Cofree coalgebras and the components of the Dyer-Lashof algebra

Nondas E. Kechagias

Department of Mathematics University of Ioannina

May 3, 2014

<ロ> (四) (四) (三) (三) (三)

Algebras

Let *K* be a commutative ring with a unit. An augmented graded *K*-algebra is a graded *K*-module *A* equipped with graded *k*-molules $\phi : A \otimes A \rightarrow A$, $\eta : K \rightarrow A$ and a morphism of algebras $\epsilon : A \rightarrow K$ such that the following diagrams are commutative

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

Algebras

Let *K* be a commutative ring with a unit. An augmented graded *K*-algebra is a graded *K*-module *A* equipped with graded *k*-molules $\phi : A \otimes A \rightarrow A$, $\eta : K \rightarrow A$ and a morphism of algebras $\epsilon : A \rightarrow K$ such that the following diagrams are commutative

If the next diagram is commutative, then our algebra *A* is anti-commutative.

(日) (四) (三) (三) (三)

æ

Let K be a commutative ring with a unit. Let M be graded K-module M.

The *free algebra generated by* M is an algebra VM together with a linear map $i: M \to VM$ such that for each K-algebra Aand linear map $g: M \to A$ there is a unique algebra map

《曰》 《聞》 《臣》 《臣》 三臣 …

such that g'i = g.

Coalgebras

Let K be a commutative ring with a unit.

A *K*-coalgebra is a graded module *M* equipped with morphisms of graded *K*-modules (a comultiplication) $\Delta : M \to M \otimes M$ and (a counit) $\epsilon : M \to K$ such that the diagrams are commutative.

Coalgebras

Let K be a commutative ring with a unit.

A *K*-coalgebra is a graded module *M* equipped with morphisms of graded *K*-modules (a comultiplication) $\Delta : M \to M \otimes M$ and (a counit) $\epsilon : M \to K$ such that the diagrams are commutative.

(日) (图) (문) (문) (문)

Coalgebras

Let K be a commutative ring with a unit.

A *K*-coalgebra is a graded module *M* equipped with morphisms of graded *K*-modules (a comultiplication) $\Delta : M \to M \otimes M$ and (a counit) $\epsilon : M \to K$ such that the diagrams are commutative.

$$\begin{array}{c}
M \otimes M \otimes M \underset{1 \otimes \Delta}{\leftarrow} M \otimes M \\
\uparrow^{\Delta \otimes 1} & \uparrow^{\Delta} \\
M \otimes M \underset{\Delta}{\leftarrow} M
\end{array}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Cofree coalgebra

One should think of Δ as giving each element *m* of *M* a "*K*-decomposition" into a sum of pairs of elements of *M*.

The *cofree coalgebra generated by* M is a coalgebra UM together with a linear map $\pi : UM \to M$ such that for each coalgebra C and linear map $f : C \to M$ there is a unique coalgebra map

 $f': C \to UM$

such that $\pi f' = f$.

If $\pi : UM \to M$ is the cofree *K*-coalgebra over *M*, then *UM* must represent all possible decompositions of *M*, i.e. for each element *m* of *M* and each Δ_M such that $\Delta_M(m) = \sum m_{(1)} \otimes m_{(2)}$, there must be elements [m] and $[m_{(i)}]$ of *UM* such that $\pi[m] = m, \pi[m_{(i)}] = m_{(i)}$, and $\Delta_{UM}[m] = \sum [m_{(1)}] \otimes [m_{(2)}]$ in $UM \otimes UM$.

Cofree coalgebra

One should think of Δ as giving each element *m* of *M* a "*K*-decomposition" into a sum of pairs of elements of *M*.

The *cofree coalgebra generated by* M is a coalgebra UM together with a linear map $\pi : UM \to M$ such that for each coalgebra C and linear map $f : C \to M$ there is a unique coalgebra map

$$f': C \rightarrow UM$$

such that $\pi f' = f$.

If $\pi : UM \to M$ is the cofree *K*-coalgebra over *M*, then *UM* must represent all possible decompositions of *M*, i.e. for each element *m* of *M* and each Δ_M such that $\Delta_M(m) = \sum m_{(1)} \otimes m_{(2)}$, there must be elements [m] and $[m_{(i)}]$ of *UM* such that $\pi[m] = m, \pi[m_{(i)}] = m_{(i)}$, and $\Delta_{UM}[m] = \sum [m_{(1)}] \otimes [m_{(2)}]$ in $UM \otimes UM$. One should think of Δ as giving each element *m* of *M* a "*K*-decomposition" into a sum of pairs of elements of *M*.

The *cofree coalgebra generated by* M is a coalgebra UM together with a linear map $\pi : UM \to M$ such that for each coalgebra C and linear map $f : C \to M$ there is a unique coalgebra map

$$f': C \to UM$$

such that $\pi f' = f$.

If $\pi : UM \to M$ is the cofree *K*-coalgebra over *M*, then *UM* must represent all possible decompositions of *M*, i.e. for each element *m* of *M* and each Δ_M such that $\Delta_M(m) = \sum m_{(1)} \otimes m_{(2)}$, there must be elements [m] and $[m_{(i)}]$ of *UM* such that $\pi[m] = m, \pi[m_{(i)}] = m_{(i)}$, and $\Delta_{UM}[m] = \sum [m_{(1)}] \otimes [m_{(2)}]$ in $UM \otimes UM$.

A Hopf algebra over *K* is a graded *K*-module *A* equipped with morthisms of graded *k*-molules

 $\phi: \mathbf{A} \rightarrow \mathbf{A} \otimes \mathbf{A}, \, \eta: \mathbf{K} \rightarrow \mathbf{A}$

 $\Delta: \mathbf{A} \to \mathbf{A} \otimes \mathbf{A}, \, \epsilon: \mathbf{A} \to \mathbf{K}$

such that

(*A*, φ, η) is an algebra over *K* with augmentation ε,
(*A*, Δ, ε) is a coalgebra over *K* with augmentation η,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

A Hopf algebra over *K* is a graded *K*-module *A* equipped with morthisms of graded *k*-molules

$$\phi: \mathcal{A}
ightarrow \mathcal{A} \otimes \mathcal{A}, \, \eta: \mathcal{K}
ightarrow \mathcal{A}$$

$$\Delta: \mathbf{A} \to \mathbf{A} \otimes \mathbf{A}, \, \epsilon: \mathbf{A} \to \mathbf{K}$$

such that

(A, φ, η) is an algebra over K with augmentation ε,
(A, Δ, ε) is a coalgebra over K with augmentation η,

A Hopf algebra over *K* is a graded *K*-module *A* equipped with morthisms of graded *k*-molules

$$\phi: \mathcal{A}
ightarrow \mathcal{A} \otimes \mathcal{A}, \, \eta: \mathcal{K}
ightarrow \mathcal{A}$$

$$\Delta : \mathbf{A} \rightarrow \mathbf{A} \otimes \mathbf{A}, \, \epsilon : \mathbf{A} \rightarrow \mathbf{K}$$

such that

- (\mathbf{A}, ϕ, η) is an algebra over \mathbf{K} with augmentation ϵ ,
- (A, Δ, ϵ) is a coalgebra over K with augmentation η ,

A Hopf algebra over *K* is a graded *K*-module *A* equipped with morthisms of graded *k*-molules

$$\phi: \mathcal{A}
ightarrow \mathcal{A} \otimes \mathcal{A}, \, \eta: \mathcal{K}
ightarrow \mathcal{A}$$

$$\Delta: \mathbf{A} \to \mathbf{A} \otimes \mathbf{A}, \, \epsilon: \mathbf{A} \to \mathbf{K}$$

such that

- (A, ϕ, η) is an algebra over *K* with augmentation ϵ ,
- (A, Δ, ϵ) is a coalgebra over K with augmentation η ,

$$\begin{array}{c} A \otimes A \xrightarrow{\phi} A \xrightarrow{\Delta} A \otimes A \\ & & & & & & \\ A \otimes \Delta & & & \\ A \otimes A \otimes A \otimes A \xrightarrow{A \otimes T \otimes A} A \otimes A \otimes A \otimes A \otimes A \end{array}$$

For a given prime number p, the Steenrod algebra A is the graded Hopf algebra over the field $F \cong Z/pZ$ of p elements, consisting of cohomology operations for mod - p cohomology generated by:

$$P^i: H^n(X;F) \rightarrow H^{n+2i(p-1)}(X;F);$$

$\beta \colon H^n(X; F) \to H^{n+1}(X; F)$ for p > 2.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 β and P^i are additive homomorphisms such that:

- P^0 is the identity, $\beta^2 = 0$.
- $P^i x = x^p$ for |x| = 2i and $P^i x = 0$ for |x| < 2i. Moreover,

For a given prime number p, the Steenrod algebra A is the graded Hopf algebra over the field $F \cong Z/pZ$ of p elements, consisting of cohomology operations for mod - p cohomology generated by:

$$P^i: H^n(X; F) \rightarrow H^{n+2i(p-1)}(X; F);$$

$$\beta \colon H^n(X; F) \to H^{n+1}(X; F)$$
 for $p > 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- β and P^i are additive homomorphisms such that:
 - P^0 is the identity, $\beta^2 = 0$.
 - $P^i x = x^p$ for |x| = 2i and $P^i x = 0$ for |x| < 2i. Moreover,

For a given prime number p, the Steenrod algebra A is the graded Hopf algebra over the field $F \cong Z/pZ$ of p elements, consisting of cohomology operations for mod - p cohomology generated by:

$$P^i: H^n(X; F) \rightarrow H^{n+2i(p-1)}(X; F);$$

$$\beta \colon H^n(X; F) \to H^{n+1}(X; F)$$
 for $p > 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 β and P^i are additive homomorphisms such that:

- P^0 is the identity, $\beta^2 = 0$.
- $P^i x = x^p$ for |x| = 2i and $P^i x = 0$ for |x| < 2i. Moreover,

• Cartan Formula: $P^n(x \smile y) = \sum_{i+j=n} (P^i x) \smile (P^j y)$ and

Adem relations:

$$P^{a}P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)-1}{a-pi} P^{a+b-i}P^{i}$$

for *a* < *pb*.

• And for p odd

$$P^{a}\beta P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)}{a-pi} \beta P^{a+b-i} P^{i} +$$

$$\sum_{i} (-1)^{a+i+1} \binom{(p-1)(b-i)-1}{a-pi-1} P^{a+b-i} \beta P^{i}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Cartan Formula: $P^n(x \smile y) = \sum_{i+j=n} (P^i x) \smile (P^j y)$ and
- Adem relations:

$$P^{a}P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)-1}{a-pi} P^{a+b-i}P^{i}$$

for *a* < *pb*.

And for p odd

$$P^{a}\beta P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)}{a-pi} \beta P^{a+b-i} P^{i} +$$

$$\sum_{i} (-1)^{a+i+1} \binom{(p-1)(b-i)-1}{a-pi-1} P^{a+b-i} \beta P^{i}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Cartan Formula: $P^n(x \smile y) = \sum_{i+j=n} (P^i x) \smile (P^j y)$ and
- Adem relations:

$$P^{a}P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)-1}{a-pi} P^{a+b-i}P^{i}$$

for *a* < *pb*.

And for p odd

$$P^{a}\beta P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)}{a-pi} \beta P^{a+b-i} P^{i} +$$

$$\sum_{i} (-1)^{a+i+1} \binom{(p-1)(b-i)-1}{a-pi-1} P^{a+b-i} \beta P^{i}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Cartan Formula: $P^n(x \smile y) = \sum_{i+j=n} (P^i x) \smile (P^j y)$ and
- Adem relations:

$$P^{a}P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)-1}{a-pi} P^{a+b-i}P^{i}$$

for *a* < *pb*.

And for p odd

$$P^{a}\beta P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)}{a-pi} \beta P^{a+b-i} P^{i} +$$

$$\sum_{i} (-1)^{a+i+1} \binom{(p-1)(b-i)-1}{a-pi-1} P^{a+b-i} \beta P^{i}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Cartan Formula: $P^n(x \smile y) = \sum_{i+j=n} (P^i x) \smile (P^j y)$ and
- Adem relations:

$$P^{a}P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)-1}{a-pi} P^{a+b-i}P^{i}$$

for *a* < *pb*.

And for p odd

$$P^{a}\beta P^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(b-i)}{a-pi} \beta P^{a+b-i} P^{i} + \sum_{i} (-1)^{a+i+1} \binom{(p-1)(b-i)-1}{a-pi-1} P^{a+b-i} \beta P^{i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The module $\Sigma^n(\mathcal{A} / < P^l, I$ admissible and e(I) < n + 1 >) is called the free unstable cyclic \mathcal{A} -module on one generator of degree *n* and is denoted by F(n).

A free unstable A-module is the direct sum of free unstable cyclic A-modules.

The category of unstable modules was defined by Massey and Peterson and is denoted by \mathcal{U} .

<ロ> (四) (四) (三) (三) (三) (三)

The module $\Sigma^n(\mathcal{A} / \langle P^l, I \text{ admissible and } e(I) \langle n+1 \rangle)$ is called the free unstable cyclic \mathcal{A} -module on one generator of degree *n* and is denoted by F(n).

A free unstable A-module is the direct sum of free unstable cyclic A-modules.

The category of unstable modules was defined by Massey and Peterson and is denoted by \mathcal{U} .

The module $\Sigma^n(\mathcal{A} / \langle P^l, I \text{ admissible and } e(I) \langle n+1 \rangle)$ is called the free unstable cyclic \mathcal{A} -module on one generator of degree *n* and is denoted by F(n).

A free unstable A-module is the direct sum of free unstable cyclic A-modules.

The category of unstable modules was defined by Massey and Peterson and is denoted by \mathcal{U} .

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

The module $\Sigma^n(\mathcal{A} / \langle P^l, I \text{ admissible and } e(I) \langle n+1 \rangle)$ is called the free unstable cyclic \mathcal{A} -module on one generator of degree *n* and is denoted by F(n).

A free unstable A-module is the direct sum of free unstable cyclic A-modules.

The category of unstable modules was defined by Massey and Peterson and is denoted by \mathcal{U} .

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

Let *M* be an unstable A-modules and *TM* its tensor algebra.

Let VM be the quotient of TM by the ideal generated by

$$x\otimes y-(-1)^{|x||y|}y\otimes x$$
 and $P^{|x|/2}x-x^p$.

《曰》 《聞》 《臣》 《臣》 三臣 …

VM is called the free unstable A-algebra generated by *M*.

If M is a free unstable A-module, then VM is called the completely free unstable A-algebra generated by M.

Serre, p = 2: $H^*(K(Z/2Z, n); Z/2Z) \equiv VF(n)$.

$$x \otimes y - (-1)^{|x||y|} y \otimes x$$
 and $P^{|x|/2} x - x^p$.

《曰》 《聞》 《臣》 《臣》 三臣 …

VM is called the free unstable A-algebra generated by *M*.

If M is a free unstable A-module, then VM is called the completely free unstable A-algebra generated by M.

Serre, p = 2: $H^*(K(Z/2Z, n); Z/2Z) \equiv VF(n)$.

$$x \otimes y - (-1)^{|x||y|} y \otimes x$$
 and $P^{|x|/2} x - x^p$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

VM is called the free unstable A-algebra generated by M.

If M is a free unstable A-module, then VM is called the completely free unstable A-algebra generated by M.

Serre, p = 2: $H^*(K(Z/2Z, n); Z/2Z) \equiv VF(n)$.

$$x\otimes y-(-1)^{|x||y|}y\otimes x$$
 and $P^{|x|/2}x-x^p$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

VM is called the free unstable A-algebra generated by M.

If *M* is a free unstable A-module, then *VM* is called the completely free unstable A-algebra generated by *M*.

Serre, p = 2: $H^*(K(Z/2Z, n); Z/2Z) \equiv VF(n)$.

$$x\otimes y-(-1)^{|x||y|}y\otimes x$$
 and $P^{|x|/2}x-x^p$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

VM is called the free unstable A-algebra generated by M.

If *M* is a free unstable A-module, then *VM* is called the completely free unstable A-algebra generated by *M*.

Serre, p = 2: $H^*(K(Z/2Z, n); Z/2Z) \equiv VF(n)$.

$$x\otimes y-(-1)^{|x||y|}y\otimes x$$
 and $\mathcal{P}^{|x|/2}x-x^p.$

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

VM is called the free unstable A-algebra generated by M.

If *M* is a free unstable A-module, then *VM* is called the completely free unstable A-algebra generated by *M*.

Serre, p = 2: $H^*(K(Z/2Z, n); Z/2Z) \equiv VF(n)$.

Let $\mathcal{M}\mathcal{A}$ be the category of connected unstable opposite $\mathcal{A}\text{-modules}.$

An unstable opposite A-module consists of a positively graded F-module M

and a graded module map $\mathcal{A}^i \otimes M_n \to M_{n-2(p-1)i}$ with the property

 $P^k m = 0$, if |m| < 2pk; and $\beta P^k m = 0$, if |m| = 2pk + 1.

Let $\mathcal{M}\mathcal{A}$ be the category of connected unstable opposite $\mathcal{A}\text{-modules}.$

An unstable opposite A-module consists of a positively graded F-module M

and a graded module map $\mathcal{A}^i \otimes M_n \to M_{n-2(p-1)i}$ with the property

 $P^k m = 0$, if |m| < 2pk; and $\beta P^k m = 0$, if |m| = 2pk + 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $\mathcal{M}\mathcal{A}$ be the category of connected unstable opposite $\mathcal{A}\text{-modules}.$

An unstable opposite A-module consists of a positively graded F-module M

and a graded module map $\mathcal{A}^i \otimes M_n \to M_{n-2(p-1)i}$ with the property

 $P^{k}m = 0$, if |m| < 2pk; and $\beta P^{k}m = 0$, if |m| = 2pk + 1.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで
an object is both an unstable opposite A-module and a connected co-commutative F-coalgebra where these structures are compatible in the following sense.

The comultiplication map in CA is an unstable A-module map and the *p*-th root map $\xi : M_{pk} \to M_k$, dual to the *p*-th power map, satisfies

$$\xi\left(m\right)=P^{k}\left(m\right).$$

For example $H_*(X, F)$ is an object in CA for X a connected space and the co multiplication is induced by the diagonal.

<ロ> (四) (四) (三) (三) (三)

an object is both an unstable opposite A-module and a connected co-commutative *F*-coalgebra where these structures are compatible in the following sense.

The comultiplication map in CA is an unstable A-module map and the *p*-th root map $\xi : M_{pk} \to M_k$, dual to the *p*-th power map, satisfies

$$\xi\left(m\right)=P^{k}\left(m\right).$$

For example $H_*(X, F)$ is an object in CA for X a connected space and the co multiplication is induced by the diagonal.

an object is both an unstable opposite A-module and a connected co-commutative *F*-coalgebra where these structures are compatible in the following sense.

The comultiplication map in CA is an unstable A-module map and the *p*-th root map $\xi : M_{pk} \to M_k$, dual to the *p*-th power map, satisfies

$$\xi(m)=P^{k}(m).$$

For example $H_*(X, F)$ is an object in CA for X a connected space and the co multiplication is induced by the diagonal.

an object is both an unstable opposite A-module and a connected co-commutative F-coalgebra where these structures are compatible in the following sense.

The comultiplication map in CA is an unstable A-module map and the *p*-th root map $\xi : M_{pk} \to M_k$, dual to the *p*-th power map, satisfies

$$\xi\left(m
ight)=P^{k}\left(m
ight).$$

For example $H_*(X, F)$ is an object in CA for X a connected space and the co multiplication is induced by the diagonal.

For a connected unstable A-module M, the cofree unstable A-coalgebra generated by M, UM, has the following universal property:

UM comes with an A-module map $i : UM \to M$ and if *C* is an unstable A-coalgebra and $f : C \to M$ an A-module map, there exists a unique A-coalgebra map

$$\overline{f}: C \to UM$$

such that $f = i\overline{f}$.

If *M* is of finite type, then *UM* is dual to the free unstable A-algebra *VM*^{*} generated by the dual A-module *M*^{*}.

Moreover, U is a functor from the category \mathcal{MA} to \mathcal{CA} right adjoint to the forgetful functor.

For a connected unstable A-module M, the cofree unstable A-coalgebra generated by M, UM, has the following universal property:

UM comes with an A-module map $i : UM \to M$ and if C is an unstable A-coalgebra and $f : C \to M$ an A-module map, there exists a unique A-coalgebra map

$$\overline{f}: C \to UM$$

such that $f = i\overline{f}$.

If *M* is of finite type, then *UM* is dual to the free unstable A-algebra *VM*^{*} generated by the dual A-module *M*^{*}.

Moreover, U is a functor from the category \mathcal{MA} to \mathcal{CA} right adjoint to the forgetful functor.

For a connected unstable A-module M, the cofree unstable A-coalgebra generated by M, UM, has the following universal property:

UM comes with an A-module map $i : UM \to M$ and if *C* is an unstable A-coalgebra and $f : C \to M$ an A-module map, there exists a unique A-coalgebra map

$$\overline{f}: C \to UM$$

such that $f = i\overline{f}$.

If *M* is of finite type, then *UM* is dual to the free unstable A-algebra *VM*^{*} generated by the dual A-module *M*^{*}.

Moreover, U is a functor from the category \mathcal{MA} to \mathcal{CA} right adjoint to the forgetful functor.

For a connected unstable A-module M, the cofree unstable A-coalgebra generated by M, UM, has the following universal property:

UM comes with an A-module map $i : UM \to M$ and if C is an unstable A-coalgebra and $f : C \to M$ an A-module map, there exists a unique A-coalgebra map

$$\overline{f}: C \to UM$$

such that $f = i\overline{f}$.

If *M* is of finite type, then *UM* is dual to the free unstable A-algebra *VM*^{*} generated by the dual A-module *M*^{*}.

Moreover, U is a functor from the category \mathcal{MA} to \mathcal{CA} right adjoint to the forgetful functor.

For a given prime number p, the Dyer-Lashof algebra \mathcal{R} is the graded Hopf algebra over the field F of p elements, consisting of homology operations for mod - p homology on infinite loop spaces QX generated by:

$$Q' \colon H_n(QX;F) \to H_{n+2i(p-1)}(QX;F);$$

 $eta Q^i \colon H_n(QX;F) \to H_{n-1+2i(p-1)}(QX;F) ext{ for } p > 2.$

βQⁱ and Qⁱ are additive homomorphisms such that:
Qⁱx = x^p for |x| = 2i and Qⁱx = 0 for |x| > 2i.

<ロト <回ト < 国ト < 国ト < 国ト 三 里

Moreover,

For a given prime number p, the Dyer-Lashof algebra \mathcal{R} is the graded Hopf algebra over the field F of p elements, consisting of homology operations for mod - p homology on infinite loop spaces QX generated by:

$$Q': H_n(QX; F) \rightarrow H_{n+2i(p-1)}(QX; F);$$

 $\beta Q^i: H_n(QX; F) \rightarrow H_{n-1+2i(p-1)}(QX; F) \text{ for } p > 2.$

βQⁱ and Qⁱ are additive homomorphisms such that:
Qⁱx = x^p for |x| = 2i and Qⁱx = 0 for |x| > 2i.
loreover,

For a given prime number p, the Dyer-Lashof algebra \mathcal{R} is the graded Hopf algebra over the field F of p elements, consisting of homology operations for mod - p homology on infinite loop spaces QX generated by:

$$Q' \colon H_n(QX; F) \to H_{n+2i(p-1)}(QX; F);$$

 $\beta Q^i \colon H_n(QX; F) \to H_{n-1+2i(p-1)}(QX; F) \text{ for } p > 2.$

βQⁱ and Qⁱ are additive homomorphisms such that:
Qⁱx = x^p for |x| = 2i and Qⁱx = 0 for |x| > 2i.
Moreover.

◆□▶ ◆御▶ ◆注≯ ◆注≯ ─ 注

• Cartan Formula: $Q^n(x \otimes y) = \sum_{i+j=n} (Q^i x) \otimes (Q^j y)$ and

Adem relations:

$$Q^{a}Q^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(i-b)}{pi-a} Q^{a+b-i}Q^{i}$$

for a > pb.

• And for *p* odd

$$Q^{a}\beta Q^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(i-b)}{pi-a} \beta Q^{a+b-i} Q^{i} + \sum_{i} (-1)^{a+i+1} \binom{(p-1)(i-b)-1}{pi-a-1} Q^{a+b-i} \beta Q^{i}$$

tor $pb \leq a$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Cartan Formula: $Q^n(x \otimes y) = \sum_{i+j=n} (Q^i x) \otimes (Q^j y)$ and
- Adem relations:

$$Q^{a}Q^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(i-b)}{pi-a} Q^{a+b-i}Q^{i}$$

for a > pb.

And for p odd

$$Q^{a}\beta Q^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(i-b)}{pi-a} \beta Q^{a+b-i} Q^{i} + \sum_{i} (-1)^{a+i+1} \binom{(p-1)(i-b)-1}{pi-a-1} Q^{a+b-i} \beta Q^{i}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Cartan Formula: $Q^n(x \otimes y) = \sum_{i+j=n} (Q^i x) \otimes (Q^j y)$ and
- Adem relations:

$$Q^{a}Q^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(i-b)}{pi-a} Q^{a+b-i}Q^{i}$$

for a > pb.

And for p odd

$$Q^{a}\beta Q^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(i-b)}{pi-a} \beta Q^{a+b-i} Q^{i} + \sum_{i} (-1)^{a+i+1} \binom{(p-1)(i-b)-1}{pi-a-1} Q^{a+b-i} \beta Q^{i}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Cartan Formula: $Q^n(x \otimes y) = \sum_{i+j=n} (Q^i x) \otimes (Q^j y)$ and
- Adem relations:

$$Q^{a}Q^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(i-b)}{pi-a} Q^{a+b-i}Q^{i}$$

for a > pb.

And for p odd

$$Q^{a}\beta Q^{b} = \sum_{i} (-1)^{a+i} \binom{(p-1)(i-b)}{pi-a} \beta Q^{a+b-i} Q^{i} + \sum_{i} (-1)^{a+i+1} \binom{(p-1)(i-b)-1}{pi-a-1} Q^{a+b-i} \beta Q^{i}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

for $pb \leq a$.

Infinite loop spaces

Y is an infinite loop space, if there exists a sequence of spaces $\{Y_0, Y_1, ...\}$ such that $Y = Y_0$ and $Y_i \simeq \Omega Y_{i+1}$.

Examples:

- $QX = \lim \Omega^n \Sigma^n X$,
- $Z \times BO = Z \times \lim BO_n$ real *K*-theory,
- $Z \times BU = Z \times \lim_{n \to \infty} BU_n$ complex *K*-theory.

Theorem (Dyer-Lashof)

 $H_*(QX, F)$ is the free commutative algebra generated by $(Q^lx, \text{ such that } Q^l \in \mathcal{R}, e(I) \le |x|, \text{ and } x \in H_*(X))$ modulo the ideal generated by

$$\{Q^sy-y^p\mid |y|=2s\}.$$

Here $y^2 = 0$, if |y| = odd and p > 2.

Infinite loop spaces

Y is an infinite loop space, if there exists a sequence of spaces $\{Y_0, Y_1, ...\}$ such that $Y = Y_0$ and $Y_i \simeq \Omega Y_{i+1}$.

Examples:

- $QX = \lim \Omega^n \Sigma^n X$,
- $Z \times BO = Z \times \lim BO_n$ real *K*-theory,
- $Z \times BU = Z \times \lim_{n \to \infty} BU_n$ complex *K*-theory.

Theorem (Dyer-Lashof)

 $H_*(QX, F)$ is the free commutative algebra generated by $(Q^lx, \text{ such that } Q^l \in \mathcal{R}, e(I) \le |x|, \text{ and } x \in H_*(X))$ modulo the ideal generated by

$$\{Q^sy-y^p\mid |y|=2s\}.$$

Here $y^2 = 0$, if |y| = odd and p > 2.

Infinite loop spaces

Y is an infinite loop space, if there exists a sequence of spaces $\{Y_0, Y_1, ...\}$ such that $Y = Y_0$ and $Y_i \simeq \Omega Y_{i+1}$.

Examples:

- $QX = \lim \Omega^n \Sigma^n X$,
- $Z \times BO = Z \times \varinjlim BO_n$ real *K*-theory,
- $Z \times BU = Z \times \lim_{n \to \infty} BU_n$ complex *K*-theory.

Theorem (Dyer-Lashof)

 $H_*(QX, F)$ is the free commutative algebra generated by $(Q^lx, \text{ such that } Q^l \in \mathcal{R}, e(I) \leq |x|, \text{ and } x \in H_*(X))$ modulo the ideal generated by

$$\{Q^sy-y^p\mid |y|=2s\}.$$

Here $y^2 = 0$, if |y| = odd and p > 2.

ii) Classify all compact *n*-manifolds up to **cobordism**.

Theorem (Thom-Pontryagin)

The cobordism group of n-dimensional unoriented manifolds, is isomorphic to the stable homotopy group:

 $\lim_{\overrightarrow{r}}\pi_{n+r}(TBO_r,t_0).$

《曰》 《聞》 《臣》 《臣》

ii) Classify all compact *n*-manifolds up to **cobordism**.

Theorem (Thom-Pontryagin)

The cobordism group of n-dimensional unoriented manifolds, is isomorphic to the stable homotopy group:

 $\lim_{\overrightarrow{r}}\pi_{n+r}(TBO_r,t_0).$

<ロ> (四) (四) (三) (三) (三)

ii) Classify all compact *n*-manifolds up to **cobordism**.

Theorem (Thom-Pontryagin)

The cobordism group of n-dimensional unoriented manifolds, is isomorphic to the stable homotopy group:

 $\lim_{\overrightarrow{r}}\pi_{n+r}(TBO_r,t_0).$

《曰》 《聞》 《臣》 《臣》 三臣 …

ii) Classify all compact *n*-manifolds up to **cobordism**.

Theorem (Thom-Pontryagin)

The cobordism group of n-dimensional unoriented manifolds, is isomorphic to the stable homotopy group:

```
\lim_{\overrightarrow{r}}\pi_{n+r}(TBO_r,t_0).
```

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

$$\mathcal{R} = \bigoplus_{k \ge 0} R[k].$$

Problem:

- How far is each *R*[*k*] from being cofree?
- How about its dual $(R[k])^*$?
- How far is each $(R[k])^*$ from being an unstable free algebra?

<ロ> (四) (四) (三) (三) (三)

$$\mathcal{R} = \bigoplus_{k \ge 0} R[k].$$

Problem:

- How far is each *R*[*k*] from being cofree?
- How about its dual $(R[k])^*$?
- How far is each $(R[k])^*$ from being an unstable free algebra?

<ロ> (四) (四) (三) (三) (三) (三)

$$\mathcal{R} = \bigoplus_{k \ge 0} R[k].$$

Problem:

- How far is each *R*[*k*] from being cofree?
- How about its dual (R[k])*?
- How far is each $(R[k])^*$ from being an unstable free algebra?

<ロ> (四) (四) (三) (三) (三) (三)

$$\mathcal{R} = \bigoplus_{k \ge 0} R[k].$$

Problem:

- How far is each *R*[*k*] from being cofree?
- How about its dual $(R[k])^*$?
- How far is each (R[k])* from being an unstable free algebra?

《曰》 《聞》 《臣》 《臣》 三臣 …

$$\mathcal{R} = \bigoplus_{k \ge 0} R[k].$$

Problem:

- How far is each *R*[*k*] from being cofree?
- How about its dual $(R[k])^*$?
- How far is each (R[k])* from being an unstable free algebra?

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

Theorem (Dickson)

The classical Dickson algebra is a polynomial algebra

$$\boldsymbol{P}[\boldsymbol{y}_1,\cdots,\boldsymbol{y}_k]^{GL_k}=\boldsymbol{P}\left[\boldsymbol{d}_{k,1},\cdots,\boldsymbol{d}_{k,k-1},\boldsymbol{d}_{k,k}\right].$$

$$|d_{k,i}| = 2(p^k - p^{k-i}), [|d_{k,i}| = 2^k - 2^{k-i}].$$

Definition

The extended Dickson algebra, *p* odd, is given by:

$$H^{*}\left(BV^{k}
ight)^{GL_{k}}\cong\left(E\left(x_{1},...,x_{k}
ight)\otimes P\left[y_{1},...,y_{k}
ight]
ight)^{GL_{k}}$$

・ロト ・雪ト ・ヨト ・ヨト

Theorem (Dickson)

The classical Dickson algebra is a polynomial algebra

$$\mathcal{P}[\mathbf{y}_1,\cdots,\mathbf{y}_k]^{GL_k}=\mathcal{P}\left[\mathbf{d}_{k,1},\cdots,\mathbf{d}_{k,k-1},\mathbf{d}_{k,k}\right].$$

$$|d_{k,i}| = 2(p^k - p^{k-i}), [|d_{k,i}| = 2^k - 2^{k-i}].$$

Definition

The extended Dickson algebra, *p* odd, is given by:

$$H^*\left(BV^k\right)^{GL_k}\cong\left(E\left(x_1,...,x_k\right)\otimes P\left[y_1,...,y_k\right]\right)^{GL_k}$$

《曰》 《問》 《臣》 《臣》 三语

Theorem (Mui)

The extended Dickson algebra is described as follows

$$ED_k := (E(x_1, \cdots, x_k) \otimes P[y_1, \cdots, y_k])^{GL_k}$$

It is a tensor product of the polynomial algebra $P[y_1, \dots, y_k]^{GL_k}$ and the $\mathbb{Z}/p\mathbb{Z}$ -module spanned by the set of elements consisting of the following polynomials:

 $M_{k;s_1,...,s_m}(L_k)^{p-2}$; $1 \le m \le k$, and $0 \le s_1 < \cdots < s_m \le k-1$.

<ロ> (四) (四) (三) (三) (三) (三)

There are relations among the generators.

Definition

Let SED_k be the subalgebra of ED_k generated by:

$$d_{k;s+1}, M_{k;s}(L_k)^{p-2}$$
 and $M_{k;s_1,s_2}(L_k)^{p-2}$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

Here $0 \le s \le k - 1$. $0 \le s_1 < s_2 \le k - 1$.

Theorem (Madsen p = 2, May p odd)

 $R[k]^*$ is generated by $\{\omega_{k,i+1} = (Q^{I_{k,i+1}})^*, \tau_{k;i} = (Q^{J_{k;i}})^*$, and $\sigma_{k;s,i} = (Q^{K_{k;s,i}})^* \mid 0 \le i \le k-1$, and $0 \le s < i\}$, $[\{\omega_{k,i+1} \mid 0 \le i \le k-1\}$, for p = 2], modulo certain relations.

Theorem (Mui ho= 2, Kechagias ho oddj

Let $T_k : SED_k \to R[k]^*$ be given by $T_k(d_{k,i+1}) = \omega_{k,i+1}$, $T_k(M_{k;i}L_k^{p-2}) = \tau_{k,i}$, and $T_k(M_{k;s,i}L_k^{p-2}) = \sigma_{k;s,i}$. Then T_k is a Steenrod algebra isomorphism.

For p = 2, $R[k]^*$ is a polynomial algebra and it is isomorphic with the classical Dickson algebra as Steenrod algebras.

《曰》 《聞》 《臣》 《臣》 三臣 …

Theorem (Madsen p = 2, May p odd)

$$R[k]^*$$
 is generated by $\{\omega_{k,i+1} = (Q^{I_{k,i+1}})^*, \tau_{k;i} = (Q^{J_{k;i}})^*$, and $\sigma_{k;s,i} = (Q^{K_{k;s,i}})^* \mid 0 \le i \le k-1$, and $0 \le s < i\}$, $[\{\omega_{k,i+1} \mid 0 \le i \le k-1\}, \text{ for } p = 2]$, modulo certain relations.

Theorem (Mui p = 2, Kechagias p odd)

Let $T_k : SED_k \to R[k]^*$ be given by $T_k(d_{k,i+1}) = \omega_{k,i+1}$, $T_k(M_{k;i}L_k^{p-2}) = \tau_{k,i}$, and $T_k(M_{k;s,i}L_k^{p-2}) = \sigma_{k;s,i}$. Then T_k is a Steenrod algebra isomorphism.

For p = 2, $R[k]^*$ is a polynomial algebra and it is isomorphic with the classical Dickson algebra as Steenrod algebras.

《曰》 《聞》 《臣》 《臣》 三臣 …

Theorem (Madsen p = 2, May p odd)

$$R[k]^*$$
 is generated by $\{\omega_{k,i+1} = (Q^{I_{k,i+1}})^*, \tau_{k;i} = (Q^{J_{k;i}})^*$, and $\sigma_{k;s,i} = (Q^{K_{k;s,i}})^* \mid 0 \le i \le k-1$, and $0 \le s < i\}$, $[\{\omega_{k,i+1} \mid 0 \le i \le k-1\}$, for $p = 2]$, modulo certain relations.

Theorem (Mui p = 2, Kechagias p odd)

Let $T_k : SED_k \to R[k]^*$ be given by $T_k(d_{k,i+1}) = \omega_{k,i+1}$, $T_k(M_{k;i}L_k^{p-2}) = \tau_{k,i}$, and $T_k(M_{k;s,i}L_k^{p-2}) = \sigma_{k;s,i}$. Then T_k is a Steenrod algebra isomorphism.

For p = 2, $R[k]^*$ is a polynomial algebra and it is isomorphic with the classical Dickson algebra as Steenrod algebras.

The Peterson conjecture is about the **global structure** of the classical Dickson algebra as an unstable algebra over the Steenrod algebra.

This conjecture was solved by Pengelley, Peterson and Williams for p = 2 in:

Pengelley, D. J., Peterson, F. P. and Williams, F., "A global structure theorem for the mod 2 Dickson algebras, and unstable cyclic modules over the Steenrod and Kudo-Araki-May algebras", *Math. Proc. Cambridge Philos. Soc.*, **129**, 2000, no. 2, 263–275.

Pengelley, D. J. and Williams, F., "The global structure of odd-primary Dickson algebras as algebras over the Steenrod algebra", *Math. Proc. Cambridge Philos. Soc.*, **136**, 2004, no. 1, 67–73.

The Peterson conjecture is about the **global structure** of the classical Dickson algebra as an unstable algebra over the Steenrod algebra.

This conjecture was solved by Pengelley, Peterson and Williams for p = 2 in:

Pengelley, D. J., Peterson, F. P. and Williams, F., "A global structure theorem for the mod 2 Dickson algebras, and unstable cyclic modules over the Steenrod and Kudo-Araki-May algebras", *Math. Proc. Cambridge Philos. Soc.*, **129**, 2000, no. 2, 263–275.

Pengelley, D. J. and Williams, F., "The global structure of odd-primary Dickson algebras as algebras over the Steenrod algebra", *Math. Proc. Cambridge Philos. Soc.*, **136**, 2004, no. 1, 67–73.
The Peterson conjecture is about the **global structure** of the classical Dickson algebra as an unstable algebra over the Steenrod algebra.

This conjecture was solved by Pengelley, Peterson and Williams for p = 2 in:

Pengelley, D. J., Peterson, F. P. and Williams, F., "A global structure theorem for the mod 2 Dickson algebras, and unstable cyclic modules over the Steenrod and Kudo-Araki-May algebras", *Math. Proc. Cambridge Philos. Soc.*, **129**, 2000, no. 2, 263–275.

Pengelley, D. J. and Williams, F., "The global structure of odd-primary Dickson algebras as algebras over the Steenrod algebra", *Math. Proc. Cambridge Philos. Soc.*, **136**, 2004, no. 1, 67–73.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

They proved that the classical Dickson algebra D_k is a **free unstable algebra on a certain cyclic module**, modulo four additional relations.

What about the extended Dickson algebra SED_k ?

They proved that the classical Dickson algebra D_k is a **free unstable algebra on a certain cyclic module**, modulo four additional relations.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

What about the extended Dickson algebra SED_k ?

- We define an unstable A-module $\mathcal{M}(\mu, u)$
- and from it an unstable A-algebra $Q(\mu, u)$.
- Finally an isomorphism between Q (μ, u) and SED_n will be defined.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

- We define an unstable \mathcal{A} -module $\mathcal{M}(\mu, u)$
- and from it an unstable A-algebra $Q(\mu, u)$.
- Finally an isomorphism between Q (μ, u) and SED_n will be defined.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- We define an unstable \mathcal{A} -module $\mathcal{M}(\mu, u)$
- and from it an unstable A-algebra $Q(\mu, u)$.
- Finally an isomorphism between $Q(\mu, u)$ and SED_n will be defined.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

The module $\mathcal{M}(\mu, u)$ has two generators μ and u of degrees $2(p^n - p^{n-1} - p^{n-2})$ and $2(p^n - p^{n-1})$ respectively and relations:

$$\boldsymbol{P}^{\boldsymbol{p}^{k}}\boldsymbol{\mu}=\boldsymbol{0}=\boldsymbol{P}^{\boldsymbol{p}^{l}}\boldsymbol{u},\tag{1}$$

《口》 《聞》 《臣》 《臣》

for
$$-1 \le k \le n-4$$
, $k = n-2$ and $-1 \le l \le n-3$;
 $P^{p^{n-3}}P^{p^{n-3}}u = 0 = P^{p^{n-2}}P^{p^{n-2}}u$: (2)

$$P^{p^{n-3}}P^{p^{n-2}}P^{p^{n-3}}\mu = 0 = P^{p^{n-2}}P^{p^{n-2}}P^{p^{n-3}}\mu;$$
(3)

$$P^{p^{n-1}}P^{p^{n-3}}\mu = P^{p^{n-3}}P^{p^{n-1}}\mu \text{ and } P^{p^{n-2}}P^{p^{n-1}}u = 2P^{p^{n-1}}P^{p^{n-2}}u.$$
(4)

The generators are related as follows:

$$P^{(-1,\dots,n-2)}P^{(-1,\dots,n-3)}\mu = P^{(0,\dots,n-2)}u.$$
(5)

Definition

Let $Q(\mu, u)$ be the free unstable A-algebra on the module $\mathcal{M}(\mu, u)$ subject to the following relations:

$$\mu^2 = 0$$
 and $P^{p^{n-1}}u = (p-1)u^2$. (6)

The generators are related as follows:

$$\mathbf{P}^{\mathbf{p}^{n-1}}\mu = (\mathbf{p} - \mathbf{2})\mu u$$
 and (7)

$$P^{p^{n-1}}P^{p^{n-2}}P^{p^{n-3}}\mu =$$
 (1)

$$-P^{p^{n-2}}P^{p^{n-3}}\mu u + \mu P^{p^{n-3}}P^{p^{n-2}}u - P^{p^{n-3}}\mu P^{p^{n-2}}u.$$
(2)

Theorem

The algebra $\mathcal{Q}(\mu, u)$ is isomorphic as an \mathcal{A} -algebra to SED_n.

Corollary

R[*n*] is isomorphic to a subcoalgebra of a cofree unstable coalgebra on two cogenerators.

《曰》 《聞》 《臣》 《臣》

Corollary

Let $1 \leq n$, then $Hom_{\mathcal{CA}}(R[n], R[n]) \cong F_{p}$.

Theorem

The algebra $\mathcal{Q}(\mu, u)$ is isomorphic as an \mathcal{A} -algebra to SED_n.

Corollary

R[*n*] is isomorphic to a subcoalgebra of a cofree unstable coalgebra on two cogenerators.

Corollary

Let $1 \leq n$, then $Hom_{\mathcal{CA}}(R[n], R[n]) \cong F_{p}$.

Theorem

The algebra $\mathcal{Q}(\mu, u)$ is isomorphic as an \mathcal{A} -algebra to SED_n.

Corollary

R[*n*] is isomorphic to a subcoalgebra of a cofree unstable coalgebra on two cogenerators.

<ロ> (四) (四) (三) (三) (三)

Corollary

Let $1 \leq n$, then $Hom_{\mathcal{CA}}(R[n], R[n]) \cong F_{\rho}$.