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ABSTRACT

Zonal jets are commonly observed to spontaneously emerge in a b-plane channel from a background of

turbulence that is sustained in a statistical steady state by homogeneous stochastic excitation and dissipation

of vorticity. The mechanism for jet formation is examined in this work within the statistical wave–mean flow

interaction framework of stochastic structural stability theory (SSST) that makes predictions for the emer-

gence of zonal jets in b-plane turbulence. Using the coupled dynamical SSST system that governs the joint

evolution of the second-order statistics and the mean flow, the structural stability of the spatially homoge-

neous statistical equilibrium with nomean zonal jets is studied. It is shown that close to the structural stability

boundary, the eddy–mean flow dynamics can be split into two competing processes. The first, which is

shearing of the eddies by the local shear described by Orr dynamics in a b plane, is shown in the limit of

infinitesimal shear to lead to the formation of jets. The second, which is momentum flux divergence resulting

from lateral wave propagation on the nonuniform local mean vorticity gradient, is shown to oppose jet for-

mation. The upgradient momentum fluxes due to shearing of the eddies are shown to act exactly as negative

viscosity for an anisotropic forcing and as negative hyperviscosity for isotropic forcing. The downgradient

fluxes due to wave flux divergence are shown to act hyperdiffusively.

1. Introduction

Zonal jets are prominent features of planetary, tur-

bulent flows with well-studied examples being the banded

winds of the gaseous planets (Ingersoll 1990). These

large-scale flows are maintained by the momentum fluxes

of the turbulent eddy field with which they coexist (Kuo

1951; Starr 1968; Vasavada and Showman 2005) and

emerge spontaneously out of a background of homo-

geneous turbulence both in rotating-tank experiments

(Read et al. 2004) and in a large number of numerical

simulations of decaying (Cho and Polvani 1996) and

forced turbulence (Williams 1978; Vallis and Maltrud

1993; Galperin et al. 2006).

Regarding the spontaneous formation of jets, there

are several theoretical approaches discussed in the lit-

erature. These include turbulent cascades, modulational

instability, mixing of potential vorticity, and statistical

theories. According to the turbulent cascade approach,

nonlinear eddy–eddy interactions, which are local in

wavenumber space, lead to an inverse energy cascade

that is ‘‘arrested’’ by weakly interacting Rossby waves

when it reaches the Rhines scale (Rhines 1975). Be-

cause of differential rotation, the ‘‘arrest’’ is anisotropic

in wavenumber space and allows a further upscale en-

ergy transfer to the zonal flow through a narrow region in

wavenumber space (Vallis and Maltrud 1993; Nazarenko

and Quinn 2009). However, observations of the atmo-

spheric midlatitude jet (Shepherd 1987b) and numerical

analysis of simulations (Nozawa and Yoden 1997; Huang

and Robinson 1998) showed that the jets are maintained

by spectrally nonlocal interactions rather than by a spec-

trally local cascade.

Modulational instability depends on eddy–eddy inter-

actions that are nonlocal in wavenumber space: a primary

meridional Rossby wave interacts with the zonal mean

flow and another Rossby wave and transfers its energy

directly to the zonal jet bypassing the turbulent cas-

cade (Lorenz 1972; Gill 1974; Manfroi and Young

1999; Connaughton et al. 2010). The drawback in this

approach is that it requires a constant source of finite-

amplitude meridional waves. Baroclinic instability can

provide such a source, but its application to almost baro-

tropic flows (as, for example, in the Jovian atmosphere) is

questionable.
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Formation of jets through potential vorticity (PV)

mixing envisions that Rossby wave breaking produces

turbulent mixing of potential vorticity. The mixing ho-

mogenizes vorticity in localized regions, forming stair-

cases in the vorticity gradient that correspond to mean

zonal jets (Dritchel and McIntyre 2008; Dunkerton and

Scott 2008). While PV staircases have been illustrated

in numerical simulations and observations [see Scott

and Dritchel (2012) and references therein], there are

many cases in which mixing is insufficient to produce

a perfect staircase structure, yet robust jets are main-

tained by the eddies.

Statistical equilibrium theory has also been advanced

to explain emergence and formation of jets. This theory

is based on the principle that turbulence tends to pro-

duce configurations that maximize entropy while con-

serving both energy and enstrophy. These maximum

entropy configurations in two-dimensional flows assume

the form of zonal jets or large-scale vortices [see review

by Bouchet and Venaille (2012)]. However, the relevance

of these results in planetary flows that are strongly forced

and dissipated and therefore out of equilibrium remains

to be shown.

Nonequilibrium statistical theories that can address

such regimes are the stochastic structural stability the-

ory (SSST; Farrell and Ioannou 2003, 2007) or the closely

related second-order cumulant expansion theory (CE2)

(Marston et al. 2008; Marston 2012). These theories

depend on a second-order closure of the dynamics and

therefore account explicitly only for the quasi-linear

wave–mean flow interactions. According to SSST, an

infinitesimal mean flow perturbation can organize the

turbulent small-scale eddies in a way that the eddy fluxes

reinforce the mean flow to produce a turbulence–mean

flow cooperative instability leading to the emergence of

exponentially growing jets. While the structure and the

properties of the instability were studied in stochasti-

cally forced–dissipative barotropic flows (Farrell and

Ioannou 2007; Bakas and Ioannou 2011; Srinivasan and

Young 2012), the mechanism for the formation of jets

needs to be elucidated. In this work, we undertake this

task and systematically investigate the eddy–mean flow

instability and its dependence on the forcing structure.

SSST has three building blocks. The first is that the

eddy statistics can be obtained by retaining only the

wave–mean flow interactions in the eddy dynamics.

The second building block is to form, based on the quasi-

linear approximation, the deterministic dynamics for the

joint evolution of the eddy statistics and the mean flow.

Since the eddy–eddy nonlinearity is not retained ex-

plicitly, this is equivalent to a second-order closure of

the eddy cumulant expansion. The third building block is

to parameterize the eddy–eddy nonlinearity as stochastic

forcing and enhanced dissipation (Farrell and Ioannou

1993a; DelSole 2004). The resulting nonlinear SSST sys-

tem governing the evolution of the mean flow and the

eddy statistics produces bounded trajectories that are

attracted to fixed points, representing steady mean

flows in statistical equilibrium with their mean eddy

forcing and dissipation, limit cycles, or chaotic attractors.

Despite the neglect of the eddy–eddy nonlinearity, the

jets in quasi-linear or SSST models were found to be in

close correspondence to the jets obtained by fully non-

linear integrations in barotropic (Srinivasan and Young

2012; Constantinou et al. 2013, manuscript submitted

to J. Atmos. Sci.), quasigeostrophic (DelSole and Farrell

1996; DelSole 1996, 2004), and primitive equations

models (O’Gorman and Schneider 2007). As a result,

SSST presents an accurate turbulence closure with which

we can pursue theoretical study of the formation and

maintenance of jets in turbulence.

Comparison of the stability analysis of the SSST

system with nonlinear simulations have shown that the

emergent jets can be traced to the most unstable

mode of the SSST system (Srinivasan and Young 2012;

Constantinou et al. 2013, manuscript submitted to

J. Atmos. Sci.). Finite-amplitude jets can be maintained

by shear straining of the turbulent field (Huang and

Robinson 1998) and shear straining of the eddies by

the emergent mean flow could be similarly proposed to

be also responsible for the jet-forming instability.

However, the shear straining mechanism was shown

to produce upgradient momentum fluxes when the

dissipation is weak and the eddies have time to shear

over. Given that for an emerging jet the characteristic

shear time scale is necessarily infinitely longer than the

dissipation time scale, it needs to be shown that shear

straining can produce upgradient momentum fluxes

in this case as well. In addition, previous studies have

shown that shearing of isotropic eddies on an infinite

domain and in the absence of dissipation and b does not

produce any net momentum fluxes (Shepherd 1985;

Farrell 1987; Holloway 2010). This point was also

raised by Srinivasan and Young (2012) in their study of

jet formation in a barotropic b-plane doubly periodic

channel within the framework of SSST. They have shown

that isotropically forced eddies evolving in a b-plane

constant shear flow on an infinite domain do not pro-

duce any net momentum fluxes, yet they found struc-

tural instability and jet emergence in both an infinite

and a doubly periodic channel. One possibility is that

finite domain effects break the symmetry of isotropy

and can lead to upgradient fluxes (Shepherd 1987a;

Cummins and Holloway 2010). However, since the results

in the infinite domain and the periodic channel agree in

Srinivasan and Young (2012) another mechanism should
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be responsible for producing the upgradient fluxes in

these simulations.

In this work we identify physical mechanisms that

promote or obstruct jet formation. We show that shear

straining of small-scale eddies by the local shear of an

infinitesimal sinusoidal mean flow, as described by Orr

dynamics in a b plane, intensifies in general the jet. We

show that a mean flow velocity perturbation interacting

with an anisotropic eddy field induces momentum fluxes

that reinforce the mean flow, exactly as if the mean flow

were acted by a negative viscosity. We also show that

a mean flow velocity perturbation interacting with an

isotropic eddy field induces upgradient momentum fluxes

caused by changes in the propagation of the eddies that

act as a negative hyperviscosity on the mean flow.

2. Statistical wave–mean flow barotropic dynamics

Consider a forced, barotropic flow on an infinite b

plane. Relative vorticity q(x, y, t) evolves according to

›tq1 J(c,q)1b›xc52rq1 fe , (1)

where J(A, B)5 AxBy 2 AyBx, c is the streamfunction,

and r is the coefficient of linear dissipation that typi-

cally parameterizes Ekman drag. The forcing term fe
arises from processes that are missing from the baro-

tropic dynamics (e.g., cascade of energy from baro-

clinic to barotropic eddies, or small-scale convection)

and is typically taken as a spatially homogeneous,

random stirring. We decompose the fields into their

zonal mean component, denoted with capital letters,

and perturbations from this mean, denoted with primes.

Under this decomposition and assuming a vanishing ex-

ternal excitation for the zonal mean flow, (1) is split into

two equations governing the evolution of the perturba-

tions q0 and the zonal component of the zonal mean ve-

locity U:

(›t 1U›x)q
0 1 (b2Uyy)›xc

0 52rq0 1 fe 1 fnl|fflfflfflffl{zfflfflfflffl}
f

, (2)

›tU52›yu
0y02 rU , (3)

where (u0, y0) 5 (2›yc
0, ›xc 0) denote the zonal and

meridional eddy velocities, respectively. The overbar

denotes a zonal average and fnl 5 J(c0, q0)2 J(c0, q0)
is the nonlinear term representing the perturbation–

perturbation interactions. Previous studies have shown

that it suffices to retain only the interaction between the

large-scale flow and the perturbations to obtain accurate

statistics of the eddies as well as realistic mean flow sta-

tistical equilibria (Farrell and Ioannou 1993a; DelSole

and Farrell 1996; DelSole 1999, 2004; O’Gorman and

Schneider 2007; Marston 2010). The forcing term fnl
can be either neglected (Marston 2012) or, in order to

parameterize nonlinear cascading processes, it can be

represented as a random broadband forcing augmented

with an additional effective eddy damping to conserve

energy (DelSole 2001; Farrell and Ioannou 2009). In

this work, both forcing terms f 5 fe 1 fnl will be rep-

resented as a stochastic excitation without distinction.

We now derive a system of equations governing the

evolution of the eddy statistics and the mean flow using

the continuous formulation of Srinivasan and Young

(2012) rather than the matrix formulation of Farrell and

Ioannou (2003). The correspondence between the two

formulations is discussed in appendix A. We first derive

an equation for the evolution of two-point eddy corre-

lation functions, and then relate the eddy momentum

fluxes u0y0 that drive the mean flow to these functions.

We start by assuming that the stochastic forcing has

a two-point, two-time correlation function of the form

h f (x1, y1, t1)f (x2, y2, t2)i5 d(t22 t1)Q(x1, x2, y1, y2) ,

(4)

where the angle brackets denote an ensemble average.

The forcing is assumed to be spatially homogeneous;

that is,Q is a function of the differences ~x5 x1 2 x2 and

~y5 y1 2 y2. We use the shorthand ai 5 ai(xi, t), with i 5
1, 2 to refer to the value of the variable a at the points

xi 5 (xi, yi). To calculate the equation for the evolution of

the vorticity covariance function C(x1, x2, t)5 hq01q02i, we
write (2) in the following compact form:

›tq
0
i 5Aiq

0
i 1 fi , (5)

where

Ai 52Ui›x
i
2 (b2Uy

i
y
i
)D21

i ›x
i
2 r (6)

is the dynamical operator evaluated at points xi and D21
i

is the inverse Laplacian. The streamfuction, in terms of

this operator, is c 5 D21q and consequently the veloci-

ties are u 5 2›yD
21q and y 5 ›xD

21q. Multiplying (5)

for ›tq
0
1 by q02 and (5) for ›tq

0
2 by q01, adding the two

equations, and taking the ensemble average we obtain

›tC5 (A1 1A2)C1 h f1q02 1 f2q
0
1i . (7)

Note thatA1 andA2 commute, and thatC is a function of

x1 2 x2, since A1, A2, and Q are all homogeneous in x.

Note also that for delta correlated forcing, the ensemble

average enstrophy injection rate, h f1q02 1 f2q
0
1i5 h f1f2i[

Q, is independent of the state of the system and (7)

becomes
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›tC5 (A11A2)C1Q . (8)

The momentum fluxes can be written in terms of the

vorticity covariance function as

hu0y0i5 hu01y02ix
1
5x

2
52(›2x

2
y
1
D21
1 D21

2 C)x
1
5x

2
. (9)

The subscript x1 5 x2 means that the expression in pa-

renthesis, which is a function of the two points x1 and x2,

is calculated at the same point. We make the ergodic

assumption that the ensemble average is equal to the

zonal average; that is, we assume that u0y0 5 hu0y0i. Then
(3) becomes

›U

›t
5 (›3x

2
y
1
y
2
D21
1 D21

2 C)x
1
5x

2
2 rU . (10)

With this assumption, (8) and (10) form a closed de-

terministic system for the evolution of C and U. This

coupled system constitutes a second-order closure for

the dynamics and is the basis of the SSST.

To solve (8) and (10), Srinivasan and Young (2012)

introduce the collective coordinates ~x5 x1 2 x2, ~y5
y1 2 y2, and y5 (1/2)(y1 1 y2). Assuming homogeneity

only in x the Laplacian takes the form Di 5 ~D1
(21)i11›2

y~y
1 (1/4)›y

2, with ~D5 ›
~x
2 1 ›

~y
2. By introducing

the streamfunction covariance, C(~x, ~y, y)5 hc0
1c

0
2i, which

is related to C by

C5 hD1c
0
1D2c

0
2i5D1D2C

5 ~D
2
C1

1

2
(›~x

22 ›~y
2)›y

2C1
1

16
›y
4C , (11)

the SSST system (8) and (10) takes the form

›tC1 (U12U2)›~xC2 (U 00
1 2U 00

2 )
~D1

1

4
›y
2

� �
›~xC

2 (2b2U00
1 2U00

2 )›
3
~x~yy

C1 2rC5Q , (12)

›tU52›3
~x~yy

Cj~x5~y50
2 rU . (13)

Equations (12) and (13) may have equilibria, with

mean flow UE and covariance CE. For a spatially homo-

geneous forcing Q we always have the equilibrium

UE 5 0, CE5
Q

2r
. (14)

However, this equilibrium is unstable when a critical

threshold forcing amplitude is exceeded and the flow

transitions to a new state in which the homogeneity is

broken with the emergence of zonal jets (Farrell and

Ioannou 2007; Bakas and Ioannou 2011; Srinivasan and

Young 2012). These jets are examples of new equilibria

that emerge in SSST dynamics. This phenomenon of

spontaneous jet emergence has been documented in

simulations and experiments of b-plane turbulence

(Vallis and Maltrud 1993; Read et al. 2007; Scott and

Polvani 2008). In the context of SSST, this phenomenon

can be addressed by performing stability analysis of the

equilibrium UE, CE using the SSST equations. A small

perturbation mean flow dU and perturbation co-

variances dC and dC about this equilibrium obey the

linear equations

›tdC52(dU1 2 dU2)›~xC
E

1 (dU00
1 2 dU 00

2 )
~D›~xC

E

1 2b›3
~x~yy

dC2 2rdC (15)

›tdU52›3
~x~yy

dCj~x5~y50
2 rdU . (16)

The stability of the equilibrium UE and CE is conse-

quently reduced to the eigenanalysis of the linearized

equations in (15) and (16). Eigenanalysis of (15) and

(16) reveals that the homogeneous equilibrium is un-

stable when the forcing amplitude exceeds a threshold

that depends on the damping and the forcing structure.

A jet-emerging instability occurs if a seed mean flow

organizes the eddies so that the eddy fluxes reinforce it,

producing a positive feedback that results in the expo-

nential growth of the jet. This eddy–mean flow feedback

process is therefore crucial for the instability, and will be

studied in this work in detail.

3. Response of the eddy fluxes to mean flow
perturbations

In this section we investigate the effect of the mo-

mentum fluxes that arise when the statistical equilibrium

in (14) is perturbed by an infinitesimal mean flow dU

in order to illuminate the nature of the structural in-

stability leading to jet formation. The perturbation in

vorticity covariance dC that is induced by dU can be

estimated immediately by assuming that the system (15)

and (16) is very close to the stability boundary, so that

the growth rate is small. We choose this adiabatic limit

because it was shown in Bakas and Ioannou (2011) that

a necessary condition for structural instability in the

case of jet formation is the existence of upgradient

momentum and vorticity fluxes in this limit. In this case

the mean flow evolves slowly enough that it remains in

equilibrium with the eddy covariance. If the marginally

unstable state has eigenvalues with zero imaginary part,

then ddC/dt ’ 0, and the streamfunction perturbation co-

variance function dC obtained from (15) in this limit is
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dC5 P21(dU12 dU2)›~xC
E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dCad

2 P21(dU00
1 2 dU00

2 )
~D›~xC

E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dCcu

,

(17)

where

P5 2b›3
~x~yy

2 2r

"
~D
2
1

1

2
(›~x

22 ›~y
2)›y

2 1
1

16
›y
4

#
, (18)

and CE 5 ~D
2
CE. The separation of dC into two parts,

dCad and dCcu, is instructive because it isolates two

physical processes that contribute to the perturbation

covariance: advection of the eddy vorticity (the equi-

librium vorticity covariance) by the mean flow per-

turbation and advection of the perturbed mean flow

vorticity 2dU0 by the eddies. We can thus calculate

distinct momentum fluxes originating from these two

processes, yielding the total perturbation momentum

flux

du0y0(y)5 ›~x~ydCj~x5~y50
5 du0y0ad1 du0y0cu .

The mean flow eigenfunctions of (15) and (16) are

harmonic functions dUn5 sin(ny), which are indexed by

the meridional wavenumber of the mean flow n (which

is a continuous variable for the infinite domain). To

calculate the momentum fluxes that result from (17) for

a mean flow perturbation of the form dU 5 sin(ny) that

explicitly and clearly illustrates the behavior of the eddy

fluxes, we consider the limit in which the scale of the

mean flow 1/n is much larger than the scale of the forc-

ing Lf so that ~n5 nLf � 1, and the propagation time

scale 1/bLf is at most of the same order as the dissipa-

tion time scale 1/r, so that bLf ~n � r.1 In this limit the

momentum fluxes are approximately given by

du0u0ad5
n cos(ny)

8pr2

"
As 2Ab

b2L2
f

r2
(nLf )

22AC(nLf )
2

#

1O[(nLf )
5] (19)

du0y0cu 52
n cos(ny)

8pr2
AP(nLf )

2 1O[(nLf )
5] , (20)

where AS, Ab, AC, and AP are coefficients that depend

on the spectral characteristics of the forcing and are

given by (B11) and (B12) (cf. appendix B). The same

result is also obtained if we assume that the eddies

evolve in a slowly varying flow according to the local

shear and according to the local mean vorticity gradient

(cf. appendix B). This shows that in the limit of ~n � 1

and bLf ~n � r, the eddies evolve according to the local

dynamics—an observation that will be utilized in the

next section.

We calculate AS, Ab, AC, and AP for two cases of

forcing. We first treat the case of the isotropic forcing

considered by Srinivasan and Young (2012):

Q(~x, ~y)5Kf J0 Kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x21 ~y2

q� �
, (21)

where J0 is the zeroth-order Bessel function. The rep-

resentation of this isotropic forcing in wavenumber

space is a delta function ring of radiusKf, for whichLf5
1/Kf. This isotropic forcing has been typically used in

studies of barotropic turbulence and is thought to

roughly represent convective forcing at scale Lf (Scott

and Polvani 2008). For this forcing, all coefficients AS,

AC, and AP are exactly zero and the only nonzero con-

tribution to the momentum fluxes results from Ab (cf.

appendix B). The leading-order contributions are

du0y0ad5
3b2n3 cos(ny)

128K5
f r

4
1O[(nLf )

5] , (22)

while du0y0
cu
5O[(nLf )

5]. The accuracy of these limit-

ing expressions is very good. This is shown in Fig. 1a

where the approximate solution is compared to the results

from numerical integration of the exact expression given

by (B8) for Earthlike parameter values ~n5 0:25 and

bLf ~n/r5 0:6. Themomentum fluxes originate in this case

from the advection of the eddy vorticity and are pro-

portional to the third derivative of dU resulting in a

hyperviscous momentum flux divergence that tends to

reinforce the mean flow and is therefore destabilizing:

2›ydu
0y05

3b2

128K5
f r

4

d4dU(y)

dy4
. (23)

We thus recover the result in Srinivasan and Young

(2012), that the structural instability for an isotropic

forcing is of the negative hyperviscosity type.

We now treat the case of an anisotropic forcing with

a spatial covariance in the form

Q(~x, ~y)5 ak
f

cos(kf ~x)e
2~y2/2d2 , (24)

which was analytically investigated by Bakas and Ioannou

(2011). This covariance, which preferentially excites

waves with zero meridional wavenumber, represents

1 In Earth’s atmosphere, the size of the eddies and the jet are

about 103 km and 4 3 103 km, respectively, and the eddy dissipa-

tion time scale is about 2 days, so that ~n5 0:25 and bLf ~n/r; 0:6.
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the forcing of the barotropic flow by the most unstable

baroclinic wave, which has zero meridional wavenumber

and was shown in previous studies to play an important

role in the generation of barotropic jets from an unstable

baroclinic shear flow (Berloff et al. 2009a,b). To obtain

correspondence with the results of Bakas and Ioannou

(2011), we follow the same forcing normalization. That is,

we choose the amplitude akf so that the energy density of

the forcing per unit of time is a fraction s of the energy

density in a constant flow of unit velocity. In this case, all

the coefficients AS, AC, AP, and Ab are nonzero and the

momentum fluxes for a zonally confined forcing (kfd �
1) are to leading order given by2

du0y0ad5
sn cos(ny)

4r2
2

3sb2n3 cos(ny)

4k6f d
2r 4

2
sn3 cos(ny)

4k2f r
2

1O[(nLf )
5] (25)

du0y0cu 52
sn3 cos(ny)

4k2f r
2

1O[(nLf )
5] . (26)

The accuracy of (25) and (26), is shown in Figs. 1b and 1c

where the approximate solution is compared to the re-

sults from numerical integration of (B8).

In this case, both the advection of the eddy vorticity

and the advection of the mean vorticity by the eddies

contribute to the momentum fluxes. Shearing of the

eddies results, to leading order, in fluxes that are

proportional to the shear and to a destabilizing, anti-

viscous momentum flux divergence equivalent of neg-

ative viscosity

FIG. 1. Quasi-static estimation of the perturbation momentum fluxes that arise when

a mean flow perturbation dU5 sin(y) is introduced in a homogeneous turbulent medium at

equilibrium. Dots represent the fluxes obtained without approximation from (B8). (a) The

flow is stochastically excited with isotropic ring forcing (21) at wavenumber Kf 5 10. The

solid line represents the fluxes as calculated by the approximate expression (22). (b),(c)

The flow is stochastically excited with anisotropic forcing (24), for which kf 5 10 and d5 2.

In (b) the solid line is the fluxes du0y0ad that arise from advection by dU of the equilibrium

eddy vorticity covariance as approximated by (26). In (c) the solid line is the fluxes du0y0 cu

that arise from conservative redistribution of the perturbation mean flow vorticity by the

equilibrium eddy field, as approximated by (26). In (b) and (c), the fluxes are dominated by

the AS and AP terms in (25) and (26), respectively, while all other terms are negligible and

are not shown. In all panels, the damping coefficient is r5 0.1 and b5 1, so that ~n5 0:1 and

bLf ~n/r5 0:1 and in (b) and (c) the energy input rate is s 5 1.

2 Similar results are also obtained in the opposite limit of a me-

ridionally confined forcing (kf d � 1). The only exception is the

limiting case of an uncorrelated forcing (d/ 0), for which the only

nonzero coefficient is AP leading to downgradient hyperdiffusive

fluxes (cf. appendix B).
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2›ydu
0y0ad 52

s

4r2
d2dU(y)

dy2
, (27)

recovering the result of Bakas and Ioannou (2011).

Note that these fluxes are, to leading order, inde-

pendent of b. This implies that there is a tendency

to form jets also in the absence of b as seen, for ex-

ample, in numerical simulations (Kramer et al. 2008;

Bouchet and Simonnet 2009). The other terms in (25)

(including the one that is destabilizing for isotropic

forcing) act as hyperviscosity and oppose jet formation

but are subdominant.

Advection of the perturbed mean flow vorticity by

the eddies results in the stabilizing hyperviscous flux

divergence:

2›ydu
0y0cu 52

s

4k2f r
2

d4dU(y)

dy4
. (28)

This term is subdominant (of order ~n2) compared to (27)

for ~n � 1, but it dominates for ~n � 1 and determines

the high zonal wavenumber cutoff of the structural in-

stability (Bakas and Ioannou 2011). While advection of

the perturbed mean flow vorticity by the eddies is sta-

bilizing in this case, it can be jet forming in the presence

of topography. To illustrate this, consider forced tur-

bulence in a stratified flow with a Rossby radius of de-

formation Rd, above topography of small elevation h,

and consider for simplicity topography consisting of

zonal ridges (i.e., take h to be zonally invariant). Then

(28) implies that the vorticity fluxes due to advection

of the mean potential vorticity qm 5by1h/R2
d by the

eddies will be proportional to qmyyy 5hyyy/R
2
d. As a result,

jets will tend to form in regions where the absolute value

of the potential vorticity gradient is maximum in agree-

ment with numerical simulations (Thompson 2010). It is

clear from this analysis that the structural instability

that results from the isotropic and the anisotropic forcing

used in the studies of Srinivasan and Young (2012) and

Farrell and Ioannou (2003, 2007) will have markedly

different dependence on parameters. In the next section

we will investigate the underlying physical processes

that produce these fluxes.

4. Analysis of the dynamics underlying
the eddy fluxes

In this section we study the dynamics producing the

diffusive and hyperdiffusive eddy fluxes that lead to jet

formation. We show that shear straining of the eddies

by the local shear is the dominant destabilizing process.

We assume again that near the stability boundary

ddC/dt’ 0. The perturbation momentum fluxes induced

by a sinusoidal mean flow perturbation dU5 sin(ny) can

be alternatively calculated from

dhu0y0i5 1

2p

ð‘
2‘

ð‘
2‘

u0y 0‘ dj dk , (29)

where

u0y 0‘ 5

ð‘
0
u0y0(t) dt; (30)

u0y0(t) is the momentum flux at time t produced by the

initial perturbation

G(x, y2 j)5
eikxffiffiffiffiffiffi
2p

p
ð‘
2‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂(k, l)

q
eil(y2j) dl , (31)

which is localized at latitude j and Q̂(k, l) is the Fourier

amplitude of the spatially homogeneous forcing co-

variance Q(~x, ~y) (cf. appendix C). Equation (29) ex-

presses the physically expected result that the ensemble

mean induced momentum flux is equal to the integral

over time and over all zonal wavenumbers of the re-

sponses to all point excitations in the y direction. We

will now show that G takes the form of a wavepacket

for both the isotropic and anisotropic forcing studied in

the previous section.

Consider first the isotropic ring forcing

Q̂(k, l)5
QðDK � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
�Kf jÞ

2DK
, (32)

where Q is the step function [Q(x) 5 0 when x , 0 and

Q(x) 5 1 when x $ 0]. When the width of the ring DK
around wavenumber Kf goes to zero, this forcing ap-

proaches the narrow band ring forcing in (21) treated in

section 3. For this forcing, G has the wavepacket form

(cf. appendix C)

G(k, y2 j)5B(k)h(y2 j)eikx1il
0
(y2j) , (33)

with

B(k)5

ffiffiffiffiffiffiffiffi
DK

p
Kf

p1/4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

f 2 k2
q Q(Kf 2 jkj)

h(y)5 e2y2d2/2, l0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

f 2 k2
q

, (34)

and d5KfDK/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

f 2k2
q

. The function G(k, y 2 j)

consists of a carrier wave with wavenumbers (k, l0) and

amplitude B(k), which is modulated in the y direction

by the wavepacket envelope h(y). Consider now the

anisotropic forcing in (24). It is straightforward to show

that G assumes the same form as (33) but with (cf. ap-

pendix C)
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B(k)5

ffiffiffiffiffiffiffi
ak

f

d

s
(2p)1/4[d(k2 kf )1 d(k1 kf )],

h(y)5 e2y2/d2 , l05 0. (35)

As a result, the calculation of the ensemble mean mo-

mentum fluxes is reduced to calculating the momentum

fluxes over the life cycle of wavepackets that are ini-

tially at different latitudes and then adding their rela-

tive contributions.

We consider, as in the previous section, parameters

so that nLf � 1 and bnL2
f /r � 1. In this parameter re-

gime, the eddies are localized compared to the mean

flow variations and are dissipated before they propagate

away. Because of the small amplitude of dU, the eddies

are also dissipated before they shear over. As a result,

the waves evolve to a good approximation according to

the local dynamics (cf. appendix B). That is, the vorticity

of the eddy that is initially localized around j is ad-

vected by the local velocity

dU5 dU(j)1

�
ddU

dy

�
j

(y2 j)1

�
d2dU

dy2

�
j

(y2 j)2

2

1

�
d3dU

dy3

�
j

(y2 j)3

6
1O(dU(4)) , (36)

and in turn, this eddy advects the local vorticity with

gradient

Qy 5b2

�
d2dU

dy2

�
j

2

�
d3dU

dy3

�
j

(y2 j)1O(dU(4)) . (37)

When the perturbations are not localized and the

slowly varying limit nLf � 1 does not hold, the eddies

will be affected by the mean shear and mean Qy

within their extend. If the propagation time scale is

large compared to the dissipation time scale, so that

bnL2
f /r � 1 does not hold, the eddies will be affected

by the mean shear and mean Qy within the extent of

their propagation.

In section 3, we found that the processes of eddy

vorticity advection and advection of the mean flow

vorticity by the eddies can be separated, and that their

contribution to the total momentum fluxes, denoted

as du0y0
ad

and du0y0
cu
, respectively, is additive. We also

found that the solution is linear in the perturbation

velocity. As a result, we can calculate du0y0
ad

and

du0y0
cu

by taking each term of (36) and (37) into ac-

count separately and then adding the respective con-

tributions. For du0y0
ad

we will retain only the local

shear, which amounts to calculating the momentum

fluxes from an ensemble of wavepackets evolving in

this weak constant shear on a b plane. Similarly, for

du0y0
cu
, we will retain only the linear change in Qy and

calculate the momentum fluxes due to advection of the

vorticity gradient of the mean flow by the eddies from

the evolution of the wavepacket in a fluid with no

mean flow but with a vorticity gradientQy given by (37).

The ensemble mean momentum fluxes will then be given

by (29).

a. Shear wave dynamics

Consider first the evolution of an ensemble of wave-

packets of the form of (33) in the constant shear flow

dU 5 a(y 2 j), where a 5 (ddU/dy)j is the local shear

at each latitude j of the emerging flow. The momentum

flux of each wavepacket is

u0y052jBj2AM(t)e22rtjh[y2 j2h(t)]j2 , (38)

whereAM(t)5 klt/(k
2 1 l2t )

2 is themomentumflux of the

carrier wave that determines the amplitude of the fluxes

of the wavepacket. The meridional wavenumber, lt 5
l02 akt, decreases with time as the wave is sheared over,

while the group velocity of the wavepacket on the b

plane, cg 5 2bAM, is proportional to AM. The position

of the packet is given by

h(t)5
b

a

 
1

k2 1 l2t
2

1

k21 l20

!
, (39)

as was shown by Tung (1983). According to this solution,

a wavepacket with phase lines tilted against the shear

in an inviscid flow, propagates northward while it gains

momentum until t5 l0/ka, and subsequently propagates

southward and asymptotically reaches its critical layer

where it surrenders its momentum to the mean flow. On

the other hand, a wavepacket with phase lines tilted with

the shear propagates southward toward its critical layer

while it continuously loses its momentum to the mean

flow (Boyd 1983; Tung 1983).

In the presence of strong shear and weak damping, the

shear time scale is much smaller than the dissipation

time scale and the eddies quickly shear over into the

decaying phase that lasts longer than the growing phase.

As a result, they decay on average and the mean flow is

accelerated by the upgradient momentum fluxes of the

shearwaves. This is themechanism formaintaining finite-

amplitude jets by an eddy field that is typically referred

to as the Orr mechanism (Farrell and Ioannou 1993b;

Huang and Robinson 1998). This process ceases to pro-

duce upgradient fluxes when the eddy field is isotropic

(Shepherd 1985; Farrell 1987).

The limit appropriate for the investigation of the

stability of a homogeneous turbulent flow to emerging
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infinitesimal mean zonal flows that we address in this

work is different, as the shear of the infinitesimal mean

flow perturbation is weak and the waves are dissipated

before they shear over; that is, 1/r � 1/a. In the limit

of a weak mean vorticity gradient that we also consider

(a/r � bLf /r � 1), the dominant contribution to the

time integral in (30) comes from short times, since the

perturbation is rapidly attenuated by friction before it

propagates or it is sheared over. As a result, the av-

erage momentum flux distribution will be determined

by two factors: the small change in the amplitude of

the fluxes AM due to shearing over a dissipation

time scale and the small change in the position of the

packet that occurs during the same period. For short

times (at � rt) the variation in the momentum flux

amplitude and the location of the wavepacket due to

shearing is

AM(t) ’ AM(0)1
ak2(3l20 2 k2)

(k21 l20)
3

t1⋯,

h(t) ’ cg(0)t1
abk2(3l20 2k2)

(k21 l20)
3

t21⋯ . (40)

Inserting (40) in (38), integrating over time, and keep-

ing the terms that are even in wavenumbers and will

have a nonzero contribution when integrated over wave-

numbers, we obtain that the integrated over time mo-

mentum flux in (30) is given by

u0y 0‘ 5
jBj2bk2l20

2r2(k21 l20)
4

d

dp
jh(p)j21O(b2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u0y 0
R

1
a

4r2
jBj2k2(k22 3l20)

(k2 1 l20)
3

jh(p)j21O(a2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u0y 0

S

1
3ab2

2r4
jBj2k4l20(k22 3l20)

(k21 l20)
7

d2

dp2
jh(p)j21O(ab3)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u0y 0
b

,

(41)

in which p 5 y 2 j. The first term, u0y 0R, arises from the

momentum fluxes produced by a propagating wave-

packet in the absence of shear and does not contribute

to the ensemble averaged momentum fluxes when in-

tegrated over the initial positions j. The second and

third terms arise because of shearing of the wavepacket

and correspond to the contribution of the change in the

amplitude of the fluxes (u0y 0S) and the change in the

group velocity of the wavepackets (u0y 0b), respectively.

We can qualitatively assess the changes in the distri-

bution of the fluxes obtained in (41) by examining how

the amplitude of the fluxes and the group velocity of the

packets change as the phase lines of the carrier wave

are sheared over. Let ut 5 arctan(lt/k) be the angle at

time t of the phase lines of the carrier wave of the packet

with the y axis. Figures 2a and 3a illustrate the amplitude

of the momentum fluxes AM (Fig. 2a) and the group-

velocity cg (Fig. 3a) at the instance of time at which the

phase line orientation is ut. We first study the effect of

the amplitude change by ignoring propagation. Consider

a wavepacket starting at some point along the ut axis

with initial angle u0 5 arctan(l0/k). Then the filled circle

shown in Fig. 2a gives the initial value of the momentum

fluxes. As the packet is sheared over with time, ut
decreases monotonically (owing to the monotonically

decreasing lt) and the fluxes at a later time are given by

the open circle. Since the wave packet is rapidly dis-

sipated, the integrated momentum fluxes over its

lifetime will be given to a good approximation by the

change in the fluxes occurring over the dissipation

time scale 1/r that is incremental in shear time units.

The change in the fluxes will thus be proportional to

the local derivative of the curve in Fig. 2a. As a result,

the momentum flux of a wavepacket with ju0j , p/6

(corresponding to k2 . 3l20) excited in regions II or III

will increase within the dissipation time scale.3 This is

also illustrated in Fig. 2b, showing how the momentum

flux of a wavepacket with a Gaussian distribution of

vorticity with latitude changes as the wave shears over

if we ignore propagation. Compared to an unsheared

wavepacket, this process leads to the upgradient mo-

mentum flux surplus shown in Fig. 2c. The opposite oc-

curs for waves excited in regions I and IV (with ju0j ,
p/6 corresponding to k2 , 3l20) that produce down-

gradient fluxes.

We now consider the effect of propagation on the

momentum fluxes while ignoring the change in the

amplitude. A wavepacket starting in region III will

propagate toward the north, as shown by the filled circle

in Fig. 3a. Because shearing induces a decrease in the

magnitude of the group velocity (open circle in Fig. 3a)

the wavepacket will flux its momentum from southern

latitudes compared to when it moved in the absence

of the shear flow. This is shown in Fig. 3b, illustrating

3 Note that the angles um 5 6p/6 correspond to the orienta-

tions at which a wave with initial vorticity B(k) maximizes the

momentum flux amplitude. If the wave were introduced with initial

energy E(k), then the momentum fluxes of the carrier wave ig-

noring dissipation would be given by u0y 0E 52E(k)klt/(k
2 1 l2t )

and the orientation maximizing the momentum flux would become

um 5 6p/4.
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the distribution of momentum fluxes of an unsheared

and a sheared perturbation whose amplitudes are con-

stant. Figure 3c plots this difference, u0y 0b, and shows

that the fluxes are downgradient in this case. The same

happens for waves excited in region II, while the

waves excited in regions I and IV produce upgradient

fluxes.

The net momentum fluxes produced by an ensemble

of wavepackets will therefore depend on the spectral

characteristics of the forcing that determine the regions

(I–IV) in which the forcing has significant power. Consider

first the case of the isotropic forcing that results in the

wavepackets given by (34). Integrating (41) over all exci-

tation latitudes j and all zonal wavenumbers we obtain

dhu0y0i5 1

2p

ð‘
2‘

ð‘
2‘

u0y 0R dj dk1
1

2p

ð‘
2‘

ð‘
2‘

u0y 0S dj dk1
1

2p

ð‘
2‘

ð‘
2‘

u0y 0b dj dk . (42)

The first term in (42) is

1

2p

ð‘
2‘

ð‘
2‘

u0y 0R dj dk5
1

2p

ð‘
2‘

ð‘
2‘

jB(k)j2bk2l20
2r2(k21 l20)

4

�
d

dj
e2(y2j)2d(k)2

�
dj dk5 0. (43)

The second term in (42) is

FIG. 2. (a) Momentum fluxes AM(t) of wavepackets in a constant shear flow as a function of

the angle ut 5 arctan(lt/k) between the phase lines of the central wave and the y axis. The

wavenumber is given by lt 5 l0 2 akt, where (k, l0) is the initial central wavenumber of the

wavepacket and a is the shear. A wavepacket starting with an inclination at a certain angle

u0 (filled circle) will transverse this graph toward the left and its fluxes at a later time will be

given by the open circle. The vertical lines separate the regions with jutj, p/6 (II and III) and

jutj . p/6 (I and IV). At ut 5 6p/6, the momentum flux has peak magnitude for wavepackets

excited with equal vorticity. The central wavenumber of the packet is Kf 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l20

q
5 1.

(b) Comparison of the momentum fluxes of an unsheared wavepacket excited in regions II

(thick solid line) and III (solid line) to the momentum fluxes of a sheared wavepacket shown by

the corresponding dashed lines, when only the change in amplitude is taken into account.

A snapshot of the fluxes at t 5 0.2/r is shown. The wavepacket has initial vorticity h(y)5 e2y2 ,

a central total wavenumber Kf 5 1, ju0j , p/10, and jBj 5 1. The shear and dissipation time

scales are taken as equal (a 5 r 5 0.1) for illustration purposes. (c) The difference in mo-

mentumfluxes between a sheared and an unshearedwavepacket calculated over their life cycle,

when only the effect of the amplitude change u0y 0S is taken into account. The shear is a5 1023,

while the rest of the parameters are as in (b).
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1

2p

ð‘
2‘

ð‘
2‘

u0y 0S dj dk5
1

2p

ð‘
2‘

jB(k)j2
4r2

k2(k22 3l20)

(k21 l20)
3

� ð‘
2‘

ddU

dj
e2(y2j)2d(k)2 dj

�
dk

’ DK

4p3/2r2K4
f

ðK
f

2K
f

k2(4k22 3K2
f )

K2
f 2 k2

�
ddU

dy

ð‘
2‘

e2(y2j)2d(k)2 dj

�
dk , (44)

in which we have used the approximation that for a slowly varying flow (nLf � 1), the shear ddU/

dj over the wavepacket envelope h5 e2(y2j)2d(k)2 can be approximated by its value at j 5 y. The third term in

(42) is

1

2p

ð‘
2‘

ð‘
2‘

u0y 0b dj dk5
1

2p

ð‘
2‘

3b2jB(k)j2
2r4

k4l20(k
22 3l20)

(k21 l20)
7

�ð‘
2‘

ddU

dj

�
d2

dj2
e2(y2j)2d(k)2

�
dj

	
dk

5
3b2DK

2p3/2r4K12
f

ðK
f

2K
f

k4(4k2 2 3K2
f )

� ð‘
2‘

d3dU

dj3
e2(y2j)2d(k)2 dj

�
dk

’ 3b2DK

2p3/2r4K12
f

ðK
f

2K
f

k4(4k22 3K2
f )

�
d3dU

dy3

ð‘
2‘

e2(y2j)2d(k)2 dj

�
dk , (45)

in which we used the slowly varying approximation as in (44). Consequently (42) becomes

FIG. 3. (a) The group velocity of the wavepackets in a constant shear flow as a function of the

angle ut5 arctan(lt/k) between the phase lines of the central wave and the y axis. A wavepacket

starting at an angle u0 (filled circle) will transverse this graph toward the left and its group

velocity at a later timewill be given by the open circle. The regions I–IV are as in Fig. 2a,b5 0.6

for illustration purposes, andKf 5 1. (b) Comparison of the momentum fluxes of an unsheared

wavepacket excited in regions II (thick solid line) and III (thin solid line) to the momentum

fluxes of a sheared wavepacket shown by the corresponding dashed lines, when only the change

in propagation is taken into account. A snapshot of the fluxes at t5 0.2/r is shown and the rest

of the parameters are as in Fig. 2b. (c) The difference in momentum fluxes between a sheared

and an unsheared wavepacket calculated over their life cycle, when only the effect of propagation

is taken into account. The planetary vorticity gradient is b5 0.1 and the rest of the parameters

are as in Fig. 2c.
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dhu0y0i5 1

2p

ð‘
2‘

ð‘
2‘

u0y 0S dj dk1
1

2p

ð‘
2‘

ð‘
2‘

u0y 0b dj dk

’ 1

4pr2K5
f

ddU

dy

ðK
f

2K
f

k2(4k22 3K2
f )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
f 2 k2

q dk1
3b2

2pK13
f

d3dU

dy3

ðK
f

2K
f

k4(4k22 3K2
f )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

f 2 k2
q

dk

52
3b2

64pK5
f r

4

d3dU

dy3
. (46)

The first integral is the ensemble mean momentum

fluxes that result from u0y 0S and are proportional to the

shear. This term therefore corresponds to the AS term

in (19). The net fluxes are shown to be exactly zero for

isotropic forcing because the gain in momentum occur-

ring for ju0j, p/6 (waves excited in regions II and III) is

fully compensated by the loss in momentum for ju0j .
p/6 (waves excited in regions I and IV). Full compen-

sation occurs because we are equally exciting all possible

wave orientations. This exact cancelation is a peculiarity

of isotropic forcing in an unbounded domain. A finite

domain, as is the case in physically realizable flows, can

affect this symmetry and lead to partial cancelation and

to upgradient fluxes, as was noted in previous studies

(Shepherd 1987a; Cummins and Holloway 2010). In (46),

the net momentum fluxes are produced by the u0y 0b term

and are upgradient for isotropic forcing. The reason

is that the loss in momentum occurring for ju0j , p/6 is

overcompensated by the gain inmomentum for ju0j.p/6.

The momentum fluxes are hyperdiffusive and the wave-

packet analysis reproduces (22) modulo a factor of 2.

Consider now the case of the anisotropic forcing in

(24) resulting in wavepackets of the form in (35). Fol-

lowing the same analysis as in (42)–(46), we obtain

dhu0y0i5 1

2p

ð‘
2‘

ð‘
2‘

u0y 0S dj dk1
1

2p

ð‘
2‘

ð‘
2‘

u0y 0b dj dk

’ s

4r2
ddU

dy
1O(b2) .

(47)

That is, u0y 0S yields upgradient fluxes because we excite

a band of waves mainly in regions II and III (as this

forcing is centered at l0 5 0 in wavenumber space). We

have therefore revealed the dynamics underlying the

first two terms4 in (19). In summary, the change in the

amplitude of the momentum fluxes caused by shearing

of the eddies leads to upgradient antidiffusive ensemble

mean momentum fluxes that reinforce the mean flow

except for isotropic forcing in which case it has no effect.

The change in the group velocity of the eddies due to

shearing leads to hyperdiffusive fluxes with a positive or

negative coefficient depending on the characteristics of

the forcing.

b. Dynamics of wave propagation in the presence
of a mean vorticity gradient

Wenow calculate themomentum fluxes produced by an

ensemble of wavepackets propagating in a flow with the

linearly varying Qy 5 b 2 g(y 2 j), with d2dU/dy2jj 5 0

and d3dU/dy3jj 5 g. Under the slowly varying approxi-

mation, the wavepacket has a local phase speed c5
[b2 g(y2 j)]/(k2 1 l20). Its phase lines are therefore

‘‘sheared’’ over because of the change inQy, resulting

in a decreasing wavenumber

lt ’ l0 2gkt/(k2 1 l20) . (48)

We therefore expect a similar solution for the fluxes as in

section 4a. Using ray tracing, it is shown in appendix D

that the momentum fluxes for each of the wavepackets

are indeed given by the same (38), except that lt and h

satisfy (D2) in this case. For small times, lt satisfies the

heuristically derived (48) and the dynamics are homo-

morphic to the shear wave dynamics described in sec-

tion 4a.

As in shearing of the wavepacket by the mean flow,

the momentum flux distribution produced by this

wavepacket over its life cycle will be determined by the

small change in the amplitude of the fluxes and the small

change in the position of the packet that will occur

within a dissipation time scale. In appendix D, it is

shown that the momentum fluxes produced by this

wavepacket over its life cycle are

u0y 0‘ 5 u0y 0R 1
g

4r2
jBj2k2(k22 3l20)

(k21 l20)
4

jh(p)j2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u0y 0

P

1O(gb) .

(49)

4 To investigate the third term, we need to take into account the

third derivative of dU in (36). However, since this turns out to be

a stabilizing term for the cases considered, we will not pursue this

further.
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The first term u0y 0R is the same as in (41) and does not

contribute to the net ensemble mean momentum fluxes.

The second term u0y 0P, which is independent of b, arises

solely because of the change in the amplitude of the

momentum fluxes. This result can be comprehended

qualitatively by examining again Fig. 2a, showing how the

momentum fluxes change with ut. The only difference in

this case is the time that it takes for a wave to transverse

this graph toward the left, as lt decreases monotonically

but by a different amount compared to the case in section

4a. However, this difference is not relevant with regard

to the momentum flux changes, as we are interested in

changes within the dissipation time scale that are in-

finitesimal compared to the evolution time scale for

lt [which is O(1/a) � 1 in section 4a and O(1/g) � 1

here]. As a result, the momentum fluxes of a wave-

packet excited in regions II and III will again decrease

within the dissipation time scale. This leads to the same

flux surplus shown in Fig. 2c when g 5 a. However,

the amplitude is proportional to the third derivative

of the mean flow g, rather than proportional to the

shear, and the momentum fluxes are therefore down-

gradient. The opposite occurs for waves excited in re-

gions I and IV, producing upgradient fluxes.

We will now calculate the ensemble average mo-

mentum fluxes produced for the cases of isotropic

and anisotropic forcing. Following the analysis in

(42)–(46), we obtain that for the isotropic forcing

in (21)

dhu0y0i5 1

2p

ð‘
2‘

ð‘
2‘

u0y 0R dj dk1
1

2p

ð‘
2‘

ð‘
2‘

u0y 0P dj dk

’ 1

4pr2K7
f

d3dU

dy3

ðK
f

2K
f

k2(4k2 2 3K2
f )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
f 2k2

q dk 5 0.

(50)

That is, the net momentum fluxes produced are zero, as

the loss in momentum occurring for ju0j , p/6 is fully

compensated by the gain in momentum for ju0j . p/6.

For the anisotropic forcing in (24), we obtain

dhu0y0i5 1

2p

ð‘
2‘

ð‘
2‘

u0y 0R dj dk1
1

2p

ð‘
2‘

ð‘
2‘

u0y 0P dj dk

’ s

4k2f r
2

d3dU

dy3
.

(51)

That is, ‘‘shearing’’ of the perturbation due to the me-

ridional variation of Qy produces hyperdiffusive fluxes

with an amplitude independent of b and therefore cor-

responds to the AP term in (20).

5. Conclusions

Large-scale zonal jets are commonly observed to spon-

taneously emerge in turbulent fluids. The mechanism for

jet formation in a barotropic b plane under homogeneous

stochastic forcing was examined in this work within a sta-

tistical wave–mean flow interaction framework. In this

framework, the eddy–eddy nonlinearity is parameterized

or ignored. This approximation leads to a deterministic

system for the coevolution of the zonal mean jet and the

ensemble mean covariance of the perturbation fields. This

dynamics is the subject of stochastic structural stability

theory (SSST) (Farrell and Ioannou 2003).

We derived in this work the SSST system with the

continuous formulation of Srinivasan and Young (2012)

and derived the correspondence with the matrix for-

mulation of the same equations. We then discussed the

structural stability of a homogeneous equilibrium main-

tained against dissipation by a spatially homogeneous

and delta-correlated-in-time stochastic excitation. It is

known that in such flows on a b plane, the homoge-

neous state is structurally unstable when a critical value

of forcing is exceeded and zonal jets emerge.We focused

our analysis close to this bifurcation point in order to

identify the processes that lead to the emergence of jets.

Investigation of the ensemble mean momentum fluxes

revealed that the eddy–mean flow dynamics can be split

into two distinct processes: advection of the eddy vorticity

by the weak mean flow and advection of the vorticity of

the mean flow by the eddies. Eddy vorticity advection

was found to lead to hyperdiffusive fluxes with a nega-

tive diffusion coefficient when the stochastic forcing is

isotropic and to antidiffusive fluxes when the forcing is

anisotropic. In both cases this leads to the enhancement

of the mean flow and to instability. On the other hand,

advection of the mean vorticity by the eddies was found

to have no effect to leading order when the forcing is

isotropic and to lead to hyperdiffusive fluxes hindering

jet formation when the forcing is anisotropic.

These processeswere then examined in detail by studying

the momentum fluxes induced by an ensemble of wave-

packets in the presence of an infinitesimal sinusoidal mean

flow.Assuming slowmeanflowvariations,we estimated the

contribution of shearing of the wavepackets by the local

shear and the contribution of wavepacket propagation un-

der the inhomogeneous vorticity gradient in the ensemble

mean momentum fluxes for both isotropic and anisotropic

forcing. These calculationswere performed in thephysically

relevant limit for the emergence of jets of small dissipation

time scale compared to the shear time scale.

Shearing of the eddies in the manner described by the

Orr dynamics in a b plane was found to have two effects.

The first effect is that it changes the amplitude of the
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fluxes in accordance with conservation of vorticity. This

process leads to upgradient fluxes with an amplitude

proportional to the shear unless the forcing is isotropic,

in which case it produces no fluxes at all. This process

underlies the negative viscosity characteristic of the

fluxes in the case of anisotropic forcing. The second

effect is that it changes the group velocity of the wave-

packet compared to an unsheared perturbation propa-

gating in a b plane. This process leads to momentum

fluxes with an amplitude proportional to the third de-

rivative of the mean flow that are upgradient for an

isotropic forcing and downgradient for an anisotropic

forcing. As a result, this process underlies the negative

hyperviscosity characteristic of the fluxes in the case of

isotropic forcing. In any case, the driving mechanism for

the emergence of jets was found to be shearing of the

eddies by the local shear in a b plane.

On the other hand, refraction of the eddies in the

manner described by ray tracing of Rossby waves prop-

agating under the inhomogeneous local mean vorticity

gradient was found to change the amplitude of the fluxes

according to wave action conservation. This process

produces downgradient fluxes with an amplitude pro-

portional to the third derivative of the mean flow, unless

the forcing is isotropic, in which case it has no effect. As

a result, this process underlies the hyperdiffusive action

of the fluxes in the case of anisotropic forcing. Never-

theless, this process can be jet forming in the presence of

topography with zonal mean flows emerging in regions

where topography enhances b.
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APPENDIX A

Discrete Formulation of the SSST Equations

We here show the correspondence between the con-

tinuous and matrix formulations of the SSST equations.

In thematrix formulation of SSST the Fourier transform

of the vorticity field is defined as

q0(x, y, t)5 �
‘

k51

Re[~q(k, y, t)eikx] , (A1)

and the Fourier amplitudes at yj evolve according to

›t ~q(k, yj, t)5
~Ajk

~q(k, yj, t)1
~f (k, yj, t) , (A2)

with ~Ajk 52ikUj 2 ik(b2Uyjyj)D̂
21

j 2 r, D̂
21

j the inverse

of D̂5 ›2yjyj 2 k2 and ~f the Fourier transform of f ( ~Ajk

denotes the k wavenumber operator A acting at points

yj). A real vorticity field requires that ~q(2k, y, t)5
~q*(k, y, t) and the covariance function can be written as

C(x1, x2, y1, y2, t)

5
1

4
�
‘

k52‘
�
‘

k052‘
h~q(k, y1, t)~q(k0, y2, t)ieikx11ik0x

2 , (A3)

with k 5 0 and k0 5 0 excluded in the summation. Since

C is a function of x1 2 x2, only terms with k0 5 2k

contribute in (A3) and

C(x1 2 x2, y1, y2, t)5
1

4
�
‘

k52‘

~Cke
ik(x

1
2x

2
) , (A4)

with the definition ~Ck 5 h~q(k, y1, t)~q*(k, y2, t)i and with

k 5 0 excluded. A similar decomposition is obtained

for the forcing covariance, with the definition ~Qk 5
h ~f (k, y1)~f*(k, y2)i. By multiplying (A2) for ›t ~q(k, y1, t)

by ~q*(k, y2, t) and (A2) for ›t ~q*(k, y2, t) by ~q(k, y1, t),

adding and taking the ensemble average, we obtain

›t
~Ck5 ( ~A1k 1

~A2k
* ) ~Ck 1

~Qk . (A5)

Combining (9) and (A4), we obtain

hu0y0i5 1

4
�
‘

k52‘
ik›y

2
D̂
21

1 D̂
21

2
~Ck


 �
y
1
5y

2

52
1

2
�
‘

k51

Im k›y
2
D̂
21

1 D̂
21

2
~Ck


 �
y
1
5y

2

. (A6)

By discretizing (A2) on a meridional grid, the Fourier

components ~q(k, y1, t) and ~q*(k, y2, t) become the col-

umn qk and row qyk vectors, respectively, with elements

the values of the variables at the grid points and y de-

notes the Hermitian transpose. The Fourier amplitudes

of the forcing and vorticity covariance functions are

approximated by the finite-dimensional covariance ma-

trices Qk 5 hfkfyki and Ck 5 hqkqyki, respectively, and the

operators ~A1k and ~A2k* are approximated by the matrices

Ak and Ay
k, respectively [as ~A2k* ~q*(k, y2, t) now reads

qykA
y
k]. Equations (A5) and (10) then become

dCk

dt
5AkCk1CkA

y
k 1Qk , (A7)
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dU

dt
5 �

‘

k51

k

2
vecd Im(D¢21

k Ck¢
21y
k Dy)

h i
2 rU . (A8)

In (A8), D and ¢21
k are the finite-dimensional approx-

imations of ›y and D̂
21
, respectively, and vecd denotes

a vector containing the diagonal of the resulting matrix

and is used to evaluate the fluxes at y1 5 y2. This matrix

system is equivalent to (12) and (13).

APPENDIX B

Calculation of Momentum Fluxes for a Sinusoidal
Flow

The purpose of this appendix is to calculate the per-

turbation momentum fluxes du0y0 in the adiabatic limit

for a harmonic mean flow perturbation dUi 5 sin(nyi).

The perturbation streamfunction covariance in the adi-

abatic limit is determined from

dC5 P21(dU12 dU2)›~xC
E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dCad

2(dU 00
1 2 dU00

2 )
~D›~xC

E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dCcu

,

(B1)

where

P5 2b›3
~x~yy

2 2r

"
~D
2
1

1

2
›~x
22 ›

~y
2


 �
›y
21

1

16
›y
4

#
, (B2)

CE 5 Q/2r, and CE 5 ~D
2
CE. Because of the linearity of

(B1), the perturbation streamfunction covariance can be

written as dC5 dCad 1 dCcu. The first term dCad is the

contribution to the perturbation covariance from the

advection of the equilibrium vorticity covariance by

the perturbation mean flow. The second term, dCcu, is

the contribution from the advection of the vorticity of the

perturbed flow by the eddies at equilibrium. Since this

is a linear equation for the perturbation velocity, we

choose the mean flow perturbation dUi 5 einyi , for which

dU1 2 dU2 5 2i sin(n~y/2)einy, and consider only the imag-

inary part. From now on we follow Srinivasan and Young

(2012). We choose the streamfunction covariance to have

the similar dependence dC5Cn(~x, ~y)e
iny and apply the

Fourier transform

Cn 5
1

2p

ð‘
2‘

ð‘
2‘

Ĉn(k, l)e
ik~x1il~y dk dl (B3)

to obtain

Ĉn 5
ikK4

1 Ĉ
E
1 2 ikK4

2Ĉ
E
2

2inbkl1 2rK2
1K2

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĉ

ad

n

2
ikK2

1 n2Ĉ
E
1 2 ikK2

2n
2Ĉ

E
2

2inbkl1 2rK2
1K2

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĉ

cu

n

, (B4)

where Ĉ
ad

n and Ĉ
cu

n are the corresponding Fourier am-

plitudes of dCad and dCcu, K2
6 5 k2 1 (l 6 n/2)2,

Ĉ
E

6 5 Q̂(k, l 6 n/2)/(2rK4
6), and Q̂(k, l) is the Fourier

amplitude of Q. Introducing in (B4) the expression for

Ĉ
E
and taking the imaginary part, we obtain the per-

turbation momentum fluxes

du0y05 dC~x~y
j~x5~y50

5 Im(ieinyL2 2 ieinyL1) , (B5)

where

L6 5
1

4rp

ð‘
2‘

ð‘
2‘

k2lK2
6 Q̂(k, l6n/2)

2inbklK2
6 1 2rK2

1K2
2K

2
6

dk dl

2
1

4rp

ð‘
2‘

ð‘
2‘

k2ln2Q̂(k, l6 n/2)

2inbklK2
6 1 2rK2

1K2
2K

2
6

dk dl .

(B6)

The first and second terms are associated with the con-

tribution of dCad and dCcu to the momentum fluxes.

Because the covariances satisfy the exchange symmetry

Q(x1, x2, y1, y2) 5 Q(x2, x1, y2, y1), which is the equiva-

lent expression of the hermiticity of the corresponding

covariances in the matrix formulation, we obtain

Q(~x, ~y)5Q(2~x, 2~y), yielding

Q̂(2k, 2l)5 Q̂(k, l) , (B7)

which implies, because Q is a real function and

Q̂
*
(k, l)5 Q̂(2k, 2l), that Q̂ is also real. Changing the

sign of k and l in (B6) and using (B7), we obtain that

L1 5 2L2. We assume that the smallest scale in which

the forcing has significant power is Lf 5 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f 1 l2f

q
and

we nondimensionalize the wavenumbers in (B6) with

this scale, so that (k, l,n)5 ( ~k, ~l, ~n)/Lf . Using L152L2

and shifting the origin of the l axis l / l 2 n/2 in the

integral reduces (B5) to
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(du0y0ad, du0y0cu)

5 Im

2
64iei~ny/Lf

4rLfp

ð‘
2‘

ð‘
2‘

(K2,2~n2)F( ~k, ~l) d ~k d~l

3
75, (B8)

where

F( ~k, ~l)5
~k
2
(~l1 ~n/2)Q̂( ~k, ~l)

i~nbLf
~k(~l1 ~n/2)K2 1 r(K21 2~l~n1 ~n2)K4

,

(B9)

K5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2
1 ~l

2
q

is the total wavenumber, and du0y0
ad

and

du0y0
cu

are the contributions of dCad and dCcu to the

momentum fluxes, so that du0y0 5 du0y0ad 1 du0y0 cu. Note

that if the forcing obeys the mirror symmetry Q̂(2 ~k, ~l)5
Q̂( ~k, ~l)—as is the case for isotropic forcing or if the corre-

lation functionQ is a separable function of ~x and ~y, as is

the case of the anisotropic forcing in (24)—the integral

of (B8) is a real number and the fluxes are proportional to

cos(ny); that is, they are proportional to an odd derivative

of the mean flow perturbation. This implies that the mo-

mentumfluxdivergence in these cases is proportional to an

even derivative of the mean flow perturbation.

We obtain approximate expressions of the integrals

when the scale of the mean flow is much larger than the

scale of the forcing, ~n � 1, and the propagation time

scale 1/bLf is at most of the same order as the dissipation

time scale 1/r (bLf /r , 1), so that bLf ~n/r � 1. In this

limit the leading term in the denominator of F is rK6,

while all the other terms are order ~n or order ~n2 smaller

than this.B1 Expanding F in powers of ~n and keeping the

terms that are even functions of ~k and ~l andwill therefore

contribute to the integral for a forcing that obeys the

mirror symmetry, we obtain

du0y0ad 5
n cos(ny)

8pr2

 
AS 2 ~n2

b2L2
f

r2
Ab 2 ~n2AC

!
,

du0y0cu 52
n cos(ny)

8pr2
~n2AP , (B10)

where

AS 5

ð‘
2‘

ð‘
2‘

~k
2
( ~k

2
2 3~l

2
)

( ~k
2
1 ~l

2
)3

Q̂ d ~kd~l,

Ab 5

ð‘
2‘

ð‘
2‘

3 ~k
4~l

2
( ~k

2
2 3~l

2
)

( ~k
2
1 ~l

2
)7

Q̂ d~k d~l , (B11)

AC 5

ð‘
2‘

ð‘
2‘

~k
2
( ~k

4
2 10 ~k

2~l
2
1 5~l

4
)

( ~k
2
1 ~l

2
)5

Q̂ d ~k d~l,

AP 5

ð‘
2‘

ð‘
2‘

~k
2
( ~k

2
2 3~l

2
)

( ~k
2
1 ~l

2
)4

Q̂ d ~k d~l . (B12)

Note that, when the forcing does not obey the mirror

symmetry, terms proportional to ~n might appear in the pa-

renthesis in (B10) (K. Srinivasan 2013, personal communi-

cation). We will now show that the approximate expression

in (B10) can also be obtained by considering a slowly

varying mean flow Ui 5 Ui(nyi), where n � 1, for which

U12U2 5 n~yU 0(ny)1 (n~y)3U 000(ny)/241⋯ , (B13)

U00
1 2U00

2 5 n3~yU 000(ny)1 n5~y3U(5)(ny)/241⋯ . (B14)

That is, the eddies are advected to first order by the

slowly varying local shear y. They also advect the local

mean vorticity that has to leading order a linear gradient

with respect to latitude and is also slowly varying. A two-

scale perturbation expansion of (B1) with slow variable

Y5 ny and dC5 nC11 n2C21 n3C31 � � � gives that the
Fourier amplitudes of Ci to the third order areB2

Ĉ
1
5

U0(Y)

4r2
k

(k21 l2)2
›Q̂

›l
,

Ĉ
2
52

bU 00(Y)

4r3
k2l

(k21 l2)4
›Q̂

›l
, (B15)

Ĉ
3
5

U000(Y)

8r2
k(k22 l2)

(k21 l2)4
›Q̂

›l
2

U000(Y)

96r2
k

(k21 l2)2
›3Q̂

›l3

1
b2U 000(Y)

4r4
k3l2

(k21 l2)6
›Q̂

›l

1
U 000(Y)

4r2
k

(k21 l2)2
›

›l

0
@ Q̂

k21 l2

1
A . (B16)

The resulting momentum fluxes are

du0y05 ›2
~x~y
dCj~x5~y50

5 nAS

U0(Y)

8pr2
1 n3Ab

b2U 000(Y)

8pK4
f r

4

1 n3AC

U 000(Y)

8pr2
1 n3AP

U000(Y)

8pr2
, (B17)

which gives (B10) when U(ny) 5 sin(ny). This proves

that the limit ~n � 1 and bLf n̂/r � 1 is equivalent to

considering local dynamics for the forced eddies.

B1 The limitbLf/r, 1 ensures that thefirst terms in thedenominator

are at least order ~n smaller than the leading-order term rK6.

B2 We also assume that the terms in theP operator in (B2), b and

r O(1) so that the only small terms are the ones associated with n.

This is equivalent to the approximation bLf/r , 1.
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Wenow calculate the coefficientsAS,Ab,AC, andAP for

the two cases of stochastic forcing discussed in section 3.

The first is the isotropic ring forcing in (21) with Q̂5
d(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
2Kf ) and Lf 5 1/Kf and the second is the an-

isotropic forcing in (24) with Q̂5 (akf d
ffiffiffiffiffiffiffiffi
p/2

p
)[d(k2 kf )1

d(k1 kf )]e
2l2d2/2 andLf5min(1/kf, d). The amplitude akf

is chosen so that the energy density of the forcing per unit

time is a fraction s of the energy in a constant flow of

unit velocity. To calculate akf , we first obtain the en-

ergy density of the forcing with a covariance functionCf:

E5
1

2
(hu01u02i1 hy01y02i)x

1
5x

2
52

1

2
~DCf

�����
~x5~y50

5
1

4p

ð‘
2‘

ð‘
2‘

Q̂

k21 l2
dk dl . (B18)

The zonally averaged energy in (B18) equals s/2 ac-

cording to the normalization yielding

ak
f
5

2skf e
2k2

f d
2/2

d
ffiffiffiffiffiffi
2p

p
erfc(kf d/

ffiffiffi
2

p
)
. (B19)

For the isotropic forcing in (21), it can be shown that

AS5AP 5AC5 0 andAb 523p/16Kf . We thus obtain

(22). For the anisotropic forcing in (24), we obtain

AS5sk2f d
2

2
4p(11 k2f d

2)2
kf de

2k2
f
d2/2

ffiffiffiffiffiffi
2p

p

erfc(kf d/
ffiffiffi
2

p
)

3
5 , (B20)

Ab 52
3sd2

5760k2f L
4
f

(2451 45k2f d
2 2 30k4f d

41 30k6f d
61 15k8f d

81 k10f d10)p

1
3sd3

5760kfL
4
f

ffiffiffiffiffiffi
2p

p
(452 30k2f d

21 18k4f d
41 14k6f d

61 k8f d
8)

ek
2
f
d2/2erfc(kf d/

ffiffiffi
2

p
)

, (B21)

AC 5
sk2f d

4

12L2
f

2
42(31 6k2f d

2 1 k4f d
4)p

1
kf d

ffiffiffiffiffiffi
2p

p
(51 k2f d

2)

ek
2
f
d2/2erfc(kf d/

ffiffiffi
2

p
)

3
5, and (B22)

AP 5
s

12k2f L
2
f

2
42(231 3k4f d

4 1 2k6f d
6)p

1
kf d

ffiffiffiffiffiffi
2p

p
(31k2f d

21 2k4f d
4)

ek
2
f
d2/2erfc(kf d/

ffiffiffi
2

p
)

3
5 . (B23)

In the limit of kf d � 1, (B20)–(B23) are approximately

equal to

[AS,Ab,AC,AP] ’ 2sp

"
1,

3

k6f d
2L4

f

,
1

k2f L
2
f

,
1

k2f L
2
f

#
,

yielding (25) and (26). In the limit of kf d � 1, (B20)–

(B23) are approximately equal to

[AS,Ab,AC,AP] ’ sp

"
k2f d

2,
3d2

128k2f L
4
f

,
k2f d

4

4L2
f

,
1

4k2f L
2
f

#
.

For d/ 0, the only nonzero coefficient is AP 5 1/4k2f L
2
f

producing downgradient hyperdiffusive fluxes.

APPENDIX C

Eddy Fluxes Produced by an Ensemble of Wave
Packets

In this appendix we show that an alternative way to

calculate the ensemble mean momentum fluxes in the

slowly varying limit is to calculate the momentum fluxes

of wavepackets that are initially localized at different

latitudes, then integrate the fluxes over the life cycle

of the wavepackets and add their contribution as if

they evolved independently. Following the calculation

in section 3, we consider a stationary mean flow per-

turbation dU around the statistical equilibrium in (14)

and calculate the perturbation covariance dC that is in-

duced by dU. The solution of (8) for stationary mean

flows, and time invariant Ai, is

C5

ðt
0
e(A1

1A
2
)sQds . (C1)

The steady-state covariance is obtained from the t / ‘
limit of (C1). In the adiabatic limit, in which the
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covariances at all times assume their equilibrium value

(ddC/dt ’ 0), dC is the difference between covariance

CdU that results at steady state when themean flow is dU

and the equilibrium covarianceCE. That is, we can write

dC5 lim
t/‘

(CdU 2CE)5

ð‘
0
e(dA1

1dA
2
)tQ dt

2

ð‘
0
e(A

E
1 1AE

2 )tQ dt , (C2)

where

dAi 52dUi›x
i

2 (b2 dUy
i
y
i

)D21
i ›x

i

2 r,

AE
i 52bD21

i ›x
i
2 r , (C3)

and dUi 5 sin(nyi) is the mean flow perturbation.

Substituting (C2) into (9), we obtain the alternative

expression for the momentum fluxes

dhu0y0i52

ð‘
0

›x
1
D21
1 edA1

t›y
2
D21
2 edA2

tQ

 �

x
1
5x

2

dt .

(C4)

To obtain (C4), we have used the property that all

operators acting at different points commute and that

the equilibrium covariance does not produce any

ensemble mean fluxes. We then apply a Fourier

transform to the forcing f and obtain the forcing co-

variance as

Q5 h f1f2i5
1

4p2

ð‘
2‘

ð‘
2‘

ð‘
2‘

ð‘
2‘

h f̂ (k, l)f̂ (k0, l 0)ieikx11ik 0x
2
1ily

1
1il 0y

2 dk dk0 dl dl 0 . (C5)

BecauseQ is homogeneous and depends only on x12 x2
and y1 2 y2, the ensemble mean Fourier amplitudes

satisfy

h f̂ (k, l)f̂ (k0, l 0)i5 2pd(k1 k0)d(l1 l 0)Q̂(k, l) . (C6)

Positive definiteness ofQ implies that Q̂. 0 and (C6) is

equivalently written as

h f̂ (k, l)f̂ (k0, l 0)i

5

ð‘
2‘

d(k1 k0)e2i(l1l 0)j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂(k, l)

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂(k0, l 0)

q
dj . (C7)

Using (C7), (C5) becomes

Q5 h f1f2i5
1

4p2

ð‘
2‘

ð‘
2‘

ð‘
2‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂(k, l)

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂(2k, l 0)

q
eik(x12x

2
)eil(y12j)eil

0(y
2
2j) dj dk dl dl 0

5
1

2p

ð‘
2‘

ð‘
2‘

G(k, y1 2 j)G*(k, y22 j)eik(x12x
2
) dj dk , (C8)

where we have used Q̂(2k, l)5 Q̂(k, 2l) because of the

exchange symmetry in (B7) and

G(k, y)5
1ffiffiffiffiffiffi
2p

p
ð‘
2‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂(k, l)

q
eily dl . (C9)

Consequently, (C4) becomes

dhu0y0i5 1

2p

ð‘
0
u0y0 dt dj dk , (C10)

where

u0y052[ikD21
1k e

dAk
1G(k, y1

2 j)›y
2
D21
2k e

(dAk
2 )*G*(k, y2 2 j)]y

1
5y

2
, (C11)

D21
ik is the inverse of Dik 5 ›2yiyi 2 k2, and

dAjk 52ikdUj 2 ik(b2 dUy
j
y
j
)D21

jk 2 r . (C12)

The integrand (C11) is twice the momentum flux at time

t produced by the initial monochromatic perturbation

G(k, y)eikx, which is localized at latitude j. We have

therefore shown that the perturbation momentum fluxes

can be calculated as follows: take an ensemble of pertur-

bations G(k, y)eikx, each localized around different lati-

tudes, calculate the momentum fluxes over their life cycles,

and then add their relative contribution, as if the waves

evolved independently, to obtain the ensemble mean per-

turbation fluxes. We will now show that for both the ring

forcing in (21) and the anisotropic forcing in (24), the per-

turbationsG can be interpreted as wavepackets.
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Consider the ring forcing in (32) that has a finite width

2DK in wavenumber space. The ring sector jK2Kfj# DK
is equivalently determined by the inequalities���l6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
f 2 k2

q ���# d(k), for jkj#Kf , (C13)

where d(k)5KfDK/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

f 2 k2
q

is the width of the ring

sector at each wavenumber k. To calculate the momentum

fluxes in closed form, we consider the modification of (32):

Q̂(k, l)5
1

DK
ffiffiffiffi
p

p
�
e
2(l2

ffiffiffiffiffiffiffiffiffiffiffi
K2

f
2k2

p
)
2

/d(k)2

1 e
2(l1

ffiffiffiffiffiffiffiffiffiffiffi
K2

f
2k2

p
)
2

/d(k)2
�
Q(Kf 2 jkj) , (C14)

with the width d(k). For the forcing in (C14) in the limit

DK � 1, we integrate (C9) to obtain to a good approx-

imation that G is a wavepacket with central wave-

number l0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

f 2 k2
q

:

G(k, y)5

ffiffiffiffiffiffiffiffi
DKffiffiffiffi
p

p
s

2Kfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

f 2 k2
q cos(l0y)e

2d(k)2y2/2Q(Kf 2 jkj) .

(C15)

The initial momentum flux of this wavepacket for the

isotropic forcing is

1

2p

ð‘
2‘

ð‘
2‘

u0y0(t5 0) dj dk52

ðK
f

2K
f

ð‘
2‘

kl0DKe2d2(y2j)2

2pK2
f

ffiffiffiffi
p

p
(K2

f 2 k2)
[211 11 e2il0(y1j) 2 e22il

0
(y1j)] dj dk

52

ðK
f

2K
f

kl0

2pK5
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

f 2k2
q (211 11 e2l20 /d

2

e22il
0
y2 e2l20 /d

2

e2il0y) dk . (C16)

The first two terms in the integrand are the contribution

of l0 and2l0 in the momentum fluxes, while the last two

terms are the interference terms between these two

waves. By taking the limit DK / 0, d / 0 the in-

terference terms go to zero, resulting in zero net mo-

mentum fluxes imposed at t 5 0. For the same reason,

the interference terms make no contribution when the

perturbations evolve in a shear flow. So we can takeG to

be given by (33), for which we consider only the single

wave l0. The relative contribution of2l0 in the ensemble

meanmomentum fluxes is taken into account by adding

the corresponding term in (41) for 2l0 in order to ob-

tain (42). Consider now the anisotropic forcing in (24),

for which Q̂5 (akf d
ffiffiffiffiffiffiffiffi
p/2

p
)[d(k2kf )1 d(k1 kf )]e

2l2d2/2.

Then G is given by

G(k, y)5

ffiffiffiffiffiffiffi
ak

f

d

s
(2p)1/4[d(k2 kf )1 d(k1 kf )]e

2y2/d2 .

(C17)

APPENDIX D

Wave Propagation in an Inhomogeneous Medium

Consider the evolution of an ensemble of wave-

packets propagating in a motionless flow with a back-

ground vorticity gradient Qy 5 b 2 g(y 2 j), with

gL2
f /r � bLf /r � 1. We will calculate the momentum

fluxes produced by this wavepacket over its life cycle

using ray tracing. The rate of change of the meridional

position of the wavepacket y and the slowly varying

wavenumber lt(t) along a ray are given by the standard

ray-tracing equations (Andrews et al. 1987)

dgy

dt
5

›v

›lt
,

dglt

dt
52

›v

›y
, (D1)

where v52[b2 g(y2 j)]k/(k2 1 l2t ) is the frequency

of the propagating waves and dg/dt denotes time differ-

entiation along a group-velocity ray. We obtain from

(D1) that the wavenumber lt and the displacement of the

wavepacket h(t) [ y satisfy

l3t 1 3k2lt 2 l30 2 3k2l01 3gkt5 0,

h(t)5 j1
b

g
12 e

2(g/b)
Ð t

0
c
g
(s)ds

� �
, (D2)

with l0 5 lt(0), j the initial position of the wavepacket,

and cg 5 2bklt/(k
2 1 l2t )

2 is the time dependent y com-

ponent of the group velocity. The wavepacket therefore

evolves as

q(x, y, t)5Bte
ikx1il

t
(y2j)h(y2 j2h) , (D3)

where Bt(t) is the time-dependent amplitude with Bt(0)5
B. To leading order, the spatial density of wave action

along rays satisfies the equation
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E(t)

v(t)
5

E(0)

v(0)
e22rt , (D4)

where E(t) is the energy density of the wavepacket fol-

lowing a ray that is given by

E(t)5
1

4
j›xcj21 j›ycj2

 �

5
jBtj2
k21 l2t

. (D5)

Equation (D4) then implies that the amplitude decays

exponentially Bt 5 B(0)e2rt. As a result, the momen-

tum fluxes produced by the wavepacket are given by

(38). The dominant contribution to (30) comes from

small times in the limit gL2
f /r � bLf /r � 1, since the

wave is dissipated before it propagates. For small

times, (D2) gives

lt ’ l2 g
kt

k21 l20
1O(g2t2), h ’ j1 cg(0)t1O(gb) ,

(D6)

and, consequently,

klt

(k21 l2t )
2
’ kl0

(k21 l20)
2
1

k2(3l20 2 k2)

(k21 l20)
4
gt1O(g2t2) .

(D7)

Inserting the approximate expressions (D6)–(D7) in

(38), integrating over time, and keeping terms that are

even in k and l0, we obtain (49).
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