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Non-modal mechanisms underlying transient growth of propagating acoustic waves
and non-propagating vorticity perturbations in an unbounded compressible shear
flow are investigated, making use of closed form solutions. Propagating acoustic
waves amplify mainly due to two mechanisms: growth due to advection of streamwise
velocity that is typically termed as the lift-up mechanism leading for large Mach
numbers to an almost linear increase in streamwise velocity with time and growth due
to the downgradient irrotational component of the Reynolds stress leading to linear
growth of acoustic wave energy for large times. Synergy between these mechanisms
along with the downgradient solenoidal component of the Reynolds stress produces
large and robust energy amplification.

On the other hand, non-propagating vorticity perturbations amplify due to
kinematic deformation of vorticity by the mean flow. For weakly compressible flows,
an initial vorticity perturbation abruptly excites acoustic waves with exponentially
small amplitude, and the energy gained by vorticity perturbations is transferred
back to the mean flow. For moderate Mach numbers, a strong coupling between
vorticity perturbations and acoustic waves is found with the energy gained by vorticity
perturbations being transferred to acoustic waves that are abruptly excited by the
vortex.

Calculation of the optimal perturbations for a viscous flow shows that for low
Mach numbers, acoustic wave excitation by vorticity perturbations and the subsequent
growth of acoustic waves leads to robust energy growth of the order of Reynolds
number, while for large Mach numbers, synergy between the lift-up mechanism and
the downgradient solenoidal component of the Reynolds stress dominates the growth
and leads to a comparable large amplification of streamwise velocity.

1. Introduction
A comprehensive understanding of the stability of compressible shear flows is a

fundamental problem in fluid mechanics and has been the subject of both theoretical
and practical interest in astrophysics and engineering. Applications include transition
to turbulence and the eventual flow breakdown of supersonic and hypersonic
boundary layers arising in aerodynamic design problems (Mack 1965, 1975; Blumen,
Drazin & Billings 1975), maintenance of turbulence in accretion disks around massive
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bodies (Ioannou & Kakouris 2001) and stability of supersonic shear layers in
astrophysical jets (Hardee 1979; Choudhury & Lovelace 1984).

Modal stability theory considering the exponential temporal growth of small
perturbations in viscous boundary layers (Blumen et al. 1975; Mack 1975) and
bounded shear flows (Duck, Erlebacher & Hussaini 1994; Hu & Zhong 1998) has
been widely studied in the past. However, a large number of studies has shown that
modal stability analysis provides an inadequate description of instability and turbulent
transition, as it addresses only the large-time asymptotic fate of perturbations and has
to be complemented by the analysis of transiently growing perturbations (Farrell 1984,
1988; Gustavsson 1991; Butler & Farrell 1992; Reddy & Henningson 1993; Buizza &
Palmer 1995; Kim & Lim 2000). Such rapid perturbation energy amplification arises
from the non-orthogonality of the modal spectrum and is possible even in the
parameter space that is stable according to modal stability theory (Reddy, Schmid &
Henningson 1993; Trefethen et al. 1993). As a result, a novel way of describing
fluid stability for incompressible flows quickly emerged (see Farrell & Ioannou 1996,
Schmid & Henningson 2001 and Schmid 2007 for a review). Application of these
new concepts and techniques in compressible flows (Hanifi, Schmid & Henningson
1996; Farrell & Ioannou 2000; Malik, Alam & Dey 2006) found a large transient
perturbation energy growth that dominates over modal growth except in the limit
of long time and concluded that both modal and non-modal processes have to be
taken into account in order to assess the stability of compressible shear flows at finite
time.

Hanifi et al. (1996) addressed non-modal growth in compressible boundary layers
and found that the maximum transient energy growth occurs for structures which
are independent of the streamwise direction and that this growth increases with both
the Reynolds and Mach numbers. Furthermore, Hanifi & Henningson (1998) showed
that the mechanism underlying transient growth in the bounded flow is similar to the
inviscid algebraic instability for streamwise disturbances found by Ellingsen & Palm
(1975) in which the streamwise perturbation velocity grows linearly with time. Malik
et al. (2006) studied non-modal transient energy growth for the compressible plane
Couette flow of a perfect gas model for three-dimensional disturbances and found in
contrast to the results for boundary layers that the optimal energy growth decreases
with increasing Mach number for a given Reynolds number. They also found that
optimal velocity patterns correspond to pure streamwise vortices only for large Mach
numbers, with modulated streamwise vortices being the optimal patterns for low to
moderate values of the Mach number, implying that there is an additional growth
mechanism involved.

Further insight into the mechanisms underlying transient growth can be gained
to a first approximation through study of a relatively simple unbounded constant-
shear-flow model. Even though such an unbounded flow does not support modal
solutions, it has the advantage of allowing analytic solutions that consist of a linear
superposition as a Fourier integral of space periodic waves with time-dependent
wavenumber and amplitude, typically known as Kelvin modes (Kelvin 1887) or
shear waves. Lord Kelvin first introduced this solution for an unbounded, viscous
shear flow (Kelvin 1887), and since then it has been generalized for incompressible
flows incorporating density stratification (Phillips 1966; Hartman 1975; Criminale &
Cordova 1986; Farrell & Ioannou 1993b) and Coriolis force (Yamagata 1976; Farrell
1982; Boyd 1983; Tung 1983; Vanneste & Yavneh 2004) and for compressible flows
(Chagelishvili, Rogava & Segal 1994; Chagelishvili et al. 1997a ,b; Farrell & Ioannou
2000). It has also been extended to non-parallel, time-dependent flows with spatially
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uniform shearing rates by Craik & Criminale (1986) and to arbitrary flows by
Lifschitz & Hameiri (1991) who developed a Wentzel–Kramers–Brillouin-like (WKB-
like) stability method known as the geometrical optics stability method that examines
the evolution of a highly localized perturbation in a Lagrangian reference frame
moving with the unperturbed flow. Moreover, previous studies of incompressible
flows (Farrell & Ioannou 1993a), of stably stratified flows (Farrell & Ioannou 1993b)
and of compressible viscous flows (Farrell & Ioannou 2000) showed that this analytic
solution for the unbounded flow captures most of the salient features of transient
growth in the corresponding bounded flows as well.

Chagelishvili et al. (1994) studied an unbounded, compressible shear flow and
found using the Kelvin mode formulation that for weak shear there are two classes
of perturbations: aperiodic vorticity perturbations and propagating acoustic waves.
Chagelishvili et al. (1997a) showed by numerical integration of the resulting equations
for the time-dependent amplitude of the sheared disturbances that acoustic waves can
extract mean flow energy as intensively as vortex perturbations do and that in contrast
to vortex perturbations, the energy of acoustic waves grows linearly with time in the
inviscid limit as they are sheared over by the mean flow. Chagelishvili et al. (1997a)
also found that in weak shear flows acoustic wave temporal evolution is adiabatic,
while in flows with moderate values of the Mach number the adiabatic characteristic
of perturbation evolution is lost and the energy exchange process strongly depends
on the phase of the waves as they enter the non-adiabatic region. Transient energy
growth of acoustic waves for large Mach numbers was investigated by Farrell &
Ioannou (2000) who distinguished two phases of growth: a large initial growth due
to the solenoidal component of the Reynolds stress that is downgradient for early
times and a subsequent growth due to downgradient Reynolds stresses associated
with the irrotational component of the velocity fields. Farrell & Ioannou (2000)
also found that the late-time growth that they identified as the adiabatic growth of
Chagelishvili et al. (1997a) is not sustained in viscous flows due to increased viscous
damping of the perturbations obtaining an ever-decreasing length scale. In this study,
a thorough investigation of transient growth for all Mach numbers will be performed;
the mechanisms underlying perturbation energy growth in both the adiabatic and the
non-adiabatic regime will be identified; and their relevance in the evolution of both
the inviscid and the viscous flow will be discussed.

Apart from the interaction of acoustic waves with the mean flow, Chagelishvili et al.
(1997b) found an additional interaction leading to transient growth. Chagelishvili
et al. (1997b) found that the aperiodic vorticity perturbations gain energy from the
shear flow and subsequently transfer their energy to propagating acoustic waves that
are abruptly excited by the vortex. This vortex wave–acoustic wave interaction is
a dynamical process in compressible, turbulent fluids, playing an important role in
acoustic destabilization of laminar flows (Broadbent & Moore 1979; Ho & Huerre
1984), in prediction of the form of sonic bangs produced by supersonic aircraft
(Williams & Howe 1973) and in conversion of vortices to gravity spiral waves
taking place in accretion disks (Tevzadze, Chagelishvili & Zahn 2008). It is therefore
of interest to support the numerical evidence of this wave excitation process with
analytic results providing asymptotic estimates for the amplitude of the generated
acoustic waves. In this study we address this problem by using exponential–asymptotic
techniques to estimate the amplitude of the generated acoustic waves appearing
abruptly during the evolution of a vortex.

The goal of this study is to identify all the transient growth mechanisms occurring
in an unbounded, compressible shear flow and study their synergy using closed form
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solutions to the initial value problem. Using the Kelvin wave formulation (Kelvin
1887) and non-modal stability analysis tools (Farrell & Ioannou 1996; Schmid 2007),
we investigate the mean flow–acoustic wave interactions and the vorticity wave–
acoustic wave interactions and find the structures amplifying most in energy. The
effect of boundaries and the relevance of these growth mechanisms in compressible
shear flow instability will be investigated in a follow-up study.

This paper is organized as follows. In § 2 we describe the linear evolution equations
for planar perturbations in a compressible shear flow and briefly discuss the possible
energy transfers between the perturbations and the mean flow. In § 3, we elaborate
on the mechanisms for energy growth of the acoustic waves, as well as their synergy.
Interactions between non-propagating vorticity perturbations and acoustic waves are
studied in § 4, while the optimally growing perturbations are identified in § 5. We
finally end with a brief discussion in § 6 and our conclusions in § 7.

2. Growth mechanisms of sheared waves
2.1. Evolution equations for planar perturbations

Consider a flow with mean velocity U (y) = y of constant shear in a polytropic fluid
(i.e. pressure related to the spatially uniform density ρ by P = Kργ ). Perturbations of
streamwise velocity u and cross-stream velocity v are superposed on the background
flow, and perturbations of pressure p are superposed on the mean pressure field.
The linearized, non-dimensional momentum and pressure equations governing the
evolution of small perturbations are

(∂t + U (y)∂x)u + v = −∂xp, (2.1)

(∂t + U (y)∂x)v = −∂yp, (2.2)

(∂t + U (y)∂x)p = − 1

M2
(∂xu + ∂yv). (2.3)

Spatial scales and velocities are non-dimensionalized by typical values of length L

and mean flow velocity V0 respectively. Time is non-dimensionalized by the shear
L/V0, and pressure is non-dimensionalized by ρV 2

0 . The Mach number, measuring
the ratio of the characteristic flow speed to the speed of sound, cs , is M = V0/cs .

Following a generalization of the Kelvin modes (Kelvin 1887), we seek solutions
of the form [u, v, p] = [û(t), v̂(t), p̂(t)]eikx+i(m−kt)y with time-varying cross-stream
wavenumber m − kt that is equivalent to transforming (2.1)–(2.3) into the convected
coordinate frame of reference (Phillips 1966) that is moving with the background flow
(ξ = x − yt). This solution form offers the advantage of allowing analytic solutions,
as it reduces the original partial differential equations to the following set governing
the evolution of the time-dependent Fourier amplitudes [û(t), v̂(t), p̂(t)]:

dû

dt
= −ikp̂ − v̂, (2.4)

dv̂

dt
= −i(m − kt)p̂, (2.5)

dp̂

dt
= − ik

M2
û − i(m − kt)

M2
v̂. (2.6)

It can be readily shown from (2.4)–(2.6) that the Fourier component of the quantity
q = ∂xv − ∂yu + M2p is conserved:

q̂(t) = ikv̂(t) − i(m − kt)û(t) + M2p̂(t) = q̂(0). (2.7)
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This conserved quantity is similar to potential vorticity in stratified flows, as M2p

is the term associated with velocity divergence and with stretching and shrinking of
vorticity columns through compressible expansion or contraction. Using (2.7) and
combining (2.4)–(2.6) reduces (2.4)–(2.6) to a single second-order differential equation
for p̂:

d2p̂

dt2
+

2k(m − kt)

K2

dp̂

dt
+

(
K2

M2
+

2k2

K2

)
p̂ =

2q̂(0)k2

M2K2
, (2.8)

where K(t)2 = k2 + (m − kt)2 is the square of the time-dependent total wavenumber
of the plane wave. As will be shown in the sequel, the solution of the homogeneous
restriction of (2.8) describes the dynamics of transient acoustic waves, whereas the
particular solution involves the interaction between propagating acoustic waves and
non-propagating vortical perturbations. We will therefore study the solution to the
homogeneous restriction of (2.8) (§ 3) and the particular solution (§ 4) separately.

2.2. Energy transfers between the perturbations and the mean flow

Insight into perturbation energetics can be gained by considering the transfers of
energy between the perturbations and the mean flow. Unfortunately, unlike the case of
incompressible flows, there is no obvious choice for a natural energy norm measuring
perturbation size for compressible flows. A possible choice would be Myers’s acoustic
energy corollary (Myers 1991) that is valid to second order:

EM = (1/2)(u2 + v2) + (M2/2)p2 + M2puU,

where the overbar denotes an average in the streamwise direction. However the
energy corollary for plane wave sheared disturbances in the convected coordinates is
restricted to be homogeneous in y, and EM depending explicitly on U (y) cannot be
used. Instead we follow Mack (1969) and all previous studies addressing short-time
growth in compressible flows (Chagelishvili et al. 1994; Hanifi et al. 1996; Chagelishvili
et al. 1997a ,b; Hanifi & Henningson 1998; Farrell & Ioannou 2000; Malik et al. 2006)
in choosing an energy norm satisfying the requirement that the spatial average of
the rate of pressure-related work, i.e. the compression work, does not contribute
to the energy density evolution, since compression work is conservative. It can be
readily shown from (2.2)–(2.3) that the proper choice eliminating pressure work is
E = (1/2)(u2 + v2) + (M2/2)p2, where the overbar denotes an average over space, and
that the energy density grows/decays because of the energy source associated with
the Reynolds stress:

dE

dt
= −uv ,

where the overbar denotes again an average over space. In order to gain further
insight into the energy growth mechanisms, we follow Farrell & Ioannou (2000)
and decompose the velocity perturbations into an irrotational and a solenoidal part:

(u, v) = ∇φ + ∇ × (ψ k̂), where k̂ is the unit vector perpendicular to the flow, φ is the
velocity potential of the irrotational component and ψ is the streamfunction of the
solenoidal component. In the convected coordinate frame of reference, this equation
reduces to

[û(t), v̂(t)] = [ikφ̂(t) + i(m − kt)ψ̂(t), i(m − kt)φ̂(t) − ikψ̂(t)], (2.9)

where φ̂, ψ̂ are the time-dependent Fourier amplitudes, such that [φ, ψ] = [φ̂(t),
ψ̂(t)]eikx+i(m−kt)y . Decomposing the Reynolds stress into solenoidal and irrotational
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parts as well yields

dE

dt
=

1

2
k(m − kt)|ψ̂ |2︸ ︷︷ ︸

uvOrr

−1

2
k(m − kt)|φ̂|2︸ ︷︷ ︸

uvcomp

− (m − kt)2

2
Re(φ̂∗ψ̂)︸ ︷︷ ︸

uv lift

+
k2

2
Re(φ̂ψ̂∗)︸ ︷︷ ︸
uv interf

, (2.10)

where

E =
1

4
(|û|2 + |v̂|2 + M2|p̂|2) (2.11)

is the energy density of a sheared plane wave.
The solenoidal term uvOrr is the sole energy source for incompressible flow. In

that case, that is for incompressible flow, the cross-stream component of vorticity is
conserved (Kelvin 1887; Orr 1907) and the time-dependent Fourier amplitudes are
given by

[ûM0(t), v̂M0(t), p̂M0(t)] =

[
−(m/k − t)v̂M0(t),

−ikq̂(0)

k2 + (m − kt)2
,

2k2q̂(0)

(k2 + (m − kt)2)2

]
,

(2.12)

where q̂(0) = ikv̂(0) − imû(0) is the initial cross-stream vorticity. As the phase lines
of a vorticity wave are kinematically deformed by the shear flow, the cross-stream
and streamwise velocity fields have to grow if the phase lines are tilted against
the shear (m − kt > 0) in order to conserve vorticity. The result is a very large cross-
stream velocity perturbation peaking at t = m/k. The solenoidal term uvOrr is positive,
and perturbation energy grows. For later times, the phase lines tilt with the shear
(m − kt < 0); the solenoidal term becomes an energy sink; and perturbation energy
decays. This is the mechanism of growth in two-dimensional shear discussed by Orr
(1907), and we will refer to it as the Orr mechanism.

The second term arising from the irrotational component of the velocity field exists
only for compressible flow and has the opposite effect on perturbation energy. That
is for plane wave perturbations with phase lines tilted against the shear (m − kt > 0),
the irrotational term uvcomp is an energy sink, while for later times it becomes an
energy source and is expected to play a significant role for large times. The last two
terms (uv lift , uv interf ) arise from the interaction of the solenoidal components with the
irrotational components of the velocity fields. The third term uv lift is the sole energy
source/sink for streamwise-independent perturbations, while numerical integration of
the equations have shown that in all the cases considered the last term is small and
does not contribute significantly to the energy evolution.

We elaborate further on uv lift and uvcomp in the next section, where we first
study two separate limits permitting closed form solutions and illuminating the
growth mechanisms arising for streamwise-independent perturbations and for nearly
irrotational perturbations respectively. Using the intuition gained, we then treat the
evolution of acoustic waves in the general case.

3. Homogeneous solution and energy growth of acoustic waves
3.1. Growth of perturbations with no streamwise variation

Consider first the limit of streamwise uniform solutions (k = 0) for which q̂(0) = 0.
Since there is no pressure gradient force in the streamwise direction, the total
streamwise velocity (perturbation and mean) is conserved. Such perturbations can
therefore grow by advection of mean streamwise velocity by perturbation cross-stream
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Figure 1. Energy evolution of a streamwise-independent plane wave with m= 5 and
[û(0), v̂(0), p̂(0)] = [0, 2, 0]. The Mach number is M = 50.

velocity to regions of lower/higher background velocity. For an incompressible flow,
the cross-stream perturbation velocity is constant, and this so-called lift-up mechanism
leads to linear growth of streamwise velocity (Ellingsen & Palm 1975; Landhal 1980;
Farrell & Ioannou 1993a; Reddy & Henningson 1993) and produces pronounced
perturbation streamwise streaks. For a compressible boundary layer flow and in the
absence of a pressure gradient force, the lift-up mechanism results in linear growth of
density and temperature in addition to linear growth of streamwise velocity (Hanifi &
Henningson 1998).

For the compressible polytropic fluid considered in this study, cross-stream motion
is opposed by the pressure gradient force, and the solution of (2.4)–(2.6) for k = 0,
m �= 0 and initial conditions satisfying q̂(0) = 0 is

û(t) = − i

2

(
mp̂(0)

ω2
0

− v̂(0)

ω0

)
eiω0t − i

2

(
mp̂(0)

ω2
0

+
v̂(0)

ω0

)
e−iω0t , (3.1)

v̂(t) =
1

2
(v̂(0) − Mp̂(0)) eiω0t +

1

2
(v̂(0) + Mp̂(0)) e−iω0t , (3.2)

p̂(t) =
1

2

(
p̂(0) − v̂(0)

M

)
eiω0t +

1

2

(
p̂(0) +

v̂(0)

M

)
e−iω0t , (3.3)

where

ω0 = m/M. (3.4)

All fields vary harmonically in time with the frequency ω0, satisfying the dispersion
relation of an acoustic wave that propagates freely in a quiescent flow. The two terms
in (3.1)–(3.3) therefore represent two counter-propagating acoustic waves in the y-
plane. The energy evolution of an initial disturbance that is given by (2.11) is shown in
figure 1. The observed oscillation is the result of interference of the infinitely extending
plane wave solutions considered in this study. Further investigation of (2.11) reveals
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that (|v̂|2 + M2|p̂|2) is constant. Therefore, the observed energy growth can be traced
to streamwise velocity growth due to the lift-up mechanism discussed in the beginning
of this section. As a result, streamwise-independent perturbations propagating within
a shear region can produce large streamwise streaks that are regions susceptible to
shear instability. In contrast to the previous studies of the lift-up mechanism for
incompressible (Ellingsen & Palm 1975; Landhal 1980; Farrell & Ioannou 1993a;
Reddy & Henningson 1993) and compresible boundary layers (Hanifi & Henningson
1998), streamwise velocity growth is not linear, as cross-stream motion is opposed by
the pressure gradient force limiting cross-stream advection. It is therefore of interest
to identify the perturbations leading to the largest energy growth that can be achieved,
as the maximum growth provides a measure of the strength of the lift-up mechanism
and the optimal perturbations identify the initial structures that are expected to
dominate perturbation dynamics in the linear limit. In Appendix A we obtain closed
form solutions for the optimal streamwise-independent perturbations maximizing
energy growth at a specified time Topt . That is for a plane wave perturbation of
given wavenumber m, we calculate the initial conditions leading to maximum energy
Em

opt (Topt ) at the specified time Topt under the constraint of unit initial energy. The
optimal perturbations are then obtained by calculating the wavenumber m maximizing
Em

opt . We find that the energy growth is maximized for non-propagating spatially
uniform perturbations (m = 0), as in this limit there is no pressure gradient force
leading to unopposed constant advection in the cross-stream direction and to linear
growth of streamwise velocity with time. However, the optimal growth remains
large for propagating disturbances having m/M � 1 (resulting in a weak pressure
gradient force) and asymptotes to 1 + T 2

opt for large optimization times. The optimal
initial perturbations producing this growth are cross-stream velocity perturbations.
Therefore, the lift-up mechanism is optimally initiated by a cross-stream velocity
perturbation and is proportional to M/m that is a measure of the extent of the
maximum cross-stream displacement. The lift-up mechanism is consequently more
efficient for supersonic flows.

3.2. Growth of acoustic waves in the limit of small Mach number

We now investigate the energy growth of acoustic waves in the limit M/k � 1, that
is when the period of the acoustic waves is much smaller than the advective time
scale. Unless we are interested in waves with very short horizontal scales, this limit
corresponds to weak shear flows or small Mach numbers, and we will hereafter refer
to it as the small-Mach-number limit. Acoustic wave evolution for weak shear flows or
nearly incompressible flows has also been studied by Chagelishvili et al. (1994, 1997a)
who found analytic asymptotic solutions in this case. A slightly different derivation
of the asymptotic solutions admitted in this limit follows. Consider (2.8) for q̂(0) = 0:

d2p̂

dt2
+

2k(m − kt)

K2

dp̂

dt
+

(
K2

M2
+

2k2

K2

)
p̂ = 0. (3.5)

For M/k � 1, (3.5) admits the asymptotic WKB solution

p̂(t) =
√

K(t)
(
A+e(i/M)

∫ t

0 K(s) ds + A−e(−i/M)
∫ t

0 K(s) ds
)
, (3.6)

where

A± =
1

2
√

K(0)

(
p̂(0) ∓ kû(0) + mv̂(0)

MK(0)

)
.
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Since the solution considered is of the form p = p̂(t)eikx+i(m−kt)y , the two terms in (3.6)
represent two counter-propagating acoustic waves with streamwise wavenumber k and
time-dependent cross-stream wavenumber m − kt . The velocity Fourier amplitudes
for each of these waves are obtained as follows: (2.7) yields for q̂(0) = 0 and in the
limit M/k � 1

v̂(t) =
m − kt

k
û(t) + O(M2). (3.7)

Substituting (3.6) and (3.7) into (2.6) yields the following in the limit M/k � 1:

[û(t), v̂(t)] = −[k, m − kt]
MA±√
K(t)

e±(i/M)
∫ t

0 K(s) ds + O(M2). (3.8)

Perturbations are irrotational to first order in this limit, as by substituting (3.8) into
(2.9) and solving for φ̂, ψ̂ we obtain

φ̂(t) =
iMA±√

K
e±(i/M)

∫ t

0 K(s) ds + O(M2), (3.9)

while ψ̂(t) ∼ O(M2). The energy density for each of these waves is then given by
substituting (3.6) and (3.8) into (2.11):

E(t) =
M2

2

∣∣A±
√

Ke±(i/M)
∫ t

0 K(s) ds
∣∣2 =

M2

2
K(t)|A±|2.

Therefore, the ratio of the energy of these acoustic waves to their time-dependent
frequency K(t) is an adiabatic invariant (Chagelishvili et al. 1997a), and the overall
energy growth for each of these waves,

E(t)

E(0)
=

K(t)

K(0)
=

√
k2 + (m − kt)2

k2 + m2
, (3.10)

is shown in figure 2. The energy sources and sinks are given by substituting (3.9) into
(2.10) to obtain

dE

dt
= −1

2
k(m − kt)|φ̂|2 + O(M |φ̂|) = − k(m − kt)M2

2
√

k2 + (m − kt)2
.

That is the acoustic wave energy grows/decays to first order because of the irrotational
part of the Reynolds stress. For an initial perturbation with m/k > 0, the irrotational
part of the Reynolds stress is upgradient for t <m/k and the energy initially decays,
whereas for t >m/k its phase lines tilt with the shear and the Reynolds stress is
downgradient leading to energy growth. For an initial perturbation with m/k < 0,
the irrotational part of the Reynolds stress is downgradient leading to monotonic
energy growth. This is the adiabatic growth mechanism discussed in Chagelishvili
et al. (1997a) for three-dimensional perturbations and in Farrell & Ioannou (2000)
for planar perturbations. The salient characteristic of this mechanism is that the
acoustic waves extract energy from the mean flow when their constant-phase lines are
tilted towards the shear, unlike advection waves in incompressible shear flows that
are able to extract energy due to the solenoidal part of the Reynolds stress, uvOrr ,
only when their phase lines are tilted against the mean shear (Orr 1907). Moreover,
for large times, the Reynolds stress saturates to a constant value and the energy

grows linearly as E 	 t/
√

1 + (m/k)2. Therefore, the energy growth for large times is
maximized for plane waves with phase lines tilted initially almost vertically (m/k � 1)
in contrast to the case of incompressible shear flows in which the energy is maximized
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Figure 2. Energy evolution (given by (3.10)) for a plane wave with (k,m) = (1, 2) (solid line)
and (k,m) = (1, −2) (dashed line). The Mach number is M =0.1.

for shear waves with phase lines tilted almost horizontally (m/k 
 1) to maximize
the time available for growth (Farrell & Ioannou 1993a). It is also worth noting
that the constant-phase lines of the optimal perturbations have an almost vertical
orientation even as M → 0. This result seems to be counterintuitive at first sight, since
for suitable initial conditions the solution of the compressible equations converges to
the solution of the incompressible equations as M → 0 (Kreiss, Lorenz & Naughton
1991). However, it is an artefact of the condition q̂(0) = 0 that was chosen, as in this
case the incompressible solution is zero (see (2.12)), separating the growth arising from
compressibility from the growth arising in incompressible flows. The case of q̂(0) �= 0
in which vorticity perturbations (advection waves) and acoustic waves coexist and
interact is studied separately in §§ 4 and 5.

3.3. Synergy between the growth mechanisms

For stronger shear flows, or moderate Mach numbers, Chagelishvili et al. (1997a)
found that energy growth of three-dimensional acoustic waves can be larger compared
to the adiabatic growth studied in the previous subsection. Although through a
qualitative analysis of energy exchange between fluid particles and the mean flow,
Chagelishvili et al. (1997a) were able to heuristically explain such behaviour and
invoked the lift-up mechanism as playing a role in this energy exchange, they did not
provide robust evidence for the physical mechanisms underlying the excess growth.
In this section, we show that energy growth in this regime occurs due to the synergy
between the lift-up mechanism and the downgradient irrotational and solenoidal parts
of the Reynolds stress. Consider first the case of a wave with phase lines tilted with the
shear (m/k < 0). The solution is obtained by numerical integration of (3.5), and the
energy evolution of the plane wave that is given by (2.11) is shown in
figure 3 for a planar perturbation with initial wavenumbers (k, m) = (0.2, −0.8) and
(k, m) = (0.2, −4). For m = −4, the extent of the cross-stream displacement that is
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Figure 3. (a) Energy evolution of a plane wave with (k,m) = (0.2, −0.8) (solid line)
and (k,m) = (0.2, −4) (dashed line) as given by (2.11). The initial conditions are
(û(0), v̂(0)) = (−0.1, 1), and the Mach number is M = 1. The energy evolution given by (3.10)
for m= −0.8 is also shown (thick line) for reference. The corresponding curve for m= −4
coincides with the dashed line and is not shown. (b) Energy evolution of a plane wave with
(k,m) = (0.2, 0.8) given by (2.11) for initial conditions (û(0), v̂(0)) = (−1, 0.5) (solid line) and
(û(0), v̂(0)) = (−1, −1.5) (dashed line). The Mach number is M = 1, and the energy evolution
given by (3.10) for m= 0.8 is also shown (thick line). (c) Energy evolution of a plane wave
with (k,m) = (0.2, 0.2) (solid line) and (k,m) = (0.2, −0.2) (dashed line) for initial conditions
(û(0), v̂(0)) = (0.2, 2) and Mach number M = 10. In all cases the initial pressure perturbation
is given by (2.7) so that q̂(0) = 0, and the perturbation amplitude is normalized to yield unit
initial energy.

measured by M/(m − kt) is small and growth of streamwise velocity due to the lift-up
mechanism, which is proportional to M/(m − kt) is weak. As a result, the energy
evolution follows closely that predicted by (3.10) for M/k � 1. For the case with
m = −0.8 the oscillations that appear to be superposed on the energy increase due to
the irrotational Reynolds stress are solely due to streamwise velocity increase, indic-
ating the presence of the lift-up mechanism. This result is illustrated in figure 4, where
the evolution of each component of the Reynolds stress (uvOrr , uvcom , uv lift ) is shown.
We can see that while the solenoidal component uvOrr is very small and does not play
a significant role in the energy evolution, uv lift is of order one and along with the
irrotational part that is downgradient for all times leads to the observed energy growth.

Consider now the case of waves with phase lines tilted against the shear (m/k > 0). A
typical energy evolution of a planar wave with initial wavenumbers (k, m) = (0.2, 0.8)
is shown in figure 3(b). For initial conditions (v̂(0), v̂(0)) = (−1, 0.5), the initial energy
source of the downgradient solenoidal part of the Reynolds stress uvOrr is unable to
compensate for the energy loss arising from the upgradient irrotational component
of the Reynolds stress uvcomp and the lift-up mechanism as shown in figure 4, and
the energy decays rapidly for t ∼ m/k. For later times t > m/k, the lift-up mechanism
results in an equal growth and decay for each oscillation cycle, and the energy
evolution is mainly determined by the downgradient irrotational component of the
Reynolds stress alone (see figure 4). However, in this case, gradual amplification after
t >m/k is unable to compensate for the rapid loss at times t ∼ m/k, and energy
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Figure 4. (a) Evolution of the irrotational component uvcomp (thick solid line), the advection
component uv lift (solid line) and the solenoidal component uvOrr (dashed line) of the Reynolds
stress for a plane wave with (k,m) = (0.2, −0.8) and initial conditions (û(0), v̂(0)) = (−0.1, 1).
(b) The same as (a) for a plane wave with (k,m) = (0.2, 0.8) and initial conditions
(û(0), v̂(0)) = (−1, 0.5). (c) The same as (b) for initial conditions (û(0), v̂(0)) = (−1, −1.5).
In all cases the Mach number is M = 1; the initial pressure perturbation is given by (2.7) so
that q̂(0) = 0; and the perturbation amplitude is normalized to yield unit initial energy.

density is overall decreased compared to the energy growth arising only from the
irrotational component of the Reynolds stress.

For (û(0), v̂(0)) = (−1, −1.5), the initial contribution of the solenoidal component
of the Reynolds stress results in a large increase in cross-stream velocity as discussed
in § 2.2. The increase in v leads not only to an initial energy growth but also to a large
advection of u in the cross-stream direction initiating the lift-up mechanism that in
turn causes a large increase of streamwise velocity right after t ∼ m/k. This significant
contribution of the lift-up mechanism in energy growth, along with the irrotational
component of the Reynolds stress that is downgradient after t = m/k (see figure 4),
not only counteracts the energy sink associated with the solenoidal component after
t = m/k but also leads to a rapid energy density growth during this time interval
and to an overall energy amplification that is significantly larger compared to the
energy density growth arising only from the downgradient irrotational component of
the Reynolds stress (see figure 3). Therefore, the synergy between the three growth
mechanisms underlies the overall energy growth in what was termed in Chagelishvili
et al. (1997a) the non-adiabatic regime.

The benefit from the synergism between the three growth mechanisms is also
evident for large Mach numbers, for which the lift-up mechanism is very strong as
discussed in § 3.1, and its contribution to energy growth is much larger compared
to the other mechanisms (not shown). As illustrated in figure 3(c), energy growth of
waves with m/k > 0 is larger than the corresponding energy growth of waves with
opposite horizontal tilt (m/k < 0), for large Mach numbers as well. In this case, only
part of the amplified streamwise velocity is converted into pressure perturbations.
This results in very large streamwise velocity perturbations during the initial stage
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of evolution that decay with time as M/(m − kt) decreases monotonically. These
perturbations could therefore lead to the formation of dynamically unstable regions
if they persist long enough.

4. Particular solution and acoustic wave–vorticity wave interactions
In this section we focus on the particular solution that captures the interaction

between propagating acoustic waves and non-propagating vorticity perturbations and
is given by

ppart =
2k2q̂(0)

M2
p−

∫ t

0

p+(s)

K2(s)W (s)
ds − 2k2q̂(0)

M2
p+

∫ t

0

p−(s)

K2(s)W (s)
ds, (4.1)

where p± are solutions to the homogeneous equation (3.5) and

W = p+

dp−

dt
− p−

dp+

dt
,

is the corresponding Wronskian. This interaction can lead to acoustic wave excitation
by the aperiodic vorticity perturbations as already found by Chagelishvili et al.
(1997b), so we can write (4.1) in terms of a vorticity and an acoustic wave component:
p̂part (t) = p̂vort (t) + p̂wave(t). In this section, we will use exponential–asymptotic
techniques to analytically estimate the amplitude of the generated acoustic waves.
There are two regimes depending on M/k that are separated by the corresponding
coupling strength between vorticity dynamics and acoustic waves, and we will study
them separately.

4.1. Weak coupling (M/k � 1)

The vorticity component, p̂vort (t), can be isolated by taking the incompressible limit
(M → 0). If we choose initial conditions such that the time derivatives are initially
bounded as M → 0, then they are bounded for all times (Kreiss et al. 1991). The
solution then converges to the incompressible solution as M → 0 (Kreiss et al. 1991),
for which the acoustic waves are absent for all times. In this case, (4.1) reduces
to the incompressible solution (2.12) in which the time-dependent Fourier pressure
amplitude is given by

p̂(t) = p̂vort (t) = p̂M0(t) =
2k2q̂(0)

(k2 + (m − kt)2)2
. (4.2)

The velocity field is non-divergent, and the resulting vorticity perturbations are non-
propagating. Moreover, the cross-stream component of vorticity of these perturbations
is conserved, leading to perturbation velocity growth as discussed in § 2.2. For M �= 0,
compressibility produces a mixing of vortical and divergent motion associated with
acoustic waves. As a result, the initial perturbations will also project on the acoustic
wave manifold. A rough first-order estimate of the amount of initial energy radiated
away as acoustic waves is given by calculating the projection of the non-divergent
initial conditions [û(0), v̂(0), p̂(0)] = [−m/k, 1, 2ik/(k2 + m2)], on the acoustic wave
manifold. Since in this regime we have weak compressibility (M/k � 1), we expect to
leading order a behaviour similar to the incompressible limit, and we therefore seek
a solution for the vorticity waves of the form

p̂vort (t) = p0(t) + M2p1(t) + · · · , (4.3)

where p0(t) = p̂M0(t) corresponds to the M = 0 solution that is given by (4.2) and a
similar expansion in powers of M for p̂wave . Since for M/k � 1, p± is given by (3.6)
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and is a rapidly oscillating function, such an expansion can be easily obtained using
integration by parts in (4.1),∫ t

0

p±(s)

W (s)K2(s)
ds =

iM

2

∫ t

0

e±(i/M)
∫ s

0 K(τ ) dτ

√
K(s)

(k2 + (m − ks)2)2
ds

=
±M2e±(i/M)

∫ t

0 K(s) ds

2(k2 + (m − kt)2)2
√

K(t)
∓ M2

2(k2 + m2)2
√

k2 + m2
+ O(M3),

yielding to leading order the particular solution

ppart (t) =
2k2q̂(0)

(k2 + (m − kt)2)2
− k2q̂(0)

√
K(t)

(k2 + m2)2
√

K(0)

(
e(i/M)

∫ t

0 K(s) ds + e(−i/M)
∫ t

0 K(s) ds
)

and the solution to (2.8),

p̂(t) = p̂vort + p̂wave =
2k2q̂(0)

(k2 + (m − kt)2)2
− 4ik3M2

(k2 + m2)3
√

K(0)

√
K(t) cos

(
1

M

∫ t

0

K(s) ds

)
.

(4.4)

The last term in (4.4) corresponds to the propagating acoustic waves studied in § 3.2,
having an amplitude O(M2/k2). Projection of non-divergent initial conditions on to
propagating acoustic waves is therefore very weak.

The following question then arises: if we carefully chose initial conditions with
minimal projection on the acoustic wave manifold, would the initial energy remain in
the non-propagating vorticity wave for all times? If this were true, p̂wave would be zero
for all times, and the solution would be given by (4.3). However, expansion (4.3) is
asymptotic rather than convergent as a result of exponentially small terms that it can
not capture. We show in Appendix B that these terms represent propagating acoustic
waves excited abruptly at time t = m/k. As in the case of gravity wave generation
by sheared disturbances in a stratified horizontal shear flow (Bakas & Farrell 2009)
and on the f -plane (Vanneste & Yavneh 2004), spontaneous generation of acoustic
waves can be analysed as an instance of a Stokes phenomenon (Olver 1974) in which
the subdominant solution (waves) is switched on by the dominant solution (vorticity
perturbation) when time crosses a Stokes line. To determine the leading-order
approximation to the acoustic wave amplitude, we consider oscillation-free initial
conditions. That is we choose [p̂(0), dp̂/dt |t = 0] = [p̂M0(0), dp̂M0/dt |t =0] such that the
projection of the initial conditions on the acoustic waves is O(M2m−4). By choosing
m appropriately, we can therefore make the second term in (4.4) approach zero with
arbitrary precision. We then use in Appendix B asymptotic matching in the complex
t-plane (Hakim 1998) to show that the solution at large times is given by

p̂(t) = p̂vort (t) +
q̂(0)

√
2πe−kπ/4M

√
K(t)

kM3/2

(
e(i/M)

∫ t

0 K(s) ds + e(−i/M)
∫ t

0 K(s) ds
)
, (4.5)

where φ0 is given by (B 3). These spontaneously generated acoustic waves are
exponentially small for small Mach numbers, being O(M−3/2e−kπ/4M ). As a result, the
large energy gained by the vorticity perturbation for t < m/k (see § 2.2) is transferred
back to the mean flow. This analytic result was confirmed by numerically solving
(2.8) and then estimating the acoustic wave amplitude for large times T through the
equation

As =
1

2
√

K(T )

[
(p̂(T ) − p̂M0(T ))2 +

M2

K(T )2

(
dp̂

dt
|t=T − dp̂M0

dt
|t=T

)2
]1/2

. (4.6)
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Figure 5. Amplitude of the spontaneously generated acoustic wave As as a function of 1/M .
The analytic estimate given by (4.5) is shown by the solid line, and the numerically calculated
estimate given by (4.6) is shown by the open circles. The wavenumbers are (k,m) = (1, 10), and
the oscillation-free initial conditions are such that q̂(0) = 1.

Figure 5 shows As as a function of M along with the analytic result revealing an
excellent agreement even for moderate values of M . In summary, for M/k � 1,
projection of the initial conditions on the acoustic wave manifold is weak, with the
amplitude of the acoustic waves being O(M2/k2) for non-divergent initial conditions.
But even in the case of oscillation-free initial conditions, acoustic waves are inevitably
excited by vorticity perturbations with an exponentially small amplitude in k/M .

4.2. Strong coupling (M/k O(1))

In this strong-coupling regime, both the projection of the initial conditions on the
acoustic waves and the amplitude of the spontaneously generated acoustic waves is
of order one. This is illustrated in figure 6, where the evolution of p̂wave(t) with time
for m/k =5 is shown. The forced waves’ amplitudes remain at very low values until
time t =m/k =5. At that time, the large energy amplification of the non-propagating
vorticity perturbations due to the Orr mechanism discussed in § 2.2 is transferred to
the spontaneously generated acoustic waves causing the amplitude of these forced
waves to increase rapidly and to reach very large values as illustrated in figure 6. The
amplitude of the forced waves is numerically calculated using (4.6) and is plotted as a
function of the Mach number in figure 7. For M/k O(1), the amplitude of the forced
waves is of order q̂(0)M−3/2, showing that a large initial vorticity perturbation can lead
to substantial excitation of waves that can then further grow in the manner discussed
in the previous section. For large Mach numbers the amplitude decreases rapidly as
M−2, and wave excitation is not very efficient. The efficiency of wave excitation by
vorticity perturbations and its contribution to perturbation energy growth will now
be further investigated by performing optimization calculations.
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Figure 6. Evolution of the pressure field of the spontaneously generated acoustic waves
p̂wave(t) = p̂(t) − p̂M0(t) for (k,m) = (1, 5). The Mach number is M = 1, and the oscillation-free
initial conditions are such that q̂(0) = 1.
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Figure 7. Amplitude of the spontaneously generated acoustic wave As as a function of M .
Lines for M−3/2 (dash-dotted line) and M−2 (dashed line) are also shown. The wavenumbers
are (k,m) = (1, 10), and the oscillation-free initial conditions are such that q̂(0) = 1.
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5. Optimals
As discussed in the previous sections, the synergy between the lift-up mechanism,

and the downgradient irrotational and solenoidal part of the Reynolds stress along
with efficient wave excitation by vorticity perturbations leads to energy amplification
of plane wave perturbations. In order to obtain an upper bound for the transient
growth, we calculate in this section the initial conditions yielding the largest energy
growth over a specified time interval Topt . Similar optimization calculations performed
by Farrell & Ioannou (2000) for large Mach numbers showed that viscocity has
a significant impact on perturbation growth. Therefore, to include viscous effects,
optimization calculations in this section are performed for a viscous flow as well but
for a large range of Mach numbers. A complete analysis proceeds from first using
the viscous equations for compressible sheared waves (Farrell & Ioannou 2000):

dû

dt
= −ikp̂ − 1

Re

(
K2(t) +

k2

3

)
û −

(
1 +

k(m − kt)

3Re

)
v̂, (5.1)

dv̂

dt
= −i(m − kt)p̂ − k(m − kt)

3Re
û − 1

Re

(
K2(t) +

(m − kt)2

3

)
v̂, (5.2)

where the Reynolds number is defined as Re =L2α/ν in which ν is the coefficient
of shear viscosity and pressure evolves according to (2.6). Since for an unbounded
shear flow there is no intrinsic space scale, the Reynolds number is prescribed for a
given coefficient of viscosity on perturbations having unit zonal wavenumber (k = 1).
Perturbations with larger zonal scale can be interpreted as evolving in a flow with a
correspondingly higher Reynolds number.

Equations (2.6), (5.1) and (5.2) can then be written in the compact form:

dχ

dt
= A(t)χ ,

where χ is the column vector, χ = [û, v̂, Mp̂]T , and A(t) is

A(t) =

⎛
⎜⎝−(K2(t) + k2/3)/Re −1 − k(m − kt)/(3Re) −ik/M

−k(m − kt)/(3Re) −(K2(t) + (m − kt)2/3)/Re −i(m − kt)/M

−ik/M −i(m − kt)/M 0.

⎞
⎟⎠

For a given wavenumber m, singular value decomposition of the finite-time propagator

Φ(t) = lim
N→∞

N∏
n=1

eA(nt/N)t/N ,

mapping the initial perturbation to its state at time t (χ (t) = Φ(t)χ (0)), identifies
the optimal initial conditions and the corresponding growth Em

opt (Topt ) (Farrell 1988;
Reddy & Henningson 1993; Farrell & Ioannou 1996). The perturbation growing the
most is then obtained by numerically determining the wavenumber m maximizing
Em

opt (Topt ), and the corresponding growth is Emax = maxm(Em
opt (Topt )).

The optimal growth Emax as a function of the optimizing time Topt is shown in
figure 8 for Mach numbers M = 1 and M = 50. While the M =1 case is typical
of engineering applications, highly supersonic flows in which M = 50 can be found
in thin, Keplerian astrophysical disks in which also a polytropic fluid is typically
considered (Pringle 1981; Papaloizou & Lin 1995). Large and robust growth is found
for both values of Mach number even in this case of unbounded flow in which no
unstable modes are supported, but different mechanisms dominate the growth in these
two cases.
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Figure 8. Optimal energy growth Emax achieved at Topt as a function of the optimization time
Topt for Mach numbers M = 1 (solid line) and M = 50 (dashed line). The Reynolds number is
Re = 5000.

For M = 1 and small optimizing times, the optimal perturbations have an initial tilt
m/k ∼ Topt such that the plane wave assumes a cross-stream orientation (m − kt = 0)
at a time t ∼ Topt , maximizing the benefit from transient amplification of cross-stream
velocity of vorticity perturbations. For larger optimizing times, m/k ∼ Topt/2 such
that amplification of vorticity perturbations due to the Orr mechanism occurs early,
enabling the effective transfer of energy to acoustic waves and allowing enough
time for the acoustic waves to grow through the downgradient irrotational part of
the Reynolds stress. This three-stage process of vorticity wave amplification, energy
transfer to acoustic waves and acoustic wave amplification is illustrated in figure 9(a),
where the evolution of each component of the Reynolds stress (uvOrr , uvcom , uv lift

and uv interf ) is shown. Initially uvOrr is the dominant energy source peaking right
before tv =m/k =12. After the excitation of acoustic waves at tv , uvcomp becomes the
dominant energy source for the generated acoustic waves, while the Orr mechanism
becomes an energy sink for the vorticity perturbations. The contribution of the lift-up
mechanism in perturbation growth is small in this case, as despite the fact that uv lift

has approximately the same amplitude as uvOrr , it oscillates rapidly around zero and
averages to a small total amount.

To address the sensitivity of the attained growth to the viscous damping rate,
we performed optimization calculations varying the Reynolds number. As shown in
figure 10(a) the optimization time at which the maximum optimal growth is attained
is O(Re1/3), consistent with the e-folding time O(Re1/3) of vorticity dynamics for
an incompressible flow (Bakas, Ioannou & Kefaliakos 2001). However, the global
optimal growth that is O(Re) as illustrated in figure 10(b) is larger by a factor of
Re1/3 compared to the corresponding growth for an incompressible flow.

For M =50 the mechanism of acoustic wave excitation from vorticity waves
is inefficient, as the generated acoustic wave amplitude is O(M−2). The optimal
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Figure 9. (a) Evolution of the irrotational component uvcomp (thick solid line), the advection
component uv lift (solid line), the solenoidal component uvOrr (dashed line) and interference
component uv interf (dotted line) of the Reynolds stress for the plane wave with (k,m) = (1, 12)
and initial conditions (û(0), v̂(0), p̂(0)) = (1, −0.1, −11i). The Reynolds number is Re = 5000,
and the initial plane wave leads to the largest energy growth at Topt = 20 for M = 1. (b) The
same as (a) for the optimal plane wave with (k,m) = (1, 15) and initial conditions (û(0),
v̂(0), p̂(0)) = (1, −1.1, −0.14i) that leads to the largest energy growth at Topt = 20 for M = 50.
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Figure 10. (a) Optimization time at which the maximum optimal growth is attained for each
Reynolds number (open circles) as a function of Reynolds number. A straight line with slope
1/3 is also plotted for reference. (b) Maximum optimal energy growth Emax achieved at each
Reynolds number (open circles) as a function of the Reynolds number. A straight line with
slope 1 is also plotted for reference. The Mach number is M = 1.
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M/k � 1 M/k O(1) M/k 
 1

Characteristics of Two-stage process: Three-stage process: Two-stage process:
growth (i) Growth of vorticity (i) Growth of vorticity (i) Growth of cross-stream

perturbations due perturbations due velocity perturbations
to uvOrr to uvOrr due to uvOrr

(ii) Weak acoustic (ii) Efficient acoustic (ii) Initiation of lift-up
wave excitation wave excitation mechanism

(iii) Growth of acoustic
waves due to uvcomp

Maximum growth O(Re2/3) O(Re) Increasing with Re
but does not follow
a power law

Growth of Kinetic energy Kinetic and potential Streamwise velocity
energy

Table 1. Characteristics of transient growth mechanisms.

perturbations therefore utilize the synergy between the downgradient solenoidal
component of the Reynolds stress and the lift-up mechanism studied in § 3.3, which
leads to robust growth of the streamwise velocity of acoustic waves. As shown in
figure 9(b), where the evolution of each component of the Reynolds stress is plotted
for Topt = 20, the initial contribution of uvOrr is significant and leads to an increase in
the cross-stream velocity and to a large advection of u in the cross-stream direction.
This large advection utilizes the lift-up mechanism that becomes the dominant energy
source after t = m/k = 15 (see figure 9b) and leads to a significant growth of streamwise
velocity comprising about 90 % of the energy amplification in this case. For smaller
optimization times, the optimal perturbations have an initial tilt m/k � Topt such
that the initiation of the lift-up mechanism occurs right before the optimization
time, whereas for Topt � 30 the initiation of the lift-up mechanism occurs early at
approximately the same time as for Topt =20 shown in figure 9(b). That is instead of
having a large initial m/k so that the boost from the lift-up mechanism occurs before
the optimization time, it is energetically more efficient for the optimal perturbations to
have a rather low m/k (that is attenuated less by diffusion) such that there is a large
initial energy growth followed by a secondary growth at about the optimization time
that is associated with the secondary peak of uv lift (see figure 9b). This exploitation
of the secondary peak of uv lift by the optimal perturbations is also underlying the
secondary peak of optimal growth with Topt shown in figure 8 for M =50. Finally
it is worth noting that even though the optimal growth increases with the Reynolds
number (not shown) it does not follow a power law like the M = 1 case.

In summary, there are three distinct regimes of transient growth with characteristics
summarized in table 1: in weakly compressible flows vorticity perturbations grow in
a manner similar to incompressible flows with a weak excitation of acoustic waves.
In subsonic and sonic flows, the mechanism of acoustic wave excitation by vorticity
perturbations is dominant due to the strong coupling between vorticity perturbations
and acoustic waves for Mach numbers M O(k). On the other hand, supersonic flows
and highly supersonic flows favour streamwise velocity growth, taking advantage of
the strength of the lift-up mechanism in this case. For small optimizing times, both
processes lead to comparable transient growth, while for larger optimizing times, the
process of acoustic wave excitation and growth leads to larger transient energy growth
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Figure 11. Optimal energy growth Emax achieved at Topt =20 as a function of the Mach
number. The Reynolds number is Re = 5000.

as illustrated in figure 11 showing the optimal growth at Topt =20 as a function of
the Mach number.

6. Discussion
We now relate the results obtained in this work to previous theoretical studies

of compressible, constant-shear flows utilizing the convected coordinate formulation
and addressing different aspects of perturbation growth. Chagelishvili et al. (1994,
1997a) were the first to address adiabatic growth of acoustic waves in the absence
of aperiodic vorticity perturbations by providing asymptotic solutions. For moderate
Mach numbers, Chagelishvili et al. (1997a) found that acoustic energy growth can
be larger compared to the adiabatic regime and suggested that the lift-up mechanism
plays a role in the observed growth. This argument was tested in this study, where
the role of the lift-up mechanism was clarified and the synergy between the lift-up
mechanism and the solenoidal part of the Reynolds stress was clearly shown to
be underlying the observed excess growth of planar perturbations. It is also worth
noting that agreement of our results in terms of energy growth of planar perturbations
to the findings of Chagelishvili et al. (1997a) for three-dimensional acoustic waves
shows that most of the characteristics of the evolution of planar acoustic waves
remain unaltered in three dimensions, suggesting that the growth mechanisms in
three dimensions are captured by our two-dimensional analysis. However, a careful
investigation of perturbation evolution in three dimensions as well as optimization
calculations are needed to validate this conclusion.

Moreover, Chagelishvili et al. (1997b) studied the abrupt acoustic wave excitation
process by the aperiodic vorticity perturbations in the moderate-Mach-number regime,
using numerical integration of the equations. In this study, the numerical evidence
of Chagelishvili et al. (1997b) is complemented by asymptotic estimates for the
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amplitude of the generated acoustic waves through the use of exponential–asymptotic
techniques. The analytic treatment offers the advantage of giving a precise description
of acoustic wave generation in a simple model flow, as it unambiguously separates the
aperiodic vorticity perturbations from the propagating acoustic waves. A systematic
investigation of the conditions favouring an efficient wave excitation was also pursued
in this study by calculating the initial conditions producing optimal growth over a
specified time interval.

On the other hand, Farrell & Ioannou (2000) addressed perturbation evolution for a
viscous flow in the large-Mach-number limit and distinguished two phases of growth:
an early-time growth due to the solenoidal component of the Reynolds stress that is
initially downgradient for perturbations with constant-phase lines tilted against the
shear and a subsequent growth due to the irrotational component of the Reynolds
stress that is downgradient for large times. Farrell & Ioannou (2000) however found
based on numerical integrated solutions that the late-time growth is not sustained,
as the perturbations’ length scale constantly decreases leading to increased viscous
damping. Farrell & Ioannou (2000) also concluded that the Reynolds stress associated
with the interactions between the solenoidal and the irrotational velocity fields, which
was termed uv lift in this study, does not play a significant role in perturbation growth
for large times. In this study, we found that even though the contribution of the
lift-up mechanism in perturbation growth is small in the t → ∞ limit in agreement
with Farrell & Ioannou (2000), its synergy with the solenoidal component of the
Reynolds stress occurring within the first few advective time units accounts for most
of the observed transient growth at finite times. In terms of the effect of viscosity
on perturbation growth, optimization calculations performed in this study for a wide
range of Mach numbers and Reynolds numbers confirmed the conclusion of Farrell &
Ioannou (2000) that was reached for large Mach numbers only, that the transient
growth is not sustained for large times for which the major contribution comes from
uvcomp , as the total wavenumber of these growing disturbances also increases linearly
with time, resulting in an accelerating viscous damping rate.

7. Conclusions
Non-modal mechanisms underlying transient growth of acoustic and vorticity wave

perturbations in an unbounded compressible shear flow were investigated making
use of closed form solutions. Propagating acoustic waves amplify mainly due to two
mechanisms that are exemplified by considering two separate limits. In the limit of
streamwise-independent perturbations (k =0), acoustic waves were found to grow due
to advection of streamwise velocity to regions of higher/lower background velocity.
This growth mechanism that is often referred to as the lift-up effect (Ellingsen &
Palm 1975; Reddy & Henningson 1993) results in an amplification of streamwise
velocity that was found to be increasing with the vertical wavelength of perturbations
and with Mach number and for M/m 
 1 leads to an almost linear increase in
streamwise velocity with time. In the limit of weakly compressible flows (M/k � 1),
acoustic waves amplify when their phase lines are tilted with the shear due to the
kinetic energy source associated with the downgradient irrotational component of the
Reynolds stress. The energy of the acoustic waves grows linearly for large times with
the largest growth achieved for waves with phase lines initially tilted almost vertically
(Chagelishvili et al. 1997a; Farrell & Ioannou 2000).

The role of each of these mechanisms as well as the downgradient solenoidal
component of the Reynolds stress in acoustic wave growth for M/k O(1) was
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investigated, and the interplay between the three mechanisms was found to produce
large and robust energy amplification. Acoustic waves with phase lines tilted against
the shear (m/k > 0) were found to benefit more from this synergy compared to
opposite tilted waves. For larger Mach numbers, the lift-up mechanism dominates,
and streamwise velocity of acoustic waves is significantly amplified leading to large
streamwise streaks within the waves and potentially to shear instability.

On the other hand, non-propagating vorticity perturbations coexisting with the
propagating acoustic waves amplify due to kinematic deformation of vorticity by the
mean flow, a growth mechanism that is typically found in incompressible shear flows
and is often referred to as the Orr mechanism (Orr 1907). For weakly compressible
flows (M/k � 1), a weak coupling between vorticity perturbations and acoustic waves
was found using exponential–asymptotic techniques. In the case of oscillation-free
initial conditions, while for t <m/k the energy evolution is dominated by the vorticity
wave dynamics, two counter-propagating acoustic waves with an exponentially small
amplitude O(exp(−kπ/4M)) are spontaneously generated at t ∼ m/k through a Stokes
phenomenon. For M/k O(1), a strong coupling was found with the energy gained by
vorticity perturbations being transferred to acoustic waves that finally emerge with
an amplitude of order q̂(0)M−3/2.

In order to quantify the potential for perturbation growth due to the synergy of the
various growth mechanisms including acoustic wave excitation by non-propagating
vorticity perturbations, the optimally growing perturbations over a specified time
interval were calculated in the case of a viscous flow. For M O(k), acoustic wave
excitation by vorticity perturbations and the subsequent growth of the acoustic waves
due to the downgradient irrotational component of the Reynolds stress were found
to lead to robust energy growth O(Re) that is equipartitioned between potential and
kinetic forms. Furthermore, the attained growth is larger than the corresponding
growth in incompressible flows by a factor of Re1/3. For larger Mach numbers,
the wave excitation mechanism is not effective, and the synergy between the lift-up
mechanism and the downgradient solenoidal component of the Reynolds stress was
found to dominate the growth and to lead to a large amplification of streamwise
velocity.

Even though the unbounded flow considered in this study is an idealized
flow permitting closed form solutions, the transient growth mechanisms that were
investigated and their synergy are expected to play a significant role in the dynamics
of realistic bounded flows as well. In the case of reflecting boundaries, the possibility
of continuous over-reflection of the acoustic waves arises, as these propagating waves
can grow transiently in the manner described in this study while being continuously
reflected at the boundaries. This over-reflection process has been invoked in previous
studies to explain the instability of compressible flows (Hu & Zhong 1998) and of
plane parallel shear flows (Lindzen 1988), but the role of transient growth in this
process has not been investigated. Identification of the unstable modes found by
Farrell & Ioannou (2000) in their study of a bounded polytropic fluid with over-
reflecting acoustic waves and investigation of the role of transient growth in this
process is the subject of current research efforts and will be reported in a future study.
In addition to the influence of the boundaries, the influence of the thermodynamic
properties of the flow on the dynamics is under current investigation. Nonetheless, we
can already remark that comparison of our results to the findings of previous studies
of non-modal perturbation growth in a compressible boundary layer (Hanifi et al.
1996) and in a perfect gas model (Malik et al. 2006) reveals that although some of the
characteristics of the lift-up mechanism are influenced by the choice of gas properties,
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the lift-up mechanism plays an important role in perturbation growth regardless of
the thermodynamics of the flow.

Finally, it is worth noting that the mechanism of acoustic wave generation examined
in this study appears to be underlying wave excitation in more complicated flows
as well, as shown by the numerical studies of Mamatsashvili & Chagelishvili (2007)
and Tevzadze et al. (2008). In view of the advantage of the exponential–asymptotic
approach to allow for a transparent separation of the acoustic waves from the non-
propagating vortical motions and to also allow an analytic estimate of the wave
amplitude, in the future we plan on applying the exponential–asymptotic techniques
to a broader class of flows.

The author would like to thank Professor Petros Ioannou for stimulating discussions
and three anonymous reviewers for their useful comments and numerous suggestions,
which helped to improve the manuscript. This research was supported by an IKY
grant.

Appendix A. Optimal streamwise-independent perturbations
The streamwise-independent perturbations leading to the largest energy growth

over a specified time interval within the initial stage of wave interference are obtained
by following the method outlined in § 5. A complete analysis proceeds from first using
(2.7) (for q̂(0) = 0) to express û in terms of p̂ and then writing (2.4)–(2.6) in the
compact form:

dχ0

dt
= B(t)χ0, (A 1)

where χ0 is the column vector, χ0 = [v̂, p̂]T , and B(t) is

B = −im

(
0 1

1/M2 0.

)

We then express (A 1) in terms of the new variable y = M1/2
k0 χ0, where Mk0 is the

energy metric,

Mk0 =
1

4

(
1 0

0 M2(1 + M2/m2),

)
for which perturbation energy is given by the inner product: E = y† y. In this variable
the governing equations are transformed to

d y
dt

= D0 y, (A 2)

where D0 is

D0 = M1/2
k0 BD−1/2

k0 =

(
0 −iω2

0/
√

1 + ω2
0

−i
√

1 + ω2
0 0,

)

and ω0 is given by (3.4). The solution of (A 2) is y(t) = eD0t y(0), where

eD0t =

⎛
⎜⎜⎜⎝

cos(ω0t) − iω0√
1 + ω2

0

sin(ω0t)

−
i

√
1 + ω2

0

ω0
sin(ω0t) cos(ω0t)

⎞
⎟⎟⎟⎠
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is the propagator. The initial perturbation leading to the largest energy growth Em
opt

over a specified time interval t = Topt for a given wavenumber m can be identified as
the eigenvector corresponding to the largest eigenvalue of P = eD0†Topt eD0Topt (Farrell
1988; Reddy & Henningson 1993; Farrell & Ioannou 1996). The optimal perturbation
can be then found by maximizing Em

opt over the vertical wavenumber m. Eigenanalysis
of P reveals that the largest eigenvalue for all wavenumbers m, corresponding to
the optimal growth is σ = 1 + T 2

opt and is achieved for non-propagating perturbations
having m =0. However for ω0Topt � 1, the optimal growth is very close to this
value: σ = 1 + T 2

opt + O(ω2
0T

2
opt ). Therefore the propagating optimal perturbations

have large vertical wavelengths and are cross-stream velocity perturbations as
(û(0), p̂(0)) O(m/M) � 1.

Appendix B. Analysis of the generation of exponentially small acoustic waves
as a Stokes phenomenon

Bakas & Farrell (2009) found in their study of the interaction between vortical
perturbations and gravity waves in a stratified horizontal shear flow that gravity
waves were spontaneously generated by oscillation-free initial conditions. They also
found that the spontaneous wave generation can be analysed as a Stokes phenomenon
(Olver 1974; Berry 1989) in which the subdominant homogeneous solution is abruptly
‘turned on’ by the dominant, inhomogeneous solution when time, t , crosses a Stokes
line arising from singularities of the asymptotic expansion of the solution in the
complex t-plane. We follow the analyses in Vanneste & Yavneh (2004) and Bakas &
Farrell (2009) to address this possibility in our case as well and analyse the asymptotic
expansion (4.3) near its singularities in the complex t-plane at t± =m/k±i that coincide
with the singularities of the homogeneous solution. The Stokes lines, defined as the
asymptotes of the curves Im

∫
K(s) ds = 0 as t → t±, are tangent to

S1, arg(t − t±) = ∓5π

6
, S2, arg(t − t±) = ∓π

6
, S3, arg(t − t±) = ∓π

2
,

as close to t±, K =
√

k2 + (m − kt)2 	
√

2ke±iπ/4(t − t±)1/2. In the real-time axis, S3 is
crossed when time takes the value m/k, and as a result we expect the spontaneous
generation of acoustic waves through a Stokes phenomenon.

The amplitude of the generated waves can be found by integration of (2.8) on a
path in the complex plane that passes through t± and the use of asymptotic matching
to match the solution in the inner region close to t± (which is termed region II), where
the waves are generated, to the solution in the outer regions to the left (region I)
and to the right (region III) of S3. We first proceed with the integration near t+ and
consider oscillation-free initial conditions. That is we take the solution in region I
to be

p̂I =
2k2q̂(0)

(k2 + (m − kt)2)2
.

On the other hand, the solution in region II contains also the generated acoustic
waves,

p̂II =
2k2q̂(0)

(k2 + (m − kt)2)2
+ A

√
Ke(i/M)

∫ t

0 K(s) ds + B
√

Ke−(i/M)
∫ t

0 K(s) ds, (B 1)

with amplitudes A, B to be determined.
The path of integration close to t+ is given by the Stokes lines S1 and S2 so that

the WKB terms in (B 1) have a constant amplitude at leading order, and the outer
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solution following S1 is

p̂I =
2k2q̂(0)

(k2 + (m − kt)2)2
	 − q̂(0)

2k2(t − t+)2
.

In order to find the outer solution following S2, we first calculate the phase integral
of the acoustic waves:∫ t

0

K(s) ds =

∫ m/k

0

K(s) ds+

∫ t+

m/k

K(s) ds+

∫ t

t+

K(s) ds 	 φ0 +iβ +
2

3
b1/2eiπ/4(t − t+)3/2,

(B 2)
where

φ0 =

∫ m/k

0

K(s) ds (B 3)

is a constant-phase shift, b = 2k2 and

β =
1

i

∫ t+

m/k

K(s) ds = k

∫ 1

0

√
1 − s2 ds = kπ/4.

Introducing (B 2) into (B 1), we find that on S2,

p̂II 	 b1/4eiπ/8(t − t+)1/4
(
Ae

1
M

(iφ0−β+ 2
3

√
be3iπ/4(t−t+)3/2) + Be

1
M

(−iφ0+β+ 2
3

√
be−iπ/4(t−t+)3/2)

)
− q̂(0)

b(t − t+)2
. (B 4)

In region III, the WKB approximation to the homogeneous solution (acoustic
waves) breaks down at the turning point t = t+. Consequently, we rescale time
according to

t = t+ + b−1/3M2/3τ

and p̂ by p̂(τ ) = b−2/3M−4/3f (τ ), to obtain the proper balance between the terms in
(2.8). Equation (2.8) is then reduced at leading order to

d2f

dτ 2
− 1

τ

df

dτ
+ iτf =

b1/3q̂(0)

iτ
. (B 5)

The solution of (B 5) is given in terms of derivatives of Scorer functions
(Abramowitz & Stegun 1965) Hi′(rτ ) and Gi′(rτ ), where r3 = i. Using the asymptotic
expressions for Hi′ and Gi′ following S1, that is for τ = e−5iπ/6|τ | when |τ | 
 1, to
match the solution of (B 5) to p̂I on S1 yields

f = πb1/3e2iπ/3q̂(0)Hi′(e−iπ/6τ ). (B 6)

The connection formula

Hi′(e−iπ/6τ ) = e−4iπ/3Hi′(e−5iπ/6τ ) + 2e5iπ/6Ai′(iτ )

is subsequently used to find the asymptotic behaviour of (B 6) on S2 and match with
(B 4). Following S2, τ = i−iπ/6|τ |, and for |τ | 
 1 the asymptotic expression of (B 6)
becomes

f = πb1/3e2iπ/3q̂(0)Hi′(e−iπ/3|τ |) 	 b1/3e−2iπ/3q̂(0)

|τ |2 +
√

πb1/3e5iπ/8q̂(0)τ 1/4e(2/3)e−iπ/4τ 3/2

,

yielding

p̂III 	 e−2iπ/3q̂(0)

b1/3M4/3|τ |2 +
√

πb−1/3M−4/3e5iπ/8q̂(0)τ 1/4e(2/3)e−iπ/4τ 3/2

. (B 7)
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Matching the outer solution (B 4) that is given in terms of the rescaled time τ by

p̂II =
e−2iπ/3q̂(0)

b1/3M4/3|τ |2 + b1/6eiπ/8M1/6τ 1/4
(
Ae

1
M

(iφ0−β)+ 2
3 e3iπ/4τ 3/2

+ Be
1
M

(−iφ0+β)+ 2
3 e−iπ/4τ 3/2)

with (B 7) yields

[A, B] =

[
0,

iq̂(0)
√

πe(1/M)(iφ0−β)

√
bM3/2

]
.

Following the same procedure, we can find the contribution from t− and finally obtain
the solution given by (4.5).
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