
A Steenrod-Milnor action ordering on
Dickson invariants

Nondas E. Kechagias

Abstract. Let A be the Steenrod algebra and D (V ) the Dickson
algebra. An ordering in D (V ) is de�ned according to the Steenrod
algebra action. Using this ordering, we prove the following: Let
f 2 EndA (D (V )) be an A-linear degree preserving map. If f is
non-zero on the lowest degree, then f is an isomorphism. Moreover,

EndA

�
D (V )

�
is a local ring, where D (V ) is its augmentation

ideal.

1. Statement of results

It is known that the classical Dickson algebra Dk is a polynomial
algebra:

Dk
�= Fp[d1; :::; dk]

Mùi related Dk (for p = 2) with the dual of the Dyer-Lashof algebra
calculated by Madsen. Motivated by topological questions regarding
the cohomology of an in�nite (�nite) loop space and in�uenced by
the work of Campbell, Cohen, Peterson and Selick in [2] and [3] we
study the problem under which conditions is an A-endomorphism of
D (V ) := (H� (V ))GL(k;Fp) an isomorphism. Here A stands for the
Steenrod algebra.
Firstly, we consider the classical Dickson algebraDk. Where modi�-

cations are needed between the case p = 2 and p > 2 they are provided.
Given a sequence of k non-negative integers �n = (nk; n1; :::; nk�1) let
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d�n :=
kQ
1

dnii . Our �rst task is to prove that there exists a unique p-th

power Steenrod operation P p
m
of smallest degree such that

P p
m

d�n 6= 0

Moreover, the new element has the property that there exists at least
one p-th power of a generator dp

ti

i such that dp
ti

i divides d�n and ti+ i�
1 = m. Applying this property again on P p

m
d�n we get

P p
m�1

P p
m

d�n 6= 0

Then we iterate: P p
ti :::P p

m
d�n 6= 0. We are interested in �nding the

longest such sequence of Steenrod operations such that P p
ti(l)
:::P p

m
d�n

is a non-zero monomial. We call such a sequence a Steenrod-Milnor
action on d�n denoted by P �(�n) (please see de�nition 5). Now we iterate
this procedure on the monomial P �(�n)d�n until the resulting monomial
is dp

q

k for the smallest q.
Theorem 12 There exists a sequence of Steenrod-Milnor operations

P � such that P �d�n = �dp
l(�n)

k . Here � 2 (Fp)�.
Next, given two monomials d�n and d�n

0
we de�ne an ordering ac-

cording to their Steenrod-Milnor actions P �(�n) and P �(�n
0). We call this

ordering a Steenrod-Milnor (S-M) ordering (please see de�nition 13).
Using this ordering we prove the following theorem:
Theorem 15 Let f : (Dk)

G ! (Dk)
G be an A-linear map of degree

0 such that f(dk�1) 6= 0. Then f is a upper triangular map with respect
to S-M ordering and hence an isomorphism.
We note that the last Theorem is not true for the upper triangular

ring, please see example 16.
This �nishes section 3 which consists of the technical part of this

work. We extend the theorem above to the full ring of invariants,
D (V ), in section 4.
Theorem 19 Let g : D (V )! D (V ) be an A-linear map of degree 0

such that g(Mk) 6= 0. Then g is an isomorphism. Here Mk =
kQ
1

xiL
p�2
k

is the element of lowest degree.
In section 5 we investigate the structure of EndU (D (V )). A shorter

and elegant proof of the next corollary was suggested by H.-W. Henn.
Corollary 27 EndU(D (V )) is a local Fp-algebra with dimension n

as a vector space over Fp (i.e. f or Id� f is an isomorphism for any f
in EndU(D (V ))). Moreover, if I is the ideal generated by its nilpotent
elements, then EndU(D (V ))=I � Fp.
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Finally we apply Theorem 19 to the study of self maps between
in�nite loop spaces. We obtain an alternative proof of theorem 4.1
page 28 of Campbell, Peterson and Selick:
Theorem [2]Let f : 
10 S

1 ! 
10 S
1 be an H-map which induces

an isomorphism on H2p�3(

1
0 S

1;Fp). If p > 2 suppose in addition
that f is a loop map or that

f�(d2;2)
� 6= 0

for some � 2 (Fp)�. Then f(p) is a homotopy equivalence. Here (d2;2)�
is the hom-dual of the top degree Dickson generator of D2 in R[2].

2. Introduction

Let A be the Steenrod algebra and U the category of unstable
A-modules which is a full subcategory of Fp-graded A-modules and
morphisms being A-linear maps of degree 0 that is degree preserving.
Let V and W �nite dimensional vector spaces over Fp and H� (V )
the mod p cohomology of its classifying space: H� (V ) := H� (BV;Fp).
Moreover

H� (V ) �= E (x1; :::; xk)
 P [y1; :::; yk]

where V � =< x1; :::; xk >, �xi = yi and jxij = 1.
A map of unstable A-algebras f � : H� (W )! H� (V ) is determined

by its action in degree 1 that is by an element of Hom(V;W ) which
is isomorphic to HomK (H

� (W ) ; H� (V )). Here K is the category of
unstable A-algebras. There is also an isomorphism for A-linear maps:

HomU (H
� (W ) ; H� (V )) �= Fp[Hom(V;W )]

It is known that an A-linear map f � : H� (Fp) ! H� (Fp) is deter-

mined by its direct sum components H� (Fp) �=
p�1L
1

Hi and it is an

isomorphism, if it is an isomorphism in degree 2i�1 for i = 1; :::; p�1.
Here (Hi)

� = ~H� (Fp) for � � 2i or 2i � 1mod (p� 1). The algebraic
structure ofH� (V ) as anA-module has been studied extensively ([9]).
The general linear group G := GL (k;Fp) acts on V and hence on

H� (V ). The ring of invariants

D (V ) := (H� (V ))G

called the "Dickson algebra" was described by Dickson for Dk :=
(P [y1; :::; yk])

G and Mùi for the general case. Dickson proved that
Dk

�= Fp[dk;1; :::; dk;k] ([4]), is again a polynomial algebra with jdk;ij =
2(pk � pi). Let us brie�y describe its generators dk;i:

ht =
Q

u2<y1;:::;yt�1>
(yt + u) for 1 � t � k
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dk;i = hp�1k dk�1;i + dpk�1;i�1

Mùi ([8]) proved that D (V ) is a tensor product between D (V ) and the
Fp-module spanned by the set of elements consisting of the following
monomials:

Mk;s1;:::;slL
p�2
k ; 0 � l � k � 1; and 0 � s1 < � � � < sl � k � 1

Its algebra structure is determined by the following relations:
a) (Mk;s1;:::;slL

p�2
k )2 = 0 for 0 � l � k�1; and 0 � s1 < � � � < sl � k�1.

b) Mk;s1;:::;slL
(p�2)
k dm�1k;k�1 = (�1)(k�l)(k�l�1)=2

k�lQ
t=1

M
k;0;:::;[k�st;:::;k�1L

p�2
k .

Here 0 � l � k� 1, and 0 � s1 < � � � < sl � k� 1. Those elements are
described as follows:

Mk;s1;:::;sl =
1

(k � l)!

�������������

x1 � � � x1
...

...
x1 � � � xk
yp

s1

1 � � � yp
s1

k
...

...
yp

sl

1 � � � yp
sl

k

�������������
Here there are k � l rows of xi�s and the si-th�s powers are completing
the rest of the determinant above, where 0 � s1 < � � � < sl � k�1. The
row

�
yp

i

1 ; :::; y
pi

k

�
is omitted in the determinant above and 1 � i � k�1.

jMk;s1;:::;slj = k � l + 2(ps1 + � � �+ psl). And Lk =
kQ
1

hi.

From now on we write di for dk;i.
Since the operation of G on H� (V ) commutes with the action of

the Steenrod algebra, D (V ) is also a module (in fact an algebra) over
A.

3. A Steenrod-Milnor action ordering on Dickson invariants

We shall recall some well known results concerning the action of
the Steenrod algebra on Dickson algebra generators.

Proposition 1. [6] (Th. 30, p. 169)

P p
t
(dp

l

i ) =

8<: dp
l

i�1, if t = l + i� 1 and i < k

�dp
l

i d
pl

i�1, if t = l + k � 1
0, otherwise

.

A similar result holds for the generators of D (V ).
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Proposition 2. [6] (Th. 36, p. 170)1) Let q > 0. If q =
k�1P
i

atp
t+l

such that p� 1 � at � at�1 > ai�1 = 0. Then

P qdp
l

k = dp
l

k (�1)ak�1
k�1Q
i

�
at
at�1

�
d
pl(at�at�1)
t

Otherwise, P qdp
l

k = 0. If t = 0, then d0 � dk.

2) Let q =
k�1P
s

atp
t+l > 0 such that p� 1 � at � at�1 � ai � 0 and

ai + 1 � ai�1 � at � at�1 � as�1 = 0. Then

P qdp
l

i = dp
l

i (�1)ak�1
�
k�1Q
i+1

�
at
at�1

���
ai + 1

ai�1

��
i�1Q
s

�
at
at�1

��
k�1Q
s

d
pl(at�at�1)
t

Here as�1 = 0. Otherwise, P qd
pl

i = 0.

Remark 3. Please note that the case ai = 0 and ai�1 = 1 is allowed
in the proposition above.

We shall apply formulas above on a monomial in the Dickson al-
gebra starting with the smaller non-zero p-th power. Let us �rstly
demonstrate our method.

Example 4. Let p = 2 and k = 3. Let

d�n = d2+2
2

3 d2
3+24

1 d2
2+23

2

�n = (n3 = 2
1 + 22; n1 = 2

3 + 24; n2 = 2
2 + 23)

Let us write ni in its p-adic form:

ni = ni0 + ni1p+ :::

Here n3;0 = 1, n1;0 = 3 and n2;0 = 2. We de�ne

m (�n) = min fn3;0 + k � 1; n1;0 + k � 3; n2;0 + k � 2g = 3
I (�n) = fijm (�n) = ni;0 + i� 1g = f3; 1; 2g

and
i (�n) = max I (�n) = 3

We apply i (�n) = 3 squaring operations, namely:

Sq2
m(�n)

, Sq2
m(�n)�1

, and Sq2
m(�n)�2

Sq2
m(�n)

d�n = d2+2
2

3 d22d
23+24

1 d2
2+23

2 + d2+2
2

3 d2
3

3 d
24

1 d
22+23

2 + d2+2
2

3 d2
2+23+24

1 d2
3

2

Sq2
m(�n)�1

h
d2+2

2

3 d22d
23+24

1 d2
2+23

2 + d2+2
2

3 d2
3

3 d
24

1 d
22+23

2 + d2+2
2

3 d2
2+23+24

1 d2
3

2

i
=

d2+2
2

3 d21d
23+24

1 d2
2+23

2 + d2+2
2+22

3 d2
3+24

1 d2
3

2
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d2+2
2

3 d21d
23+24

1 d2
2+23

2 + d2+2
2+22

3 d2
3+24

1 d2
3

2

Sq2
m(�n)�2

h
d2+2

2

3 d21d
23+24

1 d2
2+23

2 + d2+2
2+22

3 d2
3+24

1 d2
3

2

i
= d2

3

3 d
23+24

1 d2
2+23

2

Finally,
Sq2

m(�n)�2
Sq2

m(�n)�1
Sq2

m(�n)

d�n = d2
3

3 d
23+24

1 d2
2+23

2

Let �n = (23; 23 + 24; 22 + 23). Then m (�n) = 3, I (�n) = f1; 2g,
i (�n) = 2.

Sq2
2

Sq2
3

d�n = d2
2+23

3 d2
3+24

1 d2
3

2

Let �n = (22+23; 23+24; 23). Then m (�n) = 3, I (�n) = f1g, i (�n) =
1.

Sq2
3

d�n = d2
2+24

3 d2
4

1 d
23

2

Please note that at each step m (�n) = 3 and the cardinality of I (�n)
is reduced by 1.
We call Sq2

3
Sq2

2
Sq2

3
Sq2

1
Sq2

2
Sq2

3
a Steenrod-Milnor operation of

type �n and denote it by Sq�(�n). Please note that the ni�s have been
decreased and nk increased respectively.
Let �n = (22+24; 24; 23). Then m (�n) = 4, I (�n) = f3; 1; 2g, i (�n) =

3.
Sq2

2

Sq2
3

Sq2
4

d�n = d2
3+24

3;3 d2
4

3;1d
23

3;2

Let �n = (23+24; 24; 23). Then m (�n) = 4, I (�n) = f1; 2g, i (�n) = 2.
Sq2

3

Sq2
4

d�n = d2
5

3 d
24

1

Let �n = (25; 24). Then m (�n) = 4, I (�n) = f1g, i (�n) = 1.

Sq2
4

d�n = d2
4+25

3

Let �n = (24). Then m (�n) = 6, I (�n) = f3g, i (�n) = 3.

Sq2
4

Sq2
5

Sq2
6

d�n = d2
6

3

Finally,

Sq�(2
4+25;0;0)Sq�(2

2+24;24;23)Sq�(2
1+22;23+24;22+23)d2+2

2

3 d2
3+24

1 d2
2+23

2 = d2
6

3

Definition 5. Let �n = (nk; n1; :::; nk�1) and ni =
l(i)P
t=1

ai;tp
ni;t its

p-adic expansion with
Q
ai;t 6= 0.

a) Let m (�n) := minfni;0 + i� 1 j 1 � i � kg.
b) Let I(�n) := fij m (�n) = ni;0 + i� 1g.
c) Let i (�n) := max I(�n).

d) Let J(�n) :=
� �

ai1;0; :::; ai(�n);0
�
, if i (�n) < k�

ai1;0; :::; p� ai(�n);0
�
, if i (�n) = k

. For p > 2.

Remark 6. If p = 2, then ai;t = 1 and I(�n) determines J(�n).
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Definition 7. a) For m and l natural numbers such that l � m,
let P �(m;l) stand for the Steenrod operation P p

m�l+1
P p

m�l+2
:::P p

m
.

b) Given a sequence �n, a triad is de�ned as above (m (�n) ; I(�n); J(�n)).
We de�ne a sequence of Steenrod operations associated with this triad
as follows

P �(m(�n);I(�n);J(�n)) := P �(m(�n);i1):::P �(m(�n);i1)| {z }
ai1;0

:::P �(m(�n);i(�n)):::P �(m(�n);i(�n))| {z }
ai(�n);0(or p�ai(�n);0)

We call this operation, P �(m(�n);I(�n);J(�n)), a Steenrod-Milnor opera-
tion of type (�n) and denote it by P �(�n).

Remark 8. If p = 2, then Sq�(�n) = Sq�(m(�n);i1):::Sq�(m(�n);i(�n)).

Proposition 9. a) Let m = n + k � 1, then P �(m;k)dp
n

k = �d2p
n

k

(Sq�(m;k)d2
n

k = d2
n+1

k ).
b) Let m = n+ k � 1, then P �(m;k):::P �(m;k)| {z }

p�1

dp
n

k = �dp
n+1

k .

c) P p
m(�n)

d�n =
P

ir2I(�n)�fkg
air;0d

�ndp
nir;0

ir�1 d
�pnir;0
ir

+d�nd
�ak;0pnk;0
k P p

m(�n)
d
ak;0p

nk;0

k .

d) P �(m(�n);i(�n))d�n =

(
ai(�n);0d

�ndp
ni(�n);0

k d�p
ni(�n);0

i(�n) , if k > i(�n)

�ak;0d�ndp
nk;0

k , if k = i(�n)
.

e) If k > i(�n), then

P �(m(�n);i(�n)):::P �(m(�n);i(�n))| {z }
ai(�n);0

d�n =
�
ai(�n);0

�
!d�nd

ai(�n);0p
ni(�n);0

k d
�ai(�n);0p

ni(�n);0

i(�n) .

Otherwise,
P �(m(�n);k):::P �(m(�n);k)| {z } d�n =

p�ak;0

(�1)p�ak;0 (p�1)!
(ak;0�1)!d

�ndp
nk;0+1

k d
�ak;0pnk;0
k .

Proof. a) We apply proposition 1:

P p
t

dp
l

k = 0, if t 6= l + k � 1

P p
t

dp
l

i = 0, if t 6= l + k � 1 or l + i� 1
Now the statement follows using Cartan formula.
b) is an application of a).
c) Proposition 1 and Cartan formula implies the statement, since

pm(�n) is the least p-th power which provides a non-zero Steenrod oper-
ation.
d) We apply proposition 1:

P �(ni+i�1;i)dp
ni

i = dp
ni

k

If ni+i�1 > m(�n) or l > i, then P �(m(�n);l)dp
ni

i = 0. Now the statement
is an application of c).
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e) This is a repeated application of d). Two main cases should be
considered depending on i(�n). Moreover, the number of times which the
operation P �(m(�n);i(�n)) has to be applied depends on ai(�n);0. We describe
the �rst step in details. The next steps follow the same pattern.
We �rst apply P �(m(�n);i(�n)). Let �n0 = �n+(0; :::; 0;�pni(�n);0 ; 0; :::; 0; pni(�n);0).

The next Steenrod-Milnor operation shall be applied depends on m(�n0)
and i(�n0).
Let us compare d�n and d�n

0
. First case: i(�n) < k, then ni(�n);0+k�1 >

m(�n). Now, if ai(�n);0 = 1 and I(�n) = fi(�n)g, then m(�n0) > m(�n). In
this case our statement follows for ai(�n);0 = 1. Otherwise,m(�n0) = m(�n)

and P �(m(�n);i(�n)) shall be applied again.
Second case: i(�n) = k. Let ak;0 = p � 1, then m(�n0) = m(�n) + 1.
Again our statement follows. Let ak;0 < p� 1, then m(�n0) = m(�n) and
P �(m(�n);i(�n)) shall be applied again.
Let us comment on the statement of last proposition. Let d�n be

a monomial and d�n
0
the resulting monomial as in the statement of e)

above. If for each index ir 2 I(�n) a suitable Steenrod-Milnor operation
is de�ned, then the smallest p-th components of the ni are reduced and
that of nk is increased respectively.
The next technical results are needed for the proof of the main

Theorem.

Corollary 10. Given �n, let ni =
l(i)P
t=1

ai;tp
ni;t.

a) Let q =
P

ir2I(�n)
air;0p

nit;0. If k > i (�n), then

P �(�n)d�n = �d�nd
(q)
k

Y
ir2I(�n)

d
�air;0p

nir;0

ir

b) Let q0 = pnk;0+1 +
P

ir2I(�n)�fkg
air;0p

nit;0. If k = i (�n), then

P �(�n)d�n = �d�nd
(q0)
k

Y
ir2I(�n)

d
�air;0p

nir;0

ir

Here � 2 (Fp)�.

Proof. This is an application of proposition 9 e).

Lemma 11. Given �n, let �n (0) = �n and �n (1) such that d�n(1) :=
P �(�n)d�n.
i)Then m (�n (0)) < m (�n (1)).
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ii) Let
P
�n :=

P
t<k

P
s

at;s, where ni =
l(i)P
t=1

ai;tp
ni;t and

Q
ai;t 6= 0.

I (�n (0)) 6= fkg =)
P
�n (0) >

P
�n (1)

Proof. i) Let �n (0) = (ni (0) ji = 1; :::; k), I (�n (0)) = fi1; :::; itg
and J(�n (0)) = (a1; :::; at). According to last corollary, ni (0) = ni (1),
if i =2 I (�n (0)) and

ni (1) =

8>><>>:
ni (0)� ai;0p

ni;0 , if i 2 I (�n (0))� fkg
nk (0) +

P
ir2I(�n)

air;0p
nit;0 , if k > i (�n (0))

nk (0)� atp
nk;0 + pnk;0+1 +

P
ir2I(�n)�fkg

air;0p
nit;0 , if k = i (�n (0))

Thus

m(�n (1)) =

�
min fnit;0 + k � 1; nk;0 + k � 1; ni;1 + i� 1g , if k > i (�n (0))

m(�n (0)) + 1, if k = i (�n (0))

and the claim follows.
ii) If I (�n (0)) = fkg, then

P
�n (0) =

P
�n (1). This follows from

formulas above. Otherwise,
P
�n (0) >

P
�n (1).

Theorem 12. There exists a sequence of Steenrod-Milnor opera-
tions P � such that P �d�n = �dp

l(�n)

k . Here � 2 (Fp)�.

Proof. We shall describe an algorithm which constructs the re-
quired sequence. This algorithm depends heavily on last corollary and
lemma.
Step 0. Let P � = P 0.
Step 1. Given d�n de�ne I(�n), J(�n) and i (�n) as in De�nition 5 b).

De�ne P � := P �(�n)P �.
Step 2. Let q =

P
k>ir2I(�n)

air;0p
nit;0 and q0 = pnk;0+1+

P
k>ir2I(�n)

air;0p
nit;0.

De�ne

d�n :=

8><>:
�d�nd

(q)
k

Q
ir2I(�n)

d
�air;0p

nir;0

ir
or

�d�nd
(q0)
k

Q
ir2I(�n)

d
�air;0p

nir;0

ir

given by corollary above. If ni < k for some i > 0 or nk 6= pl(�n) for some
positive integer l(�n), then proceed to step 1. Otherwise, the required
sequence is P �. Because of last lemma, the procedure above terminates
after a �nite number of steps.

P � as in the last Theorem is a repeated S-M operation. We de�ne
an ordering between monomials in Dk according to S-M operations
called a Steenrod-Milnor action ordering and write S-M ordering.
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Definition 13. For two sequences �n and �n0 let ni =
l(i)P
t=0

ai;tp
ni;t and

n0i =
l0(i)P
t=0

a0i;tp
n0i;t be their p-adic decompositions respectively. We requireQ

i;t

ai;t
Q
i;t

a0i;t 6= 0. We de�ne an ordering on monomials of Dk, d�n < d�n
0
,

if one of the conditions is satis�ed referring to the de�nition 5.

i) m(�n) < m(�n0).
ii) Let m(�n) = m(�n0), I(�n) = fi1; :::; itg, I(�n0) = fi01; :::; i0t0g, J(�n) =

(a1; :::; at) and J(�n0) = (a01; :::; a
0
t0). There exists a t0 with 0 � t0 � t�1

such that t0 is maximal with respect to the following condition:
it�s = i0t0�s and at�s = a0t0�s for 0 � s � t0� 1 and either it�t0 > i0t0�t0
or it�t0 = i0t0�t0 and at�t0 > a0t0�t0.

For simplicity we write �n < �n0 instead of d�n < d�n
0
.

Proposition 14. Let �n < �n0, then there exists a sequence of Steen-
rod operations P � depending on �n such that P �d�n 6= 0 and P �d�n0 = 0.
Proof. Without lost of generality we suppose that either condition

i) or ii) in the last de�nition is satis�ed.
Condition i). Let m(�n) < m(�n0), then P p

m(�n)
d�n 6= 0 and P pm(�n)d�n0 = 0.

Condition ii). Let m = m(�n) = m(�n0) and there exists a t0 with
0 � t0 � t� 1 such that it�t0 = i0t0�t0 and at�t0 > a0t0�t0. Let

d�n(1) = � (1)P �(m;(it�t0+1;:::;it);(at�t0+1;:::;at))d�n

and d�n
0(1) = �0 (1)P �(m;(it�t0+1;:::;it);(at�t0+1;:::;at))d�n

0
. Because of our

assumption �n (1)� �n = �n0 (1)� �n0. Here negative integers are allowed.
Now I(�n (1)) = fi1; :::; it�t0g and I(�n0 (1)) =

�
i01; :::; i

0
t0�t0 = it�t0

	
with at�t0 > a0t0�t0 . Let

d�n(2) = � (2)P �(m;it�t0):::P �(m;it�t0)| {z }
a0
t0�t0

d�n(1)

and
d�n

0(2) = �0 (2)P �(m;it�t0):::P �(m;it�t0)| {z }
a0
t0�t0

d�n
0(1)

Now I(�n (2)) = fi1; :::; it�t0g and I(�n0 (2)) =
�
i01; :::; i

0
t0�t0�1

	
with

i(�n (2)) = it�t0 > i(�n0 (2)) = i0t0�t0�1. Thus

P �(m;it�t0)d�n
0(2) = 0
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Now we are ready to proceed to our main Theorem.

Theorem 15. Let f : Dk ! Dk be an A-linear map of degree 0
such that f(dk�1) 6= 0. Then f is a upper triangular map with respect
to S-M ordering and hence an isomorphism.

Proof. By hypothesis and proposition 1, f(di) = �di for i =
1; :::; k after applying a suitable Steenrod operation.
Let d�n 2 Dk and (d�n(1) ; :::; d�nl(�n)) the increasing sequence of ele-

ments of degree jd�nj. Let f(d�n) =
l(�n)P
t=1

atd
�n(t) . Claim: If �n(t0) = �n, then

at � 0mod p for t < t0. Following our last proposition P �d�n
0
= 0, if

�n < �n0. We use induction on t for t < t0. Using Theorem 12, propo-
sition 14 and de�nition of elements P �, there exists P �1 such that

P �1d�n(1) = �dp
l(�n(1))
k and P �1d�n(i) = 0 for i > 1. Then

P �1f(d�n) = P �1
l(�n)P
t=1

atd
�n(t) implies a1 � 0mod p. By induction P �if(d�n) =

P �i
l(�n)P
t=i

atd
�n(t) implies ai � 0mod p for i < t0. Using proposition 1 and

the fact that f(dk) 6= 0, we get f(dp
l

k ) = �0dp
l

k . The last observation
implies at0 6= 0mod p. Hence f is a upper triangular map.

Example 16. Let p = 2 and H2 = P [y1; y2]
U2 the ring of upper

triangular invariants which is a polynomial algebra on h1 = y1 and
h2 = y22+ y2y1. Let f : H2 ! H2 be an A-linear map such that f(h1) =
h1. Since Sq1h1 = h21 6= h2, f (h2) can be de�ned independently of h1:
f (h2) = ah2 + bh21 with a; b 2 F2. Even if f (h2) = h21, f is not an
isomorphism: f (d2;1) = f(h2 + h21) = 0 = f(d2;0) = f(Sq1d2;1).

4. The exterior part of the Dickson algebra

Next we extend the previous results to the full Dickson algebra.

Lemma 17. i) Let Ms1;:::;slL
p�2
k d�n be a monomial in D (V ) and

PB(s1;:::;sl) := � P p
0

�| {z } ::: P pk�l�2 :::P p0�| {z }P pk�l�1 :::P ps1| {z } ::: P pk�2 :::P psl| {z }. Then
PB(s1;:::;sl)Ms1;:::;slL

p�2
k d�n = (�1)(k�l�1)!dkd�n

ii) Let Ms1;:::;slL
p�2
k d�n and Ms01;:::;s

0
l0
Lp�2k d�n

0
be monomials such that

sl�t < s0l0�t and t is minimal with this property, then

PB(s1;:::;sl)Ms01;:::;s
0
l0
Lp�2k d�n

0
= 0
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Proof. Let us recall that P p
sl (Ms1;:::;slL

p�2
k ) = Ms1;:::;sl�1;sl+1L

p�2
k

for sl < k � 1 and P psldatp
nt

t 6= 0 if and only if nt = sl � t + 1 for
0 � t � sl + 1. If 0 = sl, we apply the Bockstein operation �. Thus

P p
k�2
:::P p

slMs1;:::;slL
p�2
k d�n =

k�1�slP
0

Ms1;:::;sl�1;sl+tlL
p�2
k ftl. Here ftl is a

polynomial in Dk.
Let PE = P p

k�l�1
:::P p

s1| {z } ::: P pk�2 :::P psl| {z }. Iterating the last formula we
obtain:

PEMs1;:::;slL
p�2
k d�n =

lP
q=1

sq+1+tq+1�sqP
0

Ms1+t1;:::;sl�1+tl�1;sl+tlL
p�2
k ft1;:::;tl

Here sl+1 = 0 and tl+1 = k � 1.
Let us suppose that s1 + t1 < k � l. Let P� = P p

k�l�2
:::P p

0
� and

A = Ms1+t1;:::;sl�1+tl�1;sl+tlL
p�2
k ft1;:::;tl. There are s1 + t1 � 1 � k �

l � 2 positions to be �lled by powers of y�s using Steenrod operations:
� P p

0

�| {z } ::: P pk�l�2 :::P p0�| {z }. Since there are k � l ��s in this sequence and

only s1+ t1� 1 � k� l� 2 positions, it is obvious that P�A = 0. Now
suppose that s1+ t1 = k� l and one operation P pq of P� is not applied
on A. Then it will be less positions than the number of remaining ��s.
In that case � P p

0

�| {z } ::: P pk�l�2 :::P p0�| {z }Ms1+t1;:::;sl�1+tl�1;sl+tlL
p�2
k ft1;:::;tl =

0. The claim follows.

Corollary 18. Let Ms1;:::;slL
p�2
k d�n 2 D (V ). There exists a se-

quence of S-M operations such that

P �PB(s1;:::;sl)Ms1;:::;slL
p�2
k d�n = �dp

q

k

and q is minimal with this property.
Here � 2 (Z=pZ)�.
Now we are ready to proceed to our main Theorem.

Theorem 19. Let g : D (V )! D (V ) be an A-linear map degree 0

such that g(Mk) 6= 0. Then g is an isomorphism. HereMk =
kQ
1

xiL
p�2
k .

Proof. Let g : D (V ) ! D (V ) such that g(Mk) = �Mk. Then
g(dk) = �0dk with �

0 6= 0mod p and g(dk�1) = �0dk�1. Please recall
that �P 1�:::P p

k�2
:::P pP 1�Mk = dk. Thus g is an isomorphism in Dk.

We recall that an A-module is indecomposable, if it is not a non-
trivial direct sum.

Definition 20. Let D (V ) denote the augmentation ideal of D (V ).
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Corollary 21. D (V ) is not directly decomposable as an A-
module.

Proof. Assume D (V ) =
L
i2I
D (V )i such that D (V )i 6= 0. If d (i)

and d (j) are monomials in D (V )i and D (V )i respectively, then there

exist P � and P �
0
such that aiP �d (i) = dp

l

k = bjP
�d (j).

5. The structure of EndU(D (V ))

It is known that if an R-module M is directly indecomposable and
of �nite length, then End (MR) is a local ring and its non-invertible
elements are precisely its nilpotent elements. According to last corol-
lary D (V ) is directly indecomposable. It is also known that the set�
d
(pl�1)=(p�1)
k�1 jl � 1

�
is linearly independent ([5]). Thus D (V ) is not

of �nite length. But we shall prove that EndU
�
D (V )

�
is a local ring.

We follow the approach suggested by H.-W. Henn. We shall omit
technical details which will appear in [7].
We state a remarkable theorem due to Adams, Gunawardena and

Miller (Th. 1.6, p. 437 [1]), we apply it for s = 0, t = 0, M = Fp and
U = V .

Theorem 22. Fp[End (V )] �= EndU (H
�(V )). Here Fp[End (V )] is

the monoid algebra of the monoid under composition End (V ).

Using the Theorem above one can reduce the problem to a linear
algebra one.

Theorem 23. HomU (D (V ) ; H
�(V )) �= Fp[GnEnd (V )].

Proof. We view End (V ) as a monoid with respect to composi-
tion of linear maps. It admits a left and a right action by itself. Let
Fp[End (V )] be the associated monoid algebra. Let Fp[GrEnd (V )] be
the vector space on the set of orbits GrEnd (V ). The monoid End (V )
acts on the right of GL (V ) r End (V ) by f � h = fh. Because of the
right action above Fp[GrEnd (V )] becomes an Fp[End (V )]-module.

Let f : D (V ) ! H�(V ) and g : H�(V ) ! H�(V ), then gf :
D (V )! H�(V ) andHomU (D (V ) ; H

�(V )) becomes a leftEndU (H�(V ))-
module. Moreover, by the AGM-theorem, it becomes a right Fp[End (V )]-
module.
We recall that H�(V ) is an unstable A-module. Thus given f 2

HomU (D (V ) ; H
�(V )) an �f 2 HomU (H

� (V ) ; H�(V )) is induced. Ap-
plying the theorem above, �f is identi�ed with a ' : V ! V such that
' is G-invariant because f is. The isomorphism follows.
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Proposition 24. EndU (D (V )) �= EndEndU (H�(V )) (HomU (D (V ) ; H
�(V ))).

Proof. Let

� : EndU (D (V ))! EndEndU (H�(V )) (HomU (D (V ) ; H
�(V )))

given by� (f) (h) = hf for f 2 EndU (D (V )) and h 2 HomU (D (V ) ; H
�(V )).

Moreover, k� (f) (h) = � (f) (kh) for k 2 EndU (H�(V )).
� is 1-1: Let � (f) = � (f 0), then � (f) (i) = � (f 0) (i) for i :

D (V ) ,! H�(V ). Thus f = f 0.
� is onto: 8h 2 HomU (D (V ) ; H

�(V )), 9h 2 EndU (H
�(V )) such

that h = hi because H�(V ) is injective.
Let	 2 EndEndU (H�(V )) (HomU (D (V ) ; H

�(V ))), then h	(i) = 	
�
hi
�
=

	(h). Each g 2 G de�nes a map g 2 EndU (H�(V )). For such a map
g	(i) = 	 (gi) = 	 (i), thus 	(i) 2 EndU (D (V )). Let f	 = 	(i),
then � (f	) (h) = hf	 = hif	 = hf	 = 	(h).

Theorem 25. EndU (D (V )) �= EndFp[End(V )] (Fp[Gr End (V )]).

The next proposition provides all technical details for the conclusion
of this section, namely EndU

�
D (V )

�
is a local ring along with its

structure.
The A-submodule of D (V ) consisting of degree 0 elements is iso-

morphic with Fp. Thus EndU(D (V )) �= Fp � EndU(D (V )). Although
the subspace of the zero orbit in Fp[GrEnd (V )] is a direct summand,
it is not a direct summand as an Fp[End (V )]-module but it can be
decomposed as follows. Let Fp[ \Gr End (V )] be the vector space on�

f j f 2 End (V ) ; f 6= 0V
	

We identify the neutral element
P
f 6=0V

0f with the zero orbit 0. It be-

comes an Fp[End (V )]-module.

Theorem 26. [7]Let R := EndFp[End(V )]

�
Fp[ \Gr End (V )]

�
, then

R has dimension n as a vector space over Fp. There is a set of gener-
ators f ij1 � i � ng such that:
1)  0 = 0 is the neutral element and  n = 1 is the identity map;
2) Let n > l � k > 0, then  k l =  l k =  max(0;k+l�n).

Because of the isomorphism EndU(D (V )) �= R, the next corollary
follows.

Corollary 27. EndU(D (V )) is a local Fp-algebra with dimension
n as a vector space over Fp (i.e. f or Id � f is an isomorphism for



STEENROD AND DICKSON ALGEBRAS 15

any f in EndU(D (V ))). Moreover, if I is the ideal generated by its
nilpotent elements, then EndU(D (V ))=I � Fp.

6. An application

We close this work by applying our result in the mod p homology of
QS0. Firstly, we recall the isomorphism between the hom-dual of the
Dyer-Lashof algebra and the Dickson algebra.

Proposition 28. a) Let SD (V ) be the subalgebra of D (V ) gener-
ated by
fdi;Ms1L

p�2
k ;Ms01;s

0
2
Lp�2k g where 1 � i � k, 0 � s1 � k � 1 and

0 � s01 < s02 � k � 1. If f : SD (V )! SD (V ) satis�es

f(Mk�2;k�1L
p�2
k ) = �Mk�2;k�1L

p�2
k 6= 0

then f is an isomorphism.
b) Let I[k] be the ideal of SD (V ) generated by

fdk;Ms1L
p�2
k ;Ms01;k�1g

then the induced map f which satis�es f(Mk�2;k�1L
p�2
k ) = �Mk�2;k�1L

p�2
k

is also an isomorphism.

Proposition b) above is a reformulation of Theorem 4.1 in [2].
Let R =< Q(I;J)jI = (i1; :::; in); J = ("1; :::; "n) > be the Dyer-

Lashof algebra, then H�(Q0S
0;Fp) is the free commutative algebra

generated by �(R) subject to the following relation Q(I;J) � (Q(I0;J 0))p
if I = (i1; I

0) , J = (0; J 0) and exc(Q(I;J)) = 0. Here � : R !
H�(Q0S

0;Fp) is the A�-module map given by �(Q(I;J)) = Q(I;J)[1] �
[�pl(I)], [1] is a generator of ~H0(S

0;Fp), [r] = [1]r and l(I) is the
length of I. Thus there exists an A�-module isomorphism between
the generators of H�(Q0S

0;Fp) and the quotient R=Q0R where Q0R =
fQ(I;J)jexc(I; J) = 0g. It is known that R[k]� �= SD (V ) as Steen-
rod algebras and (R=Q0R)[k]� �= I[k] as Steenrod modules. Here
R =

L
R[k]. Now the following Theorem is a consequence of last

corollary.

Theorem 29. [2]Let f : 
10 S
1 ! 
10 S

1 be an H-map which
induces an isomorphism on H2p�3(


1
0 S

1;Fp). If p > 2 suppose in
addition that f is a loop map or that

f�(d2;0)
� 6= 0

for some � 2 (Fp)�. Then f(p) is a homotopy equivalence. Here (d2;0)�

is the hom-dual of the top degree Dickson generator of D2 in R[2].
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