability S 5 20 and a central

wavenumber (k0, l0, m0) 5 (1, 25, 20), such that the two

growth mechanisms operate independently (l0/k0 , 0).

Evolution of this localized perturbation in a vertical

(y, z) plane is illustrated in Fig. 7, where contours of

density perturbation at successive times are shown. As

the wave packets propagate toward their trapping levels

located at y 5 63.4, the meridional wavenumber de-

creases resulting in phase lines tilting toward the verti-

cal. The bottom of Fig. 7 shows the evolution of wave

packet energy. Wave interference is only evident during

the initial stage of evolution before wave packets be-

come separated in space. The growth due to Reynolds

stresses is maximized when the wave packet has almost

reached its trapping level and is partitioned between

potential energy and (1/4) |w|2, a behavior that was also

found by Staquet and Huerre (2002) in their direct nu-

merical simulation experiment of an inertia–gravity

wave packet approaching a finite shear layer. The large

amplification of density in their simulation resulted in

convective overturning, showing the importance of the

linear growth mechanism due to Reynolds stresses

studied in this work.

To study the evolution of waves tilted against the

shear, we choose a central wavenumber (k0, l0, m0) 5

(1, 5, 20). The wave packets that are initially localized

around y 5 0 (Fig. 8a) propagate toward their turning

levels located at y 5 60.8. Their meridional wave-

number decreases and the phase lines assume a hori-

zontal orientation (Fig. 8b). After reaching the turning

level, the meridional wavenumber changes sign and the

phase line tilt increases in the opposite direction (Fig.

8c), while they propagate toward their trapping levels

located at y 5 63.4. The wave packet energy evolution

shown in Fig. 8d is similar to that found for waves tilted

with the shear (Fig. 7), reaching, however, larger values

due to synergy between the roll mechanism and Reyn-

olds stress mechanism in this case.

The energy evolution for S 5 1 is shown in Fig. 9 for

waves tilted with and against the shear. In this case, the

turning and trapping levels are located close to the ini-

tial position of the wave packet, and wave interference

is evident even for such localized perturbations. Phase

line orientation is initially almost horizontal (large m0),

leading to a large amplification of zonal velocity due to

roll advection that dominates the observed growth and

might lead to shear instability. Further investigation is

needed to determine if the induced shear persists long

enough in the nonlinear regime for small perturbations

FIG. 7. Evolution of the wave packet given by (31), (32). The initial central wavenumber is

(k0, l0, m0) 5 (1, 25, 20), dy 5 1.25; the static stability is S 5 20 and A 5 20. Snapshots of density

at (top) t 5 0 and (middle) t 5 16. The contour interval is 0.06. (bottom) Evolution of energy

(solid line), potential energy (dashed line), and (1/4)|w|2 (dotted line).
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to grow and destroy wave packet coherence. This in-

vestigation is part of ongoing research.

8. Conclusions

Interaction of internal gravity waves with a horizontal

shear flow for perturbations with zero potential vorticity

was investigated making use of closed-form solutions.

Zonally independent (k 5 0) solutions were found to

propagate in the (y, z) plane with a constant group ve-

locity and to grow due to advection of zonal velocity.

The resulting growth of zonal velocity was found to

be proportional to the tilt of constant phase lines in

the (y, z) plane, m/l, and inversely proportional to the

square of static stability. The initial conditions yielding

the optimal growth were found to be velocity pertur-

bations.

On the other hand, meridional propagation of per-

turbations for F 5 (m/k)/S1/2 � 1 is limited by turning

levels where the waves are reflected, and trapping levels

where the waves stagnate. In this case, perturbations

amplify due to the kinetic energy source associated with

downgradient Reynolds stresses. Almost all of the en-

ergy growth obtained is partitioned between potential

energy and kinetic energy associated with the vertical

velocity.

For F O(1), the interplay between the two growth

mechanisms was found to produce large and robust

amplification of either zonal velocity or both density

and vertical velocity, potentially leading to shear or

convective instability, respectively. Waves with phase

lines tilted against the shear in the horizontal (l/k . 0)

benefit more from this synergy and reach larger ampli-

tudes compared to opposite tilted waves (l/k , 0). For

large static stability, robust amplification of density and

vertical velocity occurs for localized wave packets with

moderate values of m/k and could result in convective

breaking near the trapping level, as found by Staquet

and Huerre (2002), who studied breaking of wave

packets in nonlinear simulations. For lower static sta-

bility, the possibility of shear instability arises, espe-

cially for waves with large m/k, due to the large

amplification in zonal velocity during the early stages of

evolution. In this case, breaking is expected near the

FIG. 8. Evolution of the wave packet given by (31), (32). The initial central wavenumber is (k0, l0, m0) 5

(1, 5, 20), dy 5 1.25; the static stability is S 5 20 and A 5 20. Snapshots of density at (a) t 5 0, (b) t 5 2.4,

and (c) t 5 6. The contour interval is 0.03. (d) Evolution of energy (solid line), potential energy (dashed

line), and (1/4)|w|2 (dotted line).
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turning level for waves with phase lines tilted initially

against the shear (l/k . 0) or during the early stages of

propagation for waves with l/k , 0.

Rotation and nonlinear processes affect the long-term

behavior of wave packets, and therefore nonlinear cal-

culations on an f plane are needed to determine the

robustness of the linear growth mechanisms considered

in this work. Nevertheless, qualitative agreement of our

results with the results of Staquet and Huerre’s (2002)

direct numerical simulation of a breaking wave packet

on an f plane, as well as previous studies such as that of

Jacobitz and Sarkar (1998), who found that turbulence

production in a stably stratified fluid is strongly in-

creased when the flow involves a horizontally sheared

mean flow, suggests that these linear mechanisms play a

significant role in wave breaking and mixing.
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APPENDIX A

Optimal Zonally Independent Perturbations

The inviscid, zonally independent perturbations

leading to the largest energy growth over a specified

time interval within the initial stage of wave interfer-

ence are obtained by following the method outlined in

section 6 and expressing (30) in terms of the new vari-

able y 5 M1/2
k0 x, where Mk0 is the energy metric

Mk0 5
1

4m2

1 1 Sl2/m2 0
0 l2 1 m2

� �
,

for which perturbation energy is given by the inner

product: E 5 yyy. In this variable, the governing equa-

tions are transformed to

dy

dt
5 D0y, (A1)

where D0 is

D0 5 M1/2
k0 BM�1/2

k0 5
0 �ib

�iv2
0/b 0

� �
,

v0 is given by (17), and b 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1 l2S

p
/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 1 m2

p
. The

solution of (A1) is y(t) 5 eD0ty(0), where

eD0t 5
cos (v0t) �ib sin (v0t)/v0

�iv0 sin (v0t)/b cos (v0t)

� �

is the propagator. The optimal perturbation leading to

the largest energy growth over a specified time interval

t 5 Topt can be identified as the eigenvector corre-

sponding to the largest eigenvalue of P 5 eD0yTopt eD0Topt

(Farrell and Ioannou 1996). Eigenanalysis of P reveals

that the largest eigenvalue, corresponding to the opti-

mal growth, is

Elm
opt 5 cos2 (v0Topt) 1

b4 1 v4
0

2b2v2
0

sin2 (v0Topt)

1
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos2 (v0Topt)1

b4 1 v4
0

b2v0

sin2 (v0Topt)

" #2

�4

vuut

5 1 1
m4 sin2 (v0Topt)

2l2S(l2S 1 m2)

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m8 sin4 (v0Topt)

4l4S2(l2S 1 m2)2
1

m4 sin2 (v0Topt)

l2S(l2S 1 m2)

s
. ðA2Þ

The optimal growth increases with m/l and asymptoti-

cally approaches s! 1 1 T2
opt for m/l / ‘. Therefore,

the optimal perturbations are confined in the horizontal

plane and can be readily shown to be velocity pertur-

bations [r̂(0)O(l/m)� 1].

To find the optimal perturbations leading to the

largest energy growth during the stage of wave spatial

separation, we solve the following optimization prob-

lem: we seek the initial perturbations maximizing the

energy of both waves in the stage of wave spatial sep-

aration, which is given by

FIG. 9. Evolution of total energy (solid line) and the zonal en-

ergy component (1/4)|u|2 (dashed line) for an initial wave packet

with initial central wavenumber (top) (k0, l0, m0) 5 (1, 25, 100)

and (bottom) (k0, l0, m0) 5 (1, 5, 100) as given by (31), (32). The

static stability is S 5 1, dy 5 1.25, and A 5 40.
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Es5
1

8

m2 12l2S

l2
r̂(0)j j2 1

(l2 1m2)(m2 12l2S)

m2l2S
ŷ(0)j j2

" #
,

given the constrain of unit initial energy

E(0) 5
1

4m2

m2(l2S 1 m2)

l2
r̂(0)j j2 1 (l2 1 m2) ŷ(0)j j2

" #
.

Using the method of Lagrangian multipliers, we find

that the optimal growth increases with m/l in this case

as well. For m/l � 1, the optimal perturbation has

r̂(0) ’ 0, yielding a maximal growth Elm
opt 5 1 1 m2/(2l2S)

that is independent of the optimization time.

APPENDIX B

Propagation of Wave Packets in Stratified
Shear Flow

Consider the initial wave packet given by (31)–(32),

where the width of the wave packet dy� 1 is such that it

consists of wave vectors Dl around the central vector l0 in

wavenumber space. The evolution of this localized per-

turbation is given by (33), where r̂(l, t) is a solution to

(10) (in the absence of diffusion) with initial conditions

r̂(0),
dr̂

dt
(0)

� �
5 r̂0(l),

ik0

k2
0 1 m2

0

ẑ0(l)� m0l

k2
0 1 m2

0

ŷ0(l)

" #
,

where [r̂0(l), ẑ0(l), ŷ0(l)] are given by (34), and ẑ(t), ŷ(t)

can be determined from r̂ tð Þ using (8c) and (9). For (m/k)

� S1/2, Eq. (10) accepts the following WKB solution:

r̂(l, t) 5
ffiffiffiffiffiffiffiffiffi
v(t)

p
r̂0(l)[A1(l)ei

ffiffi
S
p Z t

0

v(s)ds

1 A�(l)e
�i
ffiffi
S
p R t

0
v(s)ds

], (B1)

where

A6(l) 5
1

2
ffiffiffiffiffiffiffiffiffiffi
v(0)

p 16
i[k0m0 1 A(k2

0 1 l2)]

m0lv(0)
ffiffiffi
S
p

( )
,

yielding the following evolution of the density field:

r(x, y, z, t) 5
1ffiffiffiffiffiffi
2p
p

Z ‘

�‘

r̂0(l)
ffiffiffiffiffiffiffiffiffi
v(t)

p
[A1(l)ei

ffiffi
S
p
R t

0
v(s)ds

1 A�(l)e
�i
ffiffi
S
p R t

0
v(s)ds

] eik0x 1 im0z 1 i(l�k0t)ydl.

Expanding all functions near l0, yields

r(x, y, z, t) 5
dyeik0x1im0z

2
ffiffiffiffi
p
p

Z ‘

�‘

e�(l�l0)2
dy2/4[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(l0, t)

p
1 ›l

ffiffiffiffiffiffiffiffiffiffiffiffi
v(l, t)

p
jl0

(l � l0) 1 � � �](G1 1 G�)dl,

(B2)

where

G6 5 [A6(l0) 1 ›lA6jl0
(l � l0) 1 � � �]

3 e
i(l0�k0t)y1i(l�l0)y6i

ffiffi
S
p R t

0
[v(l0,s)1›lv(l,s)jl0 (l�l0)1���]ds

.

Changing variables ~l 5 l � l0, Eq. (B2) becomes at

leading order

r(x, y, z, t)

5
dyA1(l0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(l0, t)

p
e

ik0x1im0z1i(l0�k0t)y1i
ffiffi
S
p R t

0
v(l0,s)ds

2
ffiffiffiffi
p
p

Z ‘

�‘

e�
~l

2
dy2/4e

i~l [y 1 i
ffiffi
S
p R t

0
›lv(l,s)jl0 ]

d~l

1
dyA�(l0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(l0, t)

p
e

ik0x1im0z1i(l0�k0t)y�i
ffiffi
S
p R t

0
v(l0,s)ds

2
ffiffiffiffi
p
p

Z ‘

�‘

e�
~l 2dy2/4e

i~l [y�i
ffiffi
S
p R t

0
›lv(l,s)jl0 ]

d~l

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(l0, t)

p
A1(l0)e

�ik0yt1i
ffiffi
S
p R t

0
[v(l0,s)�l0›lv(l,s)jl0 ]ds

r x, y 1
ffiffiffi
S
p Z t

0

›lv(l, s)jl0
ds, z, t 5 0

� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(l0, t)

p
A�(l0)e

�ik0yt�i
ffiffi
S
p R t

0
[v(l0,s)�l0›lv(l,s)jl0 ]ds

r x, y�
ffiffiffi
S
p Z t

0

›lv(l, s)jl0
ds, z, t 5 0

� �

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(l0, t)

p
A1(l0)e

�ik0yt1i
ffiffi
S
p R t

0
[v(l0,s)�l0›lv(l,s)jl0 ]ds

rðx, y 1
ffiffiffi
S
p

[v(l0, t)� v(l0, 0)]/k0, z, t 5 0Þ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(l0, t)

p
A�(l0)e

�ik0yt�i
ffiffi
S
p R t

0
[v(l0,s)�l0›lv(l,s)jl0 ]ds

rðx, y�
ffiffiffi
S
p

[v(l0, t)� v(l0, 0)]/k0, z, t 5 0Þ.
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So the solution consists of two wave packets propa-

gating toward opposite directions according to (25) and

with group velocity given by (26), where the plus and

minus signs correspond to the first and second terms,

respectively.

The perturbation’s energy is given by (35), in which

the Fourier amplitudes ẑ(t); ŷ(t) can be obtained in

terms of r̂(t), using (8c) and (9), and for (m/k) � S1/2

they are

[ẑ(t), ŷ(t)] 5
k

v(t)
, � imv(t)(l � kt)

k2 1 (l � kt)2

" #
S1/2r̂(t),

yielding an overall energy

E 5
S

4p

Z ‘

�‘

r̂(t)j j2dl. (B3)

Introducing (B1) into (B3) and expanding the integrand

near l0 readily shows that this leads to the energy growth

for each of the wave packets given by (28).
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