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In this Letter, we use a nonequilibrium statistical theory, the stochastic structural stability theory

(SSST), to show that an extended version of this theory can make predictions for the formation of

nonzonal as well as zonal structures (lattice and stripe patterns) in forced homogeneous turbulence on a

barotropic � plane. Comparison of the theory with nonlinear simulations demonstrates that SSST predicts

the parameter values for the emergence of coherent structures and their characteristics (scale, amplitude,

phase speed) as they emerge and at finite amplitude. It is shown that nonzonal structures (lattice states or

zonons) emerge at lower energy input rates of the stirring compared to zonal flows (stripe states) and their

emergence affects the dynamics of jet formation.

DOI: 10.1103/PhysRevLett.110.224501 PACS numbers: 47.27.eb, 47.20.Ky, 47.27.De, 52.35.Mw

Turbulence in planetary atmospheres and in plasma
flows is observed to be organized into large scale zonal
jets with long-lasting coherent eddies or vortices
embedded in them [1–4]. The jets control the transports
of heat and chemical species in planetary atmospheres
and separate the high temperature plasma from the cold
containment vessel wall in magnetic plasma confinement
devices. It is therefore important to understand the mecha-
nisms for the emergence, equilibration, and maintenance
of these coherent structures and the simplest model for
this purpose is barotropic dynamics on a � plane. In this
Letter, we present a theory that predicts the formation and
nonlinear equilibration of large scale coherent structures in
barotropic �-plane turbulence and then test this theory
against nonlinear simulations.

A large number of numerical simulations of this model
have shown that robust, large scale zonal jets emerge in the
flow and are sustained at finite amplitude [5–9]. In addition,
large scale westward propagating coherent waves that were
called satellite modes or zonons were found to coexist with
the zonal jets [8,10,11]. The emergence of jets has been
described in terms of an anisotropic inverse energy cascade
[6,12,13], or in terms of inhomogeneousmixing of vorticity
[14,15], or in terms of a direct transfer of energy from small
scale waves into the zonal jets, either through nonlinear
interactions between finite amplitudeRossbywaves [16,17]
or through shear straining of the small scalewaves by the jet
[18]. However, themechanism for the emergence andmain-
tenance of nonzonal structures remains elusive. Statistical
equilibrium theory applied in the absence of forcing and
dissipation has been able to predict both jets and coherent
vortices as maximum entropy structures [19], and a recent
study has shown correspondence of the theoretical results
with nonlinear simulations in the limit of weak forcing and
dissipation [20]. Nevertheless, the relevance of these results
in planetary and plasma flows that are strongly forced
and dissipated and are therefore out of equilibrium remains
to be shown.

In this Letter, we present results based on an extension of
a nonequilibrium statistical theory, the stochastic structural
stability theory (SSST) [21–23] or equivalently the second
order cumulant expansion theory (CE2) [24–26]. While
recent studies have demonstrated that SSST can predict
the structure of zonal flows in turbulent fluids [25,27,28],
the results presented in this Letter demonstrate that the
extended version of SSST can predict the emergence of
both zonal and nonzonal coherent structures and can cap-
ture their finite amplitude manifestations. In addition, we
show that the extended version of SSST can also capture
the disruption of jet formation caused by the presence of
nonzonal structures, which was recently hypothesized in
studies comparing the predictions of SSST with nonlinear
simulations [25,27,28]. The emergence of nonzonal and
zonal structures described above is similar to formation of
the lattice and stripe patterns in homogeneous thermal
nonequilibrium systems [29]. The analogy between the
formation of stripes and zonal jets has been recently
emphasized using SSST dynamics [30]. In this Letter we
formulate the dynamics that can produce lattice states in
turbulent flows.
Consider the stochastically forced barotropic vorticity

equation on a plane tangent to the surface of a planet:

@t� þ c x�y � c y�x þ �c x ¼ �r� � ��2� þ f: (1)

The relative vorticity is � ¼ �c , c is the stream function,
� ¼ @2xx þ @2yy is the Laplacian, x is in the zonal (east-

west) direction, and y is in the meridional (north-south)
direction, � ¼ 2�cos�0=R is the gradient of planetary
vorticity at latitude �0, � is the rotation rate, and R the
radius of the planet. Equation (1) is a good approximation
for the dynamics of nondivergent motions at the mid
latitudes of the planet and is also the infinite effective
Larmor radius limit of the Charney-Hasegawa-Mima equa-
tion that governs drift-wave turbulence in plasmas. The
effects of baroclinicity and divergence have been neglected
for simplicity, but can be easily incorporated as in previous

PRL 110, 224501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
31 MAY 2013

0031-9007=13=110(22)=224501(5) 224501-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.224501


SSST studies for the emergence and equilibration of jets in
the outer planets [31] and in drift-wave turbulence [32]. We
are assuming linear damping with coefficient r represent-
ing the Ekman drag induced by the horizontal boundaries
and hyperdiffusion with coefficient � that dissipates the
energy flowing into unresolved scales. The forcing term f
is necessary to sustain turbulence, and may parametrize
processes that have not been included in the dynamics,
such as forcing from small scale convection. In many
previous studies, this excitation was taken as a temporally
delta correlated and spatially homogeneous and isotropic
random stirring. We follow the same forcing protocol and
consider an isotropic ring forcing, injecting energy at rate "
in a narrow ring of wave numbers of width�Kf around the

total wave number Kf.

We solve (1) in the doubly periodic domain 2�� 2�.
The calculations in this Letter are with � ¼ 10, r ¼ 0:01,
� ¼ 2� 10�6, Kf ¼ 8, and �Kf ¼ 1. To illustrate the

characteristics of the turbulent flow and the emergence of
coherent structures, we consider two indices. The first is the
zonal mean flow (zmf) index [25] defined as the ratio of

the energy of zonal jets over the total energy, zmf ¼
P

l:l<Kf
Êðk ¼ 0; lÞ=Pkl Êðk; lÞ, where Ê is the time aver-

aged energy power spectrum of the flow and k, l are the
zonal and meridional wave numbers, respectively. The
second is the nonzonal mean flow (nzmf) index defined as
the ratio of the energy of the nonzonal modes with scales
lower than the scale of the forcing over the total energy:

nzmf ¼ ½Pkl:K<Kf
Êðk; lÞ � P

l Êðk ¼ 0; lÞ�=Pkl Êðk; lÞ.
Figure 1 shows both indices as a function of the energy input
rate " and the corresponding value of the nondimensional

zonostrophy parameter R� ¼ 0:7ð"�2=r5Þ1=20, which was

used in previous studies to characterize the emergence and
structure of zonal jets in planetary turbulence [11,15]. For "
smaller than a critical value "c (corresponding to R� ¼
1:64), the turbulent flow is homogeneous and remains
translationally invariant in both directions. When " > "c,

the translational symmetry of the flow is broken and non
zonal structures formwith scales larger than the scale of the
forcing.
The time averaged power spectrum, shown in Fig. 2(a)

for " ¼ 2:6"c, has pronounced peaks at ðjkj; jljÞ ¼ ð1; 5Þ
that correspond to coherent structures propagating west-
ward [cf. Figs. 3(a) and 3(b)] with approximately the
Rossby wave phase speed for this wave. However, at larger
" the propagation speed of these structures departs from
that of Rossby waves. For " > "nl (corresponding to R� ¼
1:88), robust zonal jets emerge. For example, the peaks at
ðk; jljÞ ¼ ð0; 3Þ in the spectrum of Fig. 2(b) correspond to
coherent zonal jets [cf. Figs. 3(c) and 3(d)]. From Fig. 1 we
see that while the jets contain over half of the total energy,
substantial power remains in nonzonal structures.
In this Letter we address the emergence of these non-

zonal structures, called satellite modes [8] or zonons
[10,11], and assess their effect on jet formation using
another interpretation of SSST. SSST describes the statis-
tical dynamics of the first two equal time cumulants of
Eq. (1). The first cumulant is Zðx; tÞ � h�i (the brackets
denote an ensemble average) and the second cumulant
Cðx1;x2; tÞ � h� 01� 02i is a function of the vorticity deviation
� 0i ¼ �i � Zi at the two points xi ¼ ðxi; yiÞ (i ¼ 1, 2). It
can be shown from (1) that the equations for the evolution
of the cumulants are

@tZþUZx þ Vð�þ ZyÞ þ rZþ ��2Z

¼ @xð@y1��1
2 CÞx1¼x2

� @yð@x1��1
2 CÞx1¼x2

; (2a)

@tC ¼ ðA1 þ A2ÞCþ�; (2b)

where

Ai ¼ �Ui@xi � Vi@yi � ð�þ ZyiÞ@xi��1
i

þ Zxi@yi�
�1
i � r� ��2

i (3)

acts at xi ¼ ðxi; yiÞ and governs the linear dynamics
about the instantaneous mean flow U ¼ ½U;V� ¼
½�@yhc i; @xhc i�. In (2b), � contains the covariance of

the external forcing and terms related to third order
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FIG. 1 (color online). The zmf (red lines) and nzmf (blue lines)
indices as a function of "="c and R� for the nonlinear (solid

lines) and SSST (dashed lines) integrations. The critical "c is the
energy input rate at which the SSST predicts structural instability
of the homogeneous turbulent state. Zonal jets emerge for " >
"nl, with "nl ¼ 15:9"c.
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FIG. 2 (color online). Energy power spectra, log½Êðk; lÞ�, ob-
tained from nonlinear simulation at (a) "="c ¼ 2:6 and
(b) "="c ¼ 30. In (a) the flow is dominated by a ðjkj; jljÞ ¼
ð1; 5Þ nonzonal coherent structure. In (b) the flow is dominated
by a coherent zonal flow at ðk; jljÞ ¼ ð0; 3Þ.
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cumulants. A second order closure is obtained if the third
order cumulant is ignored and � is set to be the spatial
covariance of the stochastic forcing f. In most earlier
studies of SSST, the ensemble average was assumed to
represent a zonal average. However, with this interpretation
the nonzonal waves are treated as incoherent and their
emergence and characteristics cannot be studied. In this
Letter, we adopt the more general interpretation introduced
to study the emergence of non-zonal structure in baroclinic
turbulence [23,33], that the ensemble average represents a
Reynolds average with the ensemble mean representing
coarse graining. With this interpretation of the ensemble
mean, Eq. (2) provides the statistical dynamics of the inter-
action of the ensemble average field, which can be a zonal or
a nonzonal coherent structure, with the fine-grained field,
represented in the theory through its covariance C. The
fixed points of the SSST dynamics define ideal equilibria
that are formally realizable only in the infinite ensemble
limit. However, we show here that these equilibria manifest

in actual nonlinear simulations (cf. also [27]). When these
equilibria become unstable, a structural reorganization of
the turbulence occurs and the turbulent flow bifurcates to a
different attractor.
The SSST system (2) has for � ¼ 0 the equilibrium

UE ¼ VE ¼ 0; CE ¼ �=ð2rÞ; (4)

that has zero large scale flow and a homogeneous eddy field
with spatial covariance dictated from the forcing. We now
investigate the stability of this equilibrium as a function
of the energy input rate " and the characteristics of
the equilibrated unstable structures and relate the outcome
of the analysis to the results in the nonlinear simulations
of (1). The stability of the homogeneous equilibrium (4)

is assessed by introducing perturbations ½�Z; �C� ¼
½�Znm; �Cnm�einðx1þx2Þ=2þimðy1þy2Þ=2e�t in Eq. (2) linearized
about equilibrium (4) and calculating the eigenvalue �. It
can be shown that � satisfies the nondimensional equation

~"Kf

2��Kf

X

k;l

ð ~m ~k�~n ~lÞ½~n ~mð~k2þ � ~l2þÞ þ ð ~m2 � ~n2Þ~kþ~lþ�ð1� ~N2= ~K2Þ
2i~kþð~kþ~nþ ~lþ ~mÞ � i~nð ~K2 þ ~K2

sÞ=2þ ð~�þ 2Þ ~K2 ~K2
s

¼ ð~�þ 1Þ ~N2 � i~n; (5)

where ð~n; ~m; ~k; ~lÞ ¼ ðn;m; k; lÞr=�, ~� ¼ �=r are the non-
dimensional wave numbers and growth rate, respectively,
~K2 ¼ ~k2 þ ~l2, ~K2

s ¼ ð~kþ ~nÞ2 þ ð~lþ ~mÞ2, ~N2 ¼ ~n2 þ ~m2,
~kþ¼ ~kþ~n=2, ~lþ¼~lþ ~m=2, and the summation is over in-
teger values of (k, l) satisfying j ~K�ðKfr=�Þj<�Kfr=�
[34]. The nondimensional energy input rate ~"¼"�2=r5,

which is the bifurcating parameter in this Letter, is related
to the zonostrophy parameter through R� ¼ 0:7~"1=20. For
n ¼ 0, Eq. (5) reduces to the equation that determines the
emergence of zonal flows [25,35].
For small values of the energy input rate ~", the homoge-

neous state is stable [i.e., Reð�Þ< 0 for all n, m]. When ~"
exceeds a critical ~"c, the homogeneous flow becomes SSST
unstable and coherent structures emerge. The critical ~"c is
defined as minðn;mÞ~"t, where ~"t is the energy input rate that
renders wave numbers (n, m) neutral [Reð�Þ ¼ 0]. The
critical ~"c depends in general on the forcing characteristics,
and for the ring forcing at Kf ¼ 8, ~"c ¼ 2:48� 107 or

R� ¼ 1:64 [36]. The growth rates as a function of the

integer valued wave numbers (n;m) of the structure are
shown in Fig. 4. For "="c ¼ 2:6, the structure with the
largest growth rate is nonzonal with ðjnj; jmjÞ ¼ ð1; 5Þ and
has Imð�Þ> 0, implying retrograde propagation of the
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FIG. 3 (color online). (a) Snapshot of the stream function
c ðx; y; tÞ and (b) Hovmöller diagram of c ðx; y ¼ �=4; tÞ ob-
tained from nonlinear simulation at "="c ¼ 2:6. The thick lines
in (b) correspond to the phase speed obtained from Eq. (5).
(c) Snapshot of the stream function c ðx; y; tÞ and (d) Hovmöller

diagram of the x-averaged c ðy; tÞ obtained from nonlinear
simulation at "="c ¼ 30.
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eigenstructure. Note also that for this energy input rate, the
zonal flows (n ¼ 0) are SSST stable and jets are not
expected to form. For "="c ¼ 30, both stationary zonal
jets [Imð�Þ ¼ 0] and retrograde propagating nonzonal
structures are unstable, but the zonal jets have smaller
growth rates compared to the nonzonal structures [37].
Numerical integration of the SSST system (2) shows that
for " > "c the unstable structures equilibrate at finite am-
plitude after an initial period of exponential growth.
Figure 5(a) shows the equilibrium structure with the largest
domain of attraction, when "="c ¼ 2:6. This structure
coincides with the finite amplitude equilibrium of the fast-
est growing ðjnj; jmjÞ ¼ ð1; 5Þ eigenfunction and propa-
gates as illustrated in Fig. 5(b) in the retrograde direction
with a speed approximately equal to the phase speed of this
unstable eigenfunction. A proxy for the amplitude of these
equilibrated structures are the zmf and nzmf indices that are
calculated for the SSST integrations and are shown in Fig. 1.
As the energy input rate increases, the nonzonal structures
equilibrate at larger amplitudes. However, for " > "nl, the
equilibriawith the largest domain of attraction are zonal jets
and the flow is dominated by these structures (cf. Fig. 1).

The results of the SSST analysis are now compared to
nonlinear simulations. The stability analysis accurately
predicts the critical "c for emergence of nonzonal struc-
tures in the nonlinear simulations as shown in Fig. 1. The
finite amplitude equilibria obtained when " > "c also
correspond to the dominant structures in the nonlinear
simulations. For "="c ¼ 2:6, the spectra in the nonlinear
simulations show significant power at ðjnj; jmjÞ ¼ ð1; 5Þ,
corresponding to the SSST structure with the largest
domain of attraction. Remarkably, the phase speed of these
waves observed in the nonlinear simulations and the am-
plitude of these structures as illustrated by the nzmf index
are approximately equal to the phase speed and amplitude
of the corresponding SSST translating equilibrium struc-
ture (cf. Figs. 1, 3, and 5). For " > "nl, in both nonlinear
and SSST simulations zonal jets emerge and the power of
the nonzonal structures is reduced. Comparison of the
number of jets and their amplitude between the SSST and
the nonlinear simulations also shows good agreement (not

shown). This demonstrates that the SSST system can pre-
dict the amplitude and characteristics of both the nonzonal
and the zonal structures that emerge in the turbulent flow.
While the regime transition that occurs at "c is predicted

by the stability equation (5), the second transition, which is
associated with the emergence of zonal flows and occurs at
"nl, is more intriguing. Equation (5) predicts that the zonal
structures become unstable at "sz ¼ 4"c < "nl. In previous
studies of SSST dynamics restricted to the interaction
between zonal flows and turbulence, these initially un-
stable structures were found to equilibrate at finite ampli-
tude and as a result the predictions of the SSST theory did
not agree with nonlinear simulations [25,27]. Preliminary
calculations show that, within the context of this general-
ized SSST analysis that takes into account the dynamics of
nonzonal structures as well, these equilibria are found to be
saddles that are stable to zonal but unstable to nonzonal
perturbations. The threshold for the emergence of jets in
the SSST and in the nonlinear simulations is therefore
determined as the energy input rate at which a SSST stable,
finite amplitude zonal jet equilibrium exists. It is worth
noting that a method to correctly obtain this threshold "nl
even within the context of SSST employed with a zonal
average has been recently developed [27].
In summary, we presented a theory that shows that large

scale structure in barotropic turbulence arises through
systematic self-organization of the turbulent Reynolds
stresses, in the absence of cascades. The theory allowed
the determination of conditions for the emergence of co-
herent structures in homogeneously forced flows and we
have demonstrated, through comparison with nonlinear
simulations, that it predicts both the emergence and the
finite amplitude equilibration of these structures. An
advance made in this Letter is the development of the
theoretical framework that accounts for the emergence of
westward propagating nonzonal (or lattice) states in turbu-
lence and for their effect on the zonal jet dynamics. The
relation of these states to westward propagating vortex
rings in the ocean and coherent vortices in planetary
atmospheres will be the subject of future research.
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