
On the performance of various parallel GMRES
implementations on CPU and GPU clusters

E.I. Ioannidis, N. Cheimarios, A.N. Spyropoulos, and A.G.
Boudouvis

School of Chemical Engineering, National Technical University of Athens,
15780 Athens, Greece

ch08001@chemeng.ntua.gr, nixeimar@chemeng.ntua.gr,

aspyr@chemeng.ntua.gr, boudouvi@chemeng.ntua.gr

Key words: Partitioning, Galerkin/finite element method, sparse matrices, Newton iteration, MPI, CUDA

As the need for computational power and efficiency rises, parallel systems become increasingly
popular among various scientific fields. Distributed, shared and hybrid memory multi-core systems
were until recently the main computing architectures used for parallel computations while sequential
algorithms were transformed to run in those parallel architectures exploiting their high computing
capabilities. Nevertheless, the constant need for solving efficiently demanding problems has led to
the development of a new kind of parallel computing system: General-purpose Graphics Process-
ing Units (GPGPU). The rapid evolution of general purposes GPU-based architectures takes high
performance computing to the next level.

Applying finite element methods in boundary value problems involves the solution of large and
sparse systems of linear (or linearized) algebraic equations of the form Ax = b, an expensive
computational task that requires most of the total processing time. GMRES, an established iterative
solver for large and sparse linear equation sets, is often employed for this task. In this work, different
implementations of a parallel version of GMRES is presented, each of them on different computing
architectures: From distributed and shared memory core-based to GPU-based architectures. The
computational experiments emanate from the dicretization of a benchmark boundary value problem
with the Galerkin/finite element method.

The main issue addressed is the method that someone should choose in order to efficiently solve
large sparse linear systems of equations depending on the hardware available. Results show that
memory access puts a serious limitation to the number of cores that can run concurrently on a shared
memory core-based architecture. Distributed memory systems including fast network connections
are therefore preferred as there is no noticeable effect of inter-processor communication on parallel
speedup. Furthermore, the use of a single GPU device can accelerate the computations several times
while using multiple GPUs even greater speedups are achieved.

1


