Some error estimates for the finite volume element method for a parabolic problem

Panagiotis Chatzipantelidis^{*a*}, Raytcho Lazarov^{*b*}, and Vidar Thomée^{*c*} ^{*a*}Department of Mathematics, University of Crete,

Heraklion, GR-71409, Greece

^bDepartment of Mathematics, Texas A&M University,

College Station, TX-77843, USA

^cDepartment of Mathematics, Chalmers University of Technology and Göteborg

University,

Göteborg, SE-412, Sweden

chatzipa@math.uoc.gr,lazarov@math.tamu.edu,thomee@chalmers.se

Key words: finite volume method, parabolic pde's, nonsmooth initial data, error estimates.

$$u_t - \Delta u = 0, \text{ in } \Omega, \quad u = 0, \text{ on } \partial \Omega, \quad \text{ for } t \ge 0, \quad u(0) = v, \text{ in } \Omega,$$
 (1)

where Ω is a bounded convex polygonal domain in \mathbb{R}^2 . We study the spatially semidiscrete finite volume method for (1), where we seek an approximation $\tilde{u}_h(t) \in S_h$ of u(t), with S_h the piecewise linear functions on a triangulation $\mathcal{T}_h = \{\tau\}$ of Ω , with h denoting the maximum diameter of the triangles $\tau \in \mathcal{T}_h$. The semidiscrete finite volume method is then to find $\tilde{u}_h(t) \in S_h$, such that

$$\int_{V_z} \widetilde{u}_{h,t} \, dx - \int_{\partial V_z} \nabla \widetilde{u}_h \cdot n \, ds = 0, \forall z \in Z_h^0, \quad \text{for } t > 0, \text{ with } \widetilde{u}_h(0) = v_h \in S_h,$$

where v_h is a given approximation of v, Z_h^0 is the set of interior vertices of \mathcal{T}_h and V_z is a finite collection of nonoverlapping control volumes of Ω . We show that

$$\|\widetilde{u}_{h}(t) - u(t)\| \le Ch^{2}t^{-1}\|v\|, \quad \text{for } t > 0,$$
(2)

with $v_h = P_h v$, P_h the L_2 projection on S_h , $|v|_0 = ||v|| = (v, v)^{1/2}$ the norm in $L_2(\Omega)$, under a hypothesis on \mathcal{T}_h , which is satisfied for symmetric triangulations. For less restrictive meshes, such as almost symmetric triangulations, we derive (2) with the addition of a logarithmic factor and for piecewise almost symmetric triangulations, we show instead a $O(h^{3/2}t^{-1})$ bound. Further, without any assumption on the mesh we obtain a $O(ht^{-1/2})$ bound. In addition, we give examples of nonsymmetric partitions in two space dimension, that illustrate our theoretical results.