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ABSTRACT

In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal
and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong
emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters
and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in
conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but
more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to
the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy
of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and
can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized
shear region.

Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly mo-
mentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at
their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum
such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers
there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be
carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the
region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the

size of the shear region.

1. Introduction

Gravity waves play an important role in transporting
energy and momentum and in influencing the general
circulation and thermal structure of the atmosphere.
Understanding the physical mechanisms that maintain
the statistical equilibrium wave fluxes is a highly com-
plex problem, as it involves knowledge of source char-
acteristics, in addition to understanding and modeling
of wave-wave and wave-mean flow interactions that
influence and filter the emitted wave spectrum. The
latter will be the focal point of this study.

Previous studies on wave-mean flow interactions
have focused mainly on two effects of the background
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flow on waves. The first is dynamic excitation of gravity
waves as a result of instability. A number of studies
showed that the evolving vortex core of an unstable
shear layer could couple strongly with radiating gravity
waves in the case in which the region of strong shear is
weakly stratified, whereas the buoyancy frequency is
large in the far field (Sutherland and Peltier 1995; Suth-
erland 1996; Sutherland and Linden 1998), as well as in
the case of Kelvin-Helmbholtz instability (Fritts 1984;
Chimonas and Grant 1984; Scinocca and Ford 2000).
The second, which is of primary interest here, is the
effect of the mean flow on the spectrum of waves ex-
cited by exogenous sources. The atmospheric shear can
alter the wave spectrum through critical level filtering
and refraction (Beres et al. 2002, 2004; Fritts and Al-
exander 2003). It can also enhance wave generation in
the presence of an external source such as convection
(Clark et al. 1986; Lott 1997; Beres et al. 2004).
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In particular Lott (1997) considered the evolution of
small perturbations within a linearly stable stratified
finite shear layer and found that transiently growing
disturbances could lead to a significant flux of long-
wave propagating waves in the far field. These waves
were found by Lott (1997) to have tapped energy from
the mean shear. This result links the enhancement of
waves to the nonnormality of the underlying dynamics
that was also found to be important in breaking of in-
ertia—gravity waves (Achatz and Schmitz 2006a,b) and
many other geophysical examples (Farrell 1988, 1989;
Farrell and Ioannou 1993a,b). An advantageous con-
ceptual and mathematical framework for studying tran-
siently growing nonmodal perturbations is the general-
ized stability theory (GST) developed by Farrell and
Ioannou (1996). In the context of GST the various
sources and nonlinearity provide through forcing the
feedback perturbations required to maintain the vari-
ance while the energetic exchange between the forced
background flow and the perturbations is included in
the linearized dynamical operator.

Following this approach, we perform a GST analysis
of a linear two-dimensional stably stratified model of an
atmospheric shear flow that is externally forced. The
purpose of the analysis is to investigate how a general
shear flow influences and transforms an already exist-
ing spectrum of perturbations that is injected by the
forcing inside the shear layer. We seek a parameteriza-
tion for the forcing that will enable us to isolate the
dynamics, while being minimally restrictive of the per-
turbation spectrum.

The physical processes and sources that give rise to
this spectrum can be found in the detailed review paper
of Fritts and Alexander (2003) and typically include
topography, convection and adjustment of unbalanced
flows. The set formed by all the sources spans a very
wide range of phase speeds, wave frequencies, and ver-
tical and horizontal scales. We therefore crudely pa-
rameterize the forcing as white noise in order to obtain
the response of the system for all frequencies and
scales. While such uncorrelated forcing is idealized, it
lacks any bias and therefore allows the dynamical sys-
tem to select the frequencies and structures that will
play important role in momentum and energy transport.

Having specified the forcing, we assess how the
waves are influenced by the mean flow by considering
the simple model of a finite stably stratified shear re-
gion that has the advantage of admitting closed form
solutions. This model also serves as an informative ex-
ample of the prototype growth processes considered in
this paper. In the companion paper (Bakas and Farrell
2006, manuscript submitted to J. Atmos. Sci., hereafter
Part II) we apply the methods of GST to a linear two-

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 64

dimensional jet, and examine the statistical equilibrium
momentum and energy fluxes in and out of the jet,
along with implications on the effect of the waves on
the large-scale flow.

This paper is organized as follows. In section 2 we
describe the linear evolution equations for perturba-
tions in a stratified flow. Section 3 describes the tem-
poral development of waves within a stably stratified
infinite shear flow, focusing on the energetics and
propagation properties involved. In section 4 we study
a continuously forced finite shear layer bounded by two
regions of uniform velocity, calculating initially the re-
sponse to a monochromatic single point source, extend-
ing subsequently the analysis to a single point tempo-
rally uncorrelated source. In section 5 we investigate
the response to vorticity and thermal stochastic forcing
white both in space and time, covering also the case of
a forcing that obeys a power-law behavior, assumed
therefore red rather than white, and we end with a brief
discussion and our conclusions in section 6.

2. Formulation

Consider a flow of mean zonal velocity U(z) varying
only in the vertical in a hydrostatically balanced, strati-
fied atmosphere of density p = p,, + p(z), where p,, is
the mean density and p(z) is the variation of the back-
ground density with height. Consider now velocity per-
turbations superposed on the mean flow in the zonal
and vertical direction denoted (u, w), respectively, and
density and pressure perturbations superposed on the
mean density and pressure fields denoted (p, p), respec-
tively. The linearized, nondimensional momentum and
continuity equations that govern the evolution of the
small perturbations are

a+U(Z)a +dUW E (z)
U - = —d,p —rZ)u
VR R T
! & 1
+Res u, (1
U(z)
9, + -~ |w=—d_.p—p—rxw
V/Ri
! V2 2
+Res w, 2
a+U(Z)a i (z)
x =W —rz
t \/ﬁ P N% P
! & 3
+Res ps 3
dou+aw=0. 4)
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Time is nondimensionalized by a typical value of the
Brunt-Viisila frequency N, in the domain of the flow,
the horizontal and vertical scales are nondimensional-
ized by a characteristic vertical scale H and velocities
are nondimensionalized by a typical value V. Pressure
and density are nondimensionalized by p,, HV,N, and
p.VolNo/g, respectively, where g is the gravitational ac-
celeration. The Richardson number and the Reynolds
number are defined by Ri = N3H?*/V3 and Re, =
p,.H*Ny/i, where p is the coefficient of viscosity. The
Prandtl number has been chosen to be one; thus the
coefficient of kinematic viscosity v = u/p,, equals the
coefficient of diffusion. The Brunt—Viisila frequency
will be herein considered constant and equal to its char-
acteristic value N> = Nj. The Rayleigh damping r(z)
and diffusion terms are only relevant to the numerical
calculations presented in section 5 and further details
will be provided therein. Eliminating pressure from (1)
and (2) and taking advantage of the continuity equation
to express the perturbation velocity field in terms of a
streamfunction as (u, w) = (¥, — ), we obtain the
following evolution equations for the perturbation
streamfunction, ¢, and density, p:

(a s .+ r( ))Vzuj ! 9 wdzU
= +r(z g —
" A/Ri VR dZ?
B dr 1 - 5
__dzazl!j—'—axp—i_Res tllv ()

U(z) B va 6
at+\/ﬁax+r(z) p+axdj7Res p- ( )

3. Gravity waves in stratified constant shear flow

a. Perturbation evolution of a single plane wave

Consider an inviscid, stably stratified mean zonal
constant shear flow U(z) = z. If we transform Egs.
(5)-(6) in the convected coordinate frame of reference
that is moving with the background flow,

T=1, (7)

they become

o,[02 + (3, — (r/NVRDa) v =00,  ®
d.p= —0. €)

Equations (8)—(9) are now separable in § and n and a
single Fourier component evolves as ¢ = yi(7)e’*%e™,
where k, [ are the horizontal and vertical wavenum-
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bers in the convected coordinates, respectively. In the
laboratory frame of reference the streamfunction is
given by

b= d"}(t)eikxei(lfkr/\/ﬁ)z- (10)
The time-varying amplitude of this Orr solution, §(7), is
determined from the evolution equation of the pertur-
bation vorticity {:

s + ! (=0 (11)
a1+ (k- o/\V/Ri)
where
3(r) = S (12)

K+ (1—kt/\/Ri)

The solution of (11) can be analytically expressed using
the standard Gauss hypergeometric functions (Hart-
man 1975) or can be accurately determined by numeri-
cal integration. The lines of constant phase of this wave
rotate clockwise due to the linear decrease of the ver-
tical wavenumber. If the plane wave initially leans
against the shear, the Reynolds stress uw, where the bar
denotes an average over x and z, is negative and re-
mains negative up to the time 7, = / \/E/k when the
phase lines are vertical, for later times ¢ > ¢, the plane
wave tilts in the direction of the shear producing a posi-
tive Reynolds stress. Consequently, because the energy
evolves according to

dE 1

E——\/ﬁuw,

the perturbation energy density grows transiently for
t < t,, reaches a maximum at ¢, and decays for ¢t > ¢,

(13)

b. Perturbation evolution of a wave group

Consider now a wave packet of initial perturbations
that consists of a spread Ak of wave vectors about a
central vector k, subject to ||Ak||/||ky|| < 1. For sim-
plicity we will restrict to a spread about [, only. The
value of Richardson number plays a decisive role in the
propagation of such wave packets (Hartman 1975).

For Ri < 1/4 the solutions' to (11) are purely mono-
tonic, the wave packet will be subject only to minor
distortion, and the perturbations described earlier grow
transiently and finally surrender their energy to the

! This is a bulk Richardson number that for constant shear flow
considered in this section coincides with the gradient Richardson
number Ri,.
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mean flow in the neighborhood of their initial position.
In the range 1/4 = Ri Eq. (11) admits oscillating solu-
tions, and for Ri < 1 wave packets move only a fraction
of their central wavelength. For large Richardson num-
bers (i.e., Ri > 1), propagation clearly manifests, and a
WKB approximation of (11) shows that the perturba-
tions are internal gravity waves with a time-dependent
vertical wavenumber / = [ — k#/A/Ri and time-depen-
dent Doppler-shifted frequency, which satisfies the in-
ternal wave dispersion relation with the instantaneous
value of the time dependent vertical wavenumber. For
a wave packet, the WKB solution is reduced to (see
appendix A for details)

Ur) = \/% exp(if; wg(s) ds)

B T
—_— —i d 14
+ e exp( zfo wy(s) s>, (14)

where

ko

i@+ (ly - kyr/ /R

and amplitudes A, B depend on the initial conditions.
The two terms in (14) represent two waves propagating
in opposite directions. In appendix A, the group veloc-
ity of the waves is shown to be

S ko(ly — kot /\/Ri)

T [ G- ket /V/RITT
where the plus sign is for the first term of (14) and the
minus sign for the second term of (14).

Integrating Eq. (16) we obtain the vertical displace-
ment of the center of the packet as a function of time:

1
2=20) = \V/Ri
(\/ké + (lo - kot/\/ﬁ)2

(15)

wy(7) =

(16)

. 17
From (16) and (17) we can see that under the assump-
tion of a positive horizontal wavenumber k, an initial
disturbance with positive central vertical wavenumber
I, propagates upward (downward) for times ¢ < I,\/Ri/
ko reaching the maximum (minimum) height 2., =
+\/Ri(1/k, — 1/\/k% + [3), then the motion reverses
and the packet asymptotically approaches a height Z,, =
+\/Ri\/k% + [2 lower/higher than its original position.
It is worth noting that internal waves can be shown to
propagate beyond their turning level due to nonlinear
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Fi1G. 1. The evolution of the center of a wavepacket £ with time.
The initial conditions are such that only the first term in Eq. (14)
is nonzero, the Richardson number is chosen to be Ri = 40, and
the central wavenumber is (k,, /) = (1, 5) (solid line) and (k,, /,)
= (1, —5) (dashed line). The thick solid line denotes the stagna-
tion level for both cases and the phases of energy amplification
and decay are also noted. When the initial conditions are such that
the second term in (14) is nonzero, the path of the wave packet is
the one shown here reflected about the z = 0 axis.

interactions between the waves and the wave-induced
flow (Sutherland 2000). Although the linearized analy-
sis followed in this paper does not include such effects,
the implications will be discussed in the next section.
On the other hand, an initial disturbance with negative
ly, propagates downward/upward all the way down (up)
to the minimum (maximum) height of 2,... = *\/Ri/
Vk$ + [ The trajectory of the center of the wave
packet for both cases is shown in Fig. 1. Note that waves
in weaker shear flows (lower Richardson numbers) or
with larger initial tilts //k, propagate to higher heights.

The evolution of the energy of the wave packet is
given by

E@) ( K2+ 12 )m 18
EO)  \k2+ (I, - kt/\VRI))

which is the same expression found by Farrell and
Toannou (1993b) for a single Fourier coefficient. Even
though wave action is conserved following the wave
packet, for an initial positive vertical central wavenum-
ber I, we have energy amplification during upward/
downward propagation and energy decay after reaching
the turning level (where the group velocity changes
sign). On the other hand, for a negative /, we have
monotonic energy decay during the whole time of
propagation. The phases of energy amplification and
decay are also noted in Fig. 1. We finally note that the
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energy transfer between the wave packet and the mean
flow occurs preferentially at the edges of the packet and
not only from one point.

4. Emission of gravity waves from a localized
shear region

While in constant shear flow perturbations may grow
and decay in the manner described in the previous sec-
tion; in flows with shear varying with height, the possi-
bility arises that the energy tapped in regions of high
shear may leak and lead to enhanced gravity wave ac-
tivity in regions with predominantly high Richardson
number. Lott (1997) considered the evolution of small
perturbations within a stably stratified, finite shear
layer and found that disturbances initially confined
within the shear region grew transiently in the manner
described in the previous section. He also found that, if
the horizontal wavenumber of the initial perturbation
was small, these disturbances led to spectacular gravity
waves that propagated away from the shear layer, a fact
that made their growth very persistent. This issue will
also be addressed in the following sections. We will
investigate the behavior of perturbations imposed in a
stably stratified localized shear flow, with mean velocity
given by

Vo for z>z,
U(z) = 3 Voz/zg, for —zog<z=z,, (19)
—Vos for z= -z

where z, = 1/2, V,, = 1/2 and constant Brunt-Viisila
frequency throughout the flow. This velocity profile is a
shear layer localized in —z, = z = z, and bounded by
two regions of uniform velocity that extend from
—% =7 = —zpand z, = 7 = .

Before we treat the general stochastic excitation of
gravity waves, it is both revealing and instructive to
consider the excitation of gravity waves from a mono-
chromatic single point thermal source. This case, which
can be treated analytically (refer to appendix B), illu-
minates the salient processes of wave—mean flow inter-
action and filtering, which will prove to be of general
validity. The details of the calculation can be found in
appendix B. Here we will offer a heuristic and intuitive
interpretation of the analytic results using the ideas
which were introduced in the previous section.

For a monochromatic point thermal forcing of the
form f(x, z, t) = 8(z)e* ™), four possible evolution
scenarios can be identified depending on the values of
the phase speed ¢, Richardson number Ri, and wave-
number k. The wave packet trajectories that occur in
each case are sketched in Figs. 2a,b and Figs. 3a,b.
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The first case (Fig. 2a) occurs when the forced waves
have both their turning level and critical level inside the
shear region. For example, assume that ¢ < 0. Then the
single point driving excites equally waves with phase
lines initially leaning against (//k > 0) and toward (I/k <
0) the shear. The former propagate upward according
to Fig. 1, their motion reverses at the turning level and
asymptotically approach the stagnation level (critical
level), which is lower than the point of excitation. It can
be readily shown that the momentum flux contribution
of such waves will be nonvanishing only below the forc-
ing region. Moreover, the energy growth attained dur-
ing the upward motion, according to (18), will be lost
during the downward propagation toward the stagna-
tion level. On the other hand, waves with phase lines
leaning in the direction of the shear propagate down-
ward toward their critical level surrendering their en-
ergy to the mean flow. The momentum flux contribu-
tion is again positive only below the forcing region,
resulting in the total momentum flux distribution
shown in Fig. 2¢ (dashed line).

The second case (Fig. 2b) occurs when the excited
waves have their critical level but not their turning level
inside the shear region. In this case the waves that lean
against the shear can escape from the shear layer since
they can reach the region of uniform velocity before
their group velocity changes sign and in this way they
can sustain the transient growth of energy that occurred
during the upward/downward movement (depending
on the sign of ¢). This can be illustrated by calculating
the energy flux coming out of the shear [see Eq. (B10)
of appendix B for more details] and comparing it with
the corresponding flux in a similarly forced motionless
atmosphere [this is also calculated in appendix B and
given by Eq. (B13)]. The resulting ratio ¢ = pw/pw, =
2.8 > 1, which is noted in Fig. 2d, quantifies the growth
due to the presence of the shear layer. On the other
hand, waves leaning toward the shear move to the criti-
cal level, and their energy monotonically decays, sur-
rendering it to the mean flow as indicated by the posi-
tive total momentum flux distribution seen in Fig. 2d.

The third case (Fig. 3a) occurs when the waves have
a turning level but not a critical level inside the shear
region. Westerly momentum is carried away from the
shear as shown in Fig. 3c and is accompanied by a weak
energy leakage (¢ = pw/pw, = 0.38 < 1) attributed to
the energy loss of the wave field in favor of the mean
flow.

Nontrapping characterizes the fourth and final case
as well (Fig. 3b) when the forced waves have neither a
turning nor a critical level inside the shear region. East-
ward and westward momentum is transported toward
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Fi1G. 2. Propagation diagrams of the excited waves in the shear region (19). (a) The waves have both
a turning level and a critical level in the shear region and are consequently trapped. (b) The waves have
a critical level in the shear layer but no turning level. In that case only the waves with phase lines tilted
against the shear escape from the shear layer. (c) The resulting momentum flux distribution when both
positively and negatively tilted waves of the type shown in (a) are excited. The cases shown are waves
with phase velocity ¢ = 0.149 (solid line) and ¢ = —0.149 (dashed line). (d) Momentum flux distribution
when both positively and negatively tilted waves of the type shown in (b) are excited. The cases shown
are waves with phase velocity ¢ = 0.105 (solid line) and ¢ = —0.105 (dashed line). The Richardson
number is Ri = 6 and the zonal wavenumber k = 3. Noted in (d) is the outgoing energy flux, ¢, scaled

by the outgoing flux in the absence of shear.

opposite directions, as seen in Fig. 3d, along with the
enhanced or reduced energy fluxes noted in Fig. 3d.

It is worth noting that, depending on the values of
Richardson number and horizontal wavenumber, at
most three of the four possible cases can occur. When
\/ﬁ/k = 1/2, regardless of the value of c, all waves are
trapped and consequently only the first case occurs, as
shown in the upper panel of Fig. 4. When 1/2 < \/Ri/
k = 1 the first three cases occur (middle panel),
whereas when 1 < \/Ri/k the last three cases (lower
panel) occur.

Since for the last three cases all or part of the initial
perturbation is emitted away from the shear region in
the form of gravity waves, the question arises: Under
broadband forcing at a point in the shear region, how
much of the initial energy and momentum remains

trapped in the region and what portion of it radiates to
infinity?

To address this question, we force at the middle of
the shear layer with a thermal forcing of the form

1

filx, z,0) = & “l), (20)

e
a\/m
where n(t) is a 8 correlated white noise process. In the
limit of @ — 0 the forcing has a delta function vertical
distribution. This forcing has, for nonzero «, finite input
variance and for the calculations that follow we choose
a = 0.025. Since our dynamical system is asymptotically
stable (Ri > 1/4), all-second-order statistical quantities
reach a steady value. The ensemble momentum and
energy fluxes at this statistical equilibrium are given to
a good approximation by
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FiG. 3. Propagation diagrams of the excited waves in the shear region (19). (a) The waves have a
turning level but not a critical level inside the shear region. (b) The excited waves have neither a critical
nor a turning level inside the shear layer. (c) The resulting momentum flux distribution when both
positively and negatively tilted waves of the type shown in (a) are excited. The cases shown are waves
with phase velocity ¢ = 0.277 (solid line) and ¢ = —0.277 (dashed line). The Richardson number is Ri
= 6 and the horizontal wavenumber k = 3. (d) The momentum flux distribution when both positively
and negatively tilted waves of the type shown in (b) are excited. The cases shown are waves with phase
velocity ¢ = 0.316 (solid line) and ¢ = —0.316 (dashed line). The Richardson number is Ri = 10 and the
zonal wavenumber k = 1. Noted in (c) and (d) are the outgoing energy fluxes, ¢, scaled by the outgoing

fluxes in the absence of shear.

o0

[(w), (pw)] = f  [ww(o), pw(o))ff* do.  (21)

where uw(w), pw(w) are given by Egs. (B9)-(B10) and

]?’ 1 jm 1 e—zz/aze—ilz d
= Z
V27 ) —wo\/7

1

N

The resulting (uw) at statistical equilibrium for Ri = 10
and k = 1 (which satisfies 1 < \/Ri/k) is plotted in the
left panel of Fig. 5.

Although all frequencies are equally excited owing to
the temporally uncorrelated forcing, the response (for a
specific horizontal wavenumber), which is inversely

_ e (K2Ri/w? —k2)o2/4

(22)

proportional to ¢, favors low frequency waves that have
a critical level but not a turning level inside the shear
region, as illustrated in the middle and lower panels of
Fig. 4. This result is verified by the large peak of uw and
pw for low frequencies, which are plotted in the upper
and lower right panels of Fig. 5. The excess energy
gained by negative ¢ waves observed in the lower right
panel of Fig. 5 compensates for the energy loss of posi-
tive ¢ waves leading to an overall energy flux increase
of ¢ = 3. Despite the energy amplification occurring
inside the shear zone, we cannot extract more eastward
or westward momentum in the presence of shear [the
curves with (solid line) and without shear (dashed line)
almost coincide in the upper right panel of Fig. 5].
This result can be traced to two major factors: The
first is that, above the forcing region, the momentum
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F1G. 4. Schematic representation of the various possible cases depending on the values of Ri,
k, and c. For (upper) VRilk = 1/2 all waves independent of the value of c are trapped and only
the first case (denoted by number 1) holds, for (middle) 1/2 < VRi/k = 1 the first three cases
exist (denoted by 1, 2, 3, respectively), and finally for (lower) 1 < V'Ri/k the last three hold

(denoted by 2, 3, 4, respectively).

flux of waves that do not have a critical level inside the
shear region is nondivergent according to the Eliassen—
Palm (1961) theorem and independent of the mean
flow. The second is that the forcing region occupies
almost only a single point and the extracted momentum
flux at the source region proved to have almost the
same value regardless of the background flow. How-
ever, this is not the case for lower Richardson numbers,
where extraction of more momentum even for such a
localized source region is realized. The large net excess
easterly momentum leakage observed in the left panel
of Fig. 5 is associated with the critical level filtering of
trapped waves, which is clearly demonstrated in the
upper right panel of Fig. 5 by the absence of phase
speeds in the range 0 < ¢ < 0.16 from the wave spectra.
The filtering is accompanied by the resulting momen-
tum deposition in the vicinity of z = 0 that induces the
sharp increase of (uw) in the center of the shear layer.
Sutherland (2000) studied the propagation of compact
wave packets across a hyperbolic tangent shear layer
and showed that due to nonlinear interactions between
the waves and the mean flow, the wave packets could
tunnel through their turning level and evade internal
reflection. Our results are expected to be weakly influ-
enced by such nonlinear effects due to the fact that
waves having a turning level inside the shear region

correspond to high frequencies where the response to
the thermal forcing is small. We finally note that for 1/2
< A\/Ri/k = 1 we obtain similar results.

S. Emission from spatially and temporally
uncorrelated stochastic forcing

a. The case of temporally uncorrelated stochastic
forcing

We now consider stochastic excitations of the shear
region with temporally and spatially broadband forcing
that injects exogenous vorticity and thermal fluctua-
tions with a wide range of frequencies and scales. The
response to purely thermal and to spanwise vorticity
forcing was calculated. Since there were minor differ-
ences when the forcings were normalized to have the
same input variance, the results presented in this sec-
tion correspond to a purely thermal excitation to facili-
tate comparison with results presented in the previous
section.

It is advantageous for the analysis to express the per-
turbation equations (5) and (6) in the form

dx _
dr
where x = [i(1), p(r)]" is the state vector, and

Ax + Ff(1), (23)
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FIG. 5. (left) The ensemble momentum flux (@w) variation with height for uncorrelated
forcing in time. The Richardson number is Ri = 10 and the zonal wavenumber is k = 1 (1 <
\/ﬁ/k). The outgoing ensemble energy flux (pw) calculated at z = *1 and scaled by the
corresponding flux (pw,) in the absence of the shear flow is noted as ¢. (right) The resulting
distribution of the absolute value of momentum (upper right) and energy (lower right) fluxes
at z = 1 across wave phase speeds for Ri = 10 and k = 1. The corresponding distribution of
fluxes for a motionless atmosphere is also plotted (dashed lines) for reference. Note that the
two lines coincide in the upper right panel for ¢ < 0 and for ¢ > 0.16 and that the corre-
sponding distribution of fluxes at z = —1 would be the symmetric counterpart of the one
shown in the right panels with respect to the ¢ = 0 axis.

A= 1 , (24

is the dynamical operator. By discretizing the differen- tor, the matrix F determines the spatial distribution of
tial operators we interpret the above equation as a ma- the forcing, and f(¢) is a random vector function of time.

trix equation in which the state becomes a column vec- The mean velocity profile
z, 0=z<2z4
73+ 24 ( 7= 24 )
—t (| ), Bz=z<2z4
3tz
23 %4 2=z,

2 >
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FiG. 6. Velocity vertical profile consisting of a shear region

bounded by two domains of uniform velocity flow. For the profile
shown z; = 0.4, z, = 0.6.

will be used with

2, 1
§X, 0=x<z
i) = L (26)
3 2
3 + 2x —x+g, ESX<1

This profile, which is plotted in Fig. 6, was introduced
by Lindzen and Barker (1985) and is antisymmetric
with respect to the origin; that is, U(—z) = —U(z). It
differs from the profile given in (19) only in that the
corners at the edges of the shear region have been
smoothed out. We note that numerical tests done with
a hyperbolic tangent profile showed that the results
presented in this section are not sensitively dependent
on the details of the velocity profile. The typical values
of length and velocities used to nondimensionalize the
equations are the width of the shear layer H = 2z, and
the difference in velocities of the upper and lower re-
gions V, = z; + z,. We impose radiation conditions at
infinity by inserting sponge layers at the top and the
bottom through the introduction of the vertically vary-
ing Rayleigh damping:

r(z) = a{l + tanh[(z = Z,ppe,)/d,]

+ (1 - tanh[(z - Zlc>wer)/8r] )}’ (27)

in which a, is the amplitude of damping of the sponge
layer, zypper and zjowe, are the vertical heights of the
sponge, and 8, determines the width of the transition
into the sponge layer. We have selected sponge layer
parameter values that resulted to no appreciable spu-
rious back-reflection from the variation of r(z).
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We impose a spatially uncorrelated driving by choos-
ing the columns of F to be H(z) sin(2nmz) and H(z)

cos(2nmz) forn = 1,2, ..., where
N 1, |z|=12
HD =10, 121512 @8

is a “hat” function that restricts the forcing within the
shear region. Since we do not want to force scales below
the resolved ones, we truncate the forcing structures at
the n that corresponds to the largest resolved wave-
number, which for our grid point resolution is n = 10. A
small amount of diffusion is also introduced (Re, = 10%)
to serve as a sink for energy cascaded to unresolved
scales.

The random vector function f is a 8-correlated white
noise process with zero ensemble mean and unit en-
semble covariance and its components satisfy

<fz (h)fj (t2)> =

We also note that the forcing structures (given by the
columns of F) will be herein normalized so that ["3,
F'MF dz =1, where M is the energy metric used to
define the perturbation energy as the inner product:
E = x" M x and F denotes from now on the normalized
forcing structure matrix.

If we transform Egs. (23) and (29) in the Fourier
space of frequencies, the response of the system at fre-
quency w can be expressed as

8;0(t; — 1p). (29)

%(w) = R(w)FT, (30)

where X, f are respectively the Fourier transforms of x
and f, R(w) = (iwl — A) "' is the resolvent, and | is the
identity matrix. Equation (29) equivalently becomes

(i) fi(w)) = 8,8(w; — (31)

and the response covariance matrix at statistical equi-
librium is

®,),

(xx"y = %‘r fm F(w) do, (32)
where F (0) = R(w)F F "R"(w) (cf. Farrell and Ioannou
1996), and f denotes the Hermitian transpose. Pressure
p and horizontal and vertical velocities u, w can be
expressed in terms of x via linear operators P, U, and W
(thus P = P x, u = U x, and w = W x) yielding the
following expressions for the momentum and energy
fluxes at equilibrium:

[uw), (pw')] = [diag(U(xx")W"), diag(P(xx")W")],
(33)
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Fi1G. 7. (left) Integrated momentum flux (@w) over all frequencies as a function of height for
uncorrelated forcing in space and time. The Richardson number is Ri = 10 and the zonal
wavenumber is k = 1. The outgoing ensemble energy flux (pw) calculated at z = *1 (located
outside the shear region) and scaled by the corresponding flux (pw,,) in the absence of the
shear flow is noted as ¢. (right) Distribution of ww (upper right) and (pw) (lower right) at z
= 1 with wave phase speeds. The corresponding distribution of fluxes for a motionless atmo-
sphere is also plotted (dashed lines) for reference. It is isotropic with equal amounts of
eastward and westward fluxes due to the eastward-westward symmetry.

where diag denotes the diagonal elements of a matrix.
Equivalently, the equilibrium energy and momentum

o

[(uw’), (pw')] :%T f . [diag(UR(w)FF'RT(0)W"), diag(PR(w)FF' R (0)W")] do.

The vertical distribution of the resulting momentum
flux (uw) at equilibrium is plotted in Fig. 7 (left panel).
The distribution is very similar to the momentum flux
distribution produced by a stochastic point source (cf.
left panel of Fig. 5) indicating that the salient features
of the dynamics have been captured by the simplified
analysis. The quantitative differences in the response
are related to two influencing factors: The first is the
scaling of the forcing that imparts, in this case, on each
Fourier component a unit of energy. The second is that
the amplitude of the forced waves is a decreasing func-
tion of the width of the forcing region (Lindzen 1966)
and consequently a reduced response is expected when
the forcing region extends to the whole shear layer.

flux can be expressed in terms of the frequency re-
sponse as

(34)

While the vertical distribution of the total momentum
and energy flux are similar in the two cases, the phase
speed spectra of uw and pw plotted in Fig. 7 (right
panels) and Fig. 5 (right panels), are quite different.
From Eq. (B3) the response is proportional to

Ri kP
ik(UGz) — c\/Ri) io® ik

where & = k/\/k* + [?is the intrinsic frequency. For a
motionless atmosphere and in the inviscid limit this
would lead to a sharp peak at the phase speed c corre-
sponding to the largest forced vertical wavenumber

(35)



1520

I, = 207 that is, a sharp peak at phase speed ¢ =
*1/ = #*0.016. Such short wavelength waves
have small group velocities and are attenuated by the
small amount of diffusion in the model that shifts the
peak to ¢ = =0.08 (dashed line). But in the presence of
a mean wind shear, the dominant response at the in-
trinsic frequency &, = k/\/k> + I3 will correspond to
a broad range of frequencies due to Doppler shifting
(o0 = Uk + @), inducing the broad maximum of uw(c)
(solid line) in Fig. 7. The effect of diffusion is minimized
in this case, as the response spectrum consists of a
broad range of wavelengths rather than a narrow band
of slow short wavelength waves susceptible to diffusion
or radiative damping. Consequently, the distribution
of uw with ¢ has imprints of both critical level filtering
and of other dynamical effects linked to the interaction
of the distributed forcing with the mean flow that can-
not be simply interpreted with arguments based on the
Eliassen—Palm theorem, which is violated within the
forcing region. Calculation of the outgoing wave action
flux distribution with phase speeds F (o) = uw(w)/k
with and without the shear layer (not presented)
showed the same enhancement of upstream propagat-
ing waves. We note that, in this case of distributed forc-
ing, extraction of more momentum is realized in the
presence of shear even for large Richardson numbers,
as opposed to the localized forcing considered in the
previous section. The exhibited overall increase of the
momentum flux carried by upstream propagating grav-
ity waves in the presence of environmental wind shear
was also noticed by previous studies (Beres et al. 2004;
Alexander et al. 2004). In the Beres et al. (2004) study
of convectively generated gravity waves above squall
lines, the specified heating had a few dominant fre-
quencies and they attributed most of the increase to the
obstacle effect. They also noted that the contribution of
nonzero frequencies could be larger in the presence of
many more forcing frequencies, as was in fact verified
in our calculation with broadband forcing.
Nevertheless, the largest dynamical effect of the
shear is shown in the distribution of pw with phase
speeds (lower right panel), where the maximum pw at-
tained exceeds the corresponding one for a motionless
atmosphere by a factor of 7, leading to an integrated
energy flux over all frequencies larger by a factor of 5.5.

2 Note that, if the forcing had a half sine wave structure in the
vertical, the largest forced wavenumber would be /, = 7 and the
heating would therefore project most strongly onto a wave with
vertical wavelength twice the depth of the heating as shown by
Salby and Garcia (1987). This is not always true for monochro-
matic sources, where the horizontal extent of the source plays a
significant role as found by Holton et al. (2002).
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Fi1G. 8. Ensemble (upper) energy flux (pw) and (lower) momen-

tum flux (@w) calculated at z = 1 as a function of the Richardson
number for k = 0.1 (dotted line), k£ = 2 (solid line) and k = 10
(dashed line). The energy flux is scaled by the corresponding flux
Pw, in the absence of the shear flow.

The phase speed, at which the maximum energy flux is
attained, is ¢ = —0.16. By substituting /, = 207 into the
dispersion relation, we found that it corresponds to a
wave generated at the lower end of the shear region,
that is, the one that can exploit the whole depth of the
shear region in order to grow transiently. As this wave
propagates upward, its wavenumber decreases in the
manner described in section 3 and it emerges from the
upper part of the shear layer having a vertical wave-
length A, = 2.2, approximately twice the depth of the
heating. This result was found to be weakly dependent
on Ri, k, and [, for large Richardson numbers. The
implication is that, even though our source has fine
scales, the structures that carry most of the energy
eventually emerge from the shear layer having a scale
comparable to that of the shear.

The dependence of the fluxes on the strength of the
shear is illustrated in Fig. 8, where the ensemble mo-
mentum and energy fluxes at z = 1 are plotted as a
function of the Richardson number for three values of
the horizontal wavenumber [k = 0.1 (dotted line), k =
2 (solid line), and k = 10 (dashed line)] and is the result
of two counteracting effects: The larger growth
achieved for stronger shear and the reduction of the
width of the region subject to interaction and propaga-
tion for lower Richardson numbers,®> because waves
coming below z = 1/2 — \/ﬁ/k are trapped. For small

3 Following the same arguments presented in the previous sec-
tion, waves can continue propagation in the upper region of uni-
form velocity only if they are excited in the region 1/2 — VRi/k =
z =1/2.
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horizontal wavenumbers (k = 0.1), the effective region
coincides with the whole shear layer regardless of the
Richardson number and the fluxes increase monotoni-
cally as the shear becomes stronger. For large horizon-
tal wavenumbers (k = 10), this effective region is less
than half of the shear zone and its width is reduced as
the Richardson number gets lower, leading to decreas-
ing fluxes with decaying Ri. In the intermediate case
(k = 2), (pw) increases until it reaches a maximum at
Ri = 4.5. For lower Richardson numbers, the larger
energy growth achieved for stronger shear is inad-
equate to overcome the reduced leakage of wave activ-
ity and (uw) and (pw) drop for Ri < 4.5. Similar con-
clusions on the dependence of the width of the effective
region on the horizontal wavenumber k were reached
by Lott (1997). It is also worth noting that in the invis-
cid limit the fluxes would grow without bound as k — 0
since the response is inversely proportional to k. But
even a small amount of diffusion (or Newtonian cool-
ing) attenuates large horizontal wavelengths that have
very small group velocity [u, = kl/(k* + [7)** - 0 as k
— 0] and leads to maximum momentum and energy
fluxes at k,,, = 0.75 and Ri,,, = 0.5 (for Re, = 10°),
as shown in Fig. 9 where the energy (upper panel) and
momentum (lower panel) fluxes are plotted as a func-
tion of horizontal wavenumber k and Richardson num-
ber. Finally, note that the thick black line in the upper
panel of Fig. 9, which corresponds to a value of 1, shows
that for k > 6 the shear acts more like a weakly leaking
“black box” of wave activity, rather than an efficient
emitter.

b. Optimal emission of gravity wave power from
the shear region

The largest energy fluxes that can be achieved by a
single forcing function, are the ones forced by the sto-
chastic optimals (Farrell and Toannou 1996). The only
difference here is that the stochastic optimals should be
identified as the complete set of forcing functions of
unit energy, resulting in the largest energy flux away
from the shear layer at statistical equilibrium, rather
than resulting in the largest equilibrium energy inside a
certain region. To calculate them we first cast the equa-
tion governing the perturbation dynamics in terms of
the new variable y = M"x, where M is the energy
metric matrix, and the governing equations are then
transformed to

d
T Ay + Fuf)

7 (36)
where A, is given by
A, =M7ZAM 72 (37)
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F1G. 9. (upper) Ensemble energy flux (pw) calculated at z = 1
and scaled by the corresponding flux (pw,) in the absence of the
shear flow, as a function of the Richardson number Ri and the
horizontal wavenumber k. The contour intervals are 5 with the
innermost contour having the maximum value of 40. The contour
of 1 is also denoted by the black thick line. (lower) Integrated
momentum flux (@w) over all frequencies at z = 1, as a function
of Ri and k. All values shown are negative, the contour intervals
are 0.5 (nondimensional units) with the innermost contour having
the minimum value of —4.5.

and F,, is F,, = M"?F. The forced solution of (36) is

y(t) = f eAmUTIF £(s) ds. (38)

0
We are interested in the largest energy flux at z = 1
(located outside the shear region), so to achieve that we
introduce the projector matrix My, which has as its only
nonzero element, the diagonal element that corre-
sponds to the point z = 1. We have already seen that
the pressure p and the vertical velocity w can be ex-
pressed in terms of x using the linear operators P and
W. Consequently the energy flux at z = 1 at equilibrium
is given by

(pw') = (Wx)'MyPx) = (y (M~ 2 ' WM, PM~2y)

= (y'Puy), (39)
where
P, = M~ ")'W'MPM~"? (40)
and y is given by (38). Thus at equilibrium
(w') = (y'P.y) = FiBF,,. (41)
where
B= J ; eA'“T(’fs)PweA“'(’fs) ds. 42)
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Fi1G. 10. (left) Structure of the first stochastic optimal (buoyancy forcing function) for Ri =
0.5 and k& = 1, which accounts for 24% of the resulting energy flux. (right) Structure of the first
stochastic optimal (buoyancy forcing function) for Ri = 10 and k = 1, which accounts for 26%
of the resulting energy flux. The vorticity forcing functions are similar to the buoyancy forcing

functions and are not shown.

By differentiating (42) we obtain

dB
—=A[B+BA, +P,.

i (43)

If A,, is asymptotically stable, the system reaches sta-
tistical equilibrium and in the limit of t — o, dB/dt — 0
and Eq. (43) becomes

A'B.+B.A,+P,=0. (44)

This Lyapunov equation determines the stochastic op-
timal matrix B... From Eq. (41) it is seen that the or-
thogonal eigenvectors (the stochastic optimals) of the
Hermitian B.. order according to their eigenvalue the
power emitted from the shear region. Specifically the
eigenvector of B.. with largest eigenvalue is the forcing
structure that produces the largest gravity wave flux,
which can be emitted from the shear region.

In Fig. 10 we plot the structure of the first stochastic
optimal for Ri = 0.5 (left panel) and Ri = 10 (right
panel). Both have the expected tilt against the shear
that allows excitation of waves to favorably interact
with the mean shear flow. For low Richardson numbers
the effective region of excitation is toward the upper
half of the shear region as propagation is suppressed.
However, when Ri = 10 the optimal excitation is lo-

cated toward the bottom of the shear region because in
this case the perturbation can take advantage of the
whole shear region for its growth. If, for each value of
Richardson number Ri and zonal wavenumber k, we
force with the first stochastic optimal and calculate the
resulting ensemble energy flux (pw) and then repeat the
same calculation for an atmosphere at rest (forcing with
the corresponding stochastic optimals), we can quantify
the intensification of the gravity wave flux due to the
shear. This ratio shown as a function of Ri and k in Fig.
11. The transient growth mechanism accounts for up to
30 times larger fluxes compared to the uniform flow
case, revealing that intermittently shear layers may be
very powerful emitters of gravity waves.

c. The case of temporally correlated stochastic
forcing

Although a temporally uncorrelated stochastic forc-
ing allows the exploration of the response of a dynami-
cal system over the full range of frequencies and wave-
numbers without bias, in reality the spectrum of excited
perturbations is broad but not white. The first step to-
ward a more realistic description of the random forcing
is to consider the effect of a finite temporal correlation
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FiG. 11. Ensemble energy flux (pw) obtained by the first sto-
chastic optimal for every Richardson number and horizontal
wavenumber, as a function of Ri and k. The flux is calculated at
z = 1 and scaled by the corresponding flux (pw,) obtained by the
corresponding first stochastic optimal in the absence of the shear
flow. The contour interval is 5 with the innermost contour having
the maximum value of 30.

in the forcing. For that purpose we consider forcing
with exponentially decaying temporal correlations:

(i) =5 e @5)

with « = 1/7, where T is the autocorrelation time. Such
a forcing is produced by the stochastic equation:

daf
o = of + k), (46)

which is forced by a delta correlated white noise & with
zero mean and unit covariance:

(&0) =0, (&1)ét)) = 8ty — 1)

The total variance of each component of the correlated
noise, (), can be expressed in terms of its power spec-
trum, F(w), as

(47)

s
=5 f  Flo)do, (48)

where

2

F(w) = (49)

o+ o
As a — =, the power spectrum F(w) becomes the con-
stant power spectrum of a delta correlated white noise
in which all the frequencies are equally excited. For
finite « the spectrum is red, decreasing at high frequen-
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cies as o . This falloff of the red spectrum suppresses
the excitation of high-frequency waves. For a given au-
tocorrelation time 7, the impact of the redness of the
forcing on the spectrum of the excited gravity waves is
found to strongly depend on the wavenumber of the
waves forced.

In the left panel of Fig. 12, we plot the total inte-
grated energy flux as a function of the autocorrelation
time 7 for waves with zonal wavenumber k = 0.1
(dashed line) and k£ = 1 (solid line). The outgoing flux
for k = 1 is strongly suppressed because the frequency
at which the maximum response is attained (see upper
right panel of Fig. 12, where the pw frequency spectra is
plotted for k = 1) lies outside the window of frequen-
cies that are forced with significant power [refer to the
dashed line which corresponds to the graph of F(w)].
On the other hand, the weak dependence of the energy
flux for k = 0.1 on the redness of the forcing, stems
from the fact that the frequency at which the maximum
response is attained (see lower right panel of Fig. 12,
where the pw frequency spectra is plotted for k = 0.1)
is within the range of frequencies that are strongly
forced [the dashed line corresponds again to the graph
of F(w)].

6. Conclusions

We have investigated the emission of gravity wave
power from a stochastically forced shear layer. We first
treated the propagation properties of waves excited by
a monochromatic point forcing located in the middle of
the shear region and then the properties of waves that
result from a point source that is temporally varying as
a white noise process. We have shown that low intrinsic
frequency waves are always favorably excited. When
the wavenumber k of the waves is such that 1/2 =
\/E/k, there is appreciable leakage of easterly mo-
mentum away from the shear layer accompanied with
westward momentum deposition inside the shear re-
gion due to critical level filtering. This case would ma-
terialize for waves with horizontal wavelengths greater
than 8 km for a typical wind shear of V, = 30 ms™'
over H = 10 km and typical tropospheric static stability
N = 0.012 s~'. Owing to the universal Orr mechanism
that governs the wave-mean flow interactions and leads
to transient energy growth, the outgoing waves have a
wave energy flux 3 times larger than the emitted wave
power in the absence of shear. Shorter waves (A, < 8
km) that satisfy \/ﬁ/k < 1/2 are trapped in the shear
layer, in agreement with the findings of Lott (1997), and
deposit their momentum at their critical level within the
shear region.

The same qualitative results obtain when the shear
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FiG. 12. (left) Effect of correlation time on the ensemble energy flux (pw), .4 for k = 1 (solid
line) and k = 0.1 (dashed line). The flux is calculated at z = 1 and scaled by the corresponding
flux (Pw)yniee for uncorrelated forcing. The Richardson number is Ri = 10. (right) Distribution
of (pw) at z = 1 with frequencies for (upper right) k = 1 and (lower right) k = 0.1. The power

spectrum F(w) = /(e + ?), where a =

1/(30 min), is also plotted (dashed line) for

reference and is normalized to have at o = 0 the maximum value of pw in each case.

layer is forced by a spatially extended thermal or vor-
ticity stochastic forcing. However, the phase speed
spectra of wave momentum and energy flux are modi-
fied in this case due to wave interference and Doppler
shifting effects. Even though such an unbiased forcing
equally drives all perturbations, it strongly couples with
emitted waves leaning against the shear and carrying
momentum upstream. While for large Richardson num-
bers momentum is carried away from the forced region
by waves having a wide range of vertical wavenumbers,
most of the energy is carried by the ones having vertical
wavelengths in the range 1.5H < A, < 3H (for a shear
region of depth of H km), regardless of their zonal
wavenumber. It was shown that, although initially
shorter waves are favored by such sources, the combi-
nation of wave refraction and transient amplification as
they shear over during propagation leads to waves fi-
nally emerging from the upper part of the shear layer
that have scales comparable to the shear layer depth.
We also find that for k£ < 6 (corresponding to hori-
zontal wavelengths A, > H km) the shear region is a
highly efficient emitter, even for large Richardson num-
bers, as the excited perturbations exploit the potential
for nonnormal transient growth. Moreover, increasing

shear, that is, decreasing Richardson number, leads to
enhanced wave activity radiating away that reaches a
global maximum at k = 0.75 (A, = 8.4 H km). A proper
measure for the efficiency of the shear layer as an emit-
ter is the maximum outgoing wave energy flux that can
be emitted from normalized excitations. This occurs
when the forcing assumes the structure of the appro-
priate stochastic optimal. We calculated that, at best,
the optimal energy flux that can be emitted from a
shear region is 30 times greater than the flux emitted
when the waves are excited by the corresponding sto-
chastic optimal in the absence of shear. Such a large
amplification factor might not always occur but shows
the true potential of shear for enhancing gravity wave
activity, even in the absence of instabilities.

The emission of wave energy is curtailed when the
forcing does not excite waves with phase lines tilted
against the shear or when the waves cannot escape from
the shear layer. It can also be curtailed when the sto-
chastic forcing becomes adequately correlated in time.
In that case the degree of reduction of wave power
depends on the horizontal wavenumber of the excited
waves. Red noise forcing was found to strongly influ-
ence waves with horizontal wavenumber larger than
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k = 0.5 (A, = 12.5H km) while lower wavenumbers are
unaffected, even for correlation times O(1 h).

This study offers additional insight on the dynamical
effect of shear regions in the emission of gravity wave
power. The shear flow does not only passively filter and
refract the emitted wave spectrum, but also actively
participates in the gravity wave emission in conjunction
with the distributed forcing. This interaction leads to
enhanced radiated momentum fluxes but more impor-
tantly to enhanced gravity wave energy fluxes with the
aid of transient growth exhibited by the excited pertur-
bations during propagation within the shear region.
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APPENDIX A

Propagation of Wave Packets in Stratified
Shear Flow

Suppose that we launch a wave packet of the form

[Yo(& M), po(& m)] = [1, 0] f(m)e™<™70m, (A1)

where f = exp{—[(n — m0)/81]*} and &7 is the width of

packet. The general solution to Eqgs. (8)—(9) with initial
conditions

[ll/(g? ”'77 T= 0)7 p(gv 7)7 T= 0)] = [dl()(ga 71)’ p()(gv 7))]
can be written as

1 A s
Y& m, )= \2m f » P, e dl - (A2)

with fp(l, 0) = J/O(l), where Jfo(l) satisfies the initial con-
dition

A 1 . . R
Po(l) = Nn f f (e T dn = f(l = L). (A3

The evolution of Jj(l, 7) can be determined from the
perturbation vorticity equation (11), which accepts for
large Richardson numbers the following WKB solution:
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1

V (1)

E(l T) =A eiJ’;w(s) ds +B e*iJ’(:m(s) ds

1
Vo(r)

(A4)

where A = (ko/A \ 40(0))(koo(D)/(0) = po(l)), B =
(ko/\N/40(0))(koPro(D/w(0) + po(l)) are amplitudes re-
lated to the initial conditions [the Fourier component of
the initial density perturbation py(/) is defined similarly
with §i(1)] and © = ko/\NkZ + (I — kot/\/Ri)? is the
time dependent frequency of the wave. Therefore, hav-
ing assumed that initially there is no density perturba-
tion, py(/) = 0, we obtain

()
K2+ (1= kot/N/Ri)
1 (k% + 12)3/4
(64 (1 kR
X (eij;w(s) ds + e*iJZw(S) ds)

= a(l, q-)lj,o(l)(eib(l,f) + e_"b(/”)),

Wl 1) =

— oll)

(AS)

where a(l, 7) = (1/2)(k3 + Py [kZ + (I — kor\/Ri)?] >
and b(l, ) = [§ w(s) ds. So the first term of Eq. (A5)
becomes

1 . R ) T
W&, 7) = e f a(l, yo(l)e™ e O dl
v —o0

a(l, Df(l — l)eDeot i g,

Expanding all functions near [, yields

(= )
w(g’”’T)_WJ (fO) + 0, flod = Lp) + -+ )
X (aly, + d,al(l = o) + - HEdl, (A6)

where

E = explikoé + ilon + il — lom + ibl,, + id,b1,,(l — ly)

+i07b | (1= lpf72 + - -], (A7)

Changing variables, [ = [ — I,, Eq. (A6) becomes
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iko&+ilom+ib(lp,T)
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(f<0>a|10 + FO)gal, ] + O2) X ettt e gy

— (a(lo, T)f l(71b|101+161b|10[2/2e dl + 31a|1 J‘ lelﬁ]b|[01+lalb|101 /Ze dl) + O(Z )

e
Y1) =—"F—
\/ 2w -
f(o)etk0§+tlon+tb(lo ,T)
\/ 2w
If we choose n = —d;b|,, then we get

l!l(f, m, T) — eik0§+ilon#»ib(l(),ﬂ')lilo(lo)a(lo’ T)ei'rr/4v\ / 1/6/2b | o
+ Ol = o)) (A9)

So the center of the wave packet is moving according to

1

i+ (ly — kor/\/RiY

2(m) = 2(0) + VRi <

1
-, (A10)
ki + 13
and the group velocity will be given by
ko(ly — kor/\/Ri
o\*0 0 /\/_) (All)

(k2 (— kot VR

Following the same analysis for the second term, we get

() = 2(0) —

1
(\/kz + (lo ko"'/\/_)

1
- (A12)
Vkg+ 1
and the group velocity will be given by
Feil,,(zfzo)’

(z) =

where /, and [, are the square roots of Ri/(1/2 +
¢\/Ri)? — k? and Ri/(1/2 — ¢\/Ri)? — k?, respectively,

D\/ k(z - c\/ﬁ)lu[k(z — c\/ﬁ)] + E\/ k(z - c\/ﬁ)l,u[k(z - c\/ﬁ)],
B\/ k(z - c\/ﬁ)IM[k(z —\V/Ri)]+ CVk(z - c\/ﬁ)l_u[k(z —\/Ri)],

il)(z+z0)
Ae R

(A8)

ko(lo - ko“’/\/ﬁ)

= - . (A13)

T Tk (- kot/ V)T

APPENDIX B

Response to Point Thermal Forcing in a Stratified
Shear Layer

We consider the inviscid Egs. (5)-(6) forced by the
point thermal forcing:

filx, z,0) = 8(z)e" e, (BI)

We obtain the Green’s function of the inviscid Egs.
(5)-(6) by assuming solutions of the form

[W(x, 2,0, p(x, 2, 0] = [¥(z), p(2)]e e *. (B2)

The inviscid version of Egs. (5)—(6) then become after
elimination of p:

L (L v 1 )@
dZ  \(Uz) - c\VRIY 42 (Uz) - c\V/Ri)
Ri
k(U@ —evRy "

where U(z) is given by (19). The solution of (B3) is

for z=1z,

for 0=z<g,
for —z,=2z<0
for z < -z,

(B4)

having R(1)(c\/Ri + z,) > 0, 3(1) < 0, R(L,)(c\/Ri —

Z0) < 0, 3(Z,) > 0 (as boundedness or radiation condi-
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tions must be satisfied at z — o, respectively), p =
\/1/4 — Ri and /.., is the modified Bessel function of
the second kind of order p.

Continuity of displacement and pressure at z =

BAKAS AND IOANNOU
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z = 0" to obtain two interface conditions at z = 0
yields the following algebraic equation for the ampli-
tudes

*z, implies continuity of J//(U(Az) - ¢\V/Ri) and [B;, B,]Y = B, (BS)
(U(z) = c\/Ri)dyldz — (dUldz)s at z = *z,, re-
spectively. Integration of (B3) twice from z = 0~ to where Y = [A, B, C, D, E, F]" and
1 —a, —a_
il,(zo + c\/ﬁ) f(zo + c\/ﬁ)k&z+ —a, *(ZO + c\/ﬁ)k'ﬁa_ —a_
B, = ! e e . (®9)
0 —kéc, —kdc_
0 0 0
0 0 0
0 0
0 0 0
d, d_ 0
B, = kdd., ksd 0 ; (B7)
-b, -b_ 1
~(z0 — eV/R)kdb, + b, —(z0— \/Ri)kdb_ +b_ il (29— c\/Ri)
and When 0 < c\/ﬁ < z, the coefficients are
B, = [0, 0, 0, 1/(ikc?), 0, 0]". B8) 4= Vzluz), be=V7,1.,z,).
The coefficients in the expressions above are, when ==V kc\/ﬁlru(kc\/ﬁ)’
—70 < cVVRi <0, .
0 d. = —ie"™™\/ kc\/ﬁItM(kc\/ﬁ)
. Finar 1. Z d1+
0o = i N Z @) b= N (2, b = —(H—(’) v/ e >
2V dz |,
. =\ |kc\/E|1iu(|kc\/E|), . sl |l
£ = 2y )
N 2\/5 dZ Zu
_ (1., (z2) dl.
— — i, ripT o o
ds =Cs, Oan =ie ( Nz, Vz dz | ) 1., (ke\/Ri) dl.,
! ) e = (VD N SR ,
2\ ke\/Ri “ v

dl..,

Vg

I"' Zu
b _ Leulad)

2V,

L (lkeV/Ril 1.
8¢, = —7’*( C\/_ ) + V |kc\/ﬁ dé[“
2°\/ |kc\/ﬁ| ¢

8d. = 8c.z,= k(zo + c\/Ri), z, = k(zo — ¢

P
Zu

ke \V/Ril

Ri).

I+

8d.. = ie" ™™ < Lu(keV/Ri)
2\ ke\/Ri

dl.
+ \V ke\/Ri d;M

kc\/E)
Ri), Z, = k(z() - c\/ﬁ)

= k(zo t+c
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Otherwise, they are
ar = \2l.y(2), be=\2,0.,(2,),
L=\ |kc\/E|IiM(|kc\/E|), d,=c.,

. =
_ Iip,(zl) dlip,
i)
o +u(Z4) al.,
db. = sgn(c)( \/Z_u + \/Z_u dz . )
Iiu(|kc\/ﬁ|)
8c. = —sgn(c)\ —F/—
2V lkev/Ril
+V |kc\/_| Ly ,
kc\/ Ri|
8d. = dc., z,=k|zy+ \V/Ril,

Z,= klzo - c\/ﬁ|
The resulting momentum and energy fluxes are, respec-

tively,

uw(c) = %amuw*) = % R(ika ), (B9)

pi(c) = 3 H(pw)

=39 OV i |

_ %%[—ik(U/\/E — ¢)a.ir .

(B10)

Following the same steps for a motionless atmosphere,
the solution of (B3) is

) Aoefsgn(c)ilz’ for
P(z) = :

Boesgn(c‘)tlz7 for 7 < 0 ’

z=0
(B11)

where A, = B, = 1/(2kic*sgn(c)) are obtained by the
continuity conditions at z = 0. The corresponding mo-
mentum and energy fluxes are

uwy(c) = ! 9(<lk —dj 4/*)

{ sgn(c)(k* + P)/(8kl), ~ for
—sgn(c)(k> + Py*/(8kl), for

z=0

(B12)

z2<0

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 64
and
Pwolc) = <—lk(U/\/_ - c)-w*)
le|(k> + 12/(8kl), for z=0
" -t + PRsky, for z<0’
(B13)
respectively.
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