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ABSTRACT

Interaction among potential vorticity perturbations and propagating internal gravity waves in a horizon-

tally sheared zonal flow is investigated. In the strong stratification limit, an initial vorticity perturbation

weakly excites two propagating gravity waves while the density component of the potential vorticity per-

turbation is significantly amplified, potentially leading to convective collapse. If stratification is sufficiently

weak, a strong coupling between vorticity perturbations and gravity waves is found and spontaneous gravity

wave generation occurs. This coupling can be traced to the nonnormal interaction between the potential

vorticity and gravity wave manifolds in the weak stratification limit. Vorticity perturbations amplify in energy

due to downgradient Reynolds stress when their phase lines tilt against the shear and the large growth

attained is transferred to propagating gravity waves. When the flow geometry is such that the excited gravity

waves are confined in the vicinity of the vorticity perturbation by their trapping levels, an overall convective

collapse of this region can be anticipated. On the other hand, when the flow geometry permits wave prop-

agation, significant gravity wave emission occurs.

1. Introduction

Mechanisms of internal gravity wave generation and

breaking have been intensively studied because the in-

ternal wave field is ubiquitous in the ocean and also

because of the role of internal wave energy generation

and dissipation in the large-scale ocean circulation

(Kuhlbrodt et al. 2007).

In Part I of this work (Bakas and Farrell 2009,

hereafter Part I), we studied the evolution of small

perturbations superposed on a stably stratified hori-

zontal shear flow, focusing on the role of transient en-

ergy growth of perturbations with zero potential

vorticity in producing breaking of gravity waves near

the location where the wave intrinsic frequency ap-

proaches the Brunt–Väisälä frequency. In this second

part, we study the interaction between potential vor-

ticity perturbations and gravity waves and its role in

spontaneous gravity wave generation and in producing

conditions favorable for wave breaking.

Spontaneous generation of gravity waves has been

studied previously in theoretical investigations of shallow-

water equations (Ford 1994; Ford et al. 2000; Plougonven

and Zeitlin 2002), of sheared disturbances on an f plane

(McWilliams and Yavneh 1998; Vanneste and Yavneh

2004; Kalashnik et al. 2006), and of Lorenz’s five-

component model (Vanneste 2004). Spontaneous emis-

sion of gravity waves has also been seen in observational

studies (Uccellini and Koch 1987; Guest et al. 2000;

Pavelin et al. 2001; Plougonven et al. 2003) and nu-

merical simulations (O’Sullivan and Dunkerton 1995;

Zhang 2004; Plougonven and Snyder 2007; Viudez

and Dritschel 2006) of baroclinic life cycles. The term

‘‘spontaneous generation’’ refers to emission of gravity

waves occurring abruptly during the evolution of an

initially balanced flow as distinct from emission of

gravity waves during geostrophic adjustment of an ini-

tially unbalanced flow. Ford et al. (2000) showed that

in the small-Froude-number limit, emission of gravity

waves is analogous to Lighthill radiation of acoustic

waves (Lighthill 1952) and occurs due to frequency

matching between the waves and the balanced motion.

In the absence of such frequency matching, the emission

is very weak, as found by Vanneste and Yavneh (2004),

who showed that in the small-Rossby-number limit in
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which the balanced motions have low frequency com-

pared to the internal wave frequency, the generated

waves have an amplitude that is exponentially small in

Rossby number.

In this work, we perform a generalized stability

analysis (Farrell and Ioannou 1996) of a linear three-

dimensional stably stratified model with a constant

Brunt–Väisälä frequency and a meridional shear flow

making use of closed-form asymptotic solutions. Our

purpose is to clarify the role of potential vorticity per-

turbations and nonnormal interactions between vortic-

ity and internal wave perturbations in the process of

spontaneous wave generation and to assess the impli-

cations of this interaction for wave breaking.

This paper is organized as follows: in section 2, we

describe the linear evolution of sheared disturbances in

a stratified, barotropic horizontal shear flow and study

the prototype growth mechanisms for potential vorticity

perturbations. Section 3 describes the interaction be-

tween propagating gravity waves and potential vorticity

perturbations. The role of nonnormality in the interac-

tion between gravity waves and the vortical part of the

flow is also investigated, and the optimal growing per-

turbations are identified to assess the effectiveness of

interaction and energy transfer. In section 4, we study

the emission of waves from a finite shear layer, and we

finally end with a brief discussion in section 5 and our

conclusions in section 6.

2. Growth mechanisms of horizontally sheared
waves

The linearized, nondimensional equations governing

the evolution of small perturbations to a stably stratified

shear flow U 5 U(y)î with constant buoyancy fre-

quency in the vertical are given by (7) in Part I. In the

next two sections, we follow the problem formulation

in Part I in considering an unbounded, constant hori-

zontal shear flow U(y) 5 y in the absence of Rayleigh

damping (r 5 0). Assuming disturbances of the form

[z, y, r] 5 [ẑ(t), ŷ(t), r̂(t)] eikx1i(l�kt)y1imz, where z, y, and

r are the meridional component of vorticity, meridional

component of velocity, and density, respectively, allows

reduction of the partial differential equations to the

single second-order nonhomogeneous differential Eq.

(10) of Part I for the evolution of density Fourier am-

plitude r̂(t). In Part I, solutions to the homogeneous

restriction of this equation were studied, corresponding

to perturbations without potential vorticity, and the

growth mechanisms were identified in that case. In this

study, we focus on the particular solution that describes

the interaction between potential vorticity perturba-

tions and gravity waves.

Before addressing the dynamics of three-dimensional

perturbations, it is instructive to examine two separate

two-dimensional limits: the first limit is to consider

zonally independent perturbations, which addresses

whether the mechanism of growth due to advection of

zonal velocity studied in Part I is modified in the pres-

ence of potential vorticity perturbations; the second

limit is to consider depth-independent motion. In this

limit, potential vorticity and divergent waves are inde-

pendent, and growth of potential vorticity perturbations

can be studied in isolation.

a. Growth of zonally uniform perturbations

Consider first the limit of zonally uniform perturba-

tions (k 5 0). In this case, it follows from (8) in Part I

that the time-dependent Fourier components evolve in

the absence of diffusion as

[ẑ(t), ŷ(t), r̂(t)]

5 ẑ(0)� im2

l
r̂(0) 1 ẑwave(t), ŷwave(t), r̂wave(t)

� �
, (1)

where ẑwave(t), ŷwave(t), r̂wave(t) are given by (14)–(16) in

Part I. These terms correspond to propagating gravity

waves with zero potential vorticity that grow by advec-

tion of mean zonal velocity be perturbation meridional

velocity to regions of higher/lower background velocity.

The other two terms in (1) correspond to the non-

propagating initial potential vorticity perturbation that

does not interact in this case with the propagating waves.

Therefore, the energy evolution of a localized pertur-

bation [z(y, z, t 5 0), y (y, z, t 5 0)] 5 [1, 1] Ay e�y2/(dy)2

cos(mz) cos(ly), which is shown in Fig. 1, has the same

characteristics as the corresponding energy evolution of

the localized perturbation having zero potential vorticity

studied in Part I. The difference is that there is an ad-

ditional contribution to the energy growth resulting, af-

ter the stage of wave interference, in an overall energy of

E 5 Ewave 1 Eq, where

Ewave 5
1

8

m212l2S

l2
r̂(0)j j21

(l21m2)(m212l2S)

m2l2S
ŷ(0)j j2

" #

is the contribution of propagating waves and

Eq 5
1

4m2
ẑ(0) � im2

l
r̂(0)

����
����
2

is the contribution of the nonpropagating potential

vorticity perturbation to the total energy.
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b. The Orr mechanism

Consider now the case of solutions not varying in the

vertical (m 5 0). It follows from system (8) in Part I that

the time-dependent Fourier components evolve in the

absence of diffusion as

[û(t), ŷ(t)] 5 �(l/k � t) ŷ(t),
(k2 1 l2)ŷ(0)

k2 1 (l � kt)2

" #
,

[ẑ(t), r̂(t)] 5 [ẑ(0), r̂(0)] cos(
ffiffiffi
S
p

t)

1 ik
ffiffiffi
S
p

r̂(0),
i

k
ffiffiffi
S
p ẑ(0)

� �
sin(

ffiffiffi
S
p

t),

where S is the nondimensional static stability.

There are two independent classes of solution: the

horizontal velocity fields conserve the vertical compo-

nent of vorticity, zz 5 ›xy 2 ›yu, leading to—due to

kinematic deformation of zz by the shear flow–transient

growth of the cross-stream and streamwise velocity

fields for waves with constant phase surfaces oriented

against the mean shear. This is the mechanism of growth

in two-dimensional shear discussed by Orr (1907), and

we will refer to it as the Orr mechanism. Note that in

this class of solutions, the motion is in the horizontal

plane and growth is therefore unaffected by the buoy-

ancy force. The second class of solutions is a buoyancy

oscillation with the nondimensional Brunt–Väisälä

frequency S1/2. In the absence of initial perturbation

variation in the vertical, there is no pressure gradient

force in the vertical and therefore no coupling between

horizontal and vertical velocities. The horizontal mo-

tions associated with potential vorticity and vertical

motions are decoupled, and even though we have large

energy growth of the vortical part of the flow, the

transient amplification obtained cannot be sustained by

excitation of buoyancy oscillations.

3. Evolution of three-dimensional perturbations

a. Particular solution and gravity wave–vorticity
wave interactions

The solution of the homogeneous Eq. (20) in Part I

consists of propagating gravity waves with zero poten-

tial vorticity, which was studied in Part I. These waves

asymptotically approach their trapping level where

vertical velocity and density components oscillate with

the nondimensional Brunt–Väisälä frequency resem-

bling the buoyancy oscillations discussed in section 2b.

Here, we focus on the particular solution that is given

by

fpart 5
ikq̂(0)

m
f1

ðt

0

f�(s)a(s)

W(s)
ds

� ikq̂(0)

m
f�

ðt

0

f1(s)a(s)

W(s)
ds , (2)

where f6 are solutions to the homogeneous Eq. (20) in

Part I,

W 5 f1

df�
dt
� f�

df1

dt

is the corresponding Wronskian, a(t) is given by (11) in

Part I, and q̂(0) is the initial potential vorticity. We

define F 5 (m/k)/S1/2 as an inverse stratification pa-

rameter that depends on the vertical orientation of

perturbations. There are two regimes depending on the

parameter F that are separated by the corresponding

coupling strength between vorticity dynamics and

gravity waves; we will study them separately.

1) WEAK COUPLING (F � 1)

In contrast to the case with m 5 0, in this regime the

nonzero pressure force in the vertical direction and cou-

pling of horizontal and vertical velocity fields through

the continuity equation produce a mixing of vorticity

and divergent motion. The following question then

arises: If we consider nondivergent initial conditions

[û(0), ŷ(0), ŵ(0), r̂(0)] 5 [�l/k, 1, 0, 0], what portion of

the initial energy will remain in the nonpropagating vor-

ticity wave and what portion will radiate away as gravity

waves? To address this question, we calculate the evo-

lution of r̂(t) containing a vorticity and a gravity wave

component: r̂(t) 5 r̂vort(t)1r̂wave(t).

FIG. 1. Energy evolution of an initial wave packet perturbation

[z(y, z, t 5 0), y(y, z, t 5 0)] 5 [1, 1]Aye�y2/(dy)2

cos(mz) cos(ly) de-

termined by numerical quadrature of the Fourier integral (19) in

Part I. Static stability is S 5 1, (l, m) 5 (5, 20), dy 5 1.25; Ay is such

that the initial wave packet has unit energy.
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Because in this regime perturbations have a weak

vertical dependence [(m/k) � S1/2], we expect to first

order a behavior similar to the case m 5 0 studied in

section 2b, and we therefore seek a solution for the

vorticity wave of the form: ẑz(t) 5 z0(t) 1 F2z1(t) 1

F4z2(t). . . , where z0(t) 5 ẑz(0) corresponds to the m 5 0

solution. Using conservation of potential vorticity in the

absence of diffusion [(9) in Part I], it can be readily

where v is given by (12) in Part I and q̂(0) 5

i(k21l2)/k. The last two terms in (4) are the propagating

gravity waves studied in Part I. In this weak coupling re-

gime, these counterpropagating waves have a small am-

plitude [O (F2)� 1] compared to the free-wave solution,

as illustrated in Fig. 2, where the evolution of (2) is plotted.

The first term in the rhs of (4) is the first-order cor-

rection to the nonpropagating vorticity wave and corre-

sponds to the large density amplification illustrated in

Fig. 2, which might lead to a localized convective over-

turning of the vorticity perturbation. We note that ex-

pansion (3) is asymptotic rather than convergent as a

result of exponentially small terms that it cannot capture.

We show in appendix B that these terms represent

propagating gravity waves excited abruptly at time t 5 l/k.

As in the case of sheared disturbances on the f plane

(Vanneste and Yavneh 2004), spontaneous generation

of these gravity waves can be analyzed as an instance of

a Stokes phenomenon (Olver 1974) in which the sub-

dominant solution (waves) is switched on by the domi-

nant solution (potential vorticity perturbation) when

time crosses a Stokes line. To determine the leading-

order approximation to the gravity wave amplitude, we

now consider oscillation-free initial conditions; that is,

we choose r̂(0) 5 r̂vort(0). We then follow the analysis

in Vanneste and Yavneh (2004) in appendix B and use

asymptotic matching in the complex t plane (Hakim

1998) to show that the solution at large times is given by

r̂(t) 5 r̂vort(t) 1
q̂(0)

ffiffiffiffi
p
p

e
ffiffi
S
p

(if0�b)

k
ffiffiffi
2
p

S1/4

3 [e
i
ffiffi
S
p Ð t

0

ffiffiffiffiffiffiffi
v(s)
p

ds
1 e

�i
ffiffi
S
p Ð t

0

ffiffiffiffiffiffiffi
v(s)
p

ds
] , (5)

where f0 and b are given by (B4) and (B5), respectively.

These spontaneously generated waves are exponentially

small for large values of static stability being O(e�bS1/2

),

where b is a function of m/k bounded by one. In sum-

mary, the overall effect of potential vorticity perturba-

tions in this regime is an amplification of density and

vertical velocity of the nonpropagating vorticity wave

and a weak excitation of propagating gravity waves.

The amplitude of the gravity waves is O(F2) for non-

divergent initial conditions and exponentially small in 1/S

for oscillation-free initial conditions.

2) STRONG COUPLING [F O(1)]

In this weak stratification regime, the amplitude of

the spontaneously generated gravity waves is order one.

The evolution of particular solution (2) with time for

m/k 5 5 is shown in Fig. 2 along with the free-wave

solution. The forced waves’ amplitudes remain at very

low values until time t 5 l/k 5 8. At that time, the large

amplification of meridional velocity due to the Orr

mechanism discussed in section 2b is transferred to

r̂(t) 5 r̂vort(t) 1 r̂wave(t) 5
2k2mq̂(0)

iS[k2 1 (l � kt)2]2
1

ik2mq̂(0)
ffiffiffiffiffiffiffiffiffi
v(t)

p
S(k2 1 l2)2

ffiffiffiffiffiffiffiffiffiffi
v(0)

p [e
i
ffiffi
S
p Ð t

0

ffiffiffiffiffiffiffi
v(s)
p

ds
1 e

�i
ffiffi
S
p Ð t

0

ffiffiffiffiffiffiffi
v(s)
p

ds
] , (4)

shown that this corresponds to seeking a solution of the

form

r̂vort(t) 5
1

S
r1(t) 1

1

S2
r2(t)1 � � � , (3)

for the density perturbation of the vorticity wave. Using

a similar expansion for r̂wave(t), we show in appendix A

that to leading order in 1/S, the solution is

FIG. 2. Evolution of perturbation density for (top) (k, l, m) 5

(1, 8, 0.01) and (bottom) (k, l, m) 5 (1, 8, 5). The static stability is

S 5 100 and the initial conditions are (ẑ, ŷ, r̂) 5 (�90i, 1.6, 1). The

homogeneous solution given by (23) in Part I is shown by the solid

line, and the particular solution given by (2) is shown by the dashed

line.
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vertical velocity, exciting gravity waves. The amplitude

of these forced waves increases rapidly and saturates at

values much larger than the amplitude of the free-wave

solution, as illustrated in Fig. 2. The amplitude of the

forced waves is calculated in appendix C and is of order

q̂(0)FS1/4 for F O(1), showing that a large initial po-

tential vorticity perturbation leads to substantial exci-

tation of waves. This linear coupling of vorticity

perturbations and gravity waves in shear flow will now

be further investigated.

b. Interaction between gravity wave and vorticity
manifolds in a bounded shear flow

In this section we trace the spontaneous generation of

gravity waves by potential vorticity perturbations to the

=2 5 ›2
y � (k2 1 m2), and ad 5 (ikU 1 r). For simplic-

ity, we perform the calculations for a constant shear

flow U 5 y in the absence of Rayleigh damping (r 5 ry 5

0). By discretizing the differential operators and incor-

porating the appropriate boundary conditions (zero

meridional velocity and zero momentum and thermal

fluxes at the boundaries), we interpret the above

equation as a matrix equation in which the state be-

comes a column vector. The operator spectrum is then

easily obtained by an eigenanalysis of matrix A.

In the absence of viscosity and boundaries, the spec-

trum of A is continuous and consists of a real number

infinity of singular neutral modes, which are replaced by

a countable discrete spectrum of analytic modes in the

viscous case. The spectrum of the analytic modes of A is

shown for (k, m, S) 5 (1, 0.001, 1) in Fig. 3. Because

diffusion is proportional to the second derivative in y,

the real parts of the frequencies are ordered according

to the meridional wavelength of the modes, with longer

wavelengths at the top of the spectrum. We observe

three distinct Y-shaped branches shown by dots,

crosses, and open circles. The tail of the middle branch

consists of modes with zero frequency, corresponding to

the nonpropagating potential vorticity modes. The tails

of the left and right branches consist of modes having

frequencies close to the nondimensional Brunt–Väisälä

frequency and correspond to the two branches of

gravity waves. The structure of one of the vorticity

manifold modes is shown in Fig. 4. This structure results

from balance between the tendency of shear to increase

the meridional wavenumber and diffusion to decrease

it. The structure of the gravity wave modes is similar but

displaced toward the trapping level.

To study the interaction among the modes in each

manifold and between manifolds, we separate the three

branches with the modes increasing in frequency. We

then calculate the measure of energy orthogonality

among the modes Eij 5 xyi Mxj, where xi is the state

vector of the ith mode, y denotes the complex conjugate,

and

M 5
Dy

4(k2 1 m2)

1 0 0
0 k2 1 m2 � ›2

y 0

0 0 S(k2 1 m2)

2
4

3
5

(7)

is the energy metric, with Dy the grid interval. A his-

togram of Eij is shown in Fig. 5 for the gravity wave (Fig.

5a) and vorticity (Fig. 5b) manifolds. If the modes were

orthogonal, Eij would be the identity. Because Eij is

concentrated near the diagonal, we conclude that only

neighboring modes interact strongly within each mani-

fold, with the upper part of the spectrum containing

larger wavelengths dominating the energetic interac-

tion. The result of nonorthogonality in each of the

manifolds and of nonnormal interference among modes

is the observed transient energy growth of both vorticity

(studied in section 2b) and gravity waves (studied in

Part I). The coupling between the two gravity wave

branches is illustrated in Fig. 5c and between gravity

A 5

�ad 1 1
Re =2 �imUy ikS

0 =�2(�ad=2 1 1
Re =4 1 ikUyy � ry›y) imS=�2›y

ik/(k2 1 m2) (im/(k2 1 m2))›y �ad 1 1
Re =2

0
B@

1
CA, (6)

nonnormal interaction between the corresponding po-

tential vorticity and divergent modes. If the modes are

not orthogonal in the energy norm, mode interference

allows energy extraction from the mean, leading to

transient growth. We treat this problem by first calcu-

lating numerically the full viscous spectrum of the lin-

earized operator governing the evolution of small

perturbations to a shear flow in a channel |y| # 2. The

linearized operator A is obtained by writing system (7)

in Part I in the form

dx

dt
5 Ax,

where x 5 [~z(y, t), ~y(y, t), ~r(y, t)]Teikx1imz is the state

vector,
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wave and vorticity manifolds in Fig. 5d. We can see that

gravity wave and vorticity manifolds are almost or-

thogonal in this case, as we are in the weak coupling

regime (F � 1), with the two gravity wave manifolds

being almost orthogonal as well. Inspection of the

modes reveals that orthogonality between vorticity and

gravity wave manifolds arises in this case because al-

most all of the energy in vorticity modes is contained in

meridional velocity, whereas almost all of the energy in

gravity waves is in density and vertical velocity. The

result of this near orthogonality is that vorticity per-

turbations and gravity waves evolve independently with

a very weak excitation of gravity waves by potential

vorticity perturbations, as discussed in the previous

section.

The corresponding histograms of energy orthogonal-

ity Eij for (k, m, S) 5 (1, 1, 1) are shown in Fig. 6 with

similar features in orthogonality within each manifold.

But because we are in the strong coupling regime

[F O(1)], there is strong projection of vorticity modes on

gravity wave modes consistent with a substantial energy

growth when these modes are optimally configured as

an initial condition in the shear flow.

c. Optimal perturbations

In previous sections we found that vorticity pertur-

bations and gravity waves interact strongly for F O(1).

Vorticity perturbations that grow transiently due to the

Orr mechanism transfer their amplified energy to

propagating gravity waves, while gravity waves can also

benefit from the synergy between downgradient Reyn-

olds stresses and growth due to zonal advection, as

studied in Part I. To determine the effectiveness of

energy transfer to gravity waves and to obtain a con-

structive upper bound for the overall transient energy

growth, we calculate in this section the initial conditions

yielding the largest energy amplification over a specified

time interval Topt.

A complete analysis proceeds from first writing sys-

tem (8) in Part I in the compact form

dxq

dt
5 Bq(t)xq, (8)

where xq is the column vector xq 5 [ẑ, ŷ, r̂]T and Bq(t) is

Bq(t) 5

� K(t)2

Re �im ikS

0 2k(l�kt)

K(t)2 � K(t)2

Re
m(l� kt)S

K(t)2

ik
k2 1 m2

�m(l�kt)

k2 1 m2
� K(t)2

Re

0
BBB@

1
CCCA.

We then express (8) in terms of the new variable

y 5 M1/2
E xq, where ME is the energy metric

ME 5
1

4(k2 1 m2)

1 0 0
0 K(t)2 0
0 0 S(k2 1 m2)

2
4

3
5 ,

for which perturbation energy is given by the inner

product: E 5 yyy. The governing equations are then

transformed to

dy

dt
5 Dy,

where the time-dependent matrix D(t) is

FIG. 4. Real part of the meridional velocity of the mode with

frequency v 5 0 1 1.28i.
FIG. 3. The spectrum of the analytic modes of a constant shear

flow in a channel |y| # 2. The zonal and vertical wavenumbers are

(k, m) 5 (1, 0.001), the static stability is S 5 1, and the Reynolds

number is Re 5 150.
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D(t) 5
dM1/2

E

dt
1M1/2

E Bq

 !
M�1/2

E .

As discussed in Part I, for a given set of wavenumbers,

(k, l, m), singular-value decomposition of the finite-time

propagator F(t) mapping the initial perturbation to its

state at time t identifies the optimal initial conditions

and the corresponding growth Eklm
opt (Topt). The pertur-

bation growing the most is then obtained numerically by

a descent algorithm determining the wavenumbers (k, l,

m) maximizing Eklm
opt (Topt) and the corresponding

growth is Emax 5 maxklm[Eklm
opt (Topt)].

For an unbounded shear flow, there is no intrinsic

space scale, and in the inviscid limit the solutions along

with the energy amplification depend only on the ratios

l/k and m/k—wavenumber maximization proceeds by

maximization over these two ratios. The optimal energy

growth Emax achieved at Topt as a function of the opti-

mization time Topt, for static stability S 5 1 and S 5 100

is shown in Fig. 7. The growth achieved is much larger

compared to the corresponding growth in the absence of

potential vorticity perturbations (cf. Part I), suggesting

that it is the result of strong vorticity perturbations–

gravity wave interactions.

The optimal perturbations are configured in such a

way as to exploit the Orr mechanism for transient am-

plification of vorticity perturbations while enabling the

effective transfer of energy to gravity waves. Therefore,

their initial horizontal tilt l/k # Topt is such that

the plane wave assumes a cross-stream orientation

(~l/k 5 l/k� t 5 0) at a time t # Topt to benefit from the

intensification of meridional velocity. In addition, their

vertical orientation is of order (m/k) O (S1/2), so that

there is a strong coupling between vorticity perturba-

tions and gravity waves, and their energy is concen-

trated predominantly in zonal velocity to maximize the

gain from vorticity dynamics. Because the forced waves’

FIG. 5. Histogram of the measure of energy orthogonality among the modes Eij 5 xiyMj, where xi is the

state vector of the ith mode and M is the energy metric given by (7). (a), (b) The Eij, where both xi and xj

belong to the left (gravity wave) and middle (vorticity) Y-shaped branches shown in Fig. 3, respectively.

Here, Eij is symmetric and only values for j . i are shown. (a) The extent of energy nonorthogonality

among the gravity wave modes of each branch, and (b) the nonorthogonality of the vorticity modes. (c),

(d) The Eij, where xi belongs to the left branch (gravity wave manifold) and xj belongs to the right (gravity

wave manifold) and middle (vorticity manifold) Y-shaped branches shown in Fig. 3, respectively. (c) The

energy nonorthogonality between the gravity wave mode branches and (d) between the gravity modes

and the vorticity modes. The zonal and vertical wavenumbers are (k, m) 5 (1, 0.001), static stability is S 5 1,

and the Reynolds number is Re 5 150.
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amplitude is of order ~q(0)FS1/4 and F O(1), the optimal

growth is enhanced by larger static stability, as seen in

Fig. 7.

Viscosity breaks the scale invariance, as we implicitly

select an intrinsic scale by choosing the Reynolds

number. As in Part I, in the absence of an intrinsic scale

for unbounded flow, the Reynolds number in this sec-

tion is prescribed for a given coefficient of viscosity on

perturbations having unit zonal wavenumber (k 5 1).

This arbitrary choice of Reynolds number disappears

when a spatial scale is provided, as in the next section.

The optimal growth as a function of optimizing time is

shown in Fig. 8 for static stability S 5 1 and S 5 100 and

for Re 5 103 and Re 5 105. Viscosity limits the energy

amplification but does not essentially alter the charac-

teristics of the inviscid optimal perturbations for small

optimization times. The optimal growth has a maximum

that increases with Reynolds number, as illustrated

in Fig. 8. The optimization time Topt at which the

maximum is attained is O(Re1/3), consistent with the

e-folding time of O(Re1/3) of vorticity dynamics (Bakas

et al. 2001). Moreover, unlike in the inviscid case, for

optimization times larger than Re1/3, l/k , Topt because

there is rapid viscous dissipation associated with the

high meridional wavenumber perturbations lying nearly

in the zonal direction.

FIG. 7. The optimal energy growth Emax achieved at Topt as a

function of the optimization time Topt for static stability S 5 100

(solid line) and S 5 1 (dashed line). The flow is inviscid.

FIG. 6. Same as in Fig. 5, but for zonal and vertical wavenumbers (k, m) 5 (1, 1). These histograms

reveal enhanced nonorthogonality among the gravity wave modes and the vorticity modes at this higher

vertical wavenumber.
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4. Emission of gravity waves from a shear layer

As discussed in the previous section, excitation of

gravity waves by potential vorticity perturbations is

robust for F O(1), leading to a large energy transfer to

propagating waves. While in a constant shear flow these

waves are bounded by their trapping levels, in a flow

with shear varying with latitude, the possibility arises

that the energy in gravity waves may propagate away

and lead to enhanced gravity wave activity in remote

regions. To investigate this possibility, we use the mean

velocity profile

U(y) 5 tanh
y

d

� �
, (9)

shown in Fig. 9. It consists of a region of shear flow

bounded by two regions of uniform velocity. The length

and velocities used to nondimensionalize the equations

are the shear a 5 1/d and the difference in velocities of

the upper and lower regions V0 5 2. The Reynolds

number based on the selected scale is Re 5 103. Radi-

ation conditions are imposed by inserting sponge layers

at the top and bottom of the domain through the in-

troduction of meridionaly varying Rayleigh damping:

r(y) 5 arf11 tanh [(y� yupper)/dr]g
1arf1� tanh [(y� ylower)/dr]g,

in which ar is the damping amplitude of the sponge layer,

yupper and ylower are the latitudes of the sponge, and dr

determines the transition width into the sponge layer.

We have selected sponge-layer parameter values that

result in no appreciable spurious back reflection from

variation of r(y).

To address the question of what portion of energy

deposited into propagating waves remains trapped in

the shear layer and what portion radiates to infinity, we

perform the following optimization: we calculate the

initial perturbation of unit energy, which is confined

inside the shear layer and which leads to the largest

energy within a region above/below the shear layer at a

specified time Topt. To obtain the optimal perturbations,

we introduce two projector matrices Ms and Mt with

nonzero diagonal elements corresponding to |y| # 1.5

and 2 # |y| # 4, respectively. For a given set of wave-

numbers, (k, m), the singular value decomposition of

M1/2
t eATopt M�1/2

s 5 UVy, where A and M are given by

(6) and (7), respectively, identifies the optimal pertur-

bation xopt as the first column of M�1/2
s V, with energy

growth, Ekm, given by the square of the corresponding

singular value. The perturbation growing the most is

then obtained numerically by a descent algorithm de-

termining the wavenumbers (k, m) maximizing Ekm.

Our search is restricted in the range of (k, m) for which

the shear layer is Kelvin–Helmholtz stable.

Performing the optimization for various values of

static stability, we find that the vertical orientation is

again of order (m/k) O(S1/2), yielding F O(1) and uti-

lizing the transfer of growth from vorticity perturba-

tions to propagating gravity waves. The energy

evolution inside and outside of the shear layer for the

optimal perturbation xopt is given by

Ein 5 x
y
opte

AytMsMeAtxopt,

FIG. 9. Meridional velocity profile (9), where dy 5 0.6.

FIG. 8. (top) The optimal energy growth Emax as a function of

the optimization time Topt for static stability S 5 100 (solid line)

and S 5 1 (dashed line). The Reynolds number is Re 5 103.

(bottom) The optimal energy growth Emax as a function of the

optimization time Topt for static stability S 5 100 (solid line) and

S 5 1 (dashed line). The Reynolds number is Re 5 105.
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Eout 5 x
y
opte

AytMtMeAtxopt,

respectively, and is shown in Fig. 10 for S 5 1. A large

amplification occurs within the shear layer followed by

wave excitation, and around 30% of the energy is ra-

diated away, leading to substantial emission of wave

activity. Because half of the observed growth within the

shear is attributed to potential energy increase, we an-

ticipate for sufficiently large initial perturbations a lo-

calized convective collapse at some stage of the

evolution. The result expected would therefore be a

turbulent collapse in the shear region, accompanied by a

substantial emission of waves. Further investigation is

needed, however, in the nonlinear regime to verify this

hypothesis and examine the amount of emitted energy

before the shear collapse.

5. Discussion

We now relate the results obtained in this work to

previous theoretical studies. Gravity wave excitation by

sheared disturbances has been intensively investigated

in the past for perturbations in a meridional shear flow

on an f plane using numerical integrations (McWilliams

and Yavneh 1998; Kalashnik et al. 2006) and analytic

solutions (Vanneste and Yavneh 2004).

Vanneste and Yavneh (2004) addressed spontaneous

inertia–gravity wave generation by initially balanced

motion and identified three regimes: the small-Rossby-

number regime, in which gravity waves and balanced

motion have the same scale but different frequencies;

the small-Froude-number regime, in which there is no

frequency separation between waves and balanced mo-

tion but gravity waves are generated with a much larger

spatial scale analogous to Lighthill radiation; and the re-

gime of both Rossby and Froude numbers of order one, in

which the waves and the balanced motion have frequen-

cies and spatial scales of the same order. Vanneste and

Yavneh (2004) addressed wave generation in the small-

Rossby-number regime and found that wave amplitudes

were exponentially small in Rossby number because of

frequency separation between inertia–gravity waves and

balanced motion. In our study, frequency separation

between gravity waves and potential vorticity perturba-

tions for (m/k)� S1/2 resulted in an exponentially small

amplitude as well, supporting Vanneste and Yavneh’s

(2004) conclusion that an exponentially small amplitude

for the generated gravity waves is expected in cases of

frequency separation.

Vanneste and Yavneh (2004) also noted that in the

absence of such separation (as in the low-Froude-

number regime), the wave amplitudes follow a power

law in Froude number (Ford et al. 2000). They finally

briefly discussed the third asymptotic regime of Rossby

and Froude numbers of order one. Based on scaling ar-

guments and numerical integrations, they deduced that

the wave amplitude for m/k, S � 1 and (m/k) O(S1/2),

scales like S1/4. This result was verified in our study in

the absence of rotation, using analytic solutions. It

shows that a power-law dependence on the asymptotic

parameter appears in the case of incomplete frequency

separation between vorticity perturbations and diver-

gent motions, regardless of whether there is spatial

separation and a Lighthill-like radiation mechanism.

McWilliams and Yavneh (1998) also studied the ev-

olution of sheared disturbances on an f plane, focusing

on a completely different aspect: they related gravity wave

excitation to the loss of semiellipticity of the resulting

differential equations occurring when the condition

f 1(›xy � ›yu)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›xu� ›yy)2

1 (›yu� ›xy)2
q

. 0

(10)

is violated for some time interval. This marginal con-

dition involving the absolute vorticity and the magni-

tude of strain rate associated with horizontal velocity

gradients occurs in between the regimes of inertial and

symmetric instability and does not necessarily imply

exponential growth of small perturbations. Numerical

tests showed that (10) is violated for F O(1) in our case

and also indicated that this condition is related to the

coupling of vorticity and divergent manifolds. Further-

more, following a heuristic conjecture along with nu-

merical tests, McWilliams and Yavneh (1998) were able

FIG. 10. Energy evolution of the optimal initial perturbation

having (k, m) 5 (1, 1). The solid line shows the energy within the

shear layer (|y| # 1.5) and the dashed line shows the energy outside

of the shear (2 # |y| # 4). The static stability is S 5 1, the Reynolds

number is Re 5 103, and the optimization time is Topt 5 30.
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to obtain the vorticity perturbation for which the wave

amplitude was maximum. The optimal condition for

wave excitation was found to be (m/k)S21/2 5 3p/8, a

result verified in our study with the use of a rigorous

optimization calculation.

In summary, qualitative and quantitative agreement of

our results with those of previous studies of gravity wave

generation by initially balanced motion on an f plane

shows that the basic features of the excitation mechanism

of gravity waves by the sheared vorticity waves investi-

gated in this study remain unaltered by rotation. How-

ever, in addition to highlighting the role of frequency

matching between the vorticity manifold and the gravity

wave manifold in the coupling between them, this work

directly linked spontaneous generation of gravity waves

by potential vorticity perturbations to the nonnormal

interaction between the corresponding potential vorticity

and divergent manifolds. As a result, the energy orthog-

onality among the modes can be used as a diagnostic for

wave excitation in realistic situations, unlike an asymp-

totic theory providing the gravity wave amplitude, whose

derivation is likely to be challenging in the general case.

6. Conclusions

Interaction between nonpropagating potential vorticity

perturbations and internal gravity waves within a meridi-

onally varying shear flow was investigated. For zonally and

vertically independent solutions, potential vorticity per-

turbations and gravity waves grow transiently but without

energy transfer between them, as they evolve indepen-

dently. For strong stratification [F 5 (m/k)/S1/2 � l], a

weak coupling was found, leading to gravity wave exci-

tation by vorticity perturbations. In the case of oscilla-

tion-free initial conditions, while the density field of the

potential vorticity perturbation was significantly ampli-

fied, potentially leading to local convective overturning,

two counterpropagating gravity waves with an exponen-

tially small amplitude O[exp(2bS1/2)] were spontane-

ously generated through a Stokes phenomenon.

For weak stratification [F O(1)], a strong coupling was

found as was a robust gravity wave excitation by vor-

ticity perturbations. Unlike previous studies linking

wave excitation either to the absence of frequency

separation between the slow vorticity manifold and

gravity waves (Vanneste and Yavneh 2004) or to the

loss of semiellipticity of equations occurring when the

modulus of horizontal strain rate exceeds the absolute

vorticity (McWilliams and Yavneh 1998), this work

highlighted the link of strong coupling to nonnormal

interaction between potential vorticity and gravity wave

manifolds and focused on the mechanisms of growth

and energy transfer using analytic solutions and varia-

tional methods. Vorticity perturbations were found to

amplify due to the Orr mechanism when their phase

lines are tilted against the shear (l/k . 0) and the energy

acquired is then transferred to gravity waves excited at

t ; l/k through a Stokes phenomenon. These sponta-

neously generated waves finally emerge with an ampli-

tude of order q̂(0)FS1/4. Calculation of optimally

growing perturbations verified that this wave-excitation

mechanism can lead to robust energy growth that is

effectively transferred to propagating gravity waves.

The most effective energy transfer was found for per-

turbations having (m/k) O(S1/2), in agreement with the

results of McWilliams and Yavneh (1998).

For an unbounded shear, all of the wave activity is

confined in a region determined by the waves’ trapping

levels, and convective collapse of this region is expected

according to our findings in Part I. For a finite shear layer,

a significant amount of wave activity was also found to be

emitted from the shear layer. Although extension of these

results to the nonlinear regime is needed to investigate

breaking and subsequent turbulent mixing, the mecha-

nism of growth and wave excitation examined in this

paper is expected to play a significant role in mixing.

In addition, agreement of our results with the findings

of previous studies of gravity wave generation by bal-

anced motion (McWilliams and Yavneh 1998; Vanneste

and Yavneh 2004) on an f plane suggests that rotation

does not affect the basic characteristics of the excitation

mechanism studied in this work and that despite the

simplified model used, nonnormal interaction of vor-

ticity and internal wave manifolds in the presence of

shear is expected to play a significant role in the process

of spontaneous gravity wave emission from highly

sheared regions arising during baroclinic life cycles

(Plougonven and Snyder 2007). Investigation of the role

of the excitation mechanism and nonorthogonality be-

tween vorticity and gravity wave manifolds for more

realistic flows will be the subject of future work.
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APPENDIX A

Particular Solution in the Weak Coupling Regime

To calculate the particular solution (2) in the weak

coupling regime [(m/k) � S1/2], we use the Wentzel–

Kramers–Brillouin (WKB) asymptotic approximation

to the homogeneous equation that was found in Part I:

f6 5 S�1/4
ffiffiffiffiffiffiffiffiffi
v(t)

p
e

6i
ffiffi
S
p Ð t

0
v(s)ds

1 O[(m/k)S�1/2], (A1)
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where Q and v are given by (22) and (12) in Part I,

respectively. The Wronskian of these solutions is

W 5 f1

df�
dt
� f�

df1

dt
5 � 2iv2, (A2)

So, the particular solution is given to leading order

by (4).

APPENDIX B

Analysis of the Generation of Exponentially Small
Gravity Waves as a Stokes Phenomenon

Vanneste and Yavneh (2004) found in their study of

linearized, sheared disturbances on an f plane that

inertia–gravity waves were spontaneously generated by

balanced initial conditions and that this could be ana-

lyzed as a Stokes phenomenon (Olver 1974; Berry

1989): the subdominant homogeneous solution was ex-

cited by the dominant, oscillation-free, inhomogeneous

solution when time t crossed a Stokes line. The Stokes

line arose from singularities of the asymptotic expan-

sion of the solution in the complex t plane. To examine

this possibility in our case, we analyze the asymptotic

expansion (3) near its singularities in the complex t

plane at t6 5 l/k 6 i. Note that the homogeneous so-

lution given by (24) in Part I is singular at t6 as well. The

Stokes lines are defined as the asymptotes of the curves

Im
Ð

v(s)ds 5 0 as t! t6. Close to t6,

v 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 (l � kt)2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 m2 1 (l � kt)2

q ’ k
ffiffiffi
2
p

m
e6ip/4(t � t6)1/2,

and the Stokes lines are therefore tangent to

S1 : arg (t � t6) 5 7
5p

6
, S2 : arg (t � t6) 5 7

p

6
,

S3 : arg (t � t6) 5 7
p

2
.

We see that for real t, S3 is crossed when time takes the

value l/k, and as a result we expect the spontaneous gen-

eration of gravity waves through a Stokes phenomenon.

To calculate the amplitude of the generated waves,

we follow the analysis in Vanneste and Yavneh (2004)

and integrate (10) in Part I on a path in the complex

plane that comes close to t6. We first proceed with the

integration near t1 and divide the complex t plane into

three regions: the outer regions I and II with |t 2 t1| M

1 and (t 2 t1) , 0, (t 2 t1) . 0, respectively, and the

inner region III with |t 2 t1| O(1). Because our focus is

on wave generation by oscillation-free initial conditions,

we take the solution in region I to be

r̂I 5
2mk2q̂(0)

iS[k2 1 (l � kt)2]2
,

whereas the solution in region II contains the generated

gravity waves

r̂I I 5
2mk2q̂(0)

iS[k21(l � kt)2]2
1A

ffiffiffiffi
v
p

e
i
ffiffi
S
p Ð t

0
v(s)ds

1B
ffiffiffiffi
v
p

e
�i
ffiffi
S
p Ð t

0
v(s)ds

, (B1)

with amplitudes A, B to be determined. In the inner

region, the WKB approximation to the homogeneous

solution (gravity waves) breaks down, and (10) in Part I

needs to be rescaled to obtain the proper balance be-

tween the terms in the differential equation. Once the

solution in region III is determined, the gravity wave

amplitudes are calculated by matching the solution in

the inner region, where they are generated, to the so-

lution in the outer regions.

We choose the path of integration close to t1 to be

given by the Stokes lines S1 and S2 so that the WKB

terms in (B1) have a constant amplitude at leading or-

der. When approaching t1 following S1, the outer so-

lution is given by

r̂I 5 � 2imk2q̂(0)

S[k2 1 (l � kt)2]2
’ imq̂(0)

2k2S(t � t 1 )2
. (B2)

ðt

0

f6(s)a(s)

W(s)
ds 5 � km2

iS1/4

ðt

0

e
6i
ffiffi
S
p Ð s

0
v(t)dt

ffiffiffiffiffiffiffiffiffi
v(s)

p
[k2 1 (l � ks)2]2

ds

5
6km2e

6i
ffiffi
S
p Ð t

0
v(s)ds

S3/4[k2 1 (l � kt)2]2
ffiffiffiffiffiffiffiffiffi
v(t)

p 7
km2

S3/4(k21l2)2
ffiffiffiffiffiffiffiffiffiffi
v(0)

p 1O(S�5/4).

yielding the particular solution (2), where f6 and W are

given by (A1) and (A2), respectively. For S� 1, f6 is a

rapidly oscillating function, and the leading order in S of

the integrals in (2) is obtained using integration by parts
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To find the outer solution following S2, we first calculate

the phase integral of the gravity waves:

ðt

0

v(s)ds 5

ðl/k

0

v(s)ds1

ðt1

l/k

v(s)ds1

ðt

t1

v(s)ds ’ f01ib

1
2

3
b1/2eip/4(t � t1)3/2,

(B3)

where b 5 2k2/m2,

f0 5

ðl/k

0

v(s)ds, (B4)

is a constant phase shift, and

b 5
1

i

ðt1

l/k

v(s)ds 5

ð1

0

1� s2

1 1 (m/k)2 � s2

" #1/2

ds. (B5)

The value of b can be calculated using elliptical func-

tions. Its upper bound is one, and it can be readily

shown that its asymptotic values for m/k� 1 and m/k�
1 are b ’ kp/(4m) and b ’ 1, respectively. Introducing

(B3) into (B1), we find that on S2,

r̂I I ’ b1/4eip/8(t � t1)1/4fAe
ffiffi
S
p

[if0�b1(2/3)b1/2e3ip/4(t�t1)3/2]

1Be

ffiffi
S
p

[�if
0

1b1(2/3)b1/2e�ip/4(t�t1)3/2]
g1 imq̂(0)

2k2S(t � t1)2
.

(B6)

In region III, the WKB approximation is not valid

because there is a turning point at t 5 t1. The proper

balancing of terms in the differential equation deter-

mining the evolution of r̂ in this inner region is obtained

by rescaling time according to

t 5 t1 1 (bS)�1/3
t, (B7)

and r̂ by r̂(t) 5 b�2/3S�1/3f(t), to reduce (10) in Part I

at leading order to

d2f

dt2
� 1

t

df

dt
1 itf 5 � b1/3q̂(0)

mt
. (B8)

The solution of (B8) is given in terms of derivatives of

Scorer functions (Abramowitz and Stegun 1965) Hi9(rt)

and Gi9(rt), where r3 5 i. Matching the solution of (B8)

to r̂I on S1, proceeds from using the asymptotic ex-

pressions for Hi9 and Gi9 following S1; that is, for t 5

e25ip/6|t| when |t|� 1. It can be readily shown that the

solution matching (B2) is

f 5
pb1/3eip/6q̂(0)

m
Hi0(e�ip/6t). (B9)

To find the asymptotic behavior of (B9) on S2 and

match with (B6), we use the connection formula

Hi0(e�ip/6t) 5 e�4ip/3Hi0(e�5ip/6t) 1 2e5ip/6Ai0(it).

Following S2, t 5 e2ip/6|t| and for |t|� 1, the asymptotic

expression of (B9) becomes

f 5
pb1/3eip/6q̂(0)

m
Hi0(e�ip/3 tj j) ’ b1/3e�7ip/6q̂(0)

m tj j2

1

ffiffiffiffi
p
p

b1/3eip/8q̂(0)

m
t1/4e(2/3)e�ip/4t3/2

,

yielding

r̂I I I ’ �
q̂(0)e�ip/6

(2mk2S)1/3
tj j2

1
q̂(0)

ffiffiffiffi
p
p

eip/8

(2mk2S)1/3
t1/4e(2/3)e�ip/4t3/2

.

(B10)

Taking (B7) into account, (B6) becomes

r̂I I 5 � q̂(0)e�ip/6

(2mk2S)1/3jtj2
1

b1/6eip/8

S1/12
t1/4

3 [Ae
ffiffi
S
p

(if0�b)1(2/3)e3ip/4t3/2

1 Be
ffiffi
S
p

(�if0 1b)1(2/3)e�ip/4t3/2

].

Matching with (B10) yields

[A, B] 5 0,
q̂(0)

ffiffiffiffi
p
p

e
ffiffi
S
p

(if0�b)

k
ffiffiffi
2
p

S1/4

" #
. (B11)

Following the same procedure, we can find the contri-

bution from t2 and finally obtain the solution given

by (5).

APPENDIX C

Particular Solution in the Strong Coupling Regime

In appendix B, we found that gravity wave excitation

could be analyzed as a Stokes phenomenon and that grav-

ity waves were excited with amplitude O[exp (�b
ffiffiffi
S
p

)].

For m/k, S� 1 with (m/k) O(S1/2), it can be readily shown

from (B5) that b
ffiffiffi
S
p
’

ffiffiffi
S
p

p/4(m/k), and these waves are

therefore of order one. The purpose of this appendix

is to accurately calculate their amplitude. Although a

sophisticated technique of exponential asymptotics based

on resurgence can be applied to obtain the amplitude of

the waves for (m/k) O(S1/2) (Ólafsdóttir et al. 2005), we

follow a computationally more efficient way and try to
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come up with a suitable approximation for the integrals

in (2). Even though for (m/k) O(S1/2), Q(t) [given by (22)

in Part I] is not a slowly varying function of time, the

WKB solution given by (23) in Part I provides us with a

good approximation for the wave amplitude, which we

use to calculate the particular solution that is given by

fpart 5�k2mq̂(0)v(t)

Q(t)1/4
[ei
Ð t

0

ffiffiffiffiffiffiffi
Q(s)
p

ds
ðt

0

g(s)e
�i
Ð s

0

ffiffiffiffiffiffiffi
Q(t)
p

dt
ds

1e
�i
Ð t

0

ffiffiffiffiffiffiffiffi
Q(s)

p
ds
ðt

0

g(s)e
i
Ð s

0

ffiffiffiffiffiffiffiffiffi
Q(t)

p
dt

ds],
(C1)

where

g(s) 5
v(s)

Q(s)1/4[k21(l � ks)2]2
.

The integrands in (C1) consist of the oscillating function

exp [6i
Ð t

0

ffiffiffiffiffiffiffiffiffiffi
Q(s)

p
ds] multiplied by g, a highly localized

function around its maximum at t 5 l/k with a half-width

depending on (m/k)S21/2 and varying between 0.6 and

1.4. The value of the integral will therefore depend on

the phase oscillation within the envelope of g. We first

approximate g by the following Gaussian function:

~g(s) 5
e�(l�ks)2 log (2)/(kdt)2

k3[(k2S 1 3m2)(k2 1 m2)]1/4
,

where dt 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p
� 1

p
1e�0.35[1� e�0.7(m/k

ffiffi
S
p

)] is the

Gaussian half-width that was empirically calculated. For

m/k, S� 1 with (m/k) O(S1/2), Q has a local maximum

Qmax 5 3 1 1/ ~m2 at t 5 l/k, where ~m 5 m/(k
ffiffiffi
S
p

) and

two local minima Qmin ’ (3/2)61/3 ~m�4/3 at approxi-

mately t 5 l/k6
ffiffiffiffiffiffiffi
61/3
p

~m2/3 � 1. To estimate the values of

the integrals in (C1), we approximate Q by its mean

within g: Q(t) ’ Qm 5 (1/2)(Qmax 1 Qmin). The inte-

grals can be then approximated by

ðt

0

g(s)e
�i
Ð s

0

ffiffiffiffiffiffiffi
Q(t)
p

dt
ds ’

ðt

0

~g(s)e6i
ffiffiffiffiffiffi
Qm

p
sds.

Because g is localized around its maximum at t 5 l/k, we

can approximate this integral for large times by

ðt

0

~g(s)e6i
ffiffiffiffiffiffi
Qm

p
sds ’

ð‘

�‘

~g(s)e6i
ffiffiffiffiffiffi
Qm

p
sds

5

ffiffiffiffi
p
p

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log (2)

p e6iQml/ke�Qm(dt)2/4 log (2)

k3m(3 1 1/ ~m2)1/4
,

yielding the particular solution

fpart 5 Aas
v(t)

Q(t)1/4
[�e

�iQml/k1i
Ð t

0

ffiffiffiffiffiffiffi
Q(s)
p

ds

1 e
iQml/k�i

Ð t

0

ffiffiffiffiffiffiffiffiffi
Q(S)

p
ds

], (C2)

where

Aas 5
q̂(0)

ffiffiffiffi
p
p

dt

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log (2)

p
(3 1 1/ ~m2)1/4

e�Qm(dt)2/4 log (2)

is the amplitude of the forced waves. The relative error

of (C2) when compared to the numerical- integrated

solution is around 10% for (m/k) O(S1/2), whereas it

overestimates the forced waves’ amplitude by a factor of

2 for (m/k) � S1/2. Finally, note that for large times

these forced waves correspond to vertical vorticity zz

waves with amplitude of O(mAas/S
1/2), that is, of order

q̂(0)FS1/4.
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