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Algebras

Let K be a commutative ring with a unit.
An augmented graded K -algebra is a graded K -module A
equipped with graded k -molules φ : A⊗ A → A, η : K → A and
a morphism of algebras ε : A → K such that the following
diagrams are commutative
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Algebras

If the next diagram is commutative, then our algebra A is
anti-commutative.

A⊗ A

T

��

φ ""EE
EE

EE
EE

E

A

A⊗ A

φ
<<yyyyyyyyy



Free algebra

Let K be a commutative ring with a unit.
Let M be graded K -module M.

The free algebra generated by M is an algebra VM together
with a linear map i : M → VM such that for each K -algebra A
and linear map g : M → A there is a unique algebra map

g′ : VM → A

such that g′i = g.



Coalgebras

Let K be a commutative ring with a unit.

A K -coalgebra is a graded module M equipped with morphisms
of graded K -modules (a comultiplication) ∆ : M → M ⊗M and
(a counit) ε : M → K such that the diagrams are commutative.
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M
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Cofree coalgebra

One should think of ∆ as giving each element m of M a
“K -decomposition” into a sum of pairs of elements of M.

The cofree coalgebra generated by M is a coalgebra UM
together with a linear map π : UM → M such that for each
coalgebra C and linear map f : C → M there is a unique
coalgebra map

f ′ : C → UM

such that πf ′ = f .

If π : UM → M is the cofree K -coalgebra over M, then UM must
represent all possible decompositions of M, i.e. for each
element m of M and each ∆M such that
∆M(m) =

∑
m(1) ⊗m(2), there must be elements [m] and [m(i)]

of UM such that π[m] = m, π[m(i)] = m(i), and
∆UM [m] =

∑
[m(1)]⊗ [m(2)] in UM ⊗ UM.
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Hopf algebra

A Hopf algebra over K is a graded K -module A equipped with
morthisms of graded k -molules

φ : A → A⊗ A, η : K → A

∆ : A → A⊗ A, ε : A → K

such that

(A, φ, η) is an algebra over K with augmentation ε,

(A,∆, ε) is a coalgebra over K with augmentation η,

A⊗ A
φ //

∆⊗∆
��

A
∆ // A⊗ A

A⊗ A⊗ A⊗ A
A⊗T⊗A // A⊗ A⊗ A⊗ A

φ⊗φ

OO
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The Steenrod algebra A

For a given prime number p, the Steenrod algebra A is the
graded Hopf algebra over the field F ∼= Z/pZ of p elements,
consisting of cohomology operations for mod − p cohomology
generated by:

P i : Hn(X ; F ) → Hn+2i(p−1)(X ; F );

β : Hn(X ; F ) → Hn+1(X ; F ) for p > 2.

β and P i are additive homomorphisms such that:

P0 is the identity, β2 = 0.
P ix = xp for |x | = 2i and P ix = 0 for |x | < 2i .
Moreover,
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The Steenrod algebra A

Cartan Formula: Pn(x ^ y) =
∑

i+j=n(P
ix) ^ (P jy) and

Adem relations:

PaPb =
∑

i

(−1)a+i
(

(p − 1)(b − i)− 1
a− pi

)
Pa+b−iP i

for a < pb.
And for p odd

PaβPb =
∑

i

(−1)a+i
(

(p − 1)(b − i)
a− pi

)
βPa+b−iP i+

∑
i

(−1)a+i+1
(

(p − 1)(b − i)− 1
a− pi − 1

)
Pa+b−iβP i

for a ≤ pb.
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Unstable A-modules

An A-module M is called unstable, if βkP im = 0 for
2i + k > |m| and m ∈ M.

The module Σn(A/ < P I , I admissible and e(I) < n + 1 >) is
called the free unstable cyclic A-module on one generator of
degree n and is denoted by F (n).

A free unstable A-module is the direct sum of free unstable
cyclic A-modules.

The category of unstable modules was defined by Massey and
Peterson and is denoted by U .
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Unstable A-algebras

Let M be an unstable A-modules and TM its tensor algebra.

Let VM be the quotient of TM by the ideal generated by

x ⊗ y − (−1)|x ||y |y ⊗ x and P |x |/2x − xp.

VM is called the free unstable A-algebra generated by M.

If M is a free unstable A-module, then VM is called the
completely free unstable A-algebra generated by M.

Serre, p = 2: H∗(K (Z/2Z , n); Z/2Z ) ≡ VF (n).

Cartan, p odd: H∗(K (Z/pZ , n); Z/pZ ) ≡ VF (n).
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Unstable opposite A-modules

Let MA be the category of connected unstable opposite
A-modules.

An unstable opposite A-module consists of a positively graded
F -module M

and a graded module map Ai ⊗Mn → Mn−2(p−1)i with the
property

Pkm = 0, if |m| < 2pk ; and βPkm = 0, if |m| = 2pk + 1.
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Unstable A-coalgebras

Let CA be the category of unstable coalgebras i.e.

an object is both an unstable opposite A-module and a
connected co-commutative F -coalgebra where these structures
are compatible in the following sense.

The comultiplication map in CA is an unstable A-module map
and the p-th root map ξ : Mpk → Mk , dual to the p-th power
map, satisfies

ξ (m) = Pk (m) .

For example H∗ (X , F ) is an object in CA for X a connected
space and the co multiplication is induced by the diagonal.
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Cofree Unstable A-coalgebras

For a connected unstable A-module M, the cofree unstable
A-coalgebra generated by M, UM, has the following universal
property:

UM comes with an A-module map i : UM → M and if C is an
unstable A-coalgebra and f : C → M an A-module map, there
exists a unique A-coalgebra map

f : C → UM

such that f = i f .

If M is of finite type, then UM is dual to the free unstable
A-algebra VM∗ generated by the dual A-module M∗.

Moreover, U is a functor from the category MA to CA right
adjoint to the forgetful functor.
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The Dyer-Lashof algebra R

For a given prime number p, the Dyer-Lashof algebra R is the
graded Hopf algebra over the field F of p elements, consisting
of homology operations for mod − p homology on infinite loop
spaces QX generated by:

Qi : Hn(QX ; F ) → Hn+2i(p−1)(QX ; F );

βQi : Hn(QX ; F ) → Hn−1+2i(p−1)(QX ; F ) for p > 2.

βQi and Qi are additive homomorphisms such that:
Qix = xp for |x | = 2i and Qix = 0 for |x | > 2i .

Moreover,
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Qi : Hn(QX ; F ) → Hn+2i(p−1)(QX ; F );

βQi : Hn(QX ; F ) → Hn−1+2i(p−1)(QX ; F ) for p > 2.

βQi and Qi are additive homomorphisms such that:
Qix = xp for |x | = 2i and Qix = 0 for |x | > 2i .

Moreover,



The Dyer-Lashof algebra R

Cartan Formula: Qn(x ⊗ y) =
∑

i+j=n(Q
ix)⊗ (Qjy) and

Adem relations:

QaQb =
∑

i

(−1)a+i
(

(p − 1)(i − b)

pi − a

)
Qa+b−iQi

for a > pb.
And for p odd

QaβQb =
∑

i

(−1)a+i
(

(p − 1)(i − b)

pi − a

)
βQa+b−iQi+

∑
i

(−1)a+i+1
(

(p − 1)(i − b)− 1
pi − a− 1

)
Qa+b−iβQi

for pb ≤ a.
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Infinite loop spaces

Y is an infinite loop space, if there exists a sequence of spaces
{Y0, Y1, ...} such that Y = Y0 and Yi ' ΩYi+1.

Examples:
QX = lim−→ΩnΣnX ,
Z × BO = Z × lim−→BOn real K -theory,
Z × BU = Z × lim−→BUn complex K -theory.

Theorem (Dyer-Lashof)

H∗(QX , F ) is the free commutative algebra generated by(
QIx, such that QI ∈ R, e(I) ≤ |x |, and x ∈ H∗(X )

)
modulo the

ideal generated by

{Qsy − yp | |y | = 2s}.

Here y2 = 0, if |y | = odd and p > 2.
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Why infinite loop spaces

Problem: i) Classify all compact n-manifolds up to
diffeomorphism.
ii) Classify all compact n-manifolds up to cobordism.

Theorem (Thom-Pontryagin)

The cobordism group of n-dimensional unoriented manifolds, is
isomorphic to the stable homotopy group:

lim−→r
πn+r (TBOr , t0).

{TBOr} is an infinite loop space.
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The Dyer-Lashof algebra R as a component coalgebra

The Dyer-Lashof Hopf algebra can be decomposed as
coalgebras over the opposite Steenrod algebra with respect to
length:

R =
⊕
k≥0

R[k ].

Problem:
How far is each R[k ] from being cofree?
How about its dual (R[k ])∗?
How far is each (R[k ])∗ from being an unstable free
algebra?

(R[k ])∗ is related with the Dickson algebra Dk .
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The Dickson algebra

Theorem (Dickson)
The classical Dickson algebra is a polynomial algebra

P[y1, · · · , yk ]GLk = P
[
dk ,1, · · · , dk ,k−1, dk ,k

]
.∣∣dk ,i

∣∣ = 2
(
pk − pk−i), [

∣∣dk ,i
∣∣ = 2k − 2k−i ].

Definition
The extended Dickson algebra, p odd, is given by:

H∗
(

BV k
)GLk ∼= (E (x1, ..., xk )⊗ P [y1, ..., yk ])GLk
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The Dickson algebra

Theorem (Mui)
The extended Dickson algebra is described as follows

EDk := (E(x1, · · · , xk )⊗ P[y1, · · · , yk ])GLk .

It is a tensor product of the polynomial algebra P[y1, · · · , yk ]GLk

and the Z/pZ-module spanned by the set of elements
consisting of the following polynomials:

Mk ;s1,...,sm(Lk )p−2; 1 ≤ m ≤ k , and 0 ≤ s1 < · · · < sm ≤ k − 1.

There are relations among the generators.



The Dickson algebra

Definition
Let SEDk be the subalgebra of EDk generated by:

dk ;s+1, Mk ;s(Lk )p−2 and Mk ;s1,s2(Lk )p−2.

Here 0 ≤ s ≤ k − 1. 0 ≤ s1 < s2 ≤ k − 1.



The Dickson algebra and the Dyer-Lashof algebra

Theorem (Madsen p = 2, May p odd)

R[k ]∗ is generated by {ωk ,i+1 =
(
QIk,i+1

)∗, τk ;i =
(
QJk ;i

)∗, and
σk ;s,i =

(
QKk ;s,i

)∗ | 0 ≤ i ≤ k − 1, and 0 ≤ s < i},
[{ωk ,i+1 | 0 ≤ i ≤ k − 1}, for p = 2], modulo certain relations.

Theorem (Mui p = 2, Kechagias p odd)

Let Tk : SEDk → R[k ]∗ be given by Tk
(
dk ,i+1

)
= ωk ,i+1,

Tk

(
Mk ;iL

p−2
k

)
= τk ,i , and Tk

(
Mk ;s,iL

p−2
k

)
= σk ;s,i . Then Tk is a

Steenrod algebra isomorphism.

For p = 2, R[k ]∗ is a polynomial algebra and it is isomorphic
with the classical Dickson algebra as Steenrod algebras.
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The Peterson conjecture

The Peterson conjecture is about the global structure of the
classical Dickson algebra as an unstable algebra over the
Steenrod algebra.

This conjecture was solved by Pengelley, Peterson and
Williams for p = 2 in:

Pengelley, D. J., Peterson, F. P. and Williams, F., "A global structure
theorem for the mod 2 Dickson algebras, and unstable cyclic modules
over the Steenrod and Kudo-Araki-May algebras", Math. Proc.
Cambridge Philos. Soc., 129, 2000, no. 2, 263–275.

Pengelley, D. J. and Williams, F., "The global structure of odd-primary
Dickson algebras as algebras over the Steenrod algebra", Math.
Proc. Cambridge Philos. Soc., 136, 2004, no. 1, 67–73.



The Peterson conjecture

The Peterson conjecture is about the global structure of the
classical Dickson algebra as an unstable algebra over the
Steenrod algebra.

This conjecture was solved by Pengelley, Peterson and
Williams for p = 2 in:

Pengelley, D. J., Peterson, F. P. and Williams, F., "A global structure
theorem for the mod 2 Dickson algebras, and unstable cyclic modules
over the Steenrod and Kudo-Araki-May algebras", Math. Proc.
Cambridge Philos. Soc., 129, 2000, no. 2, 263–275.

Pengelley, D. J. and Williams, F., "The global structure of odd-primary
Dickson algebras as algebras over the Steenrod algebra", Math.
Proc. Cambridge Philos. Soc., 136, 2004, no. 1, 67–73.



The Peterson conjecture

The Peterson conjecture is about the global structure of the
classical Dickson algebra as an unstable algebra over the
Steenrod algebra.

This conjecture was solved by Pengelley, Peterson and
Williams for p = 2 in:

Pengelley, D. J., Peterson, F. P. and Williams, F., "A global structure
theorem for the mod 2 Dickson algebras, and unstable cyclic modules
over the Steenrod and Kudo-Araki-May algebras", Math. Proc.
Cambridge Philos. Soc., 129, 2000, no. 2, 263–275.

Pengelley, D. J. and Williams, F., "The global structure of odd-primary
Dickson algebras as algebras over the Steenrod algebra", Math.
Proc. Cambridge Philos. Soc., 136, 2004, no. 1, 67–73.



The Peterson conjecture

They proved that the classical Dickson algebra Dk is a free
unstable algebra on a certain cyclic module, modulo four
additional relations.

What about the extended Dickson algebra SEDk?
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The Peterson conjecture and SEDk

We define an unstable A-module M (µ, u)

and from it an unstable A-algebra Q (µ, u).

Finally an isomorphism between Q (µ, u) and SEDn will be
defined.
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The unstable A-module M (µ, u)

Definition
The module M (µ, u) has two generators µ and u of degrees
2

(
pn − pn−1 − pn−2) and 2

(
pn − pn−1) respectively and

relations:
Ppk

µ = 0 = Ppl
u, (1)

for − 1 ≤ k ≤ n − 4, k = n − 2 and − 1 ≤ l ≤ n − 3;

Ppn−3
Ppn−3

µ = 0 = Ppn−2
Ppn−2

u; (2)

Ppn−3
Ppn−2

Ppn−3
µ = 0 = Ppn−2

Ppn−2
Ppn−3

µ; (3)

Ppn−1
Ppn−3

µ = Ppn−3
Ppn−1

µ and Ppn−2
Ppn−1

u = 2Ppn−1
Ppn−2

u.
(4)

The generators are related as follows:

P(−1,··· ,n−2)P(−1,··· ,n−3)µ = P(0,··· ,n−2)u. (5)



The unstable A-algebra Q (µ, u)

Definition
Let Q (µ, u) be the free unstable A-algebra on the module
M (µ, u) subject to the following relations:

µ2 = 0 and Ppn−1
u = (p − 1)u2. (6)

The generators are related as follows:

Ppn−1
µ = (p − 2)µu and (7)

Ppn−1
Ppn−2

Ppn−3
µ = (1)

−Ppn−2
Ppn−3

µu + µPpn−3
Ppn−2

u − Ppn−3
µPpn−2

u. (2)



The main Theorem

Theorem
The algebra Q (µ, u) is isomorphic as an A-algebra to SEDn.

Corollary

R[n] is isomorphic to a subcoalgebra of a cofree unstable
coalgebra on two cogenerators.

Corollary

Let 1 ≤ n, then HomCA(R[n], R[n]) ∼= Fp.
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