High order numerical solution of the linear integral equations

Javad Farzi
Sahand University of Technology,
Tabriz, Sahand New Town, Iran, P.O. Box 51335/1996.
farzi@sut.ac.ir

Key words: High order methods, Integral equations, extrapolation methods.

We consider the Fredholm integral equation of the second kind

\[u(x) + \lambda \int_a^b k(x, y) u(y) \, dy = f(x), \]

where the functions \(k(x, y) \) and \(f(x) \) are smooth functions. The numerical solutions of this problem has been discussed in many books and papers, for example see[1, 2]. We derive an explicit representation of the extrapolation methods to provide an efficient method for numerical approximation of the integrals in an arbitrary grid points:

\[T_{j-1}^{(k+1)} = \sum_{i=0}^{N} w_i f(x_i). \]

(2)

The order of this method is increasing with \(N \). The convergence of the given approximation for a small number of nodes is evident in numerical analysis. The discretization of the integral equation based on this approximation will provide many advantages in practical methods. Some of them are: the rapid convergence, using the arbitrary set of points in the discretization, the straightforward extension of the method for the integro-differential equations and many other advantages can easily verified. The implementation of this method for nonlinear problems is also a interesting problem and has many applications in science and engineering.

References
