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ABSTRACT

Three-dimensional perturbations producing optimal energy growth in stratified, unbounded constant shear flow
are determined. The optimal perturbations are intrinsically three-dimensional in structure. Streamwise rolls
emerge as the optimally growing perturbations at long times, but their energy growth factor is limited by
stratification to E 5 O (1/Ri), where Ri is the Richardson number. The perturbations that attain the greatest
energy growth in the flow are combinations of Orr solutions and roll solutions that maximize their energy growth
in typically O (10) advective time units. These optimal perturbations are localized in the high-shear regions of
the boundary layer and are associated with strong updrafts and downdrafts that evolve into streamwise velocity
streaky structures in the form of hairpin vortices in agreement with observations.

1. Introduction

Transport processes in the atmospheric boundary lay-
er have long been the subject of both theoretical and
practical interest. Applications include ventilation of the
planetary boundary layer (PBL) associated with pol-
lution transport, air–sea interaction and cloud street for-
mation, and parameterization of heat and momentum
transport for numerical weather prediction models and
climate models. Observations reveal that disturbances
in these flows are organized to a significant degree into
coherent motions (cf. Kuettner 1959; LeMone 1973,
1976; Nicholls and Reading 1979; Brown 1970; Chris-
tian and Wakimoto 1989; Mahrt 1991; Etling and Brown
1993) that are responsible for the majority of turbulent
transport. The structure of coherent motions in the plan-
etary boundary layer can be simulated and analyzed in
large eddy simulations (LESs) (cf. Mason and Sykes
1980; Mason and Thomson 1987; Sykes and Henn 1989;
Moeng and Sullivan 1994; Lin et al. 1996). It has be-
come apparent both from observations and simulation
that the shear layer at the ground in a neutrally stratified
planetary boundary layer is dominated by streaky struc-
tures, with high and low velocity fluid aligned nearly
parallel to the mean flow, which occur in association
with updrafts and downdrafts (Moeng and Sullivan
1994; Lin et al. 1996).

Large-scale perturbation coherent structures have also
been observed in unstratified boundary layer laboratory
flows (Townsend 1956, 1970; Kline et al. 1967; Cant-
well 1981). Direct numerical simulations (DNSs) of tur-
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bulent laboratory shear flows at moderate Reynolds
numbers (cf. Moin and Kim 1982) reveal that these
coherent motions have a universal structure: in the sub-
layer they appear as quasi-streamwise roll vortices while
above the sublayer they take the form of hairpin vortices
and double roller eddies, both of which are associated
with high and low velocity streaks. Recently, Lin et al.
(1996) studied the coherent structures found in an LES
of a turbulent neutrally stable PBL. Despite differences
in scale, Reynolds number, and boundary conditions,
the coherent structures in PBL turbulence turn out to
be the same as those found in turbulent laboratory shear
flows.

It is generally agreed that the mechanism respon-
sible for formation of these coherent structures is lin-
ear, and therefore the coherent structures and their
universal nature should emerge from analysis of the
linear operator linearized about the mean flow that
governs the perturbation dynamics. This is evident in
the LES study of Mason and Thomson (1987) where
it is shown that the coherent structures and their trans-
port properties depend primarily on the average back-
ground flow and in the study of Lee et al. (1990) in
which turbulent fields resulting from DNS integra-
tions were compared to those produced using the as-
sociated linearized equations starting from the same
initial isotropic turbulent field.

It was realized early on (Taylor 1914; Ekman 1927)
that the laminar Ekman spiral is seldom observed in the
PBL, indicating that it is not stable. The instability of
the laminar Ekman flow has been demonstrated in di-
verse PBL conditions: in convectively unstable PBLs
(cf. Kuo 1963), in neutrally stratified PBLs (Lilly 1966;
Brown 1970; Foster 1997), in mildly stratified PBLs
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FIG. 1. Evolution of the amplitude of the zonal velocity û (dashed
line) and vertical velocity ŵ (dashed line) for two-dimensional plane
wave perturbations with k 5 1, l 5 6, and m 5 0 in unstratified
inviscid constant shear unbounded flow. The continuous curves show
the evolution of the corresponding perturbation velocities in the pres-
ence of stratification. The Richardson number is Ri 5 0.25. Note that
the presence of stratification diminishes the amplitude of the vertical
velocity, which reaches a maximum when the wave is vertical at t
5 l/k 5 6. Note also because of the two-dimensionality of the per-
turbation the zonal perturbation velocity decays algebraically with
time. At the initial stages of the evolution the perturbation velocities
have opposite signs and the associated downgradient Reynolds stress
implies perturbation energy growth.

FIG. 2. Evolution of the amplitude of the zonal velocity û (dashed
line) and vertical velocity ŵ (dashed line) for three-dimensional plane
wave perturbations with k 5 1, l 5 6, and m 5 1 in unstratified
inviscid constant shear unbounded flow. The continuous curves show
the evolution of the corresponding perturbation velocities in the pres-
ence of stratification. The Richardson number is Ri 5 0.25. Note
that, as for two-dimensional perturbations, the presence of stratifi-
cation diminishes the amplitude of the vertical velocity resulting in
reduced zonal perturbation velocities. The zonal perturbation velocity
does not decay to zero in the inviscid limit but asymptotes to a
constant value.

(Etling 1971; Brown 1972), and even in some cases in
strongly stratified PBLs (Kaylor and Faller 1972). But
the asymptotic instability of the laminar Ekman profile
does not imply that the breakdown of the laminar PBL
will be dominated by the structure of the most unstable
mode. Recently, Foster (1997) studied perturbation
growth in a neutrally stratified laminar Ekman layer for
Reynolds numbers characteristic of the PBL. He did not
limit his analysis to the growth of single modes but
considered the growth of general initial conditions. He
demonstrated, using optimal perturbation theory, that
the optimal initial perturbations lead to perturbation
growth that is at least an order of magnitude larger than
the growth associated with the most unstable mode in
the flow.

The findings of Foster (1997) are a general conse-
quence of the nonnormality of the operator governing
the perturbation dynamics. Nonnormal operators1 have
nonorthogonal eigenfunctions and as a result the least
table (or most unstable) eigenfunction is generally in-
dicative of the perturbation evolution only for large
times, which is of limited interest in predicting break-
down of the laminar flow which usually occurs before

1 A nonnormal operator is an operator that does not commute with
its adjoint in a given inner product. In fluid stability studies the inner
product is usually taken to be the perturbation energy.

instabilities dominate the perturbation structure. The
theory of optimal perturbations, advanced by Farrell
(1988), successfully predicts the structures that domi-
nate transition to turbulence in laboratory shear flows
(Butler and Farrell 1992; Farrell and Ioannou 1993a;
Reddy and Henningson 1993; Trefethen et al. 1993; for
a review refer to the recent monograph of Schmid and
Henningson 2000). Similarly, in the PBL understanding
the transition process requires identifying the optimal
perturbations producing the perturbation structure. Such
analysis is equally important for mean flows that are
stable or weakly unstable; Brown (1970), for example,
has argued that the turbulent mean velocity profile re-
sulting from equilibration of the instabilities of the lam-
inar Ekman spiral is asymptotically stable. Therefore
the dominant perturbation structures that emerge will
be nonmodal.

The theory of optimal perturbations can be extended
to account for perturbation structure in fully turbulent
flows. In the turbulent boundary layer the optimal per-
turbations over an eddy turnover time, identify the co-
herent structures. Butler and Farrell (1993) obtained in
this way the spacing of the streaks in a turbulent bound-
ary layer and Farrell and Ioannou (1998) obtained the
temporal and spatial spectrum of the observed variance
in a turbulent laboratory boundary layer.

It was shown in Farrell and Ioannou (1993a, hereafter
FIa) that the coherent structures in boundary layers form
by a synergism in boundary layers between the Orr mech-
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anism, in which a perturbation leaning against the shear
intensifies as it is sheared over producing strong vertical
velocities (Orr 1907), and the roll mechanism, in which
a vertical velocity induces a zonal velocity perturbation
in the presence of shear (Moffat 1967; Ellingsen and Palm
1975; Landahl 1980). It was proposed by FIa that the
roll mechanism is predominantly responsible for gener-
ating the streamwise rolls associated with long streaky
regions of velocity excess and deficit in the viscous sub-
layer where the coherence time is long and that the syn-
ergistic Orr–roll mechanism accounts for the generation
of the hairpin vortices in the turbulent region above the
sublayer, where the coherence time is shorter.

It should be stressed that the assumption inherent in
this theory is that the coherent structures emerge from
organization by the nonnormal linear dynamics of in-
coherent background motions. After they have grown
these coherent structures break down into incoherent
debris under the action of nonlinear advection. The
breakdown process in this theory does not need to be
described in detail because it is assumed that the mature
phases of the coherent structures do not persist to pro-
duce orderly regeneration of new coherent structures
as it has been suggested in connection with minimal
turbulent flow realizations (Jimenez and Moin 1991)
or low-order truncations of turbulent flow (cf. Waleffe
1997, or the monograph of Holmes et al. 1998).

Optimal perturbation theory can readily explain the
observed universality of the coherent structures across
diverse shear flows because the growth of optimal per-
turbations does not depend on details of the flow, as the
structures arise from the universal Orr and roll mech-
anisms (Farrell and Ioannou 1993b, hereafter FIb). Es-
pecially revelatory was the fact that the coherent struc-
tures can be obtained by considering the evolution of
perturbations in an unbounded constant shear flow, for
which analytic solutions exist (FIa, FIb).

In this paper we investigate the optimal growing per-
turbations in the stably stratified boundary layer. Ex-
ploiting the universality of the optimal growth mecha-
nism we investigate for simplicity the stability of an
unbounded constant shear flow. The goal is to analyze
in detail the most energetic structures that can arise in
three-dimensional stratified shear flows, the optimally
growing two-dimensional perturbations in stratified flow
having been already investigated by Farrell and Ioannou
(1993c, hereafter FIc), who obtained analytic solutions
in the manner of Phillips (1966) and Hartman (1975).
The results obtained in this paper for an unbounded flow
can be readily adapted to the PBL, as it suffices to
consider bounded perturbations with the appropriate for
the context scale. Naturally, our analysis can only ad-
dress perturbations with scales shorter than the scale of
the domain. However, the assumption of constant shear
and constant stratification does limit the analysis. For
example, internal gravity propagation toward regions of
high Richardson number are not included in the analysis.
Both the case of flows with boundaries and flows of

varying shear and stratification are currently under in-
vestigation and will be reported elsewhere.

2. Formulation

a. The evolution equations for three-dimensional
perturbations

Consider a mean zonal velocity with constant shear
U(z) 5 az varying only in the vertical in a hydrostat-
ically balanced stratified atmosphere of density: r(z) 5
rm 1 ro(z), in which rm is the vertically averaged density
and ro(z) the hydrostatically balanced departure from
rm. Velocity perturbations in the zonal (x), meridional
(or spanwise) (y), and vertical (z) directions are denoted,
respectively, (u, y, w), while the perturbation density
field is denoted as r and the perturbation pressure field
as p. We consider the evolution of perturbations in a
region of limited vertical extent so that the Boussinesq
approximation applies. The linearized nondimensional
momentum, thermodynamic, and continuity equations,
under the Boussinesq approximation, are

1
2(] 1 z] )u 1 w 5 2] p 1 ¹ u, (1)t x x Re

1
2(] 1 z] )y 5 2] p 1 ¹ y , (2)t x y Re

1
2(] 1 z] )w 5 2] p 2 Rir 1 ¹ w, (3)t x z Re

1
2(] 1 z] )r 5 w 1 ¹ r, (4)t x Re

] u 1 ] y 1 ] w 5 0. (5)x y z

Time has been nondimensionalized by 1/a, where a is
the shear; horizontal and vertical lengths by L 5 Uo/a,
where Uo is a typical mean flow velocity; and pressure
by rm . For flows that extend to infinity there is no2U o

externally imposed length scale. In such cases we con-
sider as the length scale the characteristic size of the
perturbations. The Brunt–Väisälä frequency N is defined
as N 2 5 2(g/rm)dro/dz, where g is the gravitational
acceleration. The Richardson number is defined as Ri
5 /a2, where No is a typical value of the Brunt–2N o

Väisälä frequency and the Reynolds number is Re 5
(rmLUo)/m, where m is the coefficient of viscosity. Den-
sity has been nondimensionalized by (rmUo /ag)r.2N o

The coefficient of diffusion has been chosen to be equal
to the coefficient of kinetic viscosity, that is, the Prandtl
number has been chosen to be 1. In the sequel for sim-
plicity we will assume that the mean state has a constant
Brunt–Väisälä frequency.

The perturbation energy density consists of two forms
of energy, the kinetic energy defined as

2 2 2u 1 w 1 y
T 5 , (6)

2
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where the bar denotes an average over space and the
potential energy defined as

2r
V 5 Ri . (7)

2

The evolution equation for the kinetic energy is given:

dT
5 2uw 2 Rirw

dt

1
2 2 22 [(=u) 1 (=y) 1 (=w) ]. (8)

Re

The perturbation potential energy evolves according to

dV Ri
25 Rirw 2 (=r) . (9)

dt Re

Consequently, the total energy evolution is given by

dE
5 2uw

dt

1
2 2 2 22 [(=u) 1 (=y) 1 (=w) 1 Ri(=r) ], (10)

Re

implying that except from energy dissipation given by
the second term, perturbation energy grows exclusively
by exchange with the mean flow when the Reynolds
stress term is downgradient (of opposite sign to theuw
mean flow shear). Note that the buoyancy flux term

does not contribute to the net energetics and is onlyrw
responsible for energy exchange between the kinetic and
the potential forms.

Eliminating pressure from (1), (2) we get the vertical
vorticity equation

1
2] 1 z] 2 ¹ z 5 ] w, (11)t x y1 2Re

where

z 5 ] y 2 ] ux y (12)

is the perturbation vertical vorticity.
Taking the divergence of the momentum equations

(1), (2), (3) and using the continuity equation (5) the
perturbation pressure is found to be given by

2¹ p 5 22] w 2 Ri] r.x z (13)

Applying the Laplacian operator to (3) and eliminating
the pressure using (13) we obtain

1
2 2 2 2] 1 z] 2 ¹ ¹ w 5 2Ri(] 1 ] )r. (14)t x x y1 2Re

In this way we arrive at three self-contained evolution
equations for the vorticity z, vertical velocity w, and
perturbation density r:

1
2] 1 z] 2 ¹ z 5 ] w, (15)t x y1 2Re

1
2 2 2 2] 1 z] 2 ¹ ¹ w 5 2Ri(] 1 ] )r, (16)t x x y1 2Re

1
2] 1 z] 2 ¹ r 5 w. (17)t x1 2Re

All other perturbation fields can be obtained from the
z, w, and r fields, which we will use in the sequel as
our field variables. Because we are interested in the
generic effects of shear on the evolution of the pertur-
bations we will not impose boundary conditions on the
perturbations and we will consider the evolution in an
unbounded domain. It is then advantageous to study the
evolution of perturbations in the convected coordinates
introduced by Kelvin (1887) (see also Farrell 1987;
Lindzen 1990).

b. Perturbation dynamics in a convected frame of
reference

We make a transformation to a new set of coordinate
frame (j, h, n) that is sheared with the mean flow:

j 5 x 2 zt, h 5 y, n 5 z, and t 5 t. (18)

Under this coordinate transformation, ]x 5 ]j, ]y 5 ]h,
]z 5 ]n 2 t]j, and ] t 5 ]t 2 z]j, the perturbation
equations (15), (16), (17) become

1
2] 2 ¹ z 5 ] w, (19)t h1 2Re

1
2 2 2 2] 2 ¹ ¹ w 5 2Ri(] 1 ] )r, (20)t j h1 2Re

1
2] 2 ¹ r 5 w, (21)t1 2Re

where the Laplacian operator is now given by ¹2 5 [ 2]j

1 1 (]n 2 t]j)2]. Note that in the convected coordinate2]h

frame the field equations are spatially homogeneous and
the vertical inhomogeneity of the original set has been
transformed to a temporal inhomogeneity.

Single Fourier components of the solution of (19), (20),
(21) with spatial dependence ei(kj1ln1mh) are then analyzed.
These waves are progressively sheared and can be fol-
lowed from an initial state in which the lines of constant
phase are leaning against the shear, to a state in which
the phase lines are vertical (at t 5 l/k), to a state in which
the phase lines lean with the shear. The time development
of the perturbation fields is found from solution of the
time-dependent differential equation

df
5 A(t)f, (22)

dt
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where f is the column vector of the Fourier amplitudes
of the field variables: f 5 [ , ŵ, ]T, and the matrixẑ r̂
A(t) is given by

2K(t) 
2 im 0

Re
2 2 2 2k(l 2 kt) K(t) Ri(k 1 m )

A(t) 5 0 2 2 , 2 2K(t) Re K(t)
2K(t) 0 1 2

Re 

(23)

where K(t)2 5 k2 1 m2 1 (l 2 kt)2 is the square of the
time-dependent total wavenumber of the plane wave.

c. Perturbation energy density and energetics for
plane waves

We will at first study the dynamics of a single Fourier
component. The perturbation energy density of a single
plane wave is given in terms of the Fourier amplitudes
(denoted with carets) by

2 2 2 2u 1 w 1 y r
E 5 1 Ri

2 2

2 2 2 2|û| 1 |ŵ| 1 | ŷ | | r̂ |
5 1 Ri . (24)

4 4

The amplitudes of the horizontal velocities û, areŷ
related to the field variables and ŵ byẑ

im k(l 2 kt)
û 5 ẑ 2 ŵ (25)

2 2 2 2k 1 m k 1 m

2ik m(l 2 kt)
ŷ 5 ẑ 2 ŵ. (26)

2 2 2 2k 1 m k 1 m

The energy density takes then the following form in
terms of the field variables:

1 Ri
2 2 2 2E 5 (| ẑ | 1 K(t) |ŵ| ) 1 | r̂ | , (27)

2 24(k 1 m ) 4

where the first term is the perturbations kinetic energy
T and the second term Ri/4 | | 2 is the perturbation po-r̂
tential energy V. The energy density can be written com-
pactly as the quadratic form E 5 f†Mf, where f is
the state vector, † denotes the Hermitian transpose, and
M the positive Hermitian matrix:

1 0 0 
1  

2M 5 0 K(t) 0 . (28) 2 2  4(k 1 m )
2 20 0 Ri(k 1 m ) 

The evolution equation for the kinetic energy density
(8) for a plane wave becomes

2dT 1 Ri 2K(t) T
5 2 R(ûŵ) 2 R(r̂ŵ) 2 , (29)

dt 2 2 Re

where R denotes the real part of a complex number.
The Reynolds stress R(ûŵ) gives the vertical flux of
horizontal momentum, and R( ŵ) the buoyancy flux.r̂
Similarly, the potential energy V evolution (9) satisfies
the equation

2dV Ri 2K(t) V
5 R(r̂ŵ) 2 . (30)

dt 2 Re

The total energy evolution equation thus becomes

2dE 1 2K(t) E
5 2 R(ûŵ) 2 . (31)

dt 2 Re

d. Basic characteristics of the evolution of
perturbations in a shear flow

Consider first two-dimensional plane wave pertur-
bations with no spanwise dependence (i.e., m 5 0). The
evolution of such two-dimensional perturbations in an
unstratified and inviscid flow follows the well-known
Orr mechanism intensification process (cf. Farrell 1987).
The vertical and zonal velocities evolve according to

2 2k 1 l
ikx1i(l2kt)yŵ 5 ŵ e ,0 2 2k 1 (l 2 kt)

û 5 2(l/k 2 t)ŵ, (32)

where ŵ0 is the initial amplitude of the vertical velocity.
The plane wave is seen to rotate shearing over in the
direction of the mean flow. If the plane wave initially
leans against the shear, that is, l/k . 0, the Reynolds
stress is negative and remains negative up to theuw
time ty 5 l/k when the phase lines are vertical, for later
times t . ty the plane wave leans in the direction of the
shear producing a positive Reynolds stress. Consequent-
ly, according to (31) the energy transiently grows for t
, ty achieving a maximum at ty . For t . ty the energy
monotonically decays. During this evolution the vertical
velocity reaches a maximum when the phase lines are
vertical, while the zonal velocity vanishes. The typical
evolution of the velocity amplitudes is shown in Fig. 1.
Note that even in an inviscid flow both the perturbation
velocity components asymptotically decay to zero (not
shown in the figure).

Stable stratification modifies only slightly the evo-
lution of two-dimensional perturbations. Because the
vertical velocity of perturbations is opposed by the grav-
itational field the vertical velocity is reduced during the
tilting of the plane wave. For comparison the amplitude
of the velocity fields for a stratified flow with Ri 5 0.25
are shown in Fig. 1. The initial conditions are the same
as those in the unstratified flow. Because the Reynolds
stress in the stratified case is smaller the resultinguw
perturbation energy growth is reduced. It can be shown
that for large Richardson numbers the maximum energy
growth is only the square root of the energy growth
achieved by the same plane wave in unstratified flow
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(Farrell and Ioannou 1993c). It should be noted that the
vertical velocity in a stratified flow induces density per-
turbations, which if large, can lead to unstable density
stratification that can cause collapse of the plane wave
by convective overturning. This process limits the va-
lidity of the perturbation equations and will be discussed
in the next section.

Consider now three-dimensional perturbations in an in-
viscid unstratified flow. In that case there is a notable class
of solutions for perturbations that do not vary zonally, that
is, k 5 0, often referred to as roll solutions (Moffat 1967;
Ellingsen and Palm 1975; Landahl 1980). In that case
plane wave perturbations have constant vertical and me-
ridional (or spanwise) velocity amplitudes while the zonal
perturbation velocity grows linearly, that is,

û 5 û 1 ŵ t, ŵ 5 ŵ , ŷ 5 ŷ .0 0 0 0 (33)

The presence of viscosity eventually intercepts this linear
growth at times of the order of the Reynolds number and
the maximum perturbation energy growth achieved is of
the order of O (Re2). Although the roll perturbations grow
secularly with time, their growth rate is gradual, and they
are expected to dominate the perturbation structure in high-
shear regions and whenever the flow is coherent over a
long time. As a result these three-dimensional perturba-
tions are central in the process of transition of laboratory
shear flows to turbulence where the flow is laminar, and
are also prevalent in the viscous layer in turbulent flows
where both the shear and the coherence time, measured
in units of inverse shear, are large.

Consider now a general oblique perturbation in an un-
stratified flow. The degree of obliqueness will be mea-
sured by the angle Q 5 tan21(m/k), which is subtended
by the phase lines on the horizontal (x, y) plane with the
zonal direction, x. For roll perturbations, k 5 0, and Q
5 908, while for two-dimensional perturbations confined
in a vertical plane, m 5 0, and Q 5 0. The evolution of
the vertical velocity amplitudes is given (Farrell and Ioan-
nou 1993a) for inviscid flow by the expression

2 2 2k 1 l 1 m
ŵ 5 ŵ , (34)0 2 2 2k 1 (l 2 kt) 1 m

while the horizontal velocity amplitude evolution is giv-
en by

2 2 2 2m (k 1 l 1 m )
û 5 ŵ0 2 2 3/2k(k 1 m )

l 2 kt l
21 213 tan 2 tan1 2 1 22 2 2 2[ ]Ïk 1 m Ïk 1 m

k(l 2 kt)
2 ŵ. (35)

2 2k 1 m

The vertical velocity for oblique waves reaches a maxi-
mum again at the time ty when the phase lines are vertical,
but now this maximum is reduced due to the flow in the
spanwise, y, direction. Again as in the two-dimensional
case (m 5 0) the vertical velocity algebraically decays to

zero. The horizontal velocity on the other hand increases
rapidly in the beginning due to the increase in vertical
velocity while the plane wave tilts over, but then asymp-
totes in the absence of any viscosity to a constant value.
Consequently, oblique perturbations can rapidly increase
their perturbation energy by combining the Orr intensifi-
cation of the vertical velocity, as for the two-dimensional
evolution, with a rapid intensification of the zonal velocity
induced by the vertical velocity, as for roll perturbations.
Oblique perturbations have the distinct signature of rapid
growth of the vertical velocity (identified by sudden up-
drafts or downdrafts) followed by the development of
strong streaks in the zonal flow (regions with large zonal
velocity perturbation). Indeed above the viscous sublayer
of laboratory turbulent shear flows, where perturbations
can grow coherently over typically O (10) advective time
units before they get disrupted, the perturbation structure
is dominated by these streaky perturbations that have an
angle of obliqueness of approximately Q 5 608 and are
formed after bursts in the vertical velocity as predicted by
the oblique solutions (Farrell and Ioannou 1993a). In Fig.
2 we plot the typical evolution of the vertical and hori-
zontal velocity amplitudes for unstratified inviscid flow.

In order to discuss the large time behavior we must
include the effects of viscosity. It is easily seen that in
the presence of viscosity all the fields exponentially at-
tenuate with time as exp [21/Re K 2(s) ds], wheret#0

K 2(t) is the square sum of the wavenumbers. It is im-
portant to note that while for roll perturbations (k 5 0)
the e-folding time is O (Re), for oblique perturbations
the e-folding time is of the order of O [(3Re/k2)1/3]. As
a result the perturbations that are expected to yield the
largest energy growth at large times are expected to be
invariably roll perturbations.

The leading large time asymptotic behavior of per-
turbations in inviscid stratified flow is easily determined.
While the vertical velocity and density for k ± 0 decay
with leading behavior ŵ ø t23/21n and ø t21/21n, wherer̂
n 5 [1/4 2 Ri(1 1 m2/k2)]1/2 (for n 5 0 a logarithmic
factor must be included in the asymptotic expressions),
the vertical vorticity asymptotes to

21/21nẑ 5 z 2 imr 1 O (t ),0 0 (36)

and the horizontal velocity to

im(z 2 imr )0 0 21/21nû 5 1 O(t ). (37)
2 2k 1 m

Note that the asymptotic expression for the vertical vor-
ticity is obtained from the fact that in inviscid flow the
potential vorticity 2 im is a conserved quantity.ẑ r̂
Hence in three-dimensional inviscid stratified flow while
the perturbation potential energy decays in time (for k
± 0) the kinetic energy asymptotes to a constant value.

The effects of stratification are now qualitatively de-
scribed. The vertical velocity grows while the plane
wave tilts over but the magnitude of the maximum ver-
tical velocity is reduced by the presence of stratification,
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FIG. 3. Evolution of the ratio of the Brunt–Väisälä frequency as-
sociated with the perturbation density n2 5 | (g/rm)(]r/]z) | to the
Brunt–Väisälä frequency of the background flow for three-di-2N o

mensional plane wave perturbations with k 5 1, l 5 6, and m 5 1
(solid lines) and two-dimensional plane perturbations with k 5 1, l
5 6, and m 5 0 (dashed lines) for various Richardson numbers. The
background flow is constant shear unbounded flow and the evolution
is inviscid. The initial perturbation energy density has been taken to
be 1% of the energy density of the background flow. Whenever the
perturbation Brunt–Väisälä frequency exceeds the perturbations2N o

may convectively overturn. This may happen very rapidly (t , 8)
for perturbations in flows with Ri , 0.4.

because the vertical motion is opposed by the gravita-
tional restoring force, and the resulting magnitude of
the emergent streak is similarly reduced. A typical evo-
lution of the velocity fields (u, w) for Richardson num-
ber Ri 5 0.25 is shown in Fig. 2. The initial velocity
field has been chosen to be the same with the unstratified
evolution shown in Fig. 2. Because increased oblique-
ness also reduces the vertical velocity it is expected that
perturbations that grow the most in stratified flow will
be configured closer to the vertical plane, with smaller
Q. The identification of the optimally growing pertur-
bations is systematically pursued in the sequel.

e. Possibility of convective overturning

In stratified flow the amplification of the density per-
turbations may lead to convectively unstable regions. If
such regions develop, the perturbation field may col-
lapse by convective overturning and the plane wave
solutions cease to be valid. It was calculated by FIc that
two-dimensional perturbations with initial energy den-
sity of 1% of the background energy density may rapidly
convectively overturn in flows with Richardson num-
bers smaller than 0.8,2 and it was suggested that this
mechanism was the cause of the observed collapse of
turbulence in stratified flows (Turner 1979; Itsweire et
al. 1986; Thorpe 1987). Because the magnitude of the
intensification of the density field depends on the am-
plification of the vertical velocities, it is expected that
two-dimensional perturbations (with m 5 0) are the
most efficient perturbations to develop unstable strati-
fication. We assess here the possibility of collapse of
three-dimensional perturbations.

We consider the ratio of the maximum perturbation
density gradient measured by n2 5 | (g/rm)]r/]z) | to the
background Brunt–Väisälä frequency 5 2(g/rm)dr0/2N 0

dz. The ratio n2/ is given by2N 0

2n
5 |(l 2 kt)r̂(t)|, (38)

2N0

where (t) is the density perturbation amplitude. Con-r̂
vective overturning may occur whenever n2 . . Be-2N 0

cause at large times ø t21/21n, where n 5 [1/4 2 Ri(1r̂
1 m2/k2)]1/2, the ratio of the density gradients grows as
n2/ ø t1/2 for Ri(1 1 m2/k2) . 1/4 while for small2N 0

Richardson numbers it grows almost linearly. Conse-
quently, at least within the idealized limits of an inviscid
flow all perturbations3 will produce statically unstable
regions that may lead to overturning.

2 In fact in FIc the Richardson number quoted is Ri 5 0.4, the
reason being that the initial energy of the perturbations was 1/100%
of the background energy.

3 Except for roll solutions (k 5 0). For roll solutions the density
field in the inviscid limit does not decay, it becomes, as will be seen
in the next section, a periodic function of time. Breaking may also
occur even for such perturbations if initially they have sufficient
amplitude. For example, for initial energy 1% of the background
energy density breaking may develop within 15 advective units for
Ri , 0.25.

Consider an initial plane wave perturbation with k 5
1, l 5 6, and m 5 1. Initially the density perturbation
is zero and the initial energy density has been chosen
to be 1% of the background energy density. The evo-
lution of n2/ as a function of time is shown in Fig.2N 0

3. We observe that perturbations may break in a few (7
to 10) advective time units for Ri , 0.4, while for larger
Ri the development of statically unstable regions is de-
layed. For comparison we show in the same graph evo-
lution of two-dimensional perturbations (m 5 0) that
demonstrates that three-dimensional perturbations delay
the production of statically unstable regions.

3. The growth of rolls in stratified flow

The evolution of zonally independent perturbations
obey the following equations:

1
2 2] 2 (] 1 ] ) u 1 w 5 0, (39)t z y[ ]Re

1
2 2] 2 (] 1 ] ) (] w 2 ] y) 5 Ri] r, (40)t z y y z y[ ]Re

] w 1 ] y 5 0, (41)z y

1
2 2] 2 (] 1 ] ) r 5 w. (42)t z y[ ]Re
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FIG. 4. Inviscid evolution of the amplitude of the perturbation zonal
velocity for roll perturbations (k 5 0). The solid line corresponds to
the case of an initial perturbation concentrated solely to perturbation
of the density field with l/m 5 1.03, the dashed line corresponds to
the case of an initial perturbation of the velocity fields with l/m 5
1.03. The Richardson number is Ri 5 0.25. Initial density field per-
turbation lead to higher zonal perturbation velocity amplitude for
large enough optimizing times.

The amplitudes then of wave solutions of the form [u,
w, r] 5 [û(t), ŵ(t), (t)]ei(lz1my) evolve according tor̂

dû 1
2 25 2ŵ 2 (l 1 m )û, (43)

dt Re
2dŵ m 1

2 25 2Ri r̂ 2 (l 1 m )ŵ, (44)
2 2dt m 1 l Re

l
ŷ 5 2 ŵ, (45)1 2m

dr̂ 1
2 25 ŵ 2 (l 1 m )r̂. (46)

dt Re

Equations (43)–(46) admit the following oscillatory
solutions in the inviscid limit:

ŵ(0)
û 5 r̂(0)[1 2 cos(vt)] 2 sin(vt) 1 û(0), (47)

v

ŵ 5 ŵ(0) cos(vt) 2 vr̂(0) sin(vt), (48)

ŷ 5 2(l/m)ŵ(0) cos(vt) 1 (l/m)vr̂(0) sin(vt), (49)

ŵ(0)
r̂ 5 r̂(0) cos(vt) 1 sin(vt), (50)

v

where the frequency of oscillation of the perturbation
fields is given by

1/2Ri
v 5 . (51)

2 21 21 1 l /m

The oscillation arises because of the restoring action of
gravity in a stably stratified fluid. The period of the os-
cillatory motion is given by T 5 2p/v 5 2p(1 1 l2/m2)1/

2/ which as expected increases as the stratification isÏRi
reduced. In the limit of zero stratification the period of
oscillations becomes infinite and the perturbation fields
grow linearly with time as in unstratified flow.

The perturbation energy is also periodic and it can be
shown that it attains its first maximum at tmax 5 T/(2p)
arctan[ŵ(0)/ (0)]; that is, if initially ŵ(0) 5 0 the energyr̂
maximum occurs at half the period, but if initially (0)r̂
5 0 the energy maximum occurs at T/4. Similarly it can
be seen from (47) that if we impose initially only a den-
sity perturbation, the zonal perturbation velocity will
reach a maximum at half the periodic time, while if we
impose only a vertical velocity perturbation the zonal
velocity will reach a maximum at a time equal to a quarter
of the periodic time. The reason for this difference stems
from the fact that in the case of initial density pertur-
bations the subsequent motion extends further in the ver-
tical; that is, if initially we impose only a density initial
perturbation the perturbation density vanishes at t 5 T/
4 but because the vertical velocity is nonzero at this
instant the vertical motion continues and the zonal ve-
locity increases further until the vertical velocity vanishes
at t 5 T/2 and the motion reverses. For a vertical velocity
perturbation the vertical motion reverses at t 5 T/4 lim-

iting in this way the growth of the zonal perturbation
velocity. The growth of zonal velocity in the two cases
is shown in Fig. 4. This observation suggests that for roll
perturbations the maximal energy growth at large times,
Topt, is produced by perturbing only the density field.4 It
is easy to determine that the maximum energy growth
that can be thus achieved is

4
E 5 1 1 , (52)max Ri

which first occurs at tmax 5 T/2 5 p[(1 1 l2/m2)/Ri]1/2.
It is remarkable that the maximum attained energy
growth is independent of the wavenumber. Only the time
at which the maximum energy growth occurs is wave-
number dependent. From the expression of tmax we
obtain that only if Topt $ min l/m [tmax (l/m)] 5 p/ÏRi
there will be pure initial density perturbations that
produce the optimal energy growth at Topt . For shorter
optimizing times the initial perturbation that produces
maximum energy growth is purely a perturbation in
the vertical velocity field.

We can validate the conclusions we have reached by
calculating the optimal growth of roll perturbations as
a function of the optimizing time Topt. For roll pertur-
bations, there is no need to employ methods of gener-
alized stability analysis (Farrell and Ioannou 1996); we
can directly obtain the answer analytically by maxi-
mizing the energy at Topt under the constraint that the

4 For comparison we mention that for an initial vertical velocity
perturbation the maximum energy growth is E 5 1 1 1/Ri, which
first occurs at tmax 5 T/4.
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FIG. 5. Optimal energy growth attained by roll perturbations, Emax,
as a function of optimizing time, Topt, for various Richardson numbers.
The flow is inviscid. The optimal energy growth assumes the constant
value Emax 5 1 1 4/Ri for optimizing times larger than Topt 5 p/

. The energy growth grows as t2 in unstratified flow (Ri 5 0).ÏRi

FIG. 6. Optimal energy growth for roll perturbations, Emax, as a
function of optimizing time, Topt, for various Richardson numbers and
Re 5 1000 (based on a length scale that makes the nondimensional
spanwise wavenumber m 5 1). Also indicated is the optimal energy
growth attained in inviscid flow Emax 5 1 1 4/Ri and the least op-
timizing time at which it is attained.

initial energy is unity. In this way we determine that for
Topt $ p/ the optimal perturbations are indeed pureÏRi
density perturbations and for smaller optimizing times
the optimal initial condition is a vertical velocity per-
turbation. The optimal growth Emax as a function of Topt

for various Richardson numbers is shown in Fig. 5. The
maximum energy is E 5 1 1 4/Ri and it is first attained
at t 5 p/ . For times larger than p/ the maxi-ÏRi ÏRi
mum energy that can be attained is constant and the
initial perturbations that achieve this growth adjust their
vertical wavenumber l so that Topt 5 T/2, which is al-
ways possible if Topt $ p/ . For smaller optimizingÏRi
times the optimal initial perturbations have infinite ver-
tical wavelength, that is, l 5 0. If in order to simulate
the effects of vertical confinement we constrain the ini-
tial perturbations to have vertical wavenumber l . l0,
then the optimal perturbations for optimizing times Topt

, p/ will be vertical velocity perturbations withÏRi
the least allowed vertical wavenumber l0.

Viscosity can be easily incorporated in the above so-
lutions. It leads to exponential decay of the perturbation
fields with an e-folding time of Re/(l2 1 m2) and mod-
ification of the oscillation period to

2 2 2 2 2 2 1/2T 5 2p /[Ri/(1 1 l /m ) 2 (m 1 l ) /Re ] . (53)

The optimal perturbations have the same character as
in the inviscid case. The optimal growth as a function
of the optimizing time is shown in Fig. 6 for Re 5 1000
(the Reynolds number has been based on the spanwise
scale of the perturbations so that the nondimensional
spanwise wavenumber is m 5 1).

4. Determination of the optimal perturbations

a. Method for determining the optimal perturbations

In order to determine the initial perturbation that leads
to maximum energy growth over a specified time in-
terval for a given (k, l, m) we cast the equation governing
the perturbation dynamics in terms of the new variable
c 5 M1/2f, where f is the state vector (f 5 [ , ŵ,ẑ

]T) and M is the energy metric (28). With the newr̂
variables the perturbation energy is given by the Eu-
clidean inner product: E 5 c†c, and the governing
equations are transformed to

dc
5 Dc. (54)

dt

where the time-dependent matrix D(t) is given by

1/2dM
1/2 21/2D(t) 5 1 M A M1 2dt

2K(t) im 
2 0

Re K(t)

2 22 ÏRi(k 1 m )K(t) k(l 2 kt)
5 0 2 1 2 . 2Re K(t) K(t)

2 2 2ÏRi(k 1 m ) K(t) 0 2
K(t) Re 

(55)

The solution of (54) is given by c(t) 5 F(t)c(0), where
c(0) is the initial state and F(t) is the finite time prop-
agator:
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FIG. 7. The optimal energy growth, Emax, as a function of optimizing
time Topt for three-dimensional plane wave perturbations (solid line),
two-dimensional plane wave perturbations (m 5 0, dashed line), and
roll perturbations (k 5 0, dash–dot line). The Richardson number is
Ri 5 0.25. The flow is inviscid.

N
D(nt)t

F(t) [ lim e , (56)P
t→0 n51

obtained by N advances of the system by the infinites-
imal propagators eD(nt)t, where N and t satisfy the re-
lation t 5 Nt.

We define the optimal perturbation as the initial per-
turbation of unit energy that leads to the largest energy
growth in Topt. In order to maximize the perturbation
energy at Topt over unit energy initial perturbations with
wavenumbers (k, l, m), we must maximize the quadratic
form

† † †c (T )c(T ) 5 c F (T )F(T )c .opt opt 0 opt opt 0 (57)

The optimal perturbation is fopt 5 M21/2copt where copt

is the eigenfunction corresponding to the largest eigen-
value of F†(Topt)F(Topt). Equivalently, singular value
decomposition of F(Topt) 5 USV†, where U and V are
unitary matrices and S is a diagonal matrix ordered by
magnitude of its diagonal elements [the singular values
of F(Topt)], identifies immediately the optimal pertur-
bation copt as the first column of V. The square of the
largest singular value is the optimal energy (Topt),klmEopt

that is, the largest energy that can be obtained at Topt

by any initial plane wave perturbation of unit energy
with wavenumbers (k, l, m). The optimal energy at Topt

is equivalently given by the square of the L2 norm of
the propagator, that is, (Topt) 5 (Farrellklm 2E \F(T )\opt opt 2

1988; Reddy and Henningson 1993; Farrell and Ioannou
1996).

Determination of the perturbation that grows the most
in a specified interval Topt requires further determination
of the wavenumbers (k, l, m) that maximize (Topt).klmEopt

This optimal energy over all wavenumbers Eopt(Topt) is
obtained numerically by a descent algorithm that de-
termines the (k, l, m) that maximize (Topt). TheseklmEopt

optimal perturbations identify the structures that are ex-
pected to dominate the perturbation dynamics and de-
velop into the coherent structures of the stratified flow.

b. Optimal perturbations in a three-dimensional
inviscid stratified flow

As discussed in the previous section the optimal en-
ergy growth at time t is found by maximizing over the
wavenumbers (k, l, m) the square of the largest singular
value of F(t). The optimal perturbation is obtained from
the associated right singular vector of the propagator
for the wavenumbers (k, l, m) that produce the optimal
growth. In inviscid flow, because there is no scale in
the problem, the solutions depend only on the ratios l/
k and m/k and the wavenumber maximization proceeds
by maximization over these two ratios.

In three-dimensional inviscid stratified flow, the op-
timal perturbations are found to be nearly two-dimen-
sional with the ratio l/k close to the value of the opti-
mizing time, that is, l/k ø Topt. The corresponding values
of m/k, for optimizing times greater than five advective

time units, are less than one and tending to zero as the
Richardson number increases; that is, for large Rich-
ardson numbers and long enough times the optimal per-
turbations in inviscid stratified flow tend to be config-
ured close to the vertical plane. The optimal growth as
a function of optimizing time is shown in Fig. 7 for Ri
5 0.25. In the same graph the optimal growth of two-
dimensional perturbations (m 5 0) and roll perturbations
(k 5 0) are plotted for comparison. Clearly the roll
solutions, which give maximal energy growth of 1 1
4/Ri, are not expected to dominate the perturbation
structure. The optimal energy growth Emax achieved at
Topt as a function of the optimal time Topt for various
Richardson numbers is shown in Fig. 8. It is observed
that robust growth is found even for Ri 5 1. For large
Richardson numbers nonroll perturbations give growth
that is approximately equal to the square root of the
energy growth obtained in an unstratified flow in ac-
cordance with the results of FIc.

For small optimizing times the optimal perturbations
concentrate their energy predominantly in the kinetic
form. This is expected because the energy growth can
result only through the transfer of energy from the mean
to the perturbations mediated by the Reynolds stress

[cf. (31)]. So the greatest initial growth is associateduw
with perturbations that concentrate their energy in the
kinetic form. For larger optimizing times the optimal
perturbations apportion approximately 35% of their en-
ergy in potential form so that the buoyancy flux may
transform this energy into kinetic form at a later time.

c. Optimal perturbations in a three-dimensional
viscous stably stratified flow

The presence of viscosity breaks the scale invariance
of the solutions in infinite shear problems. If we choose
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FIG. 8. The optimal energy growth, Emax, as a function of optimizing
time Topt for various Richardson numbers. The flow is inviscid. The
growth attained for high Richardson numbers is approximately equal
to the square root of the growth attained in the unstratified case (Ri
5 0).

FIG. 9. The degree of obliqueness of the plane wave optimal per-
turbation as a function of the optimizing time Topt for various Rich-
ardson numbers. The Reynolds number is 1000. The degree of
obliqueness is measured by the angle Q 5 tan21(m/k), which mea-
sures the angle between normal and the phase lines of the plane wave
and the zonal direction. When Q 5 p/2 the phase lines are aligned
with the zonal direction and the perturbation has roll structure (k 5
0). When Q 5 0 the plane wave is confined in the vertical plane and
we have two-dimensional perturbations (m 5 0). Note that as the
Richardson number increases the optimal perturbations get aligned
more to the vertical plane. As the optimizing time increases the per-
turbations increasingly assume a roll type orientation.

to measure the viscosity of the infinite shear flow by
the Reynolds number we implicitly select a perturbation
scale. Here the Reynolds number is prescribed for a
given coefficient of viscosity on perturbations that have
unit total horizontal wavenumber, that is, k2 1 m2 5 1.
Perturbations with larger horizontal scale will be inter-
preted as evolving in a flow with the correspondingly
higher Reynolds number. In the limit k2 1 m2 → 0 we
can thus capture the inviscid results. The arbitrariness
of the Reynolds number disappears when a spatial scale
is provided. This is the case in all the atmospheric flows
in the PBL that have some prescribed length scale.

The presence of viscosity will alter the character of
the inviscid optimal perturbations found in the previous
section. We have already discussed that oblique pertur-
bations decay with an e-folding time of the order of tob

5 O [(3Re/k2)1/3] while roll perturbations have an e-
folding time of the order of tr 5 O (Re). We thus expect
that the optimal perturbations at optimizing times of the
order of O (Re) to be rolls; and for shorter optimizing
times to be oblique perturbations that can take advantage
of the rapid energy growth associated with the increase
of the vertical velocity due to the Orr mechanism fol-
lowed by the rapid increase in the zonal perturbation
velocity.

The angle Q 5 tan21(m/k) subtended by the normal
to the phase lines on the horizontal (x, y) plane with the
zonal direction measures the degree of obliqueness of
the perturbations. The obliqueness is maximum for Q
5 p/2, then the phase lines are in the zonal direction
and the perturbation has roll structure. The minimum
obliqueness, Q 5 0, corresponds to plane waves con-
fined in the vertical plane and to two-dimensional per-
turbations (m 5 0).

The increase of the angle of obliqueness of the op-

timal perturbations as a function of the optimizing time
for various Richardson numbers and Re 5 1000 is
shown in Fig. 9. As the optimizing time increases the
optimal perturbations assume a more zonally elongated
form (smaller wavenumber k) in order to forestall the
rapid viscous dissipation associated with the tilting of
perturbations lying nearly in the vertical plane. The op-
timal perturbations tend to lie closer to the vertical plane
(smaller Q) as the Richardson number increases in order
to boost the vertical velocity growth due to tilting that
would otherwise be impeded by the stratification. As
expected the optimal perturbations assume a nearly zon-
ally independent structure (Q . 808) for optimizing
times of the order of O [(3Re)1/3], that is, on the order
of 15 advective time units when Re 5 1000. The optimal
perturbations become exactly rolls when the optimizing
times approach O (Re), which for the case discussed is
about 1000 advective time units (not shown in the fig-
ure). The associated optimal energy growth for Re 5
1000 is shown in Fig. 10. The transition to nearly roll
perturbations is clearly shown in this graph to follow
the initial rapid growth associated with the oblique op-
timals for small optimizing times. It is interesting to
note that the global optimal energy is achieved for rea-
sonably short optimizing times and therefore the most
energetic structures that dominate the perturbation struc-
ture for typical Richardson numbers are oblique per-
turbations.

In the atmospheric boundary layer the turbulent fluc-
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FIG. 10. The optimal energy growth, Emax, as a function of opti-
mizing time Topt for various Richardson numbers. For larger opti-
mizing times the optimal perturbations assume a roll type structure. FIG. 11. Contour plot of the energy growth of optimal plane wave

perturbations as a function of the streamwise and spanwise wave
number for Topt 5 10 and Re 5 1000 (the Reynolds number is based
on a disturbance with k2 1 m2 5 1) and Richardson number Ri 5
0.25. The abscissa is and the ordinate is Q 5 tan21(m/k).2 2Ïk 1 m
Note that the maximal growth occurs for perturbations with Q ø 428,
for small wave numbers viscosity does not affect the growth attained,
and for larger wavenumbers viscosity affects least the structures
neighboring the streamwise rolls (Q 5 908).

FIG. 12. Same as in Fig. 11 but for Richardson number Ri 5 0.5.
The maximal growth occurs for perturbations with Q ø 308. The
increased stratification has reduced the angle of obliqueness Q. For
higher Richardson numbers the maximum occurs for lower values of
Q; i.e., for Ri 5 0.75, Q ø 88, while for Ri 5 1, Q 5 08.

tuations provide a timescale that intercepts the growth
of the perturbations by disrupting their coherent motion.
This timescale is the eddy turnover time, Te. In general
we do not have a priori knowledge of the eddy turnover
time and it has to be provided from observations. Typ-
ical of many situations is an eddy turnover time of the
order of O (10) advective time units. We choose the eddy
turnover time to be 10 advective units in the examples
to follow. In Fig. 11 we plot the optimal growth over
10 advective units as a function of the total horizontal
wavenumber and the degree of obliqueness Q (in de-
grees) for Re 5 1000 and Richardson number Ri 5
0.25. The corresponding contour plot for Ri 5 0.5 is
shown in Fig. 12. These contour plots can be given an
alternative interpretation. In an unbounded flow because
the Reynolds number is based on the total horizontal
wavenumber, smaller total wavenumbers correspond to
effectively larger Reynolds numbers, and the optimal
growth contours can be also interpreted as contours in
the plane of angles of obliqueness Q and inverse Reyn-
olds numbers. If the problem has a spatial scale (for
example the depth of the PBL), then the contour plots
must be interpreted as showing the growth as a function
of the perturbation size (scaled by the spatial scale of
the problem) for a given Reynolds number. In that case
scales larger than the domain are affected by the pres-
ence of boundaries, and the analysis of the unbounded
flow does not determine the growth of such perturba-
tions.

Inspection of the two contour plots shows the inde-
pendence of the growth maximum on the total horizontal
wavenumber, a result anticipated from the scale invari-
ance of the inviscid equations. The maximum growth
occurs for Ri 5 0.25 when the ratio of the streamwise
to spanwise extent is m/k ø 1 giving an angle of oblique-
ness Q ø 458. For Ri 5 0.5 this ratio is reduced to m/
k ø 0.57, that is, Q ø 308, and as the Richardson number

is increased further the perturbations are aligned com-
pletely on the vertical plane having Q 5 0. For com-
parison we mention that in unstratified flow the corre-
sponding ratio of streamwise to spanwise extent is m/k
ø 2, corresponding to Q ø 608, which is in agreement
with experimental measurements of velocity correla-
tions (cf. Farrell and Ioannou 1993a).
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FIG. 13. The optimal energy growth, Emax, as a function of opti-
mizing time Topt for checkerboard initial perturbations for Ri 5 0.25
and Re 5 1000. Line 1 (thick solid) shows the energy growth attained
by three-dimensional perturbations (for comparison the dashed line
shows the growth attained by plane wave perturbations). Line 2 (solid)
shows the growth attained by roll perturbations (k 5 0). Note that
the energy attained by checkerboard initial perturbations is approx-
imately half that attained by the plane wave optimal perturbations.

FIG. 14. As in Fig. 13 but for Ri 5 0.5.

d. Spatially localized optimal perturbations

Up to now we have investigated the optimal growth
produced by single plane wave perturbations. However,
unlike the plane wave perturbations, which have infinite
extent, perturbations are localized and we must inves-
tigate whether the results obtained for plane waves need
modification if the initial perturbation field is spatially
localized. We choose as the prototype of a localized
perturbation the perturbation produced by perturbations
of a single checkerboard in the form of

[z, w, r] 5 [ẑ , ŵ , r̂ ] cos(kx) cos(lz) cos(my), (58)0 0 0

which can be expressed as a superposition of eight plane
waves, that is,

i(kj1ln1mh) i(kj1ln2mh) i(kj2ln1mh)f̃ 5 f̃ e 1 f̃ e 1 f̃ e1 2 3

i(kj2ln2mh i(2kj1ln1mh) i(2kj1ln2mh)1 f̃ e ) 1 f̃ e 1 f̃ e4 5 6

i(2kj2ln1mh) i(2kj2ln2mh)1 f̃ e 1 f̃ e ,7 8 (59)

where i 5 [ i, ŵi, i] are the state vectors of thef̃ ẑ r̂
amplitudes of a single Fourier component of the field
variables z, w, r. Because of the form of the initial
perturbation the initial Fourier amplitude of all com-
ponents composing (59) must be equal to i(0) 5 [z0,f̃
w0, r0]/8 for all i 5 1, . . . , 8.

The evolution of the amplitudes of each plane wave
is governed by the evolution equation (23) and thus the
cumulative evolution of the state vector f(0) 5 [f1,
f2, f3, f4, f5, f6, f7, f8]T, where fi 5 [ i, ŵi, i]T,ẑ r̂
of the Fourier amplitudes composing the checkerboard

initial condition (58) is governed by the 24 3 24 matrix
dynamical operator C(t):

C(t) 5 diag(A , A , A , A , A ,2 2 2 2 2klm klm kl m kl m k lm

A , A , A ), (60)2 2 2 2 2 2 2k lm k l m k l m

where diag denotes the diagonal elements of a matrix
and Aklm is the dynamical operator given in (23) that
governs the evolution of a plane wave with waven-
umbers (k, l, m), and for brevity we denote k2 5 2k,
etc.

In order to determine the optimal growth as a function
of optimizing time Topt, we must first determine the
optimal growth for each wavenumber (k, l, m): (Topt),klmEopt

and then maximize the optimal growths over all wave-
numbers. The difficulty here is that the optimal growth
for given wavenumber is not immediately determined
by the norm of the propagator because the maximization
is constrained by the assumption that the initial fields
must be of the form (58). Because of the symmetries
of the problem it can be shown (see the appendix) that
it is enough to determine the optimal initial condition
of the single Fourier component f1(0) and the optimal
perturbation is obtained in the manner described in the
appendix from eigenanalysis of the matrix G given in
(A21).

The optimal growth of checkerboard perturbations as
a function of time are shown in Fig. 13 for Richardson
number Ri 5 0.25, in Fig. 14 for Richardson number
Ri 5 0.5, and in Fig. 15 for Richardson number Ri 5
1. In all cases the Reynolds number was chosen to be
Re 5 1000. Note that the checkerboard optimal growth
is approximately half of the growth attained by plane
wave perturbations. The structures of the optimal per-
turbations is the same found earlier with the only dif-
ference that for larger optimizing times Topt . 15 and
moderate Richardson numbers the optimal perturbations
assume the form of rolls. The global optimal is again
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FIG. 15. As in Fig. 13 but for Ri 5 1.

achieved for a time of the order of 10 advective time
units, which suggests that the perturbation structure will
be dominated by oblique waves, as was found previ-
ously.

5. Conclusions

Disturbances in unstratified turbulent boundary layers
are primarily three-dimensional coherent structures that
arise from a combination of two growth processes: the
two-dimensional Orr mechanism, which amplifies the
vertical velocity, manifested as updrafts or downdrafts;
and the three-dimensional roll mechanism, which in the
presence of vertical velocity induce zonal velocity per-
turbations, manifested as streaks, that is, regions of zon-
al velocity maxima and minima. The relative contri-
bution of these mechanisms in the perturbation growth
is measured by the obliqueness angle, Q, that is, the
angle the phase lines of the perturbation structure make
with the spanwise direction. If the streaks are very long,
having a very small zonal, k, wavenumber the pertur-
bations are rolls and the angle of obliqueness is Q ø
908. This is the perturbation structure found in high-
shear regions in turbulent flow, adjacent to the bound-
aries, where the motions are coherent over a long time.
As one moves away from the boundaries, the coherence
time is reduced, and the coherent structures are streaky
structures aligned with the flow, with dominant zonal
and spanwise wavenumbers m and k having a ratio of
m/k ø 2, giving an obliqueness angle of Q ø 608. These
structures are called hairpin vortices or double roller
eddies. These structures arise naturally as the optimal
perturbations in the flow, when the optimization is over
the coherence time of the flow, and because of the uni-
versality of the mechanism producing them, these co-
herent structures possess universal structure that does
not depend on details of the shear flow. Consequently,
coherent structures in shear turbulence can be studied

by generalized stability analysis of perturbations in un-
bounded constant shear flow, which can proceed con-
cisely because of the existence of simple analytic so-
lutions.

In this paper we investigate optimally growing struc-
tures in the stably stratified boundary layer as found in
the atmosphere or the ocean. The study has identified
the perturbation structures that arise in the presence of
stratification and determined the effect of stratification
on the emerging coherent structures. The energy of the
roll structures was found to be limited by stratification
to E 5 O (1/Ri), where Ri is the Richardson number.
Roll structures with their elongated streak velocity sig-
nature are thus expected to emerge in nearly neutrally
stratified boundary layers near the surface where the
coherence of the motion is long. Remarkably, the global
energy optimum is obtained in stratified flow for opti-
mizing times of the order of 10 advective time units.
These global optimal perturbations are expected to dom-
inate the flow and are identified by a characteristic spac-
ing of the streaky structures in the horizontal plane. For
Ri 5 0.25 the perturbations are spaced so that the ratio
m/k ø 1 while for Ri 5 0.5 the ratio becomes m/k ø
0.57. These perturbations rapidly develop velocity
streaks aligned with the mean flow preceded by bursts
of updrafts and downdrafts that are limited to the vi-
cinity of the boundary.

It was found that even at high stratifications, that is,
Ri 5 O (1), optimal perturbations produce robust
growth. This is consistent with observations of occur-
rence of turbulence in the atmosphere when Ri , 1,
with increasing frequency of occurrence for smaller Ri
(Woods 1969).

In the study of the development of two-dimensional
perturbations in shear flow it was found that for Rich-
ardson numbers less than approximately 0.8, initial per-
turbations that possess 1% of the mean energy density
will rapidly develop locally negative stratification and
collapse. This suggests that transient development in
shear flow at low Ri will rapidly develop local regions
of convectively generated turbulence that can enhance
vertical diffusion in the stratified atmosphere and ocean.
This can be an important mechanism for inducing dif-
fusion in stratified fluids. Three-dimensional perturba-
tions were also found to produce local regions of neg-
ative stratification, although these regions develop more
readily only at small stratifications.

Acknowledgments. Discussions with Brian F. Farrell
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APPENDIX

Optimization of Checkerboard Initial Conditions

We first utilize the symmetries of the evolution op-
erator and reduce the state space dimensionality from
24 to 12.
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Note that f1 5 f7 for all times since both have the
same initial conditions and are governed by the same
evolution operators. Similarly for all times,

f 5 f 5 f* 5 f*, f 5 f 5 f* 5 f*.1 7 2 8 3 5 4 6

(A1)

Therefore in order to describe the evolution of the
checkerboard initial conditions we need only determine
the evolution of

Tf 5 [f , f , f , f ] .1 2 3 4 (A2)

It can be shown that in the reduced set of variables
the perturbation energy is given by

4 1 Ri
E 5 ẑ z* 1 r̂ r̂*O i i i i2 2[ ]2(m 1 k ) 4i51

2 2 2k 1 m 1 (l 2 kt)
1 (ŵ ŵ* 1 ŵ ŵ*)1 1 2 22 22(m 1 k )

2 2 2k 1 m 1 (l 1 kt)
1 (ŵ ŵ* 1 ŵ ŵ*), (A3)3 3 4 42 24(m 1 k )

which can be written as E 5 f†Mf, where f is the
reduced state vector (A2) and M the positive definite
symmetric matrix:

M 5 diag(M , M , M , M )2 2 2 2klm klm kl m kl m

5 diag(M , M , M , M ), (A4)2 2klm klm kl m kl m

where Mklm is the energy metric matrix for a plane wave
with wavenumbers (k, l, m), which is defined in (28).
Again we denote k2 5 2k, etc.

We define now the generalized velocity variable p
5 M1/2f. In this variable the perturbation energy is given
by the Euclidean inner product, E 5 p†p, and the evo-
lution equation becomes

1/2dp dM
1/2 21/25 1 M C M p 5 D p. (A5)C1 2dt dt

The evolution matrix DC(t) is easily shown to be

D (t) 5 diag(D , D , D , D ),2 2 2 2C klm klm kl m kl m (A6)

where Dklm(t) is the operator governing the evolution of
the single plane wave (k, l, m) given in (55). Then the
generalized velocity at time t is p(t) 5 FC(t) p(0),
where p(0) is the initial state and FC(t) is the finite
time propagator:

N

D (nt )tCF (t) 5 lim e , (A7)PC
t→0 n51

and t 5 Nt.
The energy growth at time t is given by

†[p (t), p (t)] (F p, F p) (p, F F p)C C C C5 5 , (A8)
(p, p) (p, p) (p, p)

where p(t) is the state vector at time t:

Tp (t) 5 [c , c , c , c ]1 2 3 4

T1/25 M [f , f , f , f ] , (A9)1 2 3 4

with 12 elements (3 for each f) and p 5 p(0).
In order to maximize the energy growth we should

maximize

(p, Cp)
, (A10)

(p, p)

where C 5 FC, under the constraint f1(0) 5 f2(0)†FC

5 f3(0) 5 f4(0) in order to ensure that the initial
perturbation is of the checkerboard form (58), which
translates into the following restrictions on the com-
ponents of p:

p 5 p n, k 5 1, 2, 3.y n13k (A11)

This means that we need only to specify only the first
3 components [p1, p2, p3] out of the 12 components
of p.

We maximize the energy growth (A10) with con-
straints (A11) by maximizing f :

12 12

C p*pO O ij i j 3 3
i51 j51

f 5 1 m (p 2 p )O O nk n n13k4
k51 n51

p p*O i i
i51

3 3

1 l (p* 2 p* ), (A12)O O nk n n13k
k51 n51

with respect to the 12 variables pi, and the 18 Lagrang-
ian multipliers lij and m ij (i, j 5 1, 2, 3). Maximization
with respect to impliesp*s

12 12

C p*pO O ij i j12
i51 j51

C p 2 pO s j j s12
j51

p*pO i i
i51

12 3 3

1 p p* l (d 2 d ) 5 0. (A13)O O Oi i nk ns n13k,s
i51 k51 n51

A similar expression is obtained by maximizing with
respect to ps. Equivalently, (A13) can be broken into
the following three conditions to be satisfied for n 5 1,
2, 3:

12 12

C p*pO O ij i j12 12 3
i51 j51

C p 2 p 1 p p* lO O On j j n i i nk12
j51 i51 k51

p p*O i i
i51

5 0, (A14)

and the following nine conditions to be satisfied for n,
k 5 1, 2, 3:
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12 12

C p*pO O ij i j12 12
i51 j51

C p 2 p 1 l p p*O On13k,j j n13k nk i i12
j51 i51

p p*O i i
i51

5 0. (A15)

Imposing (A11) we can solve (A15) for the Langrangian
multipliers lnk:

12 12 
C p*pO O ij i j12 1 i51 j51

l 5 C p 2 p . Onk n13k,j j n12 12
j51 p p* p p*O Oi i i i i51 i51

(A16)

Substituting lnk in (A14) we obtain

12 12

C p*pO O ij i j12
i51 j51

C p 2 pO n j j n12
j51

p p*O i i
i51

12 12 
C p*pO O ij i j3 12 i51 j51

1 C p 2 p O O n13k,j j n12
k51 j51 p p*O i i i51

5 0, (A17)

which can be reduced to

12 12

C p*pO O ij i j12
i51 j51

T p 5 p , (A18)O n j j n12
j51

p p*O i i
i51

where the 3 3 12 matrix T is given by

31 1
T 5 C 1 C . (A19)On j n j n13k,j1 24 3k51

Because of the constraint (A11) we can also write the
lhs of (A18) as

12 3 3 3 3

T p 5 T p 5 T pO O O O On j j n,r13s r13s n,r13s r1 2j51 r51 s50 r51 s50

3

5 G p ,O nr r
r51

(A20)

where the 3 3 3 matrix G is defined as

3

G 5 T . (A21)Onr nr13s
s50

The maximization condition (A18) is therefore

12 12

C p*pO O ij i j3
i51 j51

G p 5 p , (A22)O nr r n12
r51

p p*O i i
i51

for n 5 1, 2, 3. The maximum growth is given by the
maximum eigenvalue lmax of G and the optimal pertur-
bation is obtained from the corresponding eigenvector
and use of the constraint (A11).
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