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Planetary turbulent flows are observed to self-organize into large-scale structures
such as zonal jets and coherent vortices. One of the simplest models of planetary
turbulence is obtained by considering a barotropic flow on a beta-plane channel with
turbulence sustained by random stirring. Nonlinear integrations of this model show
that as the energy input rate of the forcing is increased, the homogeneity of the
flow is broken with the emergence of non-zonal, coherent, westward propagating
structures and at larger energy input rates by the emergence of zonal jets. We study
the emergence of non-zonal coherent structures using a non-equilibrium statistical
theory, stochastic structural stability theory (S3T, previously referred to as SSST).
S3T directly models a second-order approximation to the statistical mean turbulent
state and allows the identification of statistical turbulent equilibria and study of their
stability. Using S3T, the bifurcation properties of the homogeneous state in barotropic
beta-plane turbulence are determined. Analytic expressions for the zonal and non-zonal
large-scale coherent flows that emerge as a result of structural instability are obtained.
Through numerical integrations of the S3T dynamical system, it is found that the
unstable structures equilibrate at finite amplitude. Numerical simulations of the
nonlinear equations confirm the characteristics (scale, amplitude and phase speed) of
the structures predicted by S3T.
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1. Introduction

Atmospheric and oceanic turbulence is commonly observed to be organized into
spatially and temporally coherent structures such as zonal jets and coherent vortices.
Examples from planetary turbulence include the banded jets and the Great Red Spot
in the Jovian atmosphere (Ingersoll 1990; Vasavada & Showman 2005), as well as
the latent jets in the Earth’s ocean basins (Maximenko, Bang & Sasaki 2005) and
the ocean rings shed by the meandering of the Gulf Stream in the western Atlantic
Ocean (Chelton et al. 2007). Laboratory experiments and numerical simulations of
both decaying and forced turbulence have shown that these coherent structures appear
and persist for a very long time despite the presence of eddy mixing (Vallis & Maltrud

†Email address for correspondence: nikos.bakas@gmail.com

mailto:nikos.bakas@gmail.com


A theory for the emergence of coherent structures in beta-plane turbulence 313

1993; Cho & Polvani 1996; Weeks et al. 1997; Read et al. 2004; Espa, Di Nitto &
Cenedese 2010; Di Nitto, Espa & Cenedese 2013).

One of the simplest models of planetary turbulence, is the stochastically forced
barotropic vorticity equation on the surface of a rotating planet or on a β-plane (a
plane tangent to the surface of the planet in which differential rotation is taken into
account). A large number of numerical simulations of this model have shown that
robust, large-scale zonal jets emerge in the flow and are sustained at finite amplitude
(Williams 1978; Vallis & Maltrud 1993; Danilov & Gurarie 2004; Galperin et al.
2006; Nadiga 2006). In addition, large-scale westward-propagating coherent waves
were found to coexist with the zonal jets (Sukariansky, Dikovskaya & Galperin 2008;
Galperin, Sukoriansky & Dikovskaya 2010). These waves were found to either obey
a Rossby wave dispersion, or propagate with different phase speeds. The propagating
waves typically have low zonal wavenumbers and were found in a parameter regime
in which strong, robust jets dominate. These waves that are referred to as satellite
modes (Danilov & Gurarie 2004) or zonons (Sukariansky et al. 2008), appear to be
sustained by nonlinear interactions between Rossby waves. However the mechanism
for their excitation and maintenance remains elusive. The goal in this work is to
develop a non-equilibrium statistical theory that can predict the emergence of both
zonal jets and non-zonal coherent structures and can capture their characteristics.

The tendency for formation of large-scale structures in planetary turbulence can
be understood in terms of the approximate energy and vorticity conservation in
two-dimensional or quasi-two-dimensional flows that implies an energy transfer from
small to large scales given that there is a direct enstrophy cascade to small scales
(Fjörtöft 1953). Rhines (1975) found that the nonlinear eddy–eddy interactions that
are local in wavenumber space, lead to an inverse energy cascade that is anisotropic,
as it is inhibited in the region in wavenumber space in which weakly interacting
Rossby waves dominate. The cascade therefore continues through a narrow region
in wavenumber space, transferring energy to zonal jets (Vallis & Maltrud 1993;
Nazarenko & Quinn 2009) and is finally arrested at a meridional scale that is
dictated by friction (Smith et al. 2002; Sukariansky, Dikovskaya & Galperin 2007).
However, observations of the atmospheric midlatitude jet (Shepherd 1987) and
numerical analysis of simulations (Nozawa & Yoden 1997; Huang & Robinson 1998;
Huang, Galperin & Sukoriansky 2001) showed that the large-scale jets are maintained
through spectrally non-local interactions rather than by a local in wavenumber space
cascade. Theoretical studies (Farrell & Ioannou 2003, 2007) and numerical simulations
(Srinivasan & Young 2012; Constantinou, Farrell & Ioannou 2013) have also shown
that jets emerge even in the absence of cascades. Moreover, the persistence and
dominance of specific non-zonal coherent structures that also emerge cannot be
explained by the phenomenological description of the inverse turbulent cascade.

Since the organization of turbulence into coherent structures involves complex
nonlinear interactions among a large number of degrees of freedom, an alternative
approach for gaining an understanding for the tendency towards self-organization of
turbulent flows is to use statistical mechanics, an approach pioneered by Miller (1990)
and Robert & Sommeria (1991) in what is now known as Robert–Sommeria–Miller
(RSM) theory. The RSM theory builds upon the work of Onsager (1949) that explains
self-organization of turbulence in terms of the equilibrium statistical mechanics of
a set of point vortices. The main idea is to find a solution of the unforced Euler
equations that maximizes a proper measure of entropy under the restrictions imposed
by all conserved quantities. The coherent structures that emerge from this statistical
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analysis for two-dimensional and quasi-geostrophic flows are either large-scale vortices
(Chavanis & Sommeria 1998) or jets (Bouchet & Sommeria 2002; Venaille & Bouchet
2011) (see also a recent review by Bouchet & Venaille (2012)). However, the
relevance of these results in planetary flows that are strongly forced and dissipated
and are therefore out of equilibrium remains to be shown.

The emergence of coherent structures in barotropic turbulence also has another
feature that needs to be explained. As the energy input of the stochastic forcing is
increased or the dissipation is decreased, nonlinear simulations show that there is a
sudden emergence of coherent zonal flows (Srinivasan & Young 2012; Constantinou
et al. 2013) and as will be shown in this work of non-zonal coherent structures as well.
This argues that the emergence of coherent structures in a homogeneous background
of turbulence is a bifurcation phenomenon, as is for example the formation of patterns
in thermal convection. In this case, Rayleigh’s theory of hydrodynamic instability
(Rayleigh 1916) and the extension of the theory to the weakly nonlinear and fully
nonlinear regime was able to predict the critical Rayleigh number for the onset of
the convective regime as well as the scales and amplitude of the emerging structures
(Busse 1978). The emergent structures take the form among others of stationary
striped patterns and oscillating cells (Cross & Greenside 2009) which are like the
zonal jets and the westward-propagating structures that emerge in barotropic β-plane
turbulence (Bakas & Ioannou 2013a; Parker & Krommes 2013). The difficulty in
obtaining such a stability theory in the case of planetary flows is that in contrast
to thermal convection, the basic state is a complex time-dependent solution of the
Navier–Stokes equations rather than a stationary point of the equations.

An alternative approach is to study the dynamics and stability of the statistical
equilibria, which are fixed points of the equations governing the evolution of the
flow statistics. This approach is followed in the stochastic structural stability theory
(S3T, previously referred to as SSST) (Farrell & Ioannou 2003) or second-order
cumulant expansion theory (CE2) (Marston, Conover & Schneider 2008), which is
a non-equilibrium statistical theory that was applied to macroscale barotropic and
baroclinic turbulence in planetary atmospheres, wall-bounded turbulence, plasmas and
astrophysical flows (Farrell & Ioannou 2003, 2007, 2008; Marston et al. 2008; Farrell
& Ioannou 2009a,b,c; Marston 2010; Tobias, Dagon & Marston 2011; Srinivasan &
Young 2012; Marston 2012; Farrell & Ioannou 2012). This theory is based on two
building blocks. The first is the Reynolds decomposition of the dynamical variables
into the sum of a mean value that represents the coherent flow and fluctuations that
represent the turbulent eddies, and then form the cumulants containing the information
on the mean values (first cumulant) and on the eddy statistics (higher-order cumulants).
The second building block is to truncate the equations governing the evolution of
the cumulants at second order by either parameterizing the terms involving the third
cumulant (Farrell & Ioannou 1993a,b,c; DelSole & Farrell 1996; DelSole 2004) or
setting the third cumulant to zero (Marston et al. 2008; Tobias et al. 2011; Srinivasan
& Young 2012). Restriction of the dynamics to the first two cumulants is equivalent
to neglecting the eddy–eddy interactions in the fully nonlinear dynamics and retaining
only the interaction between the eddies with the instantaneous mean flow. A related
approach was also followed by Dubrulle and collaborators (Dubrulle & Nazarenko
1997; Laval, Dubrulle & McWilliams 2003) to describe the interaction of coherent
vortical structures with turbulence. While such a second-order closure might seem
crude at first sight, there is strong evidence to support it. Previous studies of planetary
turbulence have shown that this second-order closure produces accurate quadratic
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eddy statistics and mean flows (DelSole & Farrell 1996; DelSole 2004; O’Gorman
& Schneider 2007). In addition, a very recent study that uses stochastic averaging
techniques has shown that for β = 0 and in the limit of weak forcing and dissipation,
the formal asymptotic expansion of the probability density function of the dynamics
around a zonal jet that is assumed to have a singular spectrum of modes, comprises
the second-order S3T closure with an additional stochastic term forcing the mean
flow (Bouchet, Nardini & Tangarife 2013). Therefore, S3T accurately describes the
statistical equilibrium mean flow and the eddy statistics, as the additional stochastic
term only produces fluctuations around this statistical equilibrium.

One of the advantages of S3T is that the nonlinear system governing the evolution
of the first two cumulants is autonomous and deterministic. Its fixed points define
statistical equilibria, whose instability brings about structural reconfiguration of
the mean flow and the turbulent statistics. It is therefore amenable to the usual
treatment of classical linear and nonlinear stability analysis and actually possesses
the mathematical structure of the dynamical system of pattern formation (Parker
& Krommes 2013). Previous studies employing S3T have already addressed the
bifurcation from a homogeneous turbulent regime to a jet forming regime in barotropic
β-plane turbulence and identified the emerging jet structures both numerically (Farrell
& Ioannou 2007) and analytically (Bakas & Ioannou 2011; Srinivasan & Young
2012) as linearly unstable modes to the homogeneous turbulent state equilibrium.
Comparison of the results of the stability analysis with direct numerical simulations
have shown that the structure of zonal flows that emerge in the nonlinear simulations
can be predicted by S3T (Srinivasan & Young 2012; Constantinou et al. 2013). These
studies however assumed that the ensemble average is equivalent to a zonal average,
a simplification that treats the non-zonal structures as incoherent and cannot address
their emergence and effect on the jet dynamics.

In order to investigate the dynamics of the coherent non-zonal structures, we
adopt in this work the more general interpretation that the ensemble average
represents a Reynolds average with the ensemble mean representing coarse-graining,
an interpretation that has also been recently adopted in S3T studies of baroclinic
turbulence (Bernstein 2009; Bernstein & Farrell 2010). With this interpretation of the
ensemble mean, we obtain the statistical dynamics of the interaction of both zonal and
non-zonal coherent structures with stochastically forced turbulence on a barotropic
β-plane channel, with the goal of addressing their emergence and characteristics. We
find that the turbulent equilibrium that is homogeneous is structurally unstable when
the energy input rate is above a threshold and both zonal and non-zonal coherent
structures emerge. We also show that the characteristics of these structures observed
in the nonlinear simulations are predicted by S3T.

This paper is organized as follows. In § 2 we present the characteristics of the
zonal and non-zonal coherent structures that emerge in nonlinear simulations of the
turbulent flow. In § 3 we derive the S3T system that governs the evolution of the
ensemble mean coherent structures (first cumulant) and the associated eddy statistics
(second cumulant). In § 4 we analytically study the instability of the corresponding
homogeneous equilibrium, analysing the unstable structures and their dispersion
relation and we investigate the equilibration of the instabilities in § 5 through
numerical integrations of the resulting S3T dynamical system. The predictions of
S3T are then compared to the results of the nonlinear simulations in § 6 and we
finally end with a brief discussion of the obtained results and our conclusions in § 7.
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2. The emergence of coherent structures in nonlinear simulations of a barotropic
flow
Consider a non-divergent barotropic flow on a β-plane with Cartesian coordinates

x = (x, y). The velocity field, u = (u, v), is given by (u, v) = (−∂yψ, ∂xψ), where
ψ is the streamfunction. Relative vorticity ζ (x, y, t)=∆ψ , evolves according to the
nonlinear (NL) equation:

(∂t + u · ∇)ζ + βv=−rζ − ν∆2ζ + f e, (2.1)

where ∆= ∂2
xx+ ∂

2
yy is the horizontal Laplacian, β is the gradient of planetary vorticity,

r is the coefficient of linear dissipation that typically parameterizes Ekman drag and
ν is the coefficient of hyperdiffusion that dissipates the enstrophy flowing into
unresolved scales. The forcing term f e is necessary to sustain turbulence and serves
as a parameterization of processes that are missing from the barotropic dynamics,
such as small scale convection or baroclinic instability. We will consider the flow to
be on a doubly periodic channel of size 2π× 2π.

As in many previous studies the exogenous excitation f e will be assumed to be a
temporally delta correlated and spatially homogeneous and isotropic random stirring
with a two-point, two-time correlation function of the form:

〈f e(x1, y1, t1)f e(x2, y2, t2)〉 = δ(t2 − t1)Ξ(x1, x2, y1, y2), (2.2)

where the brackets denote an ensemble average over the different realizations of the
forcing. The temporally delta correlated stochastic forcing has the important property
that the energy absorbed by the fluid is independent of the state of the flow and
depends only on the statistics of the forcing. The spatially homogeneous covariance
of the forcing, Ξ , in the doubly periodic channel can be written as the Fourier sum:

Ξ(x1, x2, y1, y2)=
∑

k

∑
l

Ξ̂(k, l)eik(x1−x2)+il(y1−y2), (2.3)

with the x, y wavenumbers, k and l, taking all integer values. The Fourier amplitude

Ξ̂(k, l)=
εKf

∆Kf

{
1 for |

√
k2 + l2 −Kf |6∆Kf

0 for |
√

k2 + l2 −Kf |>∆Kf ,
(2.4)

is chosen so that the excitation injects energy at a rate ε in a narrow ring in
wavenumber space with radius Kf and width ∆Kf .

Equation (2.1) is solved using a pseudospectral code with a 128 × 128 resolution
and a fourth-order Runge–Kutta scheme for time stepping. While we vary the forcing
energy input rate across a wide range of values, the rest of the parameters are fixed
at β = 10, r= 0.01, ν= 1.19× 10−6, Kf = 10 and ∆Kf = 1 yielding a non-dimensional
beta parameter β̃ = β/(Kf r) = 100. As seen in table 1, showing the values of the
non-dimensional beta parameters, β̃, and energy injection rates, ε̃ = εK2

f /r
3, for the

Earth’s atmosphere and ocean as well as for the Jovian atmosphere, this choice of β̃
is relevant for both the Earth’s ocean and the Jovian atmosphere.

The nonlinear system reaches a statistical equilibrium at about t= 10/r. Following
previous studies (Galperin et al. 2006), the integration was carried until t = 100/r
in order to collect accurate statistics and the last 80/r time units were used for
calculating the time averages. To illustrate some of the characteristics of the turbulent
flow and the emergence of structure, we consider two indices that measure the power
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1/Kf 1/r ε β̃ ε̃

(km) (days) (m2 s−3)

Earth’s atmosphere 1000 10 3× 10−4 15 190
Earth’s ocean 20 1000 10−9 40 2500
Jovian atmosphere 100 5800 0.5× 10−5 125 1.25× 1011

TABLE 1. Relevant parameters in geophysical flows. Analysis for the values in the table
is given in appendix A.

which is concentrated at scales larger than the scales forced. The first is the zonal
mean flow index defined as in Srinivasan & Young (2012), as the ratio of the energy
of zonal jets with scales larger than the scale of the forcing over the total energy

zmf=

∑
l:l<Kf−∆Kf

Ê(k= 0, l)∑
kl Ê(k, l)

, (2.5)

where Ê(k, l) is the time-averaged energy power spectrum of the flow at wavenumbers
(k, l). The second is the non-zonal mean flow index defined as the ratio of the energy
of the non-zonal modes with scales larger than the scale of the forcing over the total
energy:

nzmf=

∑
kl:K<Kf−∆Kf

Ê(k, l)∑
kl Ê(k, l)

− zmf. (2.6)

If the structures that emerge are coherent, then these indices quantify their amplitude.
Figure 1 shows both indices as a function of the energy input rate ε. Remarkably, both
indices exhibit sharp increases at critical energy input rates, indicating the occurrence
of regime transitions in the flow. For ε smaller than the critical value εc, the turbulent
flow is homogeneous and remains translationally invariant in both directions and both
indices are nearly zero. When ε > εc, non-zonal structures that have scales larger than
the scale of the forcing form, as indicated by the increase in the nzmf index. The
critical value is estimated from the point of rapid increase of the nzmf index to be
εc = 8.4 × 10−6 (for the parameters chosen) but this value is also verified by the
S3T stability analysis in § 4. The time-averaged power spectrum shown in figure 2(a)
for ε = 4εc, is anisotropic with a pronounced peak at (|k|, |l|) = (1, 5). This peak
corresponds to a structure with the corresponding scale that is evident in the vorticity
field evolution. This is illustrated by the appearance of a structure with (|k|, |l|) =
(1, 5) in the snapshot of the streamfunction field shown in figure 2(b). The Hovmöller
diagram in which contours of ψ(x, y=π/4, t) are plotted in figure 2(c) shows that this
structure is coherent and propagates in the retrograde direction. The sloping dashed
line in the diagram corresponds to the phase speed of the waves, which is found
to be approximately the Rossby wave phase speed for (k, l) = (1, 5). We obtain an
estimate of the phase coherence of this structure by calculating the ensemble mean of
the wavenumber–frequency power spectrum of its vorticity field:

ζcor(ω, k, l)= 〈|ζ̂ (k, l, ω)|2〉, (2.7)
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FIGURE 1. (Colour online) The zmf and nzmf indices defined in (2.5) and (2.6),
respectively, as a function of energy input rate ε/εc for the nonlinear (NL) integrations and
for an ensemble of quasi-linear (EQL) integrations (dashed line) with Nens = 10 ensemble
members as described in § 6. The critical value εc= 8.4× 10−6 is the energy input rate at
which the S3T predicts structural instability of the homogeneous turbulent state. Zonal jets
emerge for ε > εnl, with εnl = 15εc. The parameters are β = 10, r= 0.01, ν = 1.19× 10−6

and the forcing is an isotropic ring in wavenumber space with radius Kf = 10 and width
∆Kf = 1.

where
ζ̂ (k, l, ω)=

∫ ∑
xi

∑
yi

ζ (xi, yi, t)e−ikxi−ilyi−iωt dt. (2.8)

Travelling wave structures manifest as peaks of ζcor at specific frequencies with a half-
width proportional to the time scale of their phase coherence. For example, for linear
Rossby waves that are stochastically forced and damped with rate 1/r:

ζ R
cor(ω, k, l)∼

1
[ω− βk/(k2 + l2)]2 + r2

, (2.9)

and the waves are phase correlated over the dissipation time scale (Galperin et al.
2010). We will consider the structures in the nonlinear simulation to be phase
coherent when their coherence time exceeds 1/r. Figure 2(d) shows the ensemble
mean power spectrum ζcor(ω, k, l) as obtained from the nonlinear simulations for two
structures, along with the corresponding power spectrum ζ R

cor of half-width 1/r for
the same waves. The dominant (|k|, |l|)= (1, 5) structure is coherent over about four
dissipation time scales, whereas the other less-prominent structures (as for example
the (|k|, |l|) = (2, 6) shown), are coherent over the dissipation time scale, as if
stochastically forced. The (|k|, |l|)= (1, 5) structure dominates the flow (with 60 % of
the total energy concentrated in this structure) and remains coherent up to ε/εc < 15.
Therefore, the increase in the nzmf index observed in figure 1 signifies the emergence
of non-zonal coherent structures that break the translational symmetry of the turbulent
state simultaneously in both the x and y directions.

The rapid increase in the zmf index shown in figure 1 above ε=15εc≡ εnl, indicates
a second regime transition in the flow with the emergence of robust and coherent
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FIGURE 2. (Colour online) (a) Time-averaged energy power spectra, log(Ê(k, l)), obtained
from the nonlinear (NL) simulation of (2.1) at ε/εc = 4. The flow is dominated by a
(|k|, |l|) = (1, 5) non-zonal coherent structure that is evident in (b) the snapshot of the
streamfunction ψ(x, y, t) and (c) the Hovmöller diagram of ψ(x, y = π/4, t). The thick
dashed line in (c) corresponds to the phase speed obtained from the eigenvalue relation
(4.2). (d) The ensemble mean wavenumber–frequency power spectrum ζcor(ω, k, l) as a
function of frequency for (k, l) = (1, 5) and (k, l) = (2, 6). The corresponding spectrum
ζ R

cor for stochastically forced linear Rossby waves that remain phase coherent over 1/r
is also shown (dashed lines). All correlation functions are normalized to one to facilitate
comparison.

zonal jets. For ε = 3.3εnl (i.e. ε/εc = 50) the spectrum, shown in figure 3(a), has
significant power at the zonal structures with (k, |l|)= (0, 4). These peaks correspond
to coherent zonal jets as illustrated by the Hovmöller diagram of the zonally averaged
streamfunction shown in figure 3(b). However, there is significant power in non-zonal
structures (in this case with wavenumbers (|k|, |l|) = (1, 4) and (|k|, |l|) = (1, 5)), a
characteristic that is also revealed by the high values of the nzmf index for large
energy input rates. The Hovmöller diagram and the ensemble mean power spectrum
ζcor(ω, k, l) shown in figures 3(c) and 3(d), reveal that the non-zonal structures are
propagating in the retrograde direction and remain coherent over at least a dissipation
time scale, whereas the peaks of ζcor(ω, k, l) at other structures have been significantly
broadened by turbulence. The phase speed calculated from the diagram is different
from the corresponding Rossby wave speed for both (|k|, |l|)= (1, 4) and (|k|, |l|)=
(1, 5). At larger energy input rates the zonal jets have typically larger scales due to
jet merging and coexist with energetically significant westward propagating non-zonal
structures having an energy between 10–50 % of the jet energy and scales (|k|, |l|)=
(1, m), where m is the number of jets in the channel. However the phase coherence
of these waves is a decreasing function of ε.



320 N. A. Bakas and P. J. Ioannou

k

l

 

 

t

y

 

x

t

 

(2, 6)

(1, 5)

–5

0

5

–5 0 5
–14

–12

–10

–8

0

2

4

6

1000 1500 2000

0

0.2

0.4

0.6

0.8

1.0

0.3 0.4 0.5 0.6 0.7
–0.05

0

0.05

0.10

2780

2740

2750

2760

2770

0 5

–0.2

–0.1

0

0.1

0.2(a () b)

(c () d)

FIGURE 3. (Colour online) (a) Time-averaged energy power spectra, log(Ê(k, l)), obtained
from the nonlinear simulation of (2.1) at ε/εc= 50. The flow is dominated by a (k, |l|)=
(0, 4) zonal jet that is evident in (b) the Hovmöller diagram of the x-averaged ψ(x, y, t).
(c) Hovmöller diagram of ψ(x, y=π/4, t) showing the presence of westward-propagating
structures. The thick dashed line corresponds to the phase speed obtained from (4.2). (d)
The ensemble mean wavenumber–frequency power spectrum ζcor(ω, k, l) as a function
of frequency for (k, l) = (1, 5) and (k, l) = (2, 6). The corresponding spectrum ζ R

cor for
stochastically forced linear Rossby waves is also shown (dashed lines). All correlation
functions are normalized to one to facilitate comparison.

Similar Rossby-like, westward-propagating coherent structures were also reported
recently in numerical simulations of the barotropic vorticity equation on the sphere
(Sukariansky et al. 2008; Galperin et al. 2010). In agreement with the results
presented in this work these large-scale waves contain a significant amount of energy.
In the regime in which zonal jets are absent or weak these waves were found to
follow the Rossby wave dispersion. In the regime in which strong zonal jets dominate
the flow (called the zonostrophic regime by these authors), the waves propagate with
markedly different phase speeds. These waves were therefore classified as linear
Rossby waves in the former and as satellite modes (Danilov & Gurarie 2004) or
zonons (Sukariansky et al. 2008) in the latter regime.

We will show next that the emergence and characteristics of both the zonal and the
non-zonal coherent structures can be accurately predicted by considering the stability
of a particular second-order closure of the turbulent dynamics. This second-order
closure results in a non-equilibrium statistical theory, called S3T or CE2 (Farrell
& Ioannou 2003, 2007; Marston et al. 2008; Bakas & Ioannou 2011; Srinivasan &
Young 2012; Marston 2012), that addresses the emergence of structure in planetary
turbulence.
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3. Formulation of stochastic structural stability theory
S3T describes the statistical dynamics of the first two equal time cumulants of (2.1).

The first cumulant is the ensemble mean of the vorticity Z(x, t) ≡ 〈ζ 〉. The second
cumulant C(x1, x2, t) ≡ 〈ζ ′1ζ

′

2〉, is the two-point correlation function of the vorticity
deviation from the mean ζ ′i ≡ ζi− Zi. We use the shorthand ζi= ζ (xi, t), with i= 1, 2
to refer to the value of the relative vorticity at the specific point xi = (xi, yi). In
most earlier studies of S3T, the ensemble average was assumed to represent a zonal
average. With this interpretation of the ensemble average, the non-zonal structures
are treated as incoherent motions and the theory can only address the emergence
of zonal jets. In order to address the emergence of coherent non-zonal structures in
turbulence, we adopt in this work the more general interpretation that the ensemble
average is a Reynolds average over the fast turbulent motions that typically have
time scales in this case τeddy� 1/r. The averaging time scale is taken to be several
eddy decorrelation scales but also smaller than 1/r and smaller than the period of
the propagating structures (for a periodic box the lowest period is of order 1/β)
in order to retain the slow evolution of the coherent structures. This interpretation
of the S3T has been adopted recently in studies of non-zonal blocking patterns in
baroclinic two-layer turbulence by Bernstein (2009) and Bernstein & Farrell (2010).
With this definition of the ensemble mean, we seek to obtain the statistical dynamics
of the interaction of the coarse-grained ensemble average field, which can be zonal
or non-zonal coherent structures represented by their vorticity Z, with the fine-grained
incoherent field represented by the vorticity second cumulant C.

The equations governing the evolution of the first two cumulants are obtained as
follows. Under the decomposition of vorticity into an ensemble mean and a deviation
from the mean, equation (2.1) is split into two equations governing the evolution
of the eddy (deviation from the mean) vorticity ζ ′ and the vorticity of the coherent
structures Z:

(∂t +U · ∇)ζ ′ + (β + ∂yZ)v′ + u′∂xZ =−rζ ′ − ν∆2ζ ′ + f e
+ f nl︸ ︷︷ ︸

f

, (3.1)

(∂t +U · ∇)Z + βV =−∇ · 〈u′ζ ′〉 − rZ − ν∆2Z, (3.2)

where u′=[u′, v′]= [−∂yψ
′, ∂xψ

′
] and U=[U,V]= [−∂yΨ , ∂xΨ ] are the non-divergent

eddy and ensemble mean velocity fields,

f nl
= 〈u′ · ∇ζ ′〉 − u′ · ∇ζ ′, (3.3)

is the forcing term from the nonlinear interactions among the turbulent eddies and
f = f e

+ f nl represents the total eddy forcing. The ensemble average vorticity fluxes
〈u′ζ ′〉 can be expressed in terms of the second cumulant of vorticity as

〈u′ζ ′〉 = [〈u′1ζ
′

2〉x1=x2
, 〈v′1ζ

′

2〉x1=x2
] = [−(∂y1∆

−1
1 C)x1=x2, (∂x1∆

−1
1 C)x1=x2], (3.4)

where ∆−1 is the integral operator that inverts vorticity into the streamfunction field
(ψ =∆−1ζ ). The subscripts in the operators in (3.4) denote the variable xi on which
the operators act. For example, ∂xi denotes differentiation with respect the variable xi
(i= 1, 2), while the integral operators ∆−1

i invert the vorticity covariance with respect
to variables xi so that the streamfunction covariance is S(x1, x2) = ∆

−1
1 ∆

−1
2 C. The

subscript x1 = x2 means that the expression in parenthesis is calculated at the same
point. As a result, the first cumulant evolves as

∂tZ +UZx + V(β + Zy)= ∂x(∂y1∆
−1
1 C)x1=x2 − ∂y(∂x1∆

−1
1 C)x1=x2 − rZ − ν∆2Z. (3.5)
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Multiplying (3.1) for ∂tζ
′

1 by ζ ′2 and (3.1) for ∂tζ
′

2 by ζ ′1, adding the two equations and
taking the ensemble average yields

∂tC= (A1 + A2)C+ 〈f1ζ
′

2 + f2ζ
′

1〉, (3.6)

where

Ai =−Ui∂xi − Vi∂yi − (β + ∂yiZ)∂xi∆
−1
i + ∂xiZ∂yi∆

−1
i − r− ν∆2

i , (3.7)

governs the dynamics of linear perturbations about the instantaneous mean flow U,

〈f1ζ
′

2 + f2ζ
′

1〉 = 〈f
e
1 ζ
′

2 + f e
2 ζ
′

1〉 + 〈f
nl
1 ζ
′

2 + f nl
2 ζ
′

1〉

= 〈f e
1 ζ
′

2 + f e
2 ζ
′

1〉

+ [(∂2
y1x3
− ∂2

x1y3
)∆−1

2 Γ ]x1=x3 + [(∂
2
y2x3
− ∂2

x2y3
)∆−1

2 Γ ]x2=x3, (3.8)

and Γ ≡ 〈ζ ′1ζ
′

2ζ
′

3〉 is the third cumulant. The first term on the right-hand side of
(3.8) is the correlation of the external forcing f e with vorticity, while the other
two terms involve the third cumulant that describes the eddy–eddy interactions.
Previous studies addressing the interaction of turbulent eddies with zonal jets in
baroclinic turbulence, as well as the interaction of coherent vortices with small-scale
turbulence, have shown that several important features of the coherent flow as well as
accurate eddy statistics are obtained by either neglecting or suitably parameterizing
the eddy–eddy nonlinearity f nl as stochastic forcing and enhanced dissipation
(Farrell & Ioannou 1993a; DelSole & Farrell 1996; Dubrulle & Nazarenko 1997;
Laval, Dubrulle & Nazarenko 2000; DelSole 2004; O’Gorman & Schneider 2007;
Marston et al. 2008). This is equivalent to setting the third cumulant to zero, or
parameterizing the last two terms in (3.8) as a given correlation function. We note
that the distinction between these two parameterizations is semantic for barotropic
turbulence sustained by stochastic forcing. However, if turbulence is self-maintained
without any external stochastic forcing, as for example is the case in baroclinic
flows, and the third cumulant is altogether neglected then the covariance in (3.6) is
unforced and will evolve to the low-rank structure of the Lyapunov vector of the
generally time-dependent A operator. As a result, it will fail to accurately represent
the second-order statistics of the turbulent flow (Marston et al. 2008). The presence
of the parameterization of the nonlinear eddy–eddy scattering as noise in this case,
is therefore important because it keeps the structure of the second cumulant full rank
and in accordance to the amplification properties of the non-normal A operator. In
this work we will neglect the third cumulant and show that the S3T theory with this
approximation can accurately predict the emergence of large-scale structures in the
flow. We therefore assume that f is the delta correlated external forcing, f e, with
〈f1ζ

′

2 + f2ζ
′

1〉 = 〈f1f2〉 = Ξ . With this approximation the second-order statistics evolve
according to

∂tC= (A1 + A2)C+Ξ. (3.9)

Equations (3.5) and (3.9) form a closed deterministic system that governs the joint
evolution of the coherent flow field and of the second-order turbulent eddy statistics.
This second-order closure is the basis of S3T (Farrell & Ioannou 2003). The S3T
system can have fixed points, limit cycles or chaotic attractors. Examples of the
attractor of this system can be found in the S3T description of the organization of
geophysical and plasma turbulence into zonal jets (Farrell & Ioannou 2003, 2008,
2009b), as well as in the S3T description of blocking patterns in the atmosphere
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(Bernstein & Farrell 2010). The fixed points ZE and CE, if they exist, define statistical
equilibria of the coherent structures with vorticity, ZE, in the presence of an eddy field
with second cumulant or covariance, CE. The structural stability of these turbulent
equilibria that can be investigated in S3T, addresses the parameters in the physical
system which can lead to abrupt reorganization of the turbulent flow. Specifically,
when an equilibrium of the S3T equations becomes unstable as a physical parameter
changes, the turbulent flow bifurcates to a different attractor. In this work, we show
that coherent structures emerge as unstable modes of the S3T system and equilibrate
at finite amplitude. The predictions of the S3T system regarding the emergence
and characteristics of the coherent structures are then compared with the nonlinear
simulations.

4. S3T instability and the emergence of finite-amplitude large-scale structure
The homogeneous equilibrium with no mean flow

ZE
= 0, CE

=
Ξ

2r
, (4.1)

is a fixed point of the S3T system (3.5) and (3.9) in the absence of hyperdiffusion
(cf. appendix B). The stability of this homogeneous equilibrium, can be addressed by
performing eigenanalysis of the S3T system linearized about the equilibrium. Because
of the absence of a coherent mean flow and the homogeneity of CE we can seek
eigensolutions in the modal form δZ = Znmeinx+imyeσ t and δC = Cnm(x̃, ỹ)einx+imyeσ t,
where x̃= x1− x2, x= (x1+ x2)/2, ỹ= y1− y2, y= (y1+ y2)/2, n and m are the x and y
wavenumbers of the eigenfunction and σ = σr + iσi is the eigenvalue with σr =Re(σ )
and σi = Im(σ ) being the growth rate and frequency of the mode, respectively. The
eigenvalue σ satisfies the equation:∫

∞

−∞

∫
∞

−∞

(mk− nl)[nm(k2
+
− l2
+
)+ (m2

− n2)k+l+](1−N2/K2)Ξ̂(k, l)
2iβk+(k+n+ l+m)− inβ(K2 +K2

s )/2+ (σ + 2r)K2K2
s

dk dl

= 2rπ(σ + r)N2
− 2riπnβ, (4.2)

where

Ξ̂(k, l)=
1

2π

∫
∞

−∞

∫
∞

−∞

Ξ(x̃, ỹ)e−ikx̃−ilỹ dx̃ dỹ, (4.3)

is the Fourier transform of the forcing covariance, K2
= k2
+ l2, K2

s = (k+n)2+ (l+m)2,
N2
= n2

+ m2, k+ = k + n/2 and l+ = l + m/2 (cf. appendix B). For zonally
homogeneous perturbations with n = 0, equation (4.2) reduces to the eigenvalue
relation derived by Srinivasan & Young (2012) for the emergence of jets in a
barotropic β-plane. The eigenvalue relation (4.2) was derived for a flow that extends
to infinity. For the periodic channel considered in the nonlinear simulations, the
corresponding eigenvalue relation is readily obtained by substituting the integrals in
(4.2) and (4.3) with summation over integer values of k and l (Bakas & Ioannou
2013a). We non-dimensionalize the eigenvalue relation using the dissipation time
scale 1/r and a typical forcing length scale Lf and rewrite (4.2) in the general form:

σ̃(ñ,m̃) = g(β̃, ε̃). (4.4)

For a given spectral distribution of the forcing, equation (4.4) gives the eigenvalue σ̃ =
σ/r for each wavenumbers (ñ, m̃)= Lf (n, m) as a function of the planetary vorticity
gradient β̃ = βLf /r and the energy injection rate ε̃= ε/(r3L2

f ).
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We consider the case of a ring forcing that injects energy at rate ε at the total
wavenumber Kf :

Ξ̂(k, l)= 2εKf δ(
√

k2 + l2 −Kf ), (4.5)

which is an idealization of the forcing (2.4) used in the nonlinear simulations. We
then obtain the eigenvalues σ̃ for an infinite domain by numerically solving (4.4). For
small values of the energy input rate, the growth rate σ̃r is negative for all (ñ, m̃)
and the homogeneous equilibrium is stable. At a critical ε̃c the homogeneous flow
becomes S3T unstable, symmetry breaking occurs and exponentially growing coherent
structures emerge. The critical value, ε̃c, is calculated by first determining the energy
input rate ε̃t(ñ, m̃) that renders wavenumbers (ñ, m̃) neutral (σ̃r(ñ,m̃) = 0), and then by
finding the minimum energy input rate over all wavenumbers: ε̃c = min(ñ,m̃)ε̃t. The
critical energy input rate ε̃c as a function of β̃ is shown in figure 4. The absolute
minimum energy input rate required is ε̃c= 67 and occurs at β̃min= 3.5. For β̃ 6 β̃min,
the structures that first become marginally stable are zonal jets (with n = 0). The
critical input rate increases as ε̃c ∼ β̃

−2 for β̃→ 0 (in agreement with the findings of
Srinivasan & Young (2012)) and the homogeneous equilibrium is structurally stable for
all excitation amplitudes when β̃ = 0. The structural stability for β̃ = 0 is an artifact
of the assumed isotropy of the excitation and in the presence of anisotropy the critical
input rate, ε̃c, saturates to a finite value as β̃→ 0 (Bakas & Ioannou 2011, 2013b).
For β̃ > β̃min, the marginally stable structures are non-zonal and ε̃c grows as ε̃c∼ β̃

1/2

for β̃→∞. Since the critical forcing for the emergence of zonal jets (also shown in
figure 4), increases as ε̃c∼ β̃

2 for β̃→∞ (Srinivasan & Young 2012), for large values
of β̃ non-zonal structures first emerge and only at significantly higher ε̃ zonal jets
are expected to appear. Investigation of these results with other forcing distributions
revealed that the results for β̃ � 1 are independent of the isotropy of the forcing.
Contours of the maximum growth rate of the S3T instability, σ̃max = max(ñ,m̃)σ̃r are
also shown in figure 4 as a function of (ε̃, β̃). For a given β̃, the maximum growth
rate increases monotonically with larger energy input rates, while for a given level of
excitation ε̃m the maximum growth rate occurs for a finite β̃m that satisfies roughly
ε̃m ∼ 30β̃2

m (represented by the thick dotted line in the figure).
For ε̃ > ε̃c there is a number of structures that grows exponentially. It is shown in

appendix B that for the isotropic forcing considered and for n 6= 0, the eigenvalues
satisfy the relations:

σ̃(−ñ,m̃) = σ̃
∗

(ñ,m̃) and σ̃(ñ,−m̃) = σ̃(ñ,m̃), (4.6)

implying that the growth rates depend on |ñ| and |m̃|. As a result, the plane wave
δZ = cos(nx+my) and an array of localized vortices δZ = cos(nx) cos(my), have the
same growth rate, despite their different structure.

We first consider the case β̃ = 1, ε̃ = 2ε̃c, corresponding to the point marked as
figure 5(a) in the (ε̃, β̃) regime diagram shown in figure 4. The growth rate of the
maximally growing eigenvalue, σ̃r, and its associated frequency of the mode, σ̃i, are
plotted in figure 5(a) as a function of |ñ| and |m̃|. We observe that the region in
wavenumber space defined roughly by 0< |ñ|< 1/2, and 1/2< |m̃|< 1 is unstable,
with the maximum growth rate occurring for zonal structures (ñ = 0) with |m̃| '
0.8. The frequency of the unstable modes is in general non-negative (σ̃i > 0) and is
equal to zero only for zonal jet perturbations (ñ = 0). Using the symmetries (4.6),
this implies that real unstable mean flow perturbations δZ propagate in the retrograde
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FIGURE 4. (Colour online) The critical energy input rate ε̃c for structural instability (thick
solid line) and the critical energy input rate for structural instability of zonal jets (solid
line) as a function of β̃. The behaviour of these critical values for large and small β̃ is
indicated with the dashed asymptotes ε̃ = 23β̃−2 for β̃ � 1, ε̃ = 11β̃1/2 and ε̃ = 0.5β̃2

for the emergence of non-zonal and zonal structures respectively for β̃ � 1. Above the
thick (thin) line non-zonal (zonal) coherent structures emerge. The thin dotted vertical line
β̃ = β̃min separates the unstable region: for β̃ < β̃min the zonal structures grow the most,
whereas for β̃ > β̃min the non-zonal structures grow the most. Also shown are the contours
(thin dotted lines) of the maximum growth rate σ̃max (with contour values corresponding
to log(σ̃max)). The thick dotted line ε̃ = 30β̃2 is the locus of the points on which the
maximum σ̃r occurs for each ε̃. The crosses indicate the ε̃ and β̃ values for which the
dispersion relation of the unstable modes is shown in figures 5–7.

direction if ñ 6= 0 and are stationary when ñ= 0. As ε̃ increases the instability region
expands roughly covering the sector 1/2< |Ñ|<1 and a second instability branch with
smaller growth rates appears for |Ñ|> 1. This is illustrated in figure 5(b) showing the
growth rate for ε̃ = 10ε̃c (marked as figure 5(b) in figure 4). Note also that for both
values of the energy input rate, the zonal structures have a larger growth rate than
the non-zonal structures, a result that holds for any ε̃ when β̃ < β̃min (for the isotropic
forcing considered).

For β̃ > β̃min the non-zonal structures have always larger growth rate. This is
illustrated in figures 6 and 7, showing the growth rates and frequencies of the
unstable modes for β̃ = 10 and β̃ = 100, respectively. For larger β̃ values there is
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FIGURE 5. Dispersion relation of the unstable modes for β̃ = 1. The energy input rate
is (a) ε̃ = 2ε̃c and (b) ε̃ = 10ε̃c. The contours show the growth rate σ̃r and the shading
shows the frequency σ̃i of the unstable modes.

tendency for the frequency of the unstable modes to conform to the corresponding
Rossby wave frequency

σ̃R =
β̃ñ

ñ2 + m̃2
, (4.7)

a tendency that does not occur for smaller β̃. A comparison between the frequency
of the unstable mode and the Rossby wave frequency is shown in figure 7(c,d) in a
plot of σ̃i/σ̃R. For slightly supercritical ε̃, the ratio is close to one and the unstable
modes satisfy the Rossby wave dispersion relation. At higher supercriticalities though,
σ̃i departs from the Rossby wave frequency (by as much as 40 % for the case of
ε̃= 50ε̃c shown in figure 7(d)).

5. Equilibration of the S3T instabilities
We now investigate the equilibration of the instabilities by the discretized S3T

system (3.5), (3.9) in a doubly periodic channel of size 2π × 2π. We consider
the parameter values chosen in the nonlinear simulations discussed in § 2 (β = 10,
r= 0.01, ν = 1.19× 10−6, Kf = 10 and ∆Kf = 1). For these parameters, β̃ = 100 and
therefore the integration is in the parameter region of figure 4 in which the non-zonal
structures are more unstable than the zonal jets. We first consider the energy input
rate ε̃ = 4ε̃c which corresponds to the first case presented in § 2 (note that εc here
refers to the critical energy input rate when hyperdiffusion is taken into account,
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FIGURE 6. The same as in figure 5, but for β̃ = 10.

which is four times greater than the critical input rate with ν = 0). The growth
rates of the coherent structures for integer values of the wavenumbers, n and m are
calculated from the discrete version of (4.2), because of the 2π periodicity of the
channel, with the addition of a hyperdiffusive dissipation term in (4.2). The resulting
growth rates for this energy input rate are shown in figure 8(a). For these parameters
the zonal jet perturbations are stable and are not expected to emerge, while a large
number of non-zonal modes are unstable with the perturbation (n,m)= (1, 5) growing
the most. At t= 0, we introduce a small random perturbation, whose streamfunction
is shown in figure 9(a). After about t = 40/σ(1,5), where σ(1,5) is the growth rate of
(n,m)= (1, 5), a checkerboard perturbation of the form Z = cos(x) cos(5y) dominates
the large-scale flow. The evolution of the energy of the large-scale flow that is shown
in figure 9(b) increases rapidly and eventually saturates after about t = 150/σ(1,5).
At this point the large-scale flow gets attracted to a travelling wave finite-amplitude
equilibrium structure close in form to the harmonic Z = cos(x) cos(5y) (cf. figure 9c),
drifting westward. The Hovmöller diagram of ψ(x, y= π/4, t), shown in figure 9(d),
illustrates that the phase speed of the travelling wave is approximately equal to the
phase speed of the unstable (n, m) = (1, 5) eigenmode that is also indicated in the
figure.

Consider now the energy input rate ε̃= 10ε̃c for which the growth rates are shown
in figure 8(b). While the maximum growth rate still occurs for the (|n|, |m|)= (1, 5)
non-zonal structure, zonal jet perturbations are unstable as well. In previous studies
of S3T dynamics restricted to the interaction between zonal flows and turbulence,
these initially S3T unstable jet structures were found to equilibrate at finite amplitude.
However, in the context of the generalized S3T analysis in this work that takes into
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FIGURE 7. Dispersion relation of the unstable modes for β̃ = 100. Growth rate σ̃r as a
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FIGURE 8. The growth rate, σr as a function of the wavenumbers |n|, |m| of the coherent
structures at (a) ε/εc = 4 and (b) ε/εc = 10 (only positive values of σr are shown).
The growth rates are calculated for structures in the doubly periodic channel considered
in the nonlinear simulations and in the presence of hyperdiffusion with coefficient
ν = 1.19× 10−6.

account the dynamics of the interaction between coherent non-zonal structures and jets,
we find that these S3T jet equilibria can be saddles: stable to zonal jet perturbations
but unstable to non-zonal perturbations. To show this, we consider the evolution of a
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FIGURE 9. (Colour online) Equilibration of the S3T instabilities. (a) Streamfunction of
the initial perturbation. (b) Energy evolution of the initial perturbation shown in (a) as
obtained from the integration of the S3T (3.5) and (3.9) (dashed line) and from the
integration of an ensemble of quasi-linear equations (EQL) (3.1)–(3.2) with Nens=10 (solid
line) and Nens = 100 (dash-dotted line) ensemble members that is discussed in § 6. (c)
Snapshot of the streamfunction Ψeq of the travelling wave structure and (d) Hovmöller
diagram of Ψeq(x, y=π/4, t) for the finite equilibrated travelling wave. The thick dashed
line shows the phase speed obtained from the stability equation (4.2). The energy input
rate is ε̃= 4εc and β̃ = 100.

small zonal jet perturbation δZ = 0.1 cos(5y) that is shown in figure 10. The initial
perturbation grows exponentially and its energy saturates at about t= 500 (a snapshot
of the streamfunction at this time is shown at the left inset in figure 10). But soon
after, non-zonal undulations appear and start to grow and the flow transitions to the
stable Z = cos(x) cos(5y) travelling wave state that is also shown in figure 10. As a
result, the finite equilibrium zonal jet structure is S3T unstable to coherent non-zonal
perturbations and is not expected to appear in nonlinear simulations despite the fact
that the zero-flow equilibrium is unstable to zonal jet perturbations. We will elaborate
more on this issue in the next section.

Finally, consider the case ε = 30εc. At this energy input rate, the fast growing
non-zonal perturbations cannot equilibrate, as the finite amplitude non-zonal travelling
wave equilibria become S3T unstable. This is illustrated in figure 11 showing the
evolution of a small non-zonal perturbation δZ = 0.01 cos(x) cos(5y). After the
saturation of the initial instability at about t = 200, the flow transitions slowly from
the travelling wave Z = cos(x) cos(5y) state shown at the left inset in figure 11
to the jet equilibrium state shown at the right inset in figure 11. Note however,
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FIGURE 10. (Colour online) Energy evolution of an initial jet perturbation δZ=0.1 cos(5y)
for ε̃ = 10εc and β̃ = 100. The insets show a snapshot of the mean flow streamfunction
at t= 500 (left) and the streamfunction of the equilibrated structure at t= 6500 (right).

that the jet equilibrium structure is not zonally symmetric. This is a new type of
S3T equilibrium: it is a mix between a zonal jet and a non-zonal travelling wave
and actually S3T analysis reveals multiple mixed state equilibria. This is clearly
illustrated in figure 12 showing the structure of a different equilibrium state for the
same parameters. The equilibrium structure consists of a large-amplitude zonally
symmetric jet with small amplitude non-zonal propagating vortices embedded in
it. These vortices that are shown in figure 12(b) to have approximately the compact
support structure Ψ = cos(2x) cos(6y), propagate westward as shown in the Hovmöller
diagram in figure 12(c).

6. Comparison with nonlinear simulations
Within the context of the second-order cumulant closure, the S3T formulation

allows the identification of statistical turbulent equilibria. These S3T equilibria and
their stability properties manifest even in single realizations of the turbulent system.
For example, previous studies using S3T obtained zonal jet equilibria in barotropic,
shallow water and baroclinic flows in close correspondence with observed jets in
planetary flows (Farrell & Ioannou 2007, 2008, 2009a,c). In addition, previous studies
of S3T dynamics restricted to the interaction between zonal flows and turbulence in
a β-plane channel showed that when the energy input rate is such that the zero mean
flow equilibrium is unstable, zonal jets also appear in the nonlinear simulations with
the structure (scale and amplitude) predicted by S3T (Srinivasan & Young 2012;
Constantinou et al. 2013).
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FIGURE 11. (Colour online) Energy evolution of the initial non-zonal perturbation δZ =
0.01 cos(x) cos(5y) for ε̃ = 30εc and β̃ = 100. The insets show a snapshot of the mean
flow streamfunction at t = 200 (left) and the streamfunction of the equilibrated structure
at t= 2200 (right).

A very useful intermediate model that retains the wave mean flow dynamics of the
S3T system while relaxing the infinite ensemble approximation can be constructed
by ignoring in (3.1) the nonlinear term f nl. Then (3.1)–(3.2) become an ensemble of
quasi-linear equations (EQL) in which the ensemble mean can be calculated from a
finite number of ensemble members. It can be readily shown that the EQL system
conserves the total energy and enstrophy (i.e. the sum of the energy/enstrophy of the
coherent flow and the ensemble mean of the eddy energy/enstrophy) in the absence
of forcing and dissipation. Its integration is done as follows. Using the same pseudo-
spectral code as in the nonlinear simulations, Nens separate integrations of (3.1) are
performed at each time step with the eddies evolving according to the instantaneous
flow. Then the ensemble-average vorticity flux divergence is calculated as the average
over the Nens simulations and (3.2) is stepped forward in time according to those
fluxes. The S3T equilibria manifest in the EQL integrations with the addition of some
‘thermal noise’ due to the stochasticity of the forcing that is retained in this system.
This is shown in figure 9(b) where the energy growth of the coherent structure for
Nens= 10 and Nens= 100 is plotted for the same parameters as the S3T integration. We
observe that the energy of the coherent structure in the EQL integrations fluctuates
around the values predicted by the S3T system with the fluctuations decreasing as
1/
√

Nens. However, even with only 10 ensemble members we get an estimate that is
very close to the theoretical estimate of the infinite ensemble members obtained from
the S3T integration. The travelling wave equilibrium and its phase speed in the EQL
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FIGURE 12. Mixed zonal jet–travelling wave S3T equilibrium for ε̃ = 30εc and β̃ = 100.
(a) Snapshot of the streamfunction Ψeq of the equilibrium state. (b) Contour plot of the
non-zonal component Ψeq−Ψeq of the equilibrium structure, where the overline denotes a
zonal average. (c) Hovmöller diagram of Ψeq(x, y= π/4, t) for the equilibrated structure.
In this mixed S3T equilibrium zonal jets coexist with vortices reminiscent of the coherent
structures observed on Jupiter.

integrations are also in very good agreement with the corresponding structure and
phase speed obtained from the S3T integration (not shown). Since the EQL system
accurately captures the characteristics of the emerging structures and it is much faster
to integrate, we will use it to test the predictions of S3T for the emergence and
equilibration of zonal and non-zonal coherent structures in nonlinear simulations. We
will therefore present comparisons of the integrations of the EQL system with Nens=

10 with single realizations of the nonlinear equations.
For the parameters chosen (β̃ = 100), S3T predicts emergence of non-zonal

structures when the energy input rate exceeds the critical threshold ε̃c and equilibration
of the incipient instabilities into finite-amplitude structures that should manifest in
the nonlinear simulations. The rapid increase of the nzmf index in the nonlinear
(NL) and in the ensemble of quasi-linear (EQL) simulations for ε > εc shown in
figure 1, illustrates that this regime transition in the flow is accurately predicted by
S3T and that the quasi-linear and nonlinear dynamics share the same bifurcation
structure. In addition, the stable S3T equilibria are in principle viable repositories
of energy in the turbulent flow and the nonlinear system is expected to visit their
attractors for finite time intervals. Indeed for ε = 4εc the travelling wave equilibrium
with (|k|, |l|)= (1, 5) that emerges out of random initial conditions, is the dominant
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FIGURE 13. Time-averaged energy power spectra, log(Ê(k, l)), obtained from an ensemble
of quasi-linear (EQL) simulations at (a) ε/εc= 4 and (b) ε/εc= 50 or ε= 3.3εnl. There is
a very good agreement with the corresponding spectra obtained from the nonlinear (NL)
simulations (cf. figures 2–3).

structure in the NL simulations. Comparison of the energy spectra obtained from the
EQL and the NL simulations shown in figures 13(a) and 2(a), respectively, reveals
that the amplitude of this structure in the quasi-linear and in the nonlinear dynamics
almost matches. Remarkably, the phase speed of the S3T travelling wave matches
with the corresponding phase speed of the (|k|, |l|) = (1, 5) structure observed in
the nonlinear simulations, as can be seen in the Hovmöller diagram in figure 2(b).
Such an agreement in the characteristics of the emerging structures between the
EQL and NL simulations occurs for a wide range of energy input rates as can
be seen by comparing the nzmf indices in figure 1. As a result, S3T predicts the
dominant non-zonal propagating structures in the nonlinear simulations, as well as
their amplitude and phase speed.

The second transition in which zonal jets emerge is more intriguing. The stability
equation (4.2) predicts that the zonal structures become S3T unstable at εsz = 5.2εc.
As discussed in the previous section, the finite-amplitude zonal jet equilibria are
structurally unstable and the flow stays on the attractor of the non-zonal travelling
wave equilibria (cf. figure 10). When ε > εnl, the non-zonal travelling wave equilibria
become S3T unstable while at these parameter values the S3T system has mixed
zonal jet–travelling wave equilibria which are stable (cf. figure 12). In both NL and
EQL simulations, similar mixed zonal flow–travelling wave structures are evident
(cf. figures 3 and 13). However, there is a small discrepancy regarding the second
transition between the EQL and NL simulations, as the energy input rate threshold
for the emergence of jets is slightly larger in the NL simulations compared with the
corresponding EQL threshold (cf. figure 1). This discrepancy possibly occurs due
to the fact that the exchange of instabilities between the mixed jet–travelling wave
equilibria and the pure travelling wave equilibria depends on the equilibrium structure
[ZE, CE

]. Small changes for example in CE that might be caused by the eddy–eddy
terms neglected in S3T can cause the exchange of instabilities to occur at slightly
different energy input rates. It was shown in a recent study that when the effect of the
eddy–eddy terms is taken into account by obtaining CE directly from the nonlinear
simulations, the S3T stability analysis performed on this corrected equilibrium states
accurately predicts the energy input rate for the emergence of jets in the nonlinear
simulations (Constantinou et al. 2013). The power spectrum obtained from the EQL
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simulations for ε= 3.3εnl (cf. figure 13b) shows that both the scale and the amplitude
of the zonal jets is captured by S3T. Such an agreement again holds for a wide
range of energy input rates, as the zmf indices obtained from the EQL and the NL
simulations indicate. In summary, S3T predicts the characteristics of both non-zonal
propagating structures and of zonal jets in the nonlinear simulations.

7. Discussion and conclusions
A theory for the emergence of zonal jets and non-zonal coherent structures in

barotropic β-plane turbulence has been presented in this work. This is one of the
simplest models that retains the relevant dynamics of self-organization of turbulence
into large-scale coherent structures and is a standard and extensively studied testbed
for theories regarding the emergence and maintenance of zonal jets and coherent
structures in planetary flows.

Nonlinear simulations of a stochastically forced barotropic flow in a beta-plane
channel show two major flow transitions as the energy input rate of the forcing
increases. In the first, the translational symmetry in the flow is broken in both
directions with the emergence of propagating coherent non-zonal waves that
approximately follow the Rossby wave dispersion. The power in these non-zonal
structures increases with the energy input rate until the second transition occurs with
the emergence of robust zonal jets. Although after the second transition the zonal jets
contain over half the energy in the flow, there is significant power in the non-zonal
structures, which remain coherent and propagate in the retrograde direction with
phase speeds that do not satisfy the Rossby wave dispersion.

The two flow transitions and the characteristics of both the non-zonal structures
and the zonal jets are then investigated using a proper generalization of S3T. In S3T,
the turbulent flow dynamics and statistics are expressed as a systematic cumulant
expansion which is truncated at second order. With the interpretation of the ensemble
average as a Reynolds average over the fast turbulent eddies, the second-order
cumulant expansion results in a closed, nonlinear dynamical system that governs
the joint evolution of slowly varying, spatially localized coherent structures with
the second-order statistics of the rapidly evolving turbulent eddies. The fixed points
of this autonomous, deterministic nonlinear system define statistical equilibria, the
stability of which are amenable to the usual treatment of linear and nonlinear stability
analysis.

The linear stability of the homogeneous S3T equilibrium with no mean velocity
was examined analytically. Structural instability was found to occur for perturbations
with smaller scale than the forcing scale 1/Kf , when the energy input rate ε̃= εK2

f /r
3

(with 1/r the dissipation time scale) is larger than a certain threshold ε̃c that depends
on β̃ = β/(rKf ). It was found that when β̃ is small or order one, both zonal jets
and non-zonal structures are unstable when the energy input rate is larger than ε̃c,
with the maximum growth rate occurring for stationary zonal structures. When β̃

is large, non-zonal structures first become unstable as the input rate increases past
ε̃c with zonal jet structures becoming unstable at larger energy input rates. The
maximum growth rate occurs in this case for non-zonal structures that propagate
in the retrograde direction. These waves follow the Rossby wave dispersion for low
supercritical values of the energy input rate, but propagate with different phase speeds
at higher supercriticality. The equilibration of the unstable, exponentially growing
coherent structures for large β̃ was then studied through numerical integrations of
the S3T dynamical system. When the forcing amplitude is slightly supercritical, the
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finite-amplitude travelling wave equilibrium has a structure close to the corresponding
unstable non-zonal perturbation with the same scale. When the forcing amplitude is
highly supercritical, the instabilities equilibrate to mixed states consisting of strong
zonal jets with smaller-amplitude travelling waves embedded in them.

The predictions of S3T were then compared with the results obtained in the
nonlinear simulations. The critical threshold above which coherent non-zonal
structures are unstable according to the stability analysis of the S3T system was
found to be in excellent agreement with the critical value above which non-zonal
structures acquire significant power in the nonlinear simulations. The scale, phase
speed and amplitude of the dominant structures in the nonlinear simulations were also
found to correspond to the structures predicted by S3T. In addition, the threshold for
the emergence of jets, which is identified in S3T as the energy input rate at which an
S3T stable, finite-amplitude zonal jet equilibrium exists, was found to roughly match
the corresponding threshold for jet formation in the nonlinear simulations, with the
emerging jet scale and amplitude being accurately obtained using S3T.

In summary, S3T predicts the two regime transitions in the turbulent flow as the
energy input rate is increased: the emergence of coherent, propagating non-zonal
structures and the emergence of zonal jets. It also predicts the characteristics of the
emerging structures (their scales and their phase speed), as well as their amplitude.
These results provide a concrete example that large-scale structure in barotropic
turbulence, whether it is zonal jets or non-zonal coherent structures, can arise from
systematic self-organization of the turbulent Reynolds stresses by spectrally non-local
interactions and in the absence of a turbulent cascade. The analysis reveals that
the coherent structures emerge as unstable modes of the homogeneous statistical
equilibrium. This instability shares the universal properties of pattern formation. In
this work we have shown that the emergence of striped patterns (zonal jets) is
preceded by the emergence of oscillating patterns (propagating waves). The analogy
with pattern formation and the universality of the underlying dynamics may prove
fruitful for understanding the domain of attraction of the non-zonal equilibria, as was
previously done for the case of convection (Busse 1978). This is part of ongoing
research efforts by the authors and will be reported in the future.

Finally, we note that some of the characteristics of the coherent structures found
in the barotropic β-plane model may not accurately reproduce the characteristics of
observed structures in the atmosphere or ocean. This should be no surprise, since the
barotropic model lacks some of the important physics (baroclinicity, etc.). For example,
the oceanic vortex rings do not resemble the same plane wave or compact support
structure of the coherent structures reported in this study. However, similarly with the
structures that form under S3T dynamics, the vortex rings share the characteristic that
they act as a long-lived repository of energy in the turbulent flow. Therefore, their
connection to the reported coherent structures needs to be further elucidated and is
an attractive subject for future research.
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Appendix A. Physical parameters for the Earth’s atmosphere and ocean and for
the Jovian atmosphere

In this appendix we discuss the relevant physical parameters (the forcing length
scale, the dissipation time scale and the values of β) for the Earth’s atmosphere and
ocean and for the Jovian atmosphere. For the Earth’s midlatitude atmosphere (β= 2×
10−11 m−1 s−1), we assume that the energy is injected at the cyclone scale of 1/Kf =

1000 km and that the eddy dissipation time scale at midlatitudes is 1/r= 10 days. In
addition, an energy transfer from the mean to the eddies of the order of 1.3 Wm−2 is
typically found in studies of the Lorenz cycle in the atmosphere, while there is also
another 20 Wm−2 available through diabatic heating (Peixoto & Oort 1992). Assuming
that a small fraction of the order of 5 % is transferred into large-scale eddies, we
obtain a total amount of 2.3 Wm−2, which when injected over the troposphere with
a scale height of 8 km, corresponds to an energy injection rate ε= 3× 10−4 m2 s−3.
For the Earth’s ocean, we assume that the eddy energy is injected at the deformation
scale 1/Kf = 20 km, while we consider that the eddy dissipation time scale is 1/r=
1000 days (Berloff, Kamenkovich & Pedlosky 2009) and the energy injection rate is
ε= 10−9 m2 s−3 (Sukariansky et al. 2007). For the Jovian atmosphere at midlatitudes
(β= 2.5× 10−12 m−1 s−1), we assume that energy is injected at the scale of convective
storms 1/Kf = 100 km with a rate ε = 0.5 × 10−5 m2 s−3 (Galperin et al. 2013).
Since the eddy dissipation rate is not known, we obtain an estimate by assuming that
the observed root mean square velocity fluctuations Urms satisfy U2

rms = ε/r. Taking
Urms= 50 ms−1 (Galperin et al. 2013), we obtain 1/r= 5800 days. It should be noted
that these values are indicative order-of-magnitude estimates.

Appendix B. Calculation of the dispersion relation and its properties
In this appendix we derive the dispersion relation (4.2), which determines the

stability of zonal as well as non-zonal perturbations in homogeneous turbulence. We
follow closely the treatment of Srinivasan & Young (2012). We first rewrite (3.5)
and (3.9) in terms of the variables x̃ = x1 − x2, x = (1/2)(x1 + x2), ỹ = y1 − y2 and
y = (1/2)(y1 + y2). The derivatives transform into this new system of coordinates to
∂xi = (1/2)∂x + (−1)i+1∂x̃, ∂yi = (1/2)∂y + (−1)i+1∂ỹ, ∆i = ∆̃+ (1/4)∆+ (−1)i+1∂2

ỹy +

(−1)i+1∂2
x̃x, with ∆̃= ∂2

x̃x̃+ ∂
2
ỹỹ and ∆= ∂2

xx+ ∂
2
yy. It is also convenient to introduce the

streamfunction covariance S(x̃, x, ỹ, y)≡ 〈ψ ′1ψ
′

2〉, which is related to C(x̃, x, ỹ, y) via

C= 〈ζ ′1ζ
′

2〉 = 〈∆1ψ
′

1∆2ψ
′

2〉 =∆1∆2S= [(∆̃+ 1
4∆)

2
− (∂2

x̃x + ∂
2
ỹy)

2
]S. (B 1)

Equations (3.5) and (3.9) then become in the absence of hyperviscosity (ν = 0):

[∂t +U∂x + Ũ∂x̃ + V∂y + Ṽ∂ỹ]C+ [(β + Zy)∂x + Z̃y∂x̃ − Zx∂y − Z̃x∂ỹ](∆̃+
1
4∆)S

− [2(β + Zy)∂x̃ +
1
2 Z̃y∂x − 2Zx∂ỹ −

1
2 Z̃x∂y](∂

2
x̃x + ∂

2
ỹy)S=−2rC+Ξ, (B 2)

∂tZ +U∂xZ + V(β + ∂yZ)= (∂2
x̃y − ∂

2
ỹx)(∂

2
x̃x + ∂

2
ỹy)S|x̃=ỹ=0 − rZ, (B 3)

where (U, V) = (1/2)(U1 + U2, V1 + V2), (Ũ, Ṽ) = (U1 − U2, V1 − V2), (Zx, Zy) =

(1/2)(∂x1 + ∂x2, ∂y1 + ∂y2)Z and (Z̃x, Z̃y)= (∂x1 − ∂x2, ∂y1 − ∂y2)Z.
The forcing covariance Ξ is homogeneous and as a result it depends only on the

difference coordinates, x̃ and ỹ. It can then be readily shown from (B 2)–(B 3), that the
state with no coherent flow (UE

= VE
= ZE

= 0) and with the homogeneous vorticity
covariance CE(x̃, ỹ)=Ξ/(2r) (implying also that the streamfunction covariance SE is
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homogenous) is a fixed point of the S3T system. The stability of this homogeneous
equilibrium, can be addressed by first linearizing the S3T system about it:

∂tδC=−(δŨ∂x̃ + δṼ∂ỹ)CE
− (δZ̃y∂x̃ − δZ̃x∂ỹ)∆̃SE

− β{[∆̃+ 1
4∆]∂x − 2(∂2

x̃x + ∂
2
ỹy)∂x̃}δS− 2rδC, (B 4)

∂tδZ=−βδV + (∂2
x̃y − ∂

2
ỹx)(∂

2
x̃x + ∂

2
ỹy)δS|x̃=ỹ=0 − rδZ, (B 5)

where δZ, δŨ, δṼ , δZ̃x, δZ̃y, δC and δS are small perturbations in the ensemble mean
vorticity, velocities and vorticity gradients and in the eddy vorticity and streamfunction
covariances respectively, and then performing an eigenanalysis of the linearized (B 4)–
(B 5).

We consider a harmonic vorticity perturbation of the form δZ = einx+imyeσ t, for
which

[δŨ, δṼ, δZ̃x, δZ̃y] =−2
[

m
n2 +m2

,−
n

n2 +m2
, n,m

]
sin
(

nx̃
2
+

mỹ
2

)
einx+imyeσ t.

(B 6)

Taking the same form for the streamfunction covariance perturbation δS =
Snm(x̃, ỹ)einx+imyeσ t and inserting it in (B 4)–(B 5) along with (B 6) yields{

(σ + 2r)

[(
∆̃−

N2

4

)2

+∆2
+

]
− 2iβ∆+∂x̃ + inβ

(
∆̃−

N2

4

)}
Snm

=
2

N2
sin
(

nx̃
2
+

mỹ
2

)
(m∂x̃ − n∂ỹ)[∆̃

2
+N2∆̃]SE, (B 7)

−(σ + r)N2
+ inβ =N2(m∂x̃ − n∂ỹ)∆+Snm|x̃=ỹ=0, (B 8)

where N2
=n2
+m2, ∆+=n∂x̃+m∂ỹ and CE

=Ξ/2r= ∆̃2SE is the equilibrium vorticity
covariance with zero mean flow.

Defining the Fourier transform of Snm(x̃, ỹ) by

Ŝnm(k, l)=
1

2π

∫
∞

−∞

∫
∞

−∞

Snm(x̃, ỹ)e−ikx̃−ilỹ dx̃ dỹ, (B 9)

we obtain from (B 7) that the Fourier component Ŝnm satisfies

Ŝnm=
(mk− − nl−)K2

−
(K2
−
/N2
− 1)ŜE(k−, l−)

2iβk(kn+ml)− inβ(K2
+
+K2

−
)/2+ (σ + 2r)K2

+
K2
−

−
(mk+ − nl+)K2

+
(K2
+
/N2
− 1)ŜE(k+, l+)

2iβk(kn+ml)− inβ(K2
+
+K2

−
)/2+ (σ + 2r)K2

+
K2
−

, (B 10)

with k± = k± n/2, l± = l±m/2, K2
±
= k2
±
+ l2
±

and K2
= k2
+ l2. Here ŜE

= Ξ̂/(2rK4)

is the Fourier transform of SE, and Ξ̂ is the Fourier transform of Ξ . In addition,
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equation (B 8) becomes

inβ − (σ + r)N2
=−

N2

2π

∫
∞

−∞

∫
∞

−∞

[nm(k2
− l2)+ (m2

− n2)kl]Ŝnm dk dl=Λ+ −Λ−,

(B 11)

where

Λ± =
1

2π

∫
∞

−∞

∫
∞

−∞

[nm(k2
− l2)+ (m2

− n2)kl](mk± − nl±)K2
±
(K2
±
−N2)ŜE(k±, l±)

2iβk(kn+ml)− inβ(K2
+
+K2

−
)/2+ (σ + 2r)K2

+
K2
−

dk dl.

(B 12)

Equation (B 11) can be further simplified by noting that because the choice of
x1 and x2 is arbitrary, the forcing covariance satisfies the exchange symmetry
Ξ(x1, x2, y1, y2) = Ξ(x2, x1, y2, y1). In terms of the new variables, the exchange
symmetry is written as Ξ(x̃, x, ỹ, y)=Ξ(−x̃, x,−ỹ, y), and consequently Ξ̂ satisfies
Ξ̂(−k,−l)= Ξ̂(k, l). As a result

Λ+ =−Λ−. (B 13)

Using (B 13) and shifting the axes in the resulting integrals (k→ k + n/2 and l→
l+m/2), reduces (B 11) to the following dispersion relation:∫

∞

−∞

∫
∞

−∞

(mk− nl)[nm(k2
+
− l2
+
)+ (m2

− n2)k+l+]K2(K2
−N2)ŜE(k, l)

2iβk+(k+n+ l+m)− inβ(K2 +K2
s )/2+ (σ + 2r)K2K2

s

dk dl

=π(σ + r)N2
− iπnβ, (B 14)

where K2
s = (k + n)2 + (l + m)2. The corresponding dispersion relation on a periodic

box, can be readily calculated by simply substituting the integrals in (B 14) by finite
sums of integer wavenumbers. For a mirror symmetric forcing obeying

Ξ̂(−k, l)= Ξ̂(k, l), (B 15)

the eigenvalues σ satisfy the symmetries (4.6). In order to show this, we consider
(B 14) for σ(−n,m) and change the sign of k in the integral to obtain∫

∞

−∞

∫
∞

−∞

(mk− nl)[nm(k2
+
− l2
+
)+ (m2

− n2)k+l+]K2(K2
−N2)ŜE(−k, l)

−2iβk+(k+n+ l+m)+ inβ(K2 +K2
s )/2+ (σ(−n,m) + 2r)K2K2

s

dk dl

=π(σ(−n,m) + r)N2
+ iπnβ. (B 16)

Taking the conjugate of (B 16) and using the mirror symmetry (B 15) yields (B 14)
and therefore σ(−n,m)= σ

∗

(n,m). Similarly, it can be readily shown by considering (B 14)
for σ(n,−m) and changing the sign of l in the integral, that σ(n,−m) = σ(n,m).
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