A Steenrod-Milnor action ordering on
Dickson invariants

Nondas E. Kechagias

ABSTRACT. Let A be the Steenrod algebra and D (V') the Dickson
algebra. An ordering in D (V) is defined according to the Steenrod
algebra action. Using this ordering, we prove the following: Let
f € Enda (D (V)) be an A-linear degree preserving map. If f is
non-zero on the lowest degree, then f is an isomorphism. Moreover,
Endy (D (V)) is a local ring, where D (V') is its augmentation
ideal.

1. Statement of results

It is known that the classical Dickson algebra Dy is a polynomial
algebra:

Dy = TF,[dy, ..., d]

Mui related Dy (for p = 2) with the dual of the Dyer-Lashof algebra
calculated by Madsen. Motivated by topological questions regarding
the cohomology of an infinite (finite) loop space and influenced by
the work of Campbell, Cohen, Peterson and Selick in [2] and [3] we
study the problem under which conditions is an A-endomorphism of
D (V) = (H*(V))“"™®) an isomorphism. Here A stands for the
Steenrod algebra.

Firstly, we consider the classical Dickson algebra D). Where modifi-
cations are needed between the case p = 2 and p > 2 they are provided.
Given a sequence of k non-negative integers n = (ng,ni,...,ng_1) let
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k

d" ;=[] d". Our first task is to prove that there exists a unique p-th
1

power Steenrod operation PP" of smallest degree such that
PPd" £ 0

Moreover, the new element has the property that there exists at least

one p-th power of a generator d? ' such that d? divides d" and ¢; +i —
1 = m. Applying this property again on P?"d" we get

pm -1

PP PP £ 0

Then we iterate: PP"..PP"d" # 0. We are interested in finding the

longest such sequence of Steenrod operations such that priO  prr e
is a non-zero monomial. We call such a sequence a Steenrod-Milnor
action on d™ denoted by P'™ (please see definition 5). Now we iterate
this procedure on the monomial P'™d" until the resulting monomial
is dﬁq for the smallest g.

Theorem 12 There exists a sequence of Steenrod-Milnor operations
PT such that P'd™ = \d®" . Here \ € (F,)*.

Next, given two monomials d” and d” we define an ordering ac-
cording to their Steenrod-Milnor actions PT™ and PT(™). We call this
ordering a Steenrod-Milnor (S-M) ordering (please see definition 13).
Using this ordering we prove the following theorem:

Theorem 15 Let f : (Dp) — (D)% be an A-linear map of degree
0 such that f(dg_1) # 0. Then f is a upper triangular map with respect
to S-M ordering and hence an isomorphism.

We note that the last Theorem is not true for the upper triangular
ring, please see example 16.

This finishes section 3 which consists of the technical part of this
work. We extend the theorem above to the full ring of invariants,
D (V), in section 4.

Theorem 19 Let g : D (V) — D (V') be an A-linear map of degree 0

k
such that g(My) # 0. Then g is an isomorphism. Here My =[] xiLi_z
1

1s the element of lowest degree.
In section 5 we investigate the structure of Endy (D (V')). A shorter
and elegant proof of the next corollary was suggested by H.-W. Henn.
Corollary 27 Endy(D (V)) is a local F,-algebra with dimension n
as a vector space over F,, (i.e. f or Id— f is an isomorphism for any f
in Endy(D (V))). Moreover, if I is the ideal generated by its nilpotent
elements, then Endy(D (V))/I =F,,.
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Finally we apply Theorem 19 to the study of self maps between
infinite loop spaces. We obtain an alternative proof of theorem 4.1
page 28 of Campbell, Peterson and Selick:

Theorem [2]Let f: Q525> — QFS™ be an H-map which induces
an isomorphism on Ha, 3(2°S;F,). If p > 2 suppose in addition
that f is a loop map or that

fa(da2)" # 0

for some X € (F,)*. Then f(,) is a homotopy equivalence. Here (ds2)
is the hom-dual of the top degree Dickson generator of Dy in R|[2].

*

2. Introduction

Let A be the Steenrod algebra and U the category of unstable
A-modules which is a full subcategory of F,-graded .A-modules and
morphisms being A-linear maps of degree 0 that is degree preserving.
Let V and W finite dimensional vector spaces over F, and H* (V)
the mod p cohomology of its classifying space: H* (V') := H* (BV,F,).
Moreover

H* (V)= E(xy,...,25) @ Ply, ..., Yx]
where V* =< 1, ...,x >, fr; = y; and |z;| = 1.

A map of unstable A-algebras f* : H* (W) — H* (V) is determined
by its action in degree 1 that is by an element of Hom(V, W) which
is isomorphic to Homy (H* (W), H* (V)). Here K is the category of
unstable A-algebras. There is also an isomorphism for A-linear maps:

Homy (H* (W), H* (V)) = F,[Hom(V,W)]
It is known that an A-linear map f* : H* (F,) — H*(F,) is deter-
—1
mined by its direct sum components H* (F,) = @ H; and it is an
1
isomorphism, if it is an isomorphism in degree 2 —1 fori=1,...,p—1.
Here (H;)" = H*(F,) for * = 2i or 2i — 1mod (p — 1). The algebraic
structure of H* (V') as an A-module has been studied extensively ([9]).
The general linear group G := GL (k,F,) acts on V' and hence on
H* (V). The ring of invariants
x a
D (V)= (H"(V))
called the "Dickson algebra" was described by Dickson for Dy :=
(P[yl,...,yk])G and Mui for the general case. Dickson proved that
Dy, = Fpldy,-...drx] ([4]), is again a polynomial algebra with |dj ;| =
2(p* — p'). Let us briefly describe its generators dy,;:
hy = 1T (ye+u) for 1 <t <k

UE<Y1,--,Yt—1>
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_ pp—1 4
dk,i - hk: dk—l,i + dk:—l,i—l

Mui ([8]) proved that D (V) is a tensor product between D (V') and the
[F,-module spanned by the set of elements consisting of the following
monomials:

Mo, L2 0<I<k—1, and0< s, < - <5<k —1

Its algebra structure is determined by the following relations:
a) (Mk;sl,m,leZ*z)Q =0for0<I<k—1l,and0< s <--- <5 <k—1.

k—1
(p—2) 1m— D (h—l— -2
Sszp dk,kjl _ (_1)(k D) (k—1—1)/2 tUI Mk;o,...,k/f?t,...,kflLZ .

Here 0 <I<k—1l,and 0 <51 <--- < g Sz:—l. Those elements are
described as follows:

------

T1 e T
1 T e T
Mk;sl ..... s — (k‘ — l)' y{)‘sl y‘Z31
psl pSl
Y1 T Yy,

Here there are k — [ rows of z;’s and the s;-th’s powers are completing
the rest of the determinant above, where 0 < s; < --- < §; < k—1. The

Tow (yfi, - y£i> is omitted in the determinant above and 1 < i < k—1.

k
\Mps,y,..ss| =k —14+2(p +---+p*). And Ly, =[] hi.
1

From now on we write d; for dj ;.
Since the operation of G on H* (V) commutes with the action of
the Steenrod algebra, D (V) is also a module (in fact an algebra) over

A.

3. A Steenrod-Milnor action ordering on Dickson invariants

We shall recall some well known results concerning the action of
the Steenrod algebra on Dickson algebra generators.

PropoSITION 1. [6] (Th. 30, p. 169)

l a ift=1+i—1andi<k
Pr(d) =93 —d'd |, ift=1+k—1
0, otherwise

A similar result holds for the generators of D (V).
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k—1
PROPOSITION 2. [6] (Th. 36, p. 170)1) Let ¢ > 0. If g = >_ a;p'*

such thatp—1>a; > a;_1 > a;_1 = 0. Then
k-1
Pidy = df (~1)% ] <afﬂ)fﬁ“%%-ﬂ
Otherwise, quil =0. Ift =0, then dy = dj.
k-1
2) Let ¢ = Y a;p'*t > 0 such thatp—1> a; > a;_y > a; > 0 and
a;i+1>a;1>a; > a1 > as_1 =0. Then

k—1 C1 1\ [i-1 k—1
quzi;l _ dlijl(_l)ak_l (H ( Qy )) <az."i_ ) (H ( Q¢ )) H dfl(at—at—l)
i+1 \dt-1 ai—1 s \Ot—1 s

Here as,_1 = 0. Otherwise, qufl = 0.

REMARK 3. Please note that the case a; = 0 and a;—1 = 1 1s allowed
i the proposition above.

We shall apply formulas above on a monomial in the Dickson al-
gebra starting with the smaller non-zero p-th power. Let us firstly
demonstrate our method.

EXAMPLE 4. Let p=2 and k = 3. Let
A" — d§+22df3+24d§2+23
n=(ng=2"+2% n; =23 +2 ny=2%42%

Let us write n; in its p-adic form:

n; = N0 + NP+ ...
Here nzg =1, n1o = 3 and ngo = 2. We define

m(n) =min{nso+k—1,n0+k—3,n90+k—2}=3
I'(n)={ilm(n)=no+i—1}={3,1,2}

and

i(n) =maxI (n) =3
We apply i (n) = 3 squaring operations, namely:

Squ(ﬁ), Squ(ﬁ)_l, and Sq2m(ﬁ)’2

om(™) 7 2422 52 193404 92493 2422 523 424 ;22493 2422 522493404 ;93
Sq d —d3 d2d1 d2 +d3 d3 d1 d2 +d3 d1 d2

gm(n)—=1 | 19192 19 ;23494 ;92493 2422 123 194 ;92493 2422 122493494 93|
Sq R A SR i A N rai a2 | =

2 3 4 2 3 2 2 3 4 3
B BB B
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d§+22d%d%3+24d32+23 + d§+22+22d%3+24d§3
Squ(ﬁ)72 |:d§+22d%d%3+24dg2+23 + d§+22+22d%3+24d§3 _ ngd%3+24dg2+23
Finally,
Squ(ﬁ)728q2m(ﬁ)7lSqu(ﬁ) dﬁ _ d§3d33+24d%2+23

Let n = (23,23 + 24,22 + 23). Then m(n) = 3, I(n) = {1,2},

i(n)=2.
Sq22Sq23dﬁ’ _ d§2+23d%3+24d§3

Let i = (22 423,23 +24,23). Thenm (n) =3, I (n) = {1}, i(n) =

1.
Sq¥d" =di *HdYdy

Please note that at each step m (n) = 3 and the cardinality of I (n)

1s reduced by 1.

We call Sq%* Sq?*Sq?’ Sq¢* Sq¥ Sq?* a Steenrod-Milnor operation of
type 7 and denote it by Sq"™. Please note that the n;’s have been
decreased and ny increased respectively.

Letn = (22+2%,24,23). Thenm (n) =4, I (n) ={3,1,2}, i(n) =
3.
2 3 4 7 3 4 4 3
S¢* S¢* Sq* d" = d5 * dy 1 d
Let i = (23 4-2%,24,23). Thenm (n) =4, I (n) = {1,2}, i(n) = 2.
Sq* Sq*d" = di df
Let n = (25,2%). Then m(n) =4, I (n) = {1}, i(n) = 1.
Sq¥'d" =dj ¥
Let n = (2%). Then m (n) =6, I (n) = {3}, i(n) =3.
4 5 6 7 6
Sq* Sq* Sq* d" = d
Finally,
Sqr(24+25,0,0) Sqr(22+24,24,23)Sqr(21+22,23+24,22+23)d§+22 d§3+24d§2+23 _ d§6
1(i)
DEFINITION 5. Let i = (ng,nq,...,np_1) and n; = ;ai7tp”i’t its

p-adic expansion with [[a;; # 0.

a) Let m (n) :=min{n; o+ — 1| 1 <i < k}.
b) Let I(n) :={i| m(n) =n;0+1i—1}.

¢) Let i (n) := max I(n).

S (@005 aimyo) 5 i (R) < K
d) Let J(n) := { (dhs 00 P — o) + i 1 (1) = k Forp > 2.

REMARK 6. If p =2, then a;y =1 and I(n) determines J(n).
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DEFINITION 7. a) For m and | natural numbers such that | < m,
let PY'™D stand for the Steenrod operation prtt pemtte pe

b) Given a sequence n, a triad is defined as above (m (n) , I(ﬁ), J(n)).
We define a sequence of Steenrod operations associated with this triad
as follows

PrOvmI®I®) . prm@in), prin@lin)  pren@im)  prim)sm)

-
‘%1,0 a;(ry,0(07 P—aj(m),0)

We call this operation, PT(m®:1().J(R) o Steenrod-Milnor opera-
tion of type (n) and denote it by P*(™,
REMARK 8. If p =2, then Sq"'™ = Sgtmm.i)  ggl(m(n),i(n),

PROPOSITION 9. a) Let m = n+k — 1, then P* mvk)dg = g
n n+1

(SR = 7).

b) Let m =n+k — 1, then Pr(m’k)...PF(m’k)le = —dy

p1
C) Ppnb(’ﬁ)dﬁ — Z alr Odndp ig, Od D "ir,0 +dﬁd;ak70p k,0 Pp"L(ﬁ)de,Op
irel(n)—{k} o
aodd A2 if k> i(n)

—agod"d] " if k = i(7) |

n+1

d) Promm;itm)gn —

e) If k > i(n), then
PO IO gn — (g, o) dndy @ g P

i(n),0

~~ d ’ k i(n)
A4 (a),0
Otherwise,
prmm)k) PF n),k) d” :( 1)? ak,0 _(p=1)! dndp k0t d —ag,op k0
S (ak,0— 1 k .
p agk.o0

PROOF. a) We apply proposition 1:
PP =0,ift £1+k—1

Pra =0, ift£l+k—Torl+i—1
Now the statement follows using Cartan formula.
b) is an application of a).
c¢) Proposition 1 and Cartan formula implies the statement, since
p™™ is the least p-th power which provides a non-zero Steenrod oper-
ation.
d) We apply proposition 1:

Pr(niﬂel,i) dp"i _ dp”i

If n;+i—1 > m(a) or [ > i, then PYO™MDgP" — (. Now the statement
is an application of c).

"%,0
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e) This is a repeated application of d). Two main cases should be
considered dependmg on i(7). Moreover, the number of times which the
operation PT(m(™):iM) has to be applied depends on ai(m),0- We describe
the first step in details. The next steps follow the same pattern

We first apply PT(™™4™)  Let i’ = a-+(0, ..., 0, —p™im0,0, ..., 0, p"itm.0),

The next Steenrod-Milnor operation shall be applied depends on m(7’)
and i(n).

Let us compare d” and d™'. First case: i(n) < k, then Nimy0+k—1>
m(n). Now, if a0 = 1 and I(n) = {i(n)}, then m(a') > m(n). In
this case our statement follows for a;z)o = 1. Otherwise, m(n') = m(n)
and PTm(™:i(") ghall be applied again.

Second case: i(n) = k. Let aro = p — 1, then m(n') = m(n) + 1.
Again our statement follows. Let ayo < p— 1, then m(n') = m(n) and
Prm(m):i(m)) shall be applied again. m

Let us comment on the statement of last proposition. Let d" be
a monomial and d" the resulting monomial as in the statement of e)
above. If for each index i, € I(n) a suitable Steenrod-Milnor operation
is defined, then the smallest p-th components of the n; are reduced and
that of n; is increased respectively.

The next technical results are needed for the proof of the main
Theorem.

COROLLARY 10. Given n, let n; = Z a; p™
a) Let g = > a; op"°. If k> z( ) then

ir€l(n)

PF(ﬁ dnd H d —aj,.op"ir:0

ir€l(n)

b) Let ¢ = p™eott + S~ q optno. If k=i (n), then
irel(n)—{k}

Pr® " = \dd\ H d; ror

ir€I(R)
Here X € (Fp)*.
PrOOF. This is an application of proposition 9 ). m
LEMMA 11. Given n, let 2 (0) = 7 and n (1) such that d™V

Prmgn,
i)Then m (7 (0)) < m (7 (1)).
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1(4)
i) Let > =YY as, where n; =Y a;p"* and [[a;: # 0.
=1

t<k s

I(n(0)) # {k} = >_n(0) > > n (1)

PrOOF. i) Let n(0) = (n; (0)|i =1,....,k), I (7 (0)) = {i1,..., 0}
and J(n(0)) = (a1, ...,a:). According to last corollary, n; (0) = n; (1),
ifi ¢ 1(n(0)) and

n; (0) — azop™, if i € I (7 (0)) — {k}
nk (0) + > a;op™e°, if k> i (n(0))

n; (1) = ir€1(n)

ng (0) — agp™° + preott 4 S q gp™ieo, if k=i (n(0))
ire[(ﬁ)_{k}
Thus
_ ~f min{n, o+ k—1,ngo+k—1,mni1 +i—1},if k> i(n(0))
m(n (1)) = { m(f (0)) + 1, if k = i (7 (0))

and the claim follows.
ii) If 7(n(0)) = {k}, then > n(0) = > n(1). This follows from
formulas above. Otherwise, > 7 (0) > > 7 (1). m

THEOREM 12. There exists a sequence of Steenrod-Milnor opera-
_ l(n
tions P' such that P'd" = )\dz( ' Here M € (F,)*.

ProoF. We shall describe an algorithm which constructs the re-
quired sequence. This algorithm depends heavily on last corollary and
lemma.

Step 0. Let P'' = P9,

Step 1. Given d" define I(7), J(7) and i (7) as in Definition 5 b).
Define P! := Pr® pr.

Step2. Letq= Y. a; op™°andq =p™otl+ S q, optieo.

k>ir€l(n) k>ir€I(n)
Define .
AW T d " or
AP = fre]("—l) s
APS T d et

ir€l(7)

0

given by corollary above. If n; < k for some i > 0 or ny, # p'™ for some
positive integer I(71), then proceed to step 1. Otherwise, the required
sequence is P'. Because of last lemma, the procedure above terminates
after a finite number of steps. =

P' as in the last Theorem is a repeated S-M operation. We define
an ordering between monomials in Dy according to S-M operations
called a Steenrod-Milnor action ordering and write S-M ordering.
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1)
DEFINITION 13. For two sequences . and i’ let n; = a;;p™* and
t=0
I'(3)
n; = Z a; p" it be their p-adic decompositions respectively. We require

[Tai: H a;, # 0. We define an ordering on monomials of Dy, dm < dv,

%t 2t
zf one of the conditions is satisfied referring to the definition 5.

i) m(n) < m(n').

i) Let m(n) = m(7'), I(R) = {i1, ..., 0}, (') = {i},...,i, }, J(R) =
(a1,...,ar) and J(7') = (a}, ...,a,). There exists aty with0 <ty <t—1
such that tg is maximal with respect to the following condition:
cand ai_s = ay_, for 0 < s <tg—1 and eitheri;_, > i}
0T By—ty = Tyr_yy AN Qg > Ay -

. oy
lg—s = Ty —to

For simplicity we write 7 < 7’ instead of d* < d™.

PROPOSITION 14. Let n < 7', then there exists a sequence of Steen-
rod operations PT depending on fu such that P'd™ # 0 and PTd™ = 0.

ProOF. Without lost of generality we suppose that either condition
i) or ii) in the last definition is satisfied.
Condition i). Let m(@i) < m(7'), then PP d™ £ 0 and PP d" = 0.
Condition ii). Let m = m(n) = m(n’) and there exists a ty, with
0 <to <t—1such that i, 4 =iy _,, and a; 4, > ay_, . Let

—to

d’r_l(l) — A (1) Pr(my(ii—t0+17"'ait)7(ai—t0+17""at))dﬁ

and 4" = )\,(1)Pr(m’(ii*to“""’it)’(at’to“""’at))dﬁl. Because of our
assumption 7 (1) —n =7a' (1) — n/. Here negative integers are allowed.
Now I(n (1)) = {i1,...,5—4} and I(n = i, iy = lito )
with Aty > a:t,fto. Let
d"® = ) (2) prlmicw) | primicw) 7o)

/
t/—tg

and
dﬁ/(2) =\ (2) \Pf(m,it,to)“.PF(m,it,tO)ldﬁ/(l)

v~

l
t/—tg

Now I(n(2)) = {i1,....ir—to} and I(R/(2)) = {&,....i}_,,_,} with
i((2)) = iy, > i(0'(2)) =iy, ;. Thus

PF<mvit*fo)dﬁ/(2) — O
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Now we are ready to proceed to our main Theorem.

THEOREM 15. Let f : Dy, — Dy be an A-linear map of degree 0
such that f(dy_1) # 0. Then f is a upper triangular map with respect
to S-M ordering and hence an isomorphism.

PROOF. By hypothesis and proposition 1, f(d;) = Ad; for i =
1,..., k after applying a suitable Steenrod operation.
Let d" € Dy and (d"®,...,d™™) the increasing sequence of ele-
_ _ )
ments of degree |d"|. Let f(d") = ) a;d"®. Claim: If n,) = i, then
t=1

a; = Omod p for t < to. Following our last proposition P'd" = 0, if
n < n’. We use induction on t for ¢t < ty. Using Theorem 12, propo-
sition 14 and definition of elements P!, there exists P'* such that

H2a _
Pl = Adg( ) and PPid = 0 for i > 1. Then
Wn) ~
PUif(d™) = P Y~ a;d™® implies a; = 0 mod p. By induction Pl f(d™) =
i=1

Wm)
P 3 a;d™® implies a; = Omod p for ¢ < t5. Using proposition 1 and
t=i

the fact that f(dy) # 0, we get f (dﬁl) = /\'dil. The last observation
implies a;, # Omod p. Hence f is a upper triangular map. m

EXAMPLE 16. Let p = 2 and Hy = Ply1,y2]"? the ring of upper
triangular invariants which is a polynomial algebra on hy = y; and
hy = y2 +yoy1. Let f: Hy — Ho be an A-linear map such that f(hy) =
hy. Since Sq'hy = h? # hy, f (he) can be defined independently of h;:
f (hy) = ahy + bh? with a,b € Fy. Even if f (hy) = h3, f is not an
isomorphism: f (day1) = f(ha +h3) =0 = f(dao) = f(Sq'day).

4. The exterior part of the Dickson algebra

Next we extend the previous results to the full Dickson algebra.

,,,,,

PBGrs) .= g prg T pP g prt et PP PP Then
N~ A Y ~~ ~~
PB(51 ..... Sl)Msl 77777 lei_zdﬁ _ (_1>(kflfl)!dkdﬁ

77777777

------
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PROOF. Let us recall that PP (M,, L% = M, o 140l
for s, < k—1 and PP"d"" +£ 0 if and only if n, = s, — t + 1 for

0<t<s+1. If0=s;,, we apply the Bockstein operation 3. Thus
_ . o k—1—s _ )
pr*. pr "M, .. L% 2qn = 20: M, . sy s+t. Lh 2ft,- Here f;, is a

polynomial in Dy.
Let PP = pr"""

(-

PP PP PP Tterating the last formula we

-~ -~

obtain:
I Sq+1ttg+1—8¢q

E p—2 g0 __ p—2
P MS17---781Lk d _Z Z MS1+t1 ----- Sz—1+tz—1ysz+tsz ft1,---7tz
q=1 0

Here s;.1 =0 and ., =k — 1.

Let us suppose that s; +t; < k — . Let PA = prt- “?..P"° 3 and
A= Mo srttirsit 2 2 fir . There are sy +t — 1 < k —
[ — 2 positions to be filled by powers of y’s using Steenrod operations:
Bipiﬁ/... PP PP’ 3. Since there are k — [ A’s in this sequence and

only s; +t; —1 < k — [ — 2 positions, it is obvious that P24 = 0. Now

suppose that s; +t; = k— [ and one operation PP’ of P? is not applied

on A. Then it will be less positions than the number of remaining 5’s.
0 k—1—2 0 _9

In that case BPP B Pp Pp ﬁM51+t17---751—1+tl—1751+tlLi ft17"'7tl =

0. The claim follows. =

COROLLARY 18. Let Msl,m’leiddﬁ € D (V). There exists a se-
quence of S-M operations such that
PFPB(SI’”.’SZ)Msl SZLZ*Qd'ﬁ, — )\diq

and q is minimal with this property.
Here \ € (Z/pZ)*.

l

Now we are ready to proceed to our main Theorem.
THEOREM 19. Let g : D (V) — D (V) be an A-linear map degree 0
k
such that g(M,,) # 0. Then g is an isomorphism. Here My, = [[ ;LY 2.
1

PrOOF. Let g : D (V) — D (V) such that g(My) = AMy. Then
g(di) = Ndy with X # Omodp and g(dy_1) = Ndj_;. Please recall
that SP'8...PP* .. .PPP13M, = d). Thus g is an isomorphism in Dj.
[

We recall that an A-module is indecomposable, if it is not a non-
trivial direct sum.

DEFINITION 20. Let D (V') denote the augmentation ideal of D (V).
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COROLLARY 21. D (V) is not directly decomposable as an A-
module.

PRrROOF. Assume D (V) = @ D (V), such that D (V), # 0. If d (4)
iel
and d (j) are monomials in D (V'), and D (V), respectively, then there

exist PT and P' such that a;,P'd (i) = d” = b,P'd(j). =
5. The structure of Endy(D (V))

It is known that if an R-module M is directly indecomposable and
of finite length, then End (Mpg) is a local ring and its non-invertible
elements are precisely its nilpotent elements. According to last corol-
lary D (V) is directly indecomposable. It is also known that the set

1) /(p— S
{d,gpl )/ 1)|l > 1} is linearly independent ([5]). Thus D (V) is not

of finite length. But we shall prove that Endy (D (V)) is a local ring.

We follow the approach suggested by H.-W. Henn. We shall omit
technical details which will appear in [7].

We state a remarkable theorem due to Adams, Gunawardena and
Miller (Th. 1.6, p. 437 [1]), we apply it for s =0, t =0, M =F, and
Uu=V.

THEOREM 22. F [End (V)] = Endy (H*(V)). Here F,[End (V)] is
the monoid algebra of the monoid under composition End (V).

Using the Theorem above one can reduce the problem to a linear
algebra one.

THEOREM 23. Homy (D (V),H*(V)) = F,[G\End (V)].

PrROOF. We view End (V) as a monoid with respect to composi-
tion of linear maps. It admits a left and a right action by itself. Let
F,[End (V)] be the associated monoid algebra. Let F,[G \ End (V)] be
the vector space on the set of orbits G~ End (V). The monoid End (V)
acts on the right of GL (V) ~ End (V) by f-h = fh. Because of the
right action above F,[G \ End (V)] becomes an F,[End (V)]-module.

Let f: D(V) - H*(V) and g : H*(V) — H*(V), then gf :
D (V) — H*(V)and Homy (D (V), H*(V)) becomes a left Endy (H*(V))-
module. Moreover, by the AGM-theorem, it becomes a right F,,[End (V)]-
module.

We recall that H*(V') is an unstable .A-module. Thus given [ €
Homy (D (V),H*(V)) an f € Homy (H* (V) , H*(V)) is induced. Ap-
plying the theorem above, f is identified with a ¢ : V' — V such that
¢ is G-invariant because f is. The isomorphism follows. m
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PROPOSITION 24. Endy (D (V) = Endgna, =y (Homy (D (V) , H*(V))).
PROOF. Let
given by ® (f) (h) = hf for f € Endy (D (V)) and h € Homy, (D (V) , H*(V)).
Moreover, k® (f) (h) = ® (f) (kh) for k € Endy (H*(V)).
® is 1-1: Let ®(f) = ®(f'), then ®(f) (i) = @ (f’)(4) for i :
D (V)< H*(V). Thus f = f"
® is onto: Yh € Homy (D (V),H*(V)), 3h € Endy (H*(V)) such
that h = hi because H*(V) is injective.
Let U € Endpn, vy (Homy (D (V),H*(V))), then A (i) = ¥ (hi) =
U (h). Each g € G defines a map g € Endy (H*(V)). For such a map
g¥ (i) = ¥ (gi) = ¥ (i), thus ¥ (i) € Endy (D (V)). Let fy = ¥ (i),

THEOREM 25. Endy (D (V)) = Ende[End(V)] (IFP[G ~ End (V)])

The next proposition provides all technical details for the conclusion
of this section, namely Endy, (D (V)> is a local ring along with its

structure.

The A-submodule of D (V') consisting of degree 0 elements is iso-
morphic with F,. Thus Endy (D (V)) = F, ® Endy(D (V)). Although
the subspace of the zero orbit in F,[G' \ End (V)] is a direct summand,
it is not a direct summand as an [F,[End (V')]-module but it can be

decomposed as follows. Let F,[G . End (V)] be the vector space on

{F1f€End(V),f#0v}

We identify the neutral element > 0f with the zero orbit 0. It be-
f#0v
comes an F,[End (V)]-module.

THEOREM 26. [7]Let R := Ends, pna), (IF,,[G \m(\/)D, then

R has dimension n as a vector space over IF,,. There is a set of gener-
ators {1;|1 < i < n} such that:
1) ¢y = 0 is the neutral element and v, =1 is the identity map;

2) Let n > 1>k >0, then ¢y1p; = by, = Vrmax(0,k+1—n) -

Because of the isomorphism Endy (D (V')) = R, the next corollary
follows.

COROLLARY 27. Endy(D (V)) is a local Fy-algebra with dimension
n as a vector space over F, (i.e. f or Id — f is an isomorphism for
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any f in Endy(D(V))). Moreover, if I is the ideal generated by its
nilpotent elements, then Endy(D (V))/I =F,.

6. An application

We close this work by applying our result in the mod p homology of
QS°. Firstly, we recall the isomorphism between the hom-dual of the
Dyer-Lashof algebra and the Dickson algebra.

PROPOSITION 28. a) Let SD (V') be the subalgebra of D (V') gener-
ated by
{di,Mlei_Q,MS/PSéLﬁ_Q} where 1 < 1 < k, 0 < sy < k—1 and
0<s\<sh<k—1.1Iff:SD(V)— SD (V) satisfies

f(Mk—2,k—1L£_2) = )\Mk—Z,k—lLi_2 #0

then f is an isomorphism.
b) Let I[k] be the ideal of SD (V') generated by

{d, My, L7 7%, My, 1}
then the induced map [ which satisfies f(Mk_g,k_lL,zd) = )\Mk_Q’k_lLiiz

18 also an isomorphism.

Proposition b) above is a reformulation of Theorem 4.1 in [2].

Let R =< QUI|I = (iy,...,in),J = (e1,...,64) > be the Dyer-
Lashof algebra, then H,(QoS%TF,) is the free commutative algebra
generated by ®(R) subject to the following relation Q7)) ~ (QU"/))P
it I = (i, "), J = (0,J) and exc(Q"”)) = 0. Here ® : R —
H,(QoS%TF,) is the A,-module map given by ®(QU+)) = QED[1] *
[—p'D], [1] is a generator of Hy(S%F,), [r] = [1]" and I(I) is the
length of I. Thus there exists an A,-module isomorphism between
the generators of H.(QyS% F,) and the quotient R/QoR where QoR =
{QU|exc(I,J) = 0}. It is known that R[k]* = SD (V) as Steen-
rod algebras and (R/QoR)[k]* = I[k] as Steenrod modules. Here
R = @ R[k]. Now the following Theorem is a consequence of last
corollary.

THEOREM 29. [2]|Let f : QPS> — QPS> be an H-map which
induces an isomorphism on Hap 3(2°S*;F,). If p > 2 suppose in
addition that f is a loop map or that

fildao)" # 0

for some X € (Fp,)*.  Then f(,) is a homotopy equivalence. Here (da)*
is the hom-dual of the top degree Dickson generator of Dy in R[2].
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