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Shear flows with a free surface possess diverse branches of modal instabilities. By approximating
the mean flow with a piecewise linear profile, an understanding and classification of the instabilities
can be achieved by studying the interaction of the edge waves that arise at the density discontinuity
at the surface and the vorticity waves that are supported at the mean vorticity gradient
discontinuities in the interior. The various branches of instability are identified and their physical
origin is clarified. The edge waves giving rise to the modal instabilities can also lead to a modest
transient growth that extends into the regions of neutrality of the flow. However, when the
continuous spectrum is excited substantial transient growth can arise and the optimal perturbations
attain greater energy when compared with the energy of the fastest modal growing perturbation.
These optimal perturbations utilize the continuous spectrum to excite at large amplitude the neutral
or amplifying modes of the system. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3072617�

I. INTRODUCTION

Stability of shear flows with an upper free surface is of
interest both in geophysics and in engineering. Such flows
arise at the crest of a spilling breaker,1,2 in viscous ship
wakes,3 in wind-drift currents at the ocean surface develop-
ing over large horizontal distances and breaking into turbu-
lent mixing layers,4 and in high speed liquid jets5 used for
designing liquid-metal forced flow targets and fusion reactor
liquid wall/blankets.

Previous studies of surface shearing currents considered
a surface layer of uniform vorticity overlying a stationary
layer of infinite depth4,6,7 and showed that the flow is un-
stable for a limited range of zonal wavenumbers. Triantafyl-
lou and Dimas3 computed the linear stability of the shear
flow observed in experiments of wakes behind a hydrofoil
and found two kinds of normal mode instabilities: branch I,
which exists for low wavenumbers and resembles the vari-
cose mode in an infinite flow, and branch II, which exists for
higher wavenumbers and resembles the unstable modes
found by Stern and Adam.4 In order to understand the insta-
bilities found by Triantafyllou and Dimas,3 Longuet-
Higgins8 approximated the shear layer with a piecewise lin-
ear velocity profile, reducing the stability problem to the
study of the roots of a quartic polynomial. Although the sta-
bility regimes obtained by Longuet-Higgins8 did not numeri-
cally correspond to those of the original smooth profile,9 the
piecewise linear profile analysis possessed the same instabil-
ity branches and revealed the relation between the branches
in a transparent way. We will use this simplified flow in the
present study as well.

The goal of this study is to gain further insight into the

perturbation growth mechanisms by first rationalizing the
modal instabilities in terms of the interaction between vortic-
ity and gravity edge waves at the interfaces of vorticity and
density discontinuities and then by addressing the nonmodal
interaction of the edge waves, as well as assessing the role of
the continuous spectrum in perturbation growth.

Interaction between vorticity edge waves was pioneered
by Bretherton10 to explain baroclinic instability and cyclone
growth in the atmosphere. Bretherton10 showed that the in-
stability is understood in terms of a constructive interaction
between two counterpropagating Rossby waves located in
regions of opposite signs of mean potential vorticity gradi-
ent. The waves interact by inducing velocity that advects the
mean potential vorticity in the region of the opposed wave,
and depending on their phase difference, they can modify the
zonal propagation rate of the other Rossby wave and can also
change its amplitude. Bretherton10 concluded that normal
mode instability occurs when these two waves resonate, that
is, when their phases lock and propagate with the same phase
speed in a growing configuration. Harnik and Heifetz11 dis-
cussed in a similar manner barotropic instability of shear
flows and Heifetz et al.12 discussed shear instability of a
constant shear flow embedded between constant flows as was
modeled by Rayleigh.13

On the other hand, Taylor14 and Goldstein15 recognized
that shear instability in a fluid with layers of different densi-
ties can be regarded as the resonance of edge waves at the
interfaces of density discontinuity. Recent studies extended
Taylor’s analysis to include interaction between edge waves
on vorticity and density discontinuities and were able to ex-
plain Kelvin–Rossby wave instabilities in a shallow water
model16 and the classic Holmboe instability.17

Although theoretical interest in terms of edge wave in-
teractions was mainly focused on understanding modal per-
turbation growth, Heifetz and Methven18 demonstrated that
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the edge wave interactions not only generate the unstable
discrete spectrum of the operator governing the stability of
perturbations but can also produce nonmodal transient
growth even for zonal wavenumbers for which exponentially
growing solutions are absent. However, in addition to the
discrete spectrum, shear flows also support a continuous
spectrum of neutrally stable singular modes.19–21 Even
though the continuous spectrum cannot support exponential
growth, it can lead to rapidly growing perturbations at finite
time and needs to be included to assess the stability proper-
ties of the flow at finite time.22,23

In this study we investigate the stability of the shear
layer with the free surface considered by Longuet-Higgins8

using the methods of generalized stability theory.23 We start
by following Heifetz and Methven18 and study the interac-
tion between edge waves propagating at the levels of vortic-
ity gradient and density discontinuities in order to obtain the
exponentially growing normal modes found by
Longuet-Higgins8 and investigate the transient perturbation
growth produced by the edge waves. We also determine the
optimal planar perturbations, which are the most energetic
structures that can arise, taking into account both the discrete
�edge waves� and the continuous spectrum and examine the
role of a continuous spectrum in optimal growth. The tran-
sient growth associated with three dimensional perturbations
will be the subject of future work.

This paper is organized as follows. In Sec. II we describe
the linear evolution equations for perturbations in a horizon-
tal shear flow with a free surface and interpret the emerging
instabilities in terms of the interactions between vorticity and
gravity waves propagating at the interfaces of vorticity gra-
dient and density discontinuities. Section III describes the
temporal development of the edge waves leading to transient
growth of perturbation energy and the role of continuous
spectrum in nonmodal growth. We finally end with a brief
discussion and our conclusions in Sec. IV.

II. FORMULATION OF THE STABILITY PROBLEM

We consider after Longuet-Higgins8 a homogeneous, in-
compressible, and inviscid fluid of density �0 in the un-
bounded region y�0, where y is the vertical coordinate. At
equilibrium, y=0 is the free surface of the fluid, and U�y�,
shown in Fig. 1, is the mean zonal shear flow given by

U�y� = �V0 for − H1 � y � 0,

V0�y + H2�/�H2 − H1� for − H2 � y � − H1,

0 for y � − H2.
�
�1�

Zonal, u, and vertical, v, perturbation velocities varying only
in the zonal, x, and vertical, y, directions are superposed on
the equilibrium mean flow, while ��x , t� is the small elevation
of the free surface, p is the pressure perturbation superposed
on the mean hydrostatic pressure field, and � is the density
perturbation superposed on the mean density �0. Neglecting
surface tension, the linearized, nondimensional equations
governing the evolution of small perturbations are

��t + U�y��x�u +
dU

dy
v = − �xp , �2�

��t + U�y��x�v = − �yp −
�

F2 , �3�

��t + U�y��x�� = − v
d�0

dy
= v��y� , �4�

�xu + �yv = 0. �5�

The horizontal and vertical scales are nondimensionalized by
H= �H1+H2� /2, velocities are nondimensionalized by the
mean velocity at the surface, V0, time has been nondimen-
sionalized by H /V0, and pressure and density have been non-
dimensionalized by �0V0

2 and �0, respectively. The Froude
number, F=V0 /�gH, is the ratio between the mean flow ve-
locity at the surface, V0, and the phase speed, �gH, of propa-
gation of a shallow surface gravity wave in a gravity field of
intensity g and water of depth H. Eliminating pressure from
Eqs. �2� and �3�, we obtain the following equation for the
meridional component of vorticity, q=�yu−�xv:

��t + U�y��x�q = −
d2U

dy2 v +
1

F2�x� . �6�

At the free surface, y=��x , t�, the following linearized kine-
matic boundary condition must be satisfied:

��t + �x�� = v�y = 0,t� . �7�

Equations �4� and �7� then imply that

� = ���y� . �8�

H
1

H
2

H

V
0

y

ζ

x, U

FIG. 1. Vertical velocity profile �1�. The dashed line shows the displacement
� of the free surface from the equilibrium position y=0.
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Therefore, there are three surfaces of discontinuity in this
problem: at the free surface, y=0, there is a density discon-
tinuity and at depths h1=H1 /H and h2=H2 /H there are two
discontinuities in the vorticity gradient of the mean velocity
profile �1�:

d2U

dy2 = ����y + h2� − ��y + h1�� , �9�

where �=1 / �h2−h1� is the nondimensional shear. Introduc-

ing a streamfunction �̃�x ,y , t� to express the velocity fields

as �u ,v�= ��y ,−�x��̃, taking harmonic perturbations of the

form �̃�x ,y , t�=��y , t�eikx, and using Eqs. �8� and �9�, vortic-
ity equation �6� can be expressed in terms of the Fourier
amplitude � as

��t + ikU�y���D2 − k2�� = ik�����y + h2� − ��y + h1��

+
ik

F2���y� , �10�

where D2=�2 /�y2.
By integrating Eq. �10� in the neighborhood of y=0, y

=−h1, and y=−h2, it can be readily shown that the solution to
Eq. �10� satisfies the Rayleigh equation

��t + ikU�y���D2 − k2�� = 0,

and the three conditions at each surface of discontinuity:

��t + ik�� = − ik��0,t� ,

�11�
��t + ik��y��y=0 = − ik�/F2 at y = 0,

��t + ikU1���y��−h1
= − ik���− h1� at y = − h1, �12�

��t + ikU2���y��−h2
= ik���− h2� at y = − h2, �13�

where �·�y denotes the discontinuity at y and U1=1 and U2

=0 are the mean velocities at y=−h1 and y=−h2, respec-
tively. The first condition in Eq. �11� is the kinematic bound-
ary condition �7�, while the second one is the dynamic
boundary condition at the surface in the absence of surface
tension. We also demand that the solutions decay as
y→−�.

The discrete modes of the linearized operator governing
the evolution of perturbations are synthesized by superposing
the three edge waves supported at each discontinuity inter-
face. Each edge wave satisfies �D2−k2��=0 in y�0 and
only one of the three matching conditions, Eq. �11�, Eq. �12�,
or Eq. �13�.

Consider first the edge wave at the free surface y=0:

�0�y,t� =
1

k
ekye−i�k	�k/F�t,

which satisfies �D2−k2��=0 in y�0, and Eq. �11�. It repre-
sents two surface gravity waves propagating with nondimen-
sional phase speeds:

c	 = 1 	
1

F�k
, �14�

and decaying exponentially with y.
The second and third edge waves are

�i�y,t� =
1

2k
�e−k�y+hi� + ek�y−hi��e−ik�Ui+�− 1�i�1+e−2khi��/�2k��t,

where i=1,2. Both decay at y=−� and each is supported at
the mean vorticity gradient discontinuity at y=−hi with i
=1,2, satisfying Eqs. �12� and �13�, respectively. In order to
clearly distinguish the vorticity edge wave solutions from the
surface gravity waves we have also imposed �y� �y=0=0, so
that the inner vorticity waves do not have an imprint on the
vorticity at the surface. The vorticity edge waves propagate
with phase speeds

ci = Ui + �− 1�i��1 + e−2khi�
2k

, �15�

where i=1,2. The first propagates retrograde relative to the
mean flow U1 at the upper interface of discontinuity while
the second propagates prograde relative to the mean flow U2

at the lower interface of discontinuity forming a counter-
propagating pair of Rossby waves.18

The three edge waves interact with each other and the
linear superposition

��y,t� = −
q0�t�

k
eky −

q1�t�
2k

�e−k�y+h1� + ek�y−h1��

−
q2�t�
2k

�e−k�y+h2� + ek�y−h2��

satisfies the perturbation equations if the complex amplitudes
�q0�t� ,q1�t� ,q2�t�� are constrained by Eqs. �11�–�13� to
evolve according to

dx

dt
= Ax ,

where x= �q0�t� ,��t� ,q1�t� ,q2�t��T is the state vector, and

A =	
− ik ik/F2 0 0

i − ik ie−kh1 ie−kh2

i�e−kh1 0 − ikc1 i��e−k�h2−h1� + e−2k�/2
− i�e−kh2 0 − i��e−k�h2−h1� + e−2k�/2 − ikc2


 .
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Matrix A describes the interaction between the two surface
waves �the prograde and the retrograde� and the two vorticity
waves and its eigenvalues and eigenvectors determine the
frequencies, growth rates, and vertical structure of the modes
of Eq. �10�.

A. Modal instability interpreted in terms of edge
wave interaction

In order to gain insight into the modal instabilities aris-
ing from the interaction of the edge waves,14,10 we study
following Heifetz and Methven18 the evolution of the ampli-
tude and phase of each wave separately by writing the com-
plex amplitudes as

�q0�t�,��t�,q1�t�,q2�t��

= �Q0�t�ei
0�t�,Z�t�e
�t,Q1�t�ei
1�t�,Q2�t�ei
2�t��

and taking the real and imaginary parts separately to obtain
the following equations for the amplitude of the edge waves:

dQ0

dt
= −

kZ

F2 sin 
�0, �16�

dZ

dt
= Q0 sin 
�0 −

�10

�
Q1 sin�
10 − 
�0�

−
�20

�
Q2 sin�
20 − 
�0� , �17�

dQ1

dt
= �10Q0 sin 
10 + �12Q2 sin 
12, �18�

dQ2

dt
= − �20Q0 sin 
20 + �12Q1 sin 
12, �19�

where 
�0=
�−
0, 
10=
1−
0, 
20=
2−
0, and 
12=
1−
2

are the phase differences between the edge waves, and the
coefficients,

�12 = ��e−k�h2−h1� + e−k�h1+h2��/2,

�10 = �e−kh1, �20 = �e−kh2,

indicate the strength of interaction between the edge waves.
Equations �16�–�19� show that each wave’s amplitude can
only grow through interaction with the other two, with the
interaction strength depending on two factors: the strength of
the flow induced by the other two waves on each wave’s
interface which is proportional to �ij �i , j=0,1 ,2� and falls
exponentially with the distance between the interfaces and
the phase difference between the waves. The relative phases
of the edge waves evolve according to the equations

d
�0

dt
=

F2Q0
2 − kZ2

ZQ0F2 cos 
�0 +
�10Q1

�Z
cos�
10 − 
�0�

+
�20Q2

�Z
cos�
20 − 
�0� , �20�

d
10

dt
= k�1 − c1� −

kZ

Q0F2cos 
�0 +
Q0

Q1
�10 cos 
10

+
Q2

Q1
�12 cos 
12, �21�

d
20

dt
= k�1 − c2� −

kZ

Q0F2cos 
�0 −
Q0

Q2
�20 cos 
20

−
Q1

Q2
�12 cos 
12, �22�

d
12

dt
= − k�c1 − c2� + �10

Q0

Q1
cos 
10 + �20

Q0

Q2
cos 
20

+ �12
Q1

2 + Q2
2

Q1Q2
cos 
12. �23�

The fixed points of Eqs. �20�–�23� determine the phase
locked configuration of the modal solutions. Note that when
the edge waves are exactly in phase or out of phase �
ij

=0,��, the amplitude tendency is zero and when the phase
difference is 
ij =� /2, the amplitude tendency is maximized
while their phase difference tendency is determined only by
the differences in the phase speeds of the waves as seen in
Eq. �23�.

Longuet-Higgins8 obtained the stability properties of this
flow for various values of h1 and F and found two branches
of instability. In order to analyze modal instability in terms
of edge wave interactions, it is instructive to consider first
two separate limits that isolate the edge wave interactions
underlying the dynamics of the two corresponding branches
of instability.

1. The small Froude number limit

Consider first the limit of small Froude number F1 in
which limit the surface acts as a rigid lid. In steady state, the
free surface displacement in this limit is ZO�F� and the sur-
face wave is such that the vertical velocity at the surface is
small �v�y=0�= i�q0+q1e−kh1 +q2e−kh2�O�F2��. As a result
q0=−q1e−kh1 −q2e−kh2 +O�F2� and Eqs. �18�, �19�, and �23�
can be approximated in this case by

dQ1

dt
� �̃12Q2 sin 
12, �24�

dQ2

dt
� �̃12Q1 sin 
12, �25�

d
12

dt
� − k�c̃1 − c̃2� + �̃12

Q1
2 + Q2

2

Q1Q2
cos 
12, �26�

where

c̃i = Ui + �− 1�i��1 − e−2khi�
2k

, �27�

where i=1,2, and �̃12=��e−k�h2−h1�−e−k�h1+h2�� /2. The dy-
namics are therefore described to a very good approximation
by the interaction between the two vorticity waves whose
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phase speeds and interaction strength are modified because
of the rigid lid boundary condition.

The closed system �24�–�26� describing the interaction
between the vorticity waves was previously studied by Heif-
etz and Methven18 �although the phase speeds and the inter-
action strength are different in that case as Heifetz and
Methven18 considered an unbounded fluid� who found that if
the interaction coefficient �̃12 is strong enough to counteract
differential wave propagation, that is, if the condition

k�c̃1 − c̃2�
2�̃12

� 1 �28�

is satisfied, Eq. �26� has two fixed points:


12 = 	 cos−1k�c̃1 − c̃2�
2�̃12

,

with the edge waves having equal amplitude �Q̂1= Q̂2�. The
stable fixed point is in the range 0�
12�� and the two edge
waves will phase lock in this configuration leading to mutual
growth of the vorticity waves, with growth rate

� = �̃12 sin�cos−1k�c̃1 − c̃2�
2�̃12

 .

This phase locked state corresponds to the growing normal
mode of branch I instability of Triantafyllou and Dimas.3

The dispersion relation for the normal modes of the system
obtained through eigenanalysis of A is shown in Fig. 2 and
the configuration of the fastest growing mode is shown in
Fig. 3. Amplification occurs as the vertical velocity induced
by the lower vorticity wave at the upper interface advects the
mean flow vorticity and produces a positive �negative� vor-
ticity tendency just to the right of the positive �negative�
upper vorticity anomaly with a similar enhancing vorticity
tendency induced by the upper vorticity wave at the lower
interface.

For large wavenumbers, differential wave propagation
becomes large, whereas the flow induced by each vorticity
wave on the other wave’s interface that is proportional to �̃12

becomes exponentially small. As a result condition �28� is
not satisfied and phase speed matching and resonance are

feasible only if the influence of each vorticity wave on the
other’s propagation rate is maximized which is achieved for

12=0 ,�. In this configuration, the vorticity waves cannot
grow and the resulting normal modes are neutrally stable.

For small wavenumbers, the interaction strength is of the
same order as the difference in phase speeds and phase lock-
ing can occur for waves that are in a growing configuration,
with a nevertheless relatively small growth rate. As a result,
the maximum growth rate occurs for the wavenumber for
which the interplay between the exponential decrease in in-
teraction strength with wavenumber and the requirement of
balancing differential propagation to enable phase speed
matching yields the optimal mutual amplitude growth.
Therefore, for increasing shear the maximum growth rate
increases and occurs for larger wavenumbers as shown in
Fig. 2 due to the increase in interaction strength �̃12.

2. The limit of no upper layer

If we take the limit of infinitesimally thin upper layer
�h1=0�, the upper vorticity edge wave vanishes and only the
lower vorticity and the surface edge waves interact. By tak-
ing the appropriate boundary conditions at the surface,24 it
can be readily shown that the phase speed of the surface
waves is modified in this case and is given by

c̃	 = 1 −
�

2k
	

1

2k
��2 +

4k

F2 . �29�

For large wavenumbers or small Froude numbers modifica-
tion in the surface waves’ phase speed is small �c̃	�c	�,
whereas for small wavenumbers or large Froude numbers
c̃	�1−� /k, and the dispersion relation follows closely that
of a Rossby wave �for a thorough discussion of the dynamics
of this mixed Rossby-gravity edge wave see Ref. 25�.

In this limit, Eqs. �16�–�23� are reduced to

dQ0

dt
= −

kZ

F2 sin 
�0 − �20Q2 sin 
20, �30�

dZ

dt
= Q0 sin 
�0 −

�20

�
Q2 sin�
20 − 
�0� , �31�

0 0.5 1 1.5 2

−1.5

−1

−0.5

0

k

ω
r

a

Branch I

0 0.5 1 1.5 2

−0.2

−0.1

0

0.1

0.2

k

kc
i

b

FIG. 2. Dispersion relation for the normal modes of A in the limit of small Froude number �F=0.01�. �a� Real part of frequency �r as a function of
wavenumber for h1=0.5. The normal modes arising from the interaction of the inner vorticity edge waves are either neutral or unstable and the region of
branch I instability is also noted. �b� Growth rate kci as a function of wavenumber for h1=0.5 �solid line� and h1=0.6 �dashed line�.
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dQ2

dt
= − �20Q0 sin 
20, �32�

d
�0

dt
= − � +

Q0
2F2 − kZ2

ZQ0F2 cos 
�0 +
�20Q2

�Z
cos�
20 − 
�0�

− �20
Q2

Q0
cos 
20, �33�

d
20

dt
= �k − � − kc2� −

kZ

Q0F2cos 
�0 − �20
Q0

2 + Q2
2

Q0Q2
cos 
20.

�34�

Following the analysis in the previous section, it can be
shown that when the interaction strength between the lower
vorticity wave and the retrograde surface wave is large
enough to counteract their differential wave propagation,
Eqs. �33� and �34� have stable fixed points in the ranges
−��
�0�0 and −��
20�0 for which there is mutual
growth of the vorticity and the retrograde surface wave am-
plitude, as Eqs. �30�–�32� indicate. This phase locked state
corresponds to the growing normal mode of branch II insta-
bility of Triantafyllou and Dimas3 and the configuration of
the fastest growing mode is shown in Fig. 4. The surface
wave is amplified as the vertical velocity induced by the
lower vorticity wave at the surface alters the vertical dis-
placement of the free surface that in turn enhances the vor-

ticity of the retrograde surface wave when their relative
phase difference lies between 0 and −�. Similarly the surface
wave induces a vertical velocity at the lower interface of
vorticity discontinuity, advecting the mean flow vorticity and
producing a positive �negative� vorticity tendency just to the
left of the positive �negative� vorticity anomaly, leading to
growth of the lower vorticity wave.

We can see in Fig. 5, showing the growth rate for these
vorticity-gravity wave modes, that unstable normal modes
exist for only a limited range of wavenumbers. For both
small and large horizontal scales, the difference in phase
speeds c̃	−c2 is large, while the interaction strength �20 is
exponentially small. Therefore, phase locking is only pos-
sible for 
�0 ,
20=0 ,�, for which the influence of each edge
wave on the other’s propagation rate is maximized, yielding
neutrally stable normal modes. The fast neutral mode arises
from the interaction of the fast �prograde� surface wave with
the inner �prograde� vorticity wave and its phase speed fol-
lows closely c̃+. The two slow ones arise from the interaction
of the slow �retrograde� surface wave with the inner �pro-
grade� vorticity wave. For large wavenumbers their phase
speed follows closely c̃− and c2, respectively, while for small
wavenumber their dispersion relation has the characteristics
of a surface wave and an inner vorticity wave with modified
phase speeds.

For increasing Froude numbers, resonance for waves
with large wavelengths can occur for 
20�0,� because the

0 4 8 12 16 20

−1

0

1

x

q 1

0 4 8 12 16 20

−1

0

1

x

q 2

FIG. 3. Illustration of the interaction between the vorticity edge waves for F=0.01 and h1=0.5. Vorticity anomalies at y=−h1 �upper panel� and y=−h2 �lower
panel� of unit amplitude are shown in the configuration of the most unstable mode �k=0.68�. The initial anomalies �solid line� would counterpropagate in the
absence of interaction with phase speeds given by Eq. �27� to reach the position shown by the dashed line after t=1. The arrows show the locations of
maximum positive �upward arrow� and minimum negative �downward� vorticity tendencies induced by each wave at t=0 on the other wave’s interface through
advection of the basic state vorticity. This interaction slows down the waves and leads to mutual amplitude growth.
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intrinsic frequency of the surface wave decreases, resulting
in a smaller differential propagation. As a result the range of
wavenumbers for which there are exponentially growing
modes increases and is shifted toward smaller wavenumbers,
as illustrated in Fig. 5. Since for smaller wavenumbers the
strength of interaction �20 increases, the maximum growth
rate increases as well.

3. Finite Froude number and upper layer depth

A typical example of the dispersion relation for finite
Froude number and upper layer depth in which all edge
waves interact and both branches of instability are present is
shown in Fig. 6, which is similar to Fig. 2 of
Longuet-Higgins.8 The configuration of the fastest growing
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FIG. 4. Illustration of the interaction between the lower vorticity and the surface edge wave for F=�2 and h1=0. Vorticity anomalies at y=0 �upper panel�
and y=−h2 �lower panel� of unit amplitude are shown in the configuration of the most unstable mode �k=1.35�. The initial anomalies �solid line� would
counterpropagate in the absence of interaction with phase speeds given by Eqs. �29� and �15� to reach the position shown by the dashed line after t=1. The
arrows show the locations of maximum positive �upward arrow� and minimum negative �downward arrow� vorticity tendencies induced by each wave at t
=0 on the other wave’s interface. We also note that the vertical displacement for the surface wave is almost in phase with the vorticity. This interaction slows
down the waves and leads to mutual amplitude growth.
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branch I instability resulting mainly from the interaction of
the two vorticity waves is shown in Fig. 7. Since the strength
of the flow induced by the edge waves falls exponentially
with the distance between the interfaces, the surface gravity
wave affects mainly the upper vorticity wave. The stable
fixed point of Eq. �21� for a growing normal mode is in the
range −��
10�0 for which the vertical velocity induced by
the surface gravity wave at the upper vorticity interface
counteracts the vertical velocity induced by the lower vortic-

ity wave, reducing the positive �negative� vorticity tendency
in regions of positive �negative� upper vorticity anomaly.
The effect of the surface gravity wave is therefore stabilizing
and the growth rate of branch I instability decreases for
larger Froude numbers as shown in Fig. 6, in agreement with
the findings of Longuet-Higgins.8 Moreover the surface
gravity wave tends to speed up the upper vorticity wave rela-
tive to the mean flow at the upper interface, increasing the
differential propagation of the two vorticity waves. As a re-
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sult, phase speed matching for moderate wavenumbers oc-
curs only for in phase or out of phase edge waves and the
cut-off wavenumber is reduced for larger Froude numbers as
shown in Fig. 6.

On the other hand in the growing phase locked configu-
ration of branch II instability, the upper vorticity wave en-
hances the interaction between the lower vorticity and the
retrograde surface gravity wave as illustrated in Fig. 8, where
the configuration of the fastest growing branch II instability
is shown and increases the growth rate of branch II instabil-
ity. Therefore, as noted by Longuet-Higgins,8 for small
Froude numbers, low wavenumbers of branch I instability
dominate the growth, while for large Froude numbers
smaller scales of branch II instability dominate, with the two
branches having comparable growth rates for moderate
Froude numbers. We finally note that increasing shear ampli-
fies the destabilizing effect of the upper vorticity wave and
for large enough shear branch I and branch II instabilities
merge.

III. DETERMINATION OF THE OPTIMAL GROWTH

In realistic geophysical and laboratory flows, perturba-
tion growth occurs over a finite time interval due to disrup-
tion by turbulence or changes in the mean flow. It is therefore
of interest to find the initial conditions yielding the largest
instantaneous energy growth or the largest energy growth
over a specified time interval Topt. In practice Topt is the time
scale over which growth is limited and is typically of the

order of a few advective time units. We will first address
energy growth by taking into account only the discrete spec-
trum, whose dynamics is governed by the edge wave inter-
actions considered in the previous section.

A. Nonmodal transient growth of the edge waves

It can be readily shown that the nondimensional, zonally
averaged perturbation energy is

E =
1

2
�

−�

0

�u2 + v2�dy +
1

2F2�2

=
1

4
�

−�

0

���y��2 + k2���2�dy +
1

4F2 ���2, �35�

where the overbar denotes a zonal average. If the perturba-
tion field comprises only of the edge waves, perturbation
energy �35� is given by

E = x†Mx = y†y ,

where † denotes the Hermitian transpose, x= �q0�t� ,
��t� ,q1�t� ,q2�t��T is the state vector,
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FIG. 8. The same as in Fig. 7 but in the configuration of the most unstable branch II mode �k=1.98�. The arrows show the locations of maximum positive
�upward arrow� and minimum negative �downward arrow� vorticity tendencies induced by the upper vorticity wave �solid arrows� and surface gravity wave
�dashed arrows� at t=0 on the lower vorticity wave’s interface �y=−h2� through advection of the basic state vorticity. We also note that the vertical
displacement for the surface wave is almost in phase with the vorticity.
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M =
1

4k	
1 0 �10/� �20/�
0 k/F2 0 0

�10/� 0 �1 + e−2kh1�/2 �12/�
�20/� 0 �12/� �1 + e−2kh2�/2



is the energy metric matrix, and y=M1/2x is the state vector
in transformed coordinates for which the energy is given by
the Euclidean norm of y. The governing equation for y is

dy

dt
= Dy , �36�

where D=M1/2AM−1/2. The solution of Eq. �36� is given by
y�t�=eDty�0�, where y�0� is the initial state and eDt is the
finite time propagator mapping the initial perturbation to its
state at time t.

For a given zonal wavenumber k, singular value decom-
position of the propagator eDt=U�V†, where U and V are
unitary matrices and � is a diagonal matrix with positive
elements ordered by growth, identifies the optimal perturba-
tion yopt as the first column of V.23 The square of the corre-
sponding singular value � is the largest energy growth
Emax�Topt� that can be achieved over the specified time inter-
val Topt by any initial plane wave of unit energy with wave-
number k. The maximum instantaneous growth rate is readily

obtained by taking the limit Topt→0, in which case the
analysis is reduced to finding the leading eigenvalue and the
corresponding eigenvector of �1 /2��D+D†�.23

The maximum instantaneous growth rate as a function of
wavenumber for Froude number F=1 and h1=0.5 is shown
in Fig. 9�a� along with the corresponding growth rate for the
most unstable normal mode of A. Perturbation energy grows
instantaneously even for the range of wavenumbers k for
which there are no unstable modes, as the amplitudes of the
edge waves can grow transiently in the time interval before
phase locking regardless of the steady state phase difference
between the edge waves that determines whether the result-
ing normal mode grows exponentially or not.

The optimal energy growth Emax achieved at Topt=10
and Topt=50 as a function of wavenumber is shown in Figs.
9�b� and 9�c�, respectively. For small optimizing times, the
optimal growth has two peaks in the branch I and II instabil-
ity regions, respectively, while there is also comparable
growth for the stable region of wavenumbers in between the
two branches. For larger optimizing times, most of the en-
ergy amplification observed in the unstable regions is attrib-
uted to the growth of the unstable normal modes because
phase locking occurs within about 15 advective time units. In
this case, the optimal initial condition leads to a rapid energy
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FIG. 9. �a� Optimal instantaneous energy growth for the edge waves �dashed line�, for the unstable normal mode �dashed-dotted line�, and for the complete
spectrum solution �solid line�. �b� Optimal energy growth as a function of wavenumber k for a perturbation projecting on the discrete spectrum �dashed line�
and on the complete spectrum �solid line�. The corresponding growth of the unstable normal mode �dashed-dotted line� is also shown. The optimization time
is Topt=10. �c� The same as in �b� but for optimization time Topt=50. �d� Optimal energy growth normalized by the corresponding growth of the unstable mode
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is Topt=50. In all panels F=1 and h1=0.5.
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amplification in the time interval before phase locking and to
the excitation of the normal mode with a finite amplitude.
For the most unstable wavenumber in both branches of in-
stability, this results in an overall energy growth that is about
two times the corresponding growth attained by initially per-
turbing the flow with the unstable normal mode, as can be
seen in Fig. 9�d�. In the vicinity of the stability boundaries,
optimal growth is up to two orders of magnitude larger than
the normal mode growth that is either very low or zero,
whereas for wavenumbers far within the stable regions, op-
timal growth diminishes as well with only about a doubling
of the initial energy.

In summary, perturbation energy growth occurs even for
wavenumbers for which exponentially growing modes are
absent and is significant for early optimization times. For
larger optimization times normal mode instability dominates
if we only take into account the discrete spectrum, that is, the
edge wave dynamics. The configuration of the optimal edge
wave initial condition facilitates non-normal edge wave in-
teractions in the time interval before phase locking, leading
to the excitation of the normal mode with a modest ampli-
tude.

B. The role of the continuous spectrum
in optimal growth

In addition to the discrete spectrum studied in previous
sections, Eq. �10� has a continuous spectrum of singular
modes that are neutral. Since these modes are nonorthogonal,
they can cooperate to produce transient growth. This can be

easily seen by considering an unbounded constant shear flow
U�y�=�y without a free surface. In this case Eq. �10� has
only a continuous spectrum of singular neutral modes19 and
the solution of Eq. �10� consisting of the integral over the
singular modes can be also insightfully written as the integral
over the Orr plane waves22 with time dependent vertical
wavenumber l−�kt:

�Orr�y,t� =
Aei�l−�kt�y

k2 + �l − �kt�2 ,

each yielding an energy density growth:

EOrr =
k2 + l2

k2 + �l − �kt�2 .

The energy density of the plane wave with wavenumbers
�k , l� at t=0 will reach maximum energy 1+ �l /k�2 at t
= l /k�. As these plane waves conserve vorticity, the energy
amplification is attributed to kinematic deformation of vor-
ticity by the shear flow leading to transient growth of the
cross-stream and streamwise velocity fields for waves with
constant phase lines oriented against the mean shear. This is
the mechanism of growth in two dimensional shear discussed
by Orr26 and we will refer to it as the Orr mechanism. Since
it can lead to a large transient growth of perturbations with
phase lines initially oriented almost horizontally �l /k�1�,
the continuous spectrum has to be taken into account to
properly address the stability of the flow at finite time. To
obtain the evolution of perturbations projecting on the full
spectrum, we use the mean velocity profile

U�y� =�
1 for − h1 + � � y � 0,

1 − 2�/�h2 − h1�f��− y − h1 + ��/�2��� for − h1 − � � y � − h1 + � ,

�y + h2�/�h2 − h1� for − h2 + � � y � − h1 − � ,

2�/�h2 − h1�f��y + h2 + ��/�2��� for − h2 − � � y � − h2 + � ,

0 for y � − h2 − � ,
�

with

f�x� = � 2
3x3, 0 � x �

1
2 ,

− 2
3x3 + 2x2 − x + 1

6 , 1
2 � x � 1.

�
It differs from the profile given in Eq. �1� only in that the
corners at the edges of the shear region have been smoothed
out. We then discretize Eqs. �10� and �35� at points
�y1 ,y2 , . . . ,yN� to obtain the matrix equations

dxc

dt
= Acxc

and E=xc
†Mcxc, where xc= ���t� ,��y1 , t� ,

��y2 , t� , . . . ,��yN , t��T is the state vector, Ac is the dynamical
operator, and Mc is the corresponding energy metric which
approximates Eq. �35� with the bilinear form xc

†Mcxc. For the

reported calculations we used N=600 grid points in a domain
of depth H=8.

Proceeding as in the previous section, eigenanalysis of
�1 /2��Dc+Dc

†�, where Dc=Mc
1/2AMc

−1/2, reveals the initial
perturbation leading to the maximum instantaneous growth,
while singular value decomposition of the propagator eDcTopt

identifies the initial perturbation of unit energy leading to the
largest energy amplification over the specified time interval
Topt.

The maximum instantaneous growth and the optimal en-
ergy growth Emax achieved at Topt=10 and Topt=50 are
shown in Figs. 9�a� and 9�b�, respectively. We can see that
for small optimizing times optimal energy growth is almost
constant for perturbations with wavenumbers 1.5�k�3,
even though only perturbations with wavenumbers close to
k=2 are exponentially growing. Moreover, comparison of
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the optimal growth with the corresponding exponential
growth and the non-normal energy growth due to edge wave
dynamics shows that both the normal mode analysis and the
edge wave dynamics fail to predict the wavelength of the
fastest growing perturbation for early times.

For larger optimizing times, there is significant energy
growth peaking in the region of branch I instability with a
secondary peak in the region of branch II instability. How-
ever, even in this case in which most of the growth is attrib-
uted to the exponentially growing normal mode, maximum
energy growth occurs for k=0.7, while the fastest exponen-
tially growing perturbation has k=0.57. For the most un-
stable wavenumbers of branch I �k=0.57� and branch II �k
=1.95�, optimal growth is larger than the corresponding
growth of the unstable normal mode by factors of O�10� and
O�200�, respectively, and about 5 times and 100 times larger
than the growth due to non-normal edge wave interactions,
respectively. As discussed previously, this excess growth is
attributed to the energy amplification occurring in the time
interval before phase locking and is caused by the increased
excitation of the unstable normal mode shown in Fig. 10 by
the initial perturbation projecting on the continuous spec-
trum. The optimal initial perturbation shown in Fig. 10 has
the form of an Orr wave with phase lines tilted against the
shear and reveals that the Orr mechanism underlies the tran-
sient growth occurring before phase locking.

In the stable regime, the energy growth is about an order
of magnitude less than the growth of unstable horizontal

scales but is still significantly large and about four orders of
magnitude larger than the corresponding growth of perturba-
tions projecting only on the discrete spectrum as can be seen
in Fig. 9�d�. The initial tilt of the optimal perturbation shown
in Fig. 11 is such that the Orr wave assumes a cross-stream
orientation �l /�k− t=0� at a time t�Topt, utilizing the Orr
mechanism for transient growth and exciting at high ampli-
tude the four neutral modes. This excitation process leads to
the energy vacillation shown in Fig. 11.

IV. CONCLUSIONS

Modal and nonmodal growths of perturbations in the
shear flow with a free surface considered by Longuet-
Higgins8 were investigated. The fundamental physical
mechanisms underlying the emerging normal mode instabili-
ties have been explored in terms of the interactions between
vorticity waves propagating at the two interfaces of vorticity
gradient discontinuity and surface gravity waves propagating
at the interface of density discontinuity. The vorticity and
surface gravity edge waves interact by inducing velocities at
the other waves’ interfaces that modify the other waves’ am-
plitudes and phase speeds. The efficiency of this interaction
was found to be determined by the strength of the induced
flow falling exponentially with the horizontal wavelength
and by the relative phase difference between the waves. The
resulting phase locked configuration corresponds to the nor-
mal modes of the shear flow that can be either growing/
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FIG. 10. �a� Streamfunction of the optimal perturbation for optimizing time Topt=50. �b� Streamfunction of the unstable normal mode. In both panels, the
zonal wavenumber is k=0.7, F=1, h1=0.5, and the thick lines indicate the boundaries of the shear layer extending from y=−0.5 to y=−1.5.
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decaying or neutral depending on the amplitude tendency of
the edge waves in the phase locked configuration.

In the limit of small Froude number in which the free
surface displacement is infinitesimally small, the dominant
interaction is the one between the two counterpropagating
vorticity waves. In this case, phase speed modification by the
vorticity waves is larger than their differential propagation
for large wavelengths, causing the relative phase difference
between the vorticity waves in the phase locked state to be in
the range between 0 and �. In this configuration the vertical
velocity induced by the upper �lower� vorticity wave at the
lower �upper� interface advects the mean flow vorticity and
produces a vorticity anomaly tendency that reinforces the
existing anomaly at the upper �lower� interface. The unstable
mode resulting from this interaction corresponds to branch I
instability of Triantafyllou and Dimas.3

In the limit of no upper layer of constant velocity, only
the lower vorticity and the surface waves interact as the up-
per interface of vorticity gradient discontinuity along with
the upper vorticity wave vanishes. For a certain range of
wavenumbers the effect of each wave on the propagation rate
of the other is strong enough to bring their relative phase
difference in the range between −� and 0 in the phase locked
state. In this configuration there is mutual growth of the vor-
ticity and the retrograde surface wave amplitude, as the ver-
tical velocity induced by the lower vorticity wave at the sur-
face changes the vertical displacement of the free surface
that in turn enhances the vorticity of the surface wave, while

the surface wave induces a vertical velocity at the lower
interface of vorticity discontinuity, advecting the mean flow
vorticity and producing a vorticity tendency reinforcing the
vorticity anomaly. The resulting normal mode is therefore
unstable and corresponds to branch II instability of Trian-
tafyllou and Dimas.3 For finite Froude number and upper
layer depth, the surface gravity wave was found to have a
stabilizing effect on branch I instability, while the upper vor-
ticity wave was found to have a destabilizing effect on
branch II instability. As a result, for small Froude numbers,
large scales of branch I instabilities were found to dominate
the exponential growth, while for large Froude numbers,
smaller scales of branch II instability have the largest growth
rate.

Apart from exponential growth in the phase locked state,
the edge waves’ amplitudes grow transiently, leading to an
algebraic perturbation energy growth at finite time. Calcula-
tion of the initial phase and amplitude for each wave yielding
the largest energy growth showed that transient energy
amplification occurs even for wavenumbers for which
exponentially growing modes are absent and is significant
for early optimization times. For larger optimization times,
perturbations with horizontal scales within branch I and
branch II instability regions were found to exhibit the largest
transient growth with most of the energy amplification
attributed to the growth of the unstable normal modes. In
this case, the effect of nonmodal edge wave interactions is
to excite the normal mode with modest amplitude due to
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their transient growth in the time interval before phase
locking.

Finally, nonmodal growth of perturbations taking into
account both the discrete and the continuous spectrum of
neutral, singular modes of the shear flow was investigated.
The energy of vorticity perturbations �Orr waves� initially
tilted against the shear amplifies due to kinematic deforma-
tion of vorticity by the shear flow. For wavenumbers in the
branch I and branch II instability regions, this large amplifi-
cation leads to excitation of the unstable mode with a large
amplitude and to an energy growth that is larger than the
corresponding growth of the unstable mode. It was also
shown that the horizontal scale of the fastest growing pertur-
bation �in terms of energy norm� is for almost all times dif-
ferent than the scale of the perturbation with the fastest ex-
ponential growth.

For wavenumbers in which exponentially growing
modes are absent, optimal growth is comparable to the
growth obtained by perturbing the flow with the most un-
stable normal mode. The optimal initial conditions that have
the form of an Orr wave with phase lines tilted against the
shear lead to the excitation of the four neutral normal modes
with a very large amplitude and to an energy vacillation for
large times.

In summary, the results of this study lead us to conclude
that even though edge wave dynamics are necessary to inter-
pret normal mode instability, nonmodal growth is dominated
by the continuous spectrum dynamics and inclusion of the
continuous spectrum is necessary to address the stability
properties of the flow at finite time.
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