
An Experimental Study for Parallelizing Basic Kernels
From Scientific Computing using Multicore Libraries

Panagiotis D. Michailidisa, and Konstantinos G. Margaritisb
aDepartment of Balkan Studies, University of Western Macedonia,

Florina, Greece
bDepartment of Applied Informatics, University of Macedonia,

Thessaloniki, Greece
pmichailidis@uowm.gr,kmarg@uom.gr

Key words: Parallel Processing, Linear Algebra, Multicore Programming.

Basic kernels from scientific computing such as matrix computations (i.e. dot product, outer prod-
uct, matrix transpose, matrix - vector product and matrix product) and solving linear systems (i.e.
Gaussian elimination and Jacobi) lie at the core of many computational applications such as compu-
tational statistics and combinatorial optimization. Often, these kernels are computation-intensive,
so the sequential execution time is quite large. Therefore, it is profitable to use a multi-core platform
as a high performance system for the execution. For the parallelization of the kernels from scientific
computing on multi-core platforms there are many representative parallel programming libraries.
These libraries are Pthreads, OpenMP, Intel Cilk++, Intel TBB, Intel ArBB, SMPSs, SWARM and
FastFlow. These libraries based on a small set of extensions to the C programming language and
involve a relatively simple compilation phase and potentially much more complex runtime system.

The question that is imposed by programmers is which is the appropriate libary for implementing
computational kernels on multi-core so that there is a balance between easy programming effort and
the high performance. The aim of this presentation is to show an unified and systematic quantitative
and qualitative study of multi-core programming libraries for implementing basic kernels that based
on row partitioning method. The quantitative study is based on the assess the performance of the
multithread kernels on Dual Opteron 6128 CPU with eight processor cores (16 cores total) and we
measured the execution time as a function of the number of cores (i.e. from 1 to 16) and of the
problem size (i.e. from 1024 × 1024 to 5120 × 5120). On the other hand, the qualitative study
is based on the assess the ease of programming effort in the multicore programming tools and we
counted the number of lines of code needed to solve the problem. Finally, based on this extensive
study we conclude that the Intel ArBB and SWARM parallel programming libraries are the most
appropriate because these give good performance and simplicity of programming.

1


